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Abstract
We conjecture an explicit positive combinatorial formula for the expansion of unicel-
lular LLT polynomials in the elementary symmetric basis. This is an analogue of the
Shareshian–Wachs conjecture previously studied byPanova and the author in 2018.We
show that the conjecture for unicellular LLT polynomials implies a similar formula for
vertical-strip LLT polynomials.We prove positivity in the elementary symmetric basis
for the class of graphs called “melting lollipops” previously considered by Huh, Nam
and Yoo. This is done by proving a curious relationship between a generalization of
charge and orientations of unit-interval graphs. We also provide short bijective proofs
of Lee’s three-term recurrences for unicellular LLT polynomials, and we show that
these recurrences are enough to generate all unicellular LLT polynomials associated
with abelian area sequences.
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1 Introduction

1.1 Background on LLT polynomials

LLT polynomials were introduced by Lascoux, Leclerc and Thibon in [24] and are
q-deformations of products of skew Schur functions. An alternative combinatorial
model for the LLT polynomials was later introduced in [16] while studyingMacdonald
polynomials. In their paper, LLT polynomials are indexed by a k-tuple of skew shapes.
In the case each such skew shape is a single box, the LLT polynomial is said to be
unicellular LLT polynomial. Such unicellular LLT polynomials are the main topic of
this paper.

1.2 Background on chromatic symmetric functions

In [7] Carlsson and Mellit introduced a more convenient combinatorial model for
unicellular LLT polynomials, indexed by (area sequences of) Dyck paths. They also
highlighted an important relationship using plethysm between unicellular LLT poly-
nomials and the chromatic quasisymmetric functions introduced by Shareshian and
Wachs in [30].

The chromatic quasisymmetric functions refine the chromatic symmetric functions
introduced by Stanley in [28]. The Stanley–Stembridge conjecture [27] states that
such chromatic symmetric functions associated with unit-interval graphs, and more
generally, incomparability graphs of 3 + 1-free posets are positive in the elemen-
tary symmetric basis, or e-positive for short. Their conjecture was refined with the
introduction of an additional parameter q in [30]. The class of graphs for which this
conjecture is believed to hold was later extended to the class of circular unit-interval
graphs in [11,12] where it is conjectured that the chromatic quasisymmetric functions
expanded in the e-basis have coefficients in N[q], see Conjecture 13. To this date,
there is still not even a conjectured combinatorial formula for the e-expansion of the
chromatic symmetric functions.

The idea of studying LLT polynomials in parallel with chromatic quasisymmetric
functions originated in [7], although the connection is perhaps in hindsight apparent in
the techniques used in [16].We also mention an interesting paper by Haglund andWil-
son [20] explores the connection between the integral-form Macdonald polynomials
and the chromatic quasisymmetric functions.

1.3 Main results

In [1], we stated an analogue of the Shareshian–Wachs conjecture regarding e-
positivity of unicellular LLT polynomials, Ga(x; q + 1) and proved the conjecture
in a few cases. We also provided many similarities between unicellular LLT polyno-
mials and chromatic quasisymmetric functions associated with unit-interval graphs.
The problem of e-positivity of unicellular LLT polynomials is the main topic of this
article.

The main results are:
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• We present a precise conjectured combinatorial formula for the e-expansion of
Ga(x; q + 1). Our conjecture states that the unicellular LLT polynomial Ga(x; q)

is given as

Ga(x; q + 1):=
∑

θ∈O(a)

qasc(θ)eπ(θ)(x). (1)

where O(a) is the set of orientations of the unit-interval graphwith area sequence a,
and π(θ) is an explicit partition-valued statistic on such orientation. This formula
can be extended to vertical-strip LLT polynomials and has been verified on the
computer for all unit-interval graphs up to 10 vertices. This formula is surprising, as
there is still no analogous conjectured formula for chromatic symmetric functions.
A possible application of (1) is to find a positive combinatorial formula for the
Schur-expansion of Ga(x; q).

• We prove in Corollary 32 that the conjectured formula (1) implies a generalized
formula for the so-called vertical-strip LLT polynomials. Furthermore, we prove
that (1) holds for the family of complete graphs and line graphs.

• Analogous recursions for the unicellular LLT polynomials are given by Lee in
[23]. We give short bijective proofs of these recurrences and show that all graphs
associated with abelian Hessenberg varieties can be computed recursively via
Lee’s recurrences, starting from unicellular LLT polynomials associated with the
complete graphs.

• In Sect. 5,weprove that the transformedHall–LittlewoodpolynomialsHλ(x; q+1)
are positive in the complete homogeneous basis. This implies that a corresponding
family of vertical-strip LLT polynomials are e-positive.
Note that vertical-strip LLT polynomials appear in diagonal harmonics, see for
example [5, Section 4] and [4,17]. Consequently, (1) provides support for some of
the conjectures regarding e-positive in these references. We note that the authors
of a recent preprint [14] also independently found the conjecture in (1). The e-
positivity part of the conjecture has since been proved byM. D’Adderio in [8]. We
remark that e-positivity is very rare in reality, see [26] for details.

• In Sect. 6, we prove a curious identity between a generalization of charge, denoted
wta(T ), and the set of orientations, O(a), of a unit-interval graph Γa. It states that

∑

λ�n

∑

T ∈SYT(λ)

(q + 1)wta(T )sλ(x) =
∑

θ∈O(a)

qasc(θ)eσ(θ)(x), (2)

where asc(·) and σ(·) are certain combinatorial statistics on orientations. This
version of charge was considered in [19] in order to prove Schur positivity for
unicellular LLT polynomials in the melting lollipop graph case.
As a consequence, we get an explicit positive e-expansion the case of melting
lollipop graphs which has previously been considered in [19]. The corresponding
family of chromatic quasisymmetric functions was considered in [10] where they
were proved to be e-positive. Note, however, that the statistic π(θ) in (1) and σ(θ)

in (2) are different.
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The paper is organized as follows. We first introduce the family of unicellular- and
vertical-strip LLT polynomials and some of their basic properties. In Sect. 3, we prove
several recursive identities for such LLT polynomials. In particular, we show that the
recursions by Lee [23] can be used to construct unicellular LLT polynomials indexed
by any abelian area sequence.

Some vertical-strip LLT polynomials are closely related to the transformed Hall–
Littlewood polynomials. In Sect. 5, we show that the transformed Hall–Littlewood
polynomials Hλ(x; q + 1) are h-positive, which gives further support for the main
conjecture.

In Sect. 6, we study the relationship between a type of generalized cocharge intro-
duced in [19] and e-positivity. This provides a proof that unicellular LLT polynomials
given by melting lollipop graphs are e-positive.

Finally in Sect. 7, we describe a possible approach to prove (1) by a comparison in
the power-sum symmetric basis.

2 Preliminaries

We use the same notation and terminology as in [1]. The reader is assumed to have
a basic background on symmetric functions and related combinatorial objects, see
[25,29]. All Young diagrams and tableaux are presented in the English convention.

2.1 Dyck paths and unit-interval graphs

An area sequence is an integer vector a = (a1, . . . , an) which satisfies

• 0 ≤ ai ≤ i − 1 for 1 ≤ i ≤ n and
• ai+1 ≤ ai + 1 for 1 ≤ i < n.

The number of such area sequences of size n is given by the Catalan numbers. Note
that [19] uses a reversed indexing of entries in area sequences.

Definition 1 For every area sequence of length n, we define a unit-interval graph Γa
with vertex set [n] and the directed edges

(i − ai ) → i, (i − ai + 1) → i, (i − ai + 2) → i, . . . , (i − 1) → i (3)

for all i = 1, . . . , n. We say that (u, v) with u < v is an outer corner of Γa if (u, v)

is not an edge of Γa, and either

• u + 1 = v or
• (u + 1, v) and (u, v − 1) are edges of Γa.

Example 2 We can illustrate area sequences and their corresponding unit-interval
graphs as Dyck diagrams, as is done in [1,15]. For example, (0, 1, 2, 3, 2, 2) cor-
responds to the diagram
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6
5

4
3

2
1

46 56 6
35 45 5

14 24 34 4
13 23 3
12 2
1

(4)

where the area sequence specify the number of white squares in each row, bottom to
top. The squares on the main diagonal are the vertices of Γa, and each white square
corresponds to a directed edge of Γa. In the second figure we see this correspondence
where edge (i, j) is marked as i j . The outer corners of Γa are (2, 5) and (3, 6).

Caution We do not really distinguish the terms area sequence, Dyck diagram and
unit-interval graph, as they all relate to the same objects. What term is used depends
on context and what features we wish to emphasize.

Let Γa be an unit-interval graph with n vertices. We let aT denote the area sequence
of Γa where all edges have been reversed, and every vertex j ∈ [n] has been relabeled
with n + 1− j . This operation corresponds to simply transposing the Dyck diagram.

Lemma 3 (See [1]) The entries in an area sequence a is a rearrangement of the entries
in aT.

Most results in this paper concern a few special classes of area sequences.

Definition 4 An area sequence of length n is called rectangular if either a =
(0, 1, 2, . . . , n − 1) or there is some k ∈ [n] such that

ai = i − 1 for i = 1, 2, . . . , k and a j = j − k − 1 for j = k + 1, k + 2, . . . , n.

This condition is equivalent with all non-edges forming a k × (n − k)-rectangle in the
Dyck diagram. Furthermore, an area sequence a′ is called abelian whenever a′

i ≥ ai

for some rectangular sequence a. For example, the area sequence in (4) is abelian.

The terminology is motivated by [21], where abelian area sequences are associated
with abelian Hessenberg varieties.

We will also consider the following families of area sequences:

• The complete graphs, (0, 1, 2, . . . , n − 1).
• The line graphs (0, 1, 1, . . . , 1).
• Lollipop graphs, where

ai =
{

i − 1 for i = 1, . . . , m

1 for i = m + 1, . . . , m + n

for some m, n ≥ 1.
• Melting complete graph,

ai =
{

i − 1 for i = 1, 2, . . . , n − 1

n − k − 1 for i = n
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where 0 ≤ k ≤ n − 1.
• Melting lollipop graphs, defined as

ai =

⎧
⎪⎨

⎪⎩

i − 1 for i = 1, . . . , m − 1

m − 1 − k for i = m

1 for i = m + 1, . . . , m + n

for m, n ≥ 1 and 0 ≤ k ≤ m − 1.

2.2 Vertical-strip diagrams

A vertical-strip diagram is a Dyck diagram where some of the outer corners have
been marked with →. We call such an outer corner a strict edge. These markings
correspond to some extra oriented edges of Γa. We use the notation Γa,s to denote
a directed graph with some additional strict edges s and refer to the graph Γa,s as a
vertical-strip diagram as well.

Example 5 Below is an example of a vertical-strip diagram.

→ 6
5

→ 4
3

2
1

The edges (1, 4) and (3, 6) are strict of Γa,s, and the directed edges of Γa (which are
also edges of Γa,s) are

{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)}.

Note that this is another example of a diagram with an abelian area sequence.

2.3 Vertical-strip LLT polynomials

Let Γa,s be a vertical-strip diagram. A valid coloring κ : V (Γa,s) → N is a vertex
coloring of Γa,s such that κ(u) < κ(v) whenever (u, v) is a strict edge in s. Given a
coloring κ , an ascent of κ is a (directed) edge (u, v) in Γa,s such that κ(u) < κ(v).
Note that strict edges do not count as ascents. Let asc(κ) denote the number of ascents
of κ .

Definition 6 Let Γa,s be a vertical-strip diagram. The vertical-strip LLT polynomial
Ga,s(x; q) is defined as

Ga,s(x; q):=
∑

κ:V (Γa,s)→N

xκqasc(κ) (5)
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where the sum is over valid colorings of Γa,s. Whenever s = ∅, we simply write
Ga(x; q) and refer to this as a unicellular LLT polynomial.

As an example, here is G0012(x; q) expanded in the Schur basis:

G0012(x; q) = q3s1111 + (q + q2 + q3)s211 + (q + q2)s22 + (1 + q + q2)s31 + s4.

The polynomials Ga,s(x; q) are known to be symmetric, and correspond to classical
LLT polynomials indexed by k-tuples of skew shapes as in [16]. In fact, the unicellular
LLT polynomials correspond to the case when all shapes in the k-tuple are single cells,
and the vertical-strip case corresponds to k-tuples of single columns. This correspon-
dence is proved in [1] and is also done implicitly in [7]. There is a close connection
with the ζ map used by Haglund and Loehr, see [15,18].

Example 7 In the following vertical-strip diagram, we illustrate a valid coloring κ

where we have written κ(i) on vertex i . That is, κ(1) = 1, κ(2) = 3, κ(3) = 2, etc.

→ → 3
1

→→→ 4
→ 2
→ 3
1

The strict edges and edges contributing to asc(κ) have been marked with →. Hence,
κ contributes with q5x21 x2x23 x4 to the sum in (5).

2.4 A conjectured formula

Definition 8 Let a be an area sequence of length n and s be some strict edges of Γa.
Let O(a, s) denote the set of orientations of the graph Γa (seen as an undirected graph)
together with the extra directed edges in s. Thus, the cardinality of O(a, s) is simply
2a1+···+an . If s = ∅, we simply write O(a) for the set of orientations of Γa. Given
θ ∈ O(a, s), an edge (u, v) is an ascending edge in θ if it is oriented in the same
manner as in Γa. Let asc(θ) denote the number of ascending edges in θ . Note that
edges in s are not considered to be ascending!

We now define the highest reachable vertex, hrvθ (u) for u ∈ [n] as the maximal v
such that there is a path from u to v in θ using only strict and ascending edges. Note
that hrvθ (u) ≥ u for all u. The orientation θ defines a set partition π(θ) of the vertices
of Γa, where two vertices are in the same part if and only if they have the same highest
reachable vertex. Let π(θ) denote the partition given by the sizes of the sets in π(θ).

Let a be an area sequence and s be some strict edges of Γa. Define the symmetric
function Ĝa,s(x; q) via the relation

Ĝa,s(x; q + 1):=
∑

θ∈O(a,s)

qasc(θ)eπ(θ)(x). (6)

123



306 Journal of Algebraic Combinatorics (2021) 53:299–325

Example 9 Below,we illustrate an orientation θ ∈ O(a, s), where a = (0, 1, 2, 2, 2, 2)
and s = {(1, 4), (2, 5)}. As before, strict edges and edges contributing to asc(θ) are
marked with →.

→ 6
→ 5

→→→ 4
→→ 3

2
1

We have that hrvθ (2) = hrvθ (5) = hrvθ (6) = 6 and hrvθ (1) = hrvθ (3) = hrvθ (4) =
4. Thus π(θ) = {652, 431} and the orientation θ contributes with q5e33(x) in (6). The
full polynomial Ĝa,s(x; q + 1) is

(4q3 + 20q4 + 41q5 + 44q6 + 26q7 + 8q8 + q9)e6

+ (2q2 + 7q3 + 9q4 + 5q5 + q6)e33 + (2q2 + 9q3 + 16q4

+ 14q5 + 6q6 + q7)e42 + (4q2 + 22q3 + 48q4 + 53q5 + 31q6 + 9q7 + q8)e51

+ (4q + 14q2 + 18q3 + 10q4 + 2q5)e321 + (q + 8q2 + 20q3 + 22q4 + 11q5

+ 2q6)e411 + (1 + 3q + 3q2 + q3)e2211 + (q + 3q2 + 3q3 + q4)e3111

Conjecture 10 (Main conjecture) For any vertical-strip LLT polynomial Ga,s(x; q),
we have that Ga,s(x; q) = Ĝa,s(x; q).

Note that this conjecture implies that Ga,s(x; q + 1) is e-positive, with the expan-
sion given as a sum over all orientations of Γa. Such a conjecture was first stated
in [1] but without a precise definition of π(θ). Conjecture 10 is a natural analogue
of the Shareshian–Wachs conjecture, [30,31], and therefore is also closely related to
the Stanley–Stembridge conjecture [27,28]. There is also a natural generalization of
Eq. (6) that predicts the e-expansion of the LLT polynomials indexed by circular area
sequences considered in [1].

2.5 Properties of LLT polynomials

We use standard notation and let ω be the involution on symmetric functions that
sends the complete homogeneous symmetric function hλ to the elementary symmetric
function eλ or, equivalently, sends sλ to sλ′ .

Proposition 11 (See [1]) For any area sequence a of length n,

ωGa(x; q) = qa1+a2+···+anGaT(x; 1/q) (7)

where aT denotes the transpose of the Dyck diagram.
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In [1], we gave a proof that ωGa,s(x; q + 1) is positive in the power-sum basis.
It also follows from a much more general result given in [2]. Note that if f (x) is
e-positive, then ω f (x) is positive in the power-sum basis. Later in Proposition 49, the
power-sum expansion of ωGa,s(x; q + 1) is stated explicitly.

The following lemma connects the LLT polynomials with the chromatic quasisym-
metric functions Xa(x; q) introduced in [30]. The function Xa(x; q) is defined exactly
as Ga(x; q), but the sum in Eq. (5) is taken only over proper colorings of Γa, so that
no monochromatic edges are allowed.

Lemma 12 (Adaptation of [7, Prop. 3.5]. See also [16, Sec. 5.1]) Let a be a Dyck
diagram of length n. Then

(q − 1)−nGa[x(q − 1); q] = Xa(x; q), (8)

where the bracket denotes a substitution using plethysm.

From this formula, together with Conjecture 10, we have a novel conjectured for-
mula for the chromatic quasisymmetric functions:

Xa(x; q) =
∑

θ∈O(a)

(q − 1)asc(θ) eπ(θ)[x(q − 1)]
(q − 1)n

. (9)

Perhaps it is possible to do some sign-reversing involution together with plethysm
manipulations to obtain the e-expansion of Xa(x; q) and thus find a candidate formula
for the Shareshian–Wachs conjecture.

Conjecture 13 (Shareshian–Wachs [30,31]) There is some partition-valued statistic ρ

on acyclic orientations of Γa, such that

Xa(x; q) =
∑

θ∈AO(a)

qasc(θ)eρ(θ)(x).

Here AO(a) denotes the set of acyclic orientations of Γa.

Note that the original Stanley–Stembridge conjecture is closely related to the q = 1
case, which was stated for the incomparability graphs of 3 + 1-avoiding posets.

Problem 14 Prove that the family Ĝa(x; q) defined in (6) fulfills the involution identity
(7).

3 Recursive properties of LLT polynomials

We shall now cover several recursive relations for the vertical-strip LLT polynomials.
Our proofs are bijective and directly use the combinatorial definition as a weighted
sum over vertex colorings. We illustrate these bijections with Dyck diagrams where
only the relevant vertices and edges are shown.
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The reader thus is encouraged to interpret a diagram as a weighted sum over color-
ings, where decorations of the diagrams indicate restrictions of the colorings, or how
the colorings contribute to asc(·). For example, given an edge ε of Γa,s, there are two
possible cases. Either ε contributes to the number of ascents, or it does not. We can
illustrate this simply as

= ↓ + q
→

where the white box is the edge ε and ↓ indicates an edge that cannot be an ascent.
Note that the vertices shown do not need to have consecutive labels—the intermediate
vertices (and edges) are simply not shown. Shaded boxes are not edges of Γa and
therefore do not contribute to ascents of the coloring. To conclude, the class of diagrams
considered here may be described as follows:

• The white boxes are determined by some area sequence a, so that each white box
is an edge in Γa.

• Every edge (box) is either white or shaded.
• Only white boxes contribute to the ascent statistic.
• A box (white or shaded) may contain an arrow, a → or ↓, imposing a strict or
weak inequality requirement, respectively, on the colorings. In particular, a white
box containing a → is thus a sum over colorings where this particular edge must
be an ascent.

Note that this is a slightly broader class of diagrams than the class of vertical-strip
diagrams, as the additional arrows impose more restrictions on the colorings.

The following recursive relationship allows us to express vertical-strip LLT polyno-
mials as linear combinations of unicellular LLT polynomials. Later in Proposition 31,
we prove that the polynomials in Eq. (6) satisfy the same recursion. We use the nota-
tion a ∪ {ε} to describe the area sequence of the unit-interval graph where the edge ε

has been added to the edges of Γa. The notation s ∪ {ε} for strict edges is interpreted
in a similar manner.

Proposition 15 If Γa,s is a vertical-strip diagram, and ε is a non-strict outer corner
of Γa,s, then

Ga∪{ε},s(x; q + 1) = Ga,s(x; q + 1) + qGa,s∪{ε}(x; q + 1). (10)

Proof By shifting the variable q, the identity can be restated as

Ga∪{ε},s(x; q) + Ga,s∪{ε}(x; q) = qGa,s∪{ε}(x; q) + Ga,s(x; q), (11)

which in (as sum over colorings) diagram form can be expressed as follows. The two
vertices shown are the vertices of ε.

+ → = q
→ +
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The first and last diagram can be expanded into subcases,
( ↓ + q

→ )
+ → = q

→ +
( ↓ + → )

and here it is evident that both sides agree. ��
The above recursion seems to relate to certain recursions on Catalan symmetric

functions, see [6, Prop. 5.6]. Catalan symmetric functions are very similar in nature
to LLT polynomials.

3.1 Lee’s recursion

In Proposition 18, we prove a recursion on certain LLT polynomials. We then show
that this relation is equivalent to Lee’s recursion, given in [23, Thm 3.4].

Definition 16 Let a be an area sequence of length n ≥ 3. An edge (i, j) ∈ E(Γa),
3 ≤ j ≤ n, is said to be admissible if the following four conditions hold:

• i = j − a j

• j = n or a j ≥ a j+1 + 1
• a j ≥ 2,
• ai + 1 = ai+1.

The last condition is automatically satisfied if the first three are true and a is abelian.
Note that if (i, j) is admissible, then for all k < i or k > i + 1 we have

(k, i) ∈ E(Γa) ⇔ (k, i + 1) ∈ E(Γa) and (i, k) ∈ E(Γa) ⇔ (i + 1, k) ∈ E(Γa).

(12)

These properties are crucial in later proofs.

Example 17 For the following diagram a, the edge (2, 5) is admissible.

6
5

4
3

2
1

Let e j denote the j th unit vector.

Proposition 18 Suppose (i, j) is an admissible edge of the area sequence a, set
a1:=a − e j and a2:=a − 2e j and s1:={(i, j)}, s2:={(i + 1, j)}. Then

Ga1,s1(x; q) = qGa2,s2(x; q). (13)

Proof We use the diagram-type proof as before, now only showing the vertices i , i +1
and j . The identity we wish to show is then presented as

→
= q

→
.
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Both sides are considered as a weighted sum over colorings with restrictions indicated
by →. Subdividing these sums into subcases by forcing additional inequalities gives

q
→→

+
→ ↓

= q

⎛

⎝
→→

+
↓ → ⎞

⎠ .

Two terms cancel and additional inequalities followsby transitivity. It therefore suffices
to prove the following.

q
→ ↓
→ = q

↓ →
↓ (14)

Note that the additional q in the left-hand side appears due to the ascent (i, i + 1).
There is now a simple q-weight-preserving bijection between colorings on the

diagram on the left-hand side, and colorings of the diagram on the right-hand side.
For a coloring κ in the left-hand side, we have κ(i) < κ( j) ≤ κ(i + 1), while on the
right-hand side, we have κ(i + 1) < κ( j) ≤ κ(i). Hence, vertex i and vertex i + 1
are never assigned the same color.

The bijection is to simply swap the colors of the adjacent vertices i and i + 1. The
property in Eq. (12) ensures that the number of ascending edges are preserved under
this swap. ��
The following example illustrates the color swapping argument used to prove the
identity in (14).

Example 19 In the following figures, we have the vertices x :=i , y:=i + 1 and z:= j .
Suppose that we have a vertex coloring in the left-hand side, with κ(x) < κ(y). By
swapping the colors of x and y, every ascending edge marked with a • in the left-hand
side corresponds to an ascending edge marked with a • in the right-hand side. The
same argument holds for edges marked with ◦—the two sets of edges marked • and ◦
with possible ascents are simply swapped.

(a1, s1) =

→↓

→
x
y

z

• •◦ ◦ ∗∗
∗

�
�
�

(a2, s2) =

↓→

↓
x
y

z

• •◦ ◦
�
�
�

∗∗
∗

(15)

A similar argument is carried out for the two sets of edges marked ∗ and �, where now
the ascending edges are swapped between columns.

Corollary 20 (Local linear relation [23, Thm 3.4]) Let a be an area sequence for which
(i, j) is admissible, and let a0:=a, a1:=a − e j and a2:=a − 2e j . Then

Ga0(x; q) − Ga1(x; q) = q(Ga1(x; q) − Ga2(x; q)). (16)
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Proof We see that the left-hand side of (16) can be rewritten in diagram form using
Eq. (10):

LHS = − = (q − 1)
→

The right-hand side is treated in a similar manner:

RHS = q

⎛

⎝ −
⎞

⎠ = q(q − 1)
→

The identity in (13) now implies that LHS = RHS. ��

Example 21 As an illustration of Corollary 20, we have (i, j) = (2, 5) and the fol-
lowing three Dyck diagrams.

a0 =

6
5

4
3

2
1

a1 =

6
5

4
3

2
1

a2 =

6
5

4
3

2
1

3.2 The dual Lee recursion

There is a “dual” version of Corollary 20, obtained by applying ω to both sides of
(16), and then apply the relation in (7). We shall now state this in more detail.

Definition 22 Let a be an area sequence of length n ≥ 3. An edge (i, j) is said to be
dual-admissible if the edge (n + 1 − j, n + 1 − i) is admissible for aT.

We can then formulate the dual versions of Proposition 18 and Corollary 20.

Proposition 23 (The dual Lee recursion) Let a be an area sequence for which (i, j)
is dual-admissible and let a0:=a, a1:=a − e j and a2:=a − e j − e j−1. Then

Ga1,s1(x; q) = qGa2,s2(x; q) (17)

and

Ga0(x; q) − Ga1(x; q) = q(Ga1(x; q) − Ga2(x; q)) (18)

where s1:={(i, j)} and s2:={(i, j − 1)}.

Proof sketch We can either prove these identities by applying ω as outlined above, or
bijectively using diagrams. We leave out the details. ��

123



312 Journal of Algebraic Combinatorics (2021) 53:299–325

Example 24 Proposition 18 applies in the following generic situation. Here, the edge
(x, z) is an admissible edge. The crucial condition in (12) states that the area of the
rows with vertices x and y in the diagram differs by exactly one.

(a1, s1) =

→

x
y

z

(a2, s2) =

→

x
y

z

(19)

Similarly, the dual recursion in Eq. (17) applies in the following situation, where (x, z)
is a dual-admissible edge:

(a1, s1) = → z
y

x

(a2, s2) = → z
y

x

(20)

3.3 Recursion in the complete graph case

We end this section by recalling a recursion for LLT polynomials in the complete
graph case.

Proposition 25 ([1, Prop.5.8]) Let GKn (x; q) denote the LLT polynomial for the com-
plete graph, where the area sequence is (0, 1, 2, . . . , n − 1). Then

GKn (x; q) =
n−1∑

i=0

GKi (x; q)en−i (x)
n−1∏

k=i+1

[
qk − 1

]
, GK0(x; q) = 1. (21)

Lemma 26 If a is rectangular and the non-edges form a k × (n − k)-rectangle in the
Dyck diagram, then Ga(x; q) = GKk (x; q)GKn−k (x; q).

Proof The unit-interval graph Γa is a disjoint union of two smaller complete graphs,
so this now follows immediately from the definition of unicellular LLT polynomials.

��
For the remaining of this section, it will be more convenient to use the notation

in [23], and index unicellular LLT polynomials of degree n with partitions λ that fit
inside the staircase (n − 1, n − 2, . . . , 2, 1, 0). We fix n and let the area sequence a
correspond to the partition λwhere λi = n − i −an+1−i . Hence, λ is exactly the shape
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of the (shaded) non-edges in the Dyck diagram. By definition, λ is abelian if it fits
inside some k × (n − k)-rectangle.

Lemma 27 (Follows from [19, Thm. 3.4]) Let λ be abelian with 
 ≥ 2 parts such that
λ
 < λ
−1. Let

μ = (λ1, λ2, . . . , λ
−1) and ν = (λ1, λ2, . . . , λ
−1, λ
 + 1).

Then there are rational functions c(q) and d(q) such that Gλ(x; q) = c(q)Gμ(x; q)+
d(q)Gν(x; q).

Proof Use Corollary 20 repeatedly on row 
 of μ. ��
Example 28 To illustrate Lemma 27, we have the following three partitions:

λ = μ = , ν =

Proposition 29 Every Gλ(x; q), where λ is abelian, can be expressed recursively via
Lee’s recurrences, as a linear combination of some Gμ j (x; q) where the μ j are rect-
angular.

Proof Let λ be abelian partition with exactly 
 parts, so that it fits in a 
 × (n − 
)-
rectangle. We shall do a proof by induction over λ, and in particular its number of
parts.

(1) Case λ = ∅. This is rectangular by definition.
(2) Case λ = (n − 1). This is rectangular.
(3) Case 
 = 1. Use Lemma 27 to reduce to Case (1) and Case (2).
(4) Case 
 > 1 and λi ≤ 
 − i for some i ∈ [
]. The conditions imply that it is

possible to remove a 2 × 1 or a 1 × 2-domino from λ and obtain a new partition.
Hence we can use Lee’s recursion to express Gλ(x; q) using polynomials indexed
by two smaller partitions. For example, this case applies in the following situation:

λ = −→ and (22)

(5) Case 
 > 1 and λi > 
 − i for all i ∈ [
]. Three things can happen here, and it
is easy to see that this list is exhaustive.

• λ is rectangular and we are done.
• We can add a 2× 1 or 1× 2-domino to λ without increasing 
 and still obtain
a partition. Similar to Case (4), we can therefore reduce to cases where |λ| has
increased by 1 and 2.
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• Lemma 27 can be applied, thus reducing λ to a case where 
 has strictly been
decreased, and a case where λ has increased by one box.

Notice that Case (4) reduces only back to Case (4), or a case where 
 is decreased,
and the same goes for Case (5). There are therefore no circular dependencies among
these cases and the induction is valid. ��

4 Recursions for the conjectured formula

In this section, we prove that Ĝ(x; q) also fulfills the recursion in Proposition 15. We
use similar bijective technique as in Sect. 3, but diagrams now represent weighted sums
over orientations as in Eq. (6). Note that we now also consider the shifted polynomial
Ĝa,s(x; q + 1).

Each diagram now represents a weighted sum over orientations, where the weight
of a single orientation θ is qasc(θ)eπ(θ). The class of diagrams we now consider is as
follows.

• The white boxes are determined by some area sequence.
• Every edge (box) is either white or shaded.
• Only white boxes contribute to the ascent statistic.
• A box (white or shaded) may contain an arrow, a → or ↓, imposing a restriction
on the orientations being summed over. In particular, a white box containing a →
is thus a sum over orientations where this particular edge must be an ascent.

Hence, each diagram represents a sum over 2W orientations, where W is the number
of white boxes not containing any arrow.

Example 30 Suppose the following diagram illustrates the entire graph. The diagram
represents the weighted sum over all orientations of the non-specified edges (x, y)

and (y, z). The edge (x, z) is strict, and (z, w) is forced to be ascending. Remember
that each ascending edge contributes with a q-factor.

→ w

→ z
y

x

There are four orientations in total,

→ w

→ ↓ z
↓ y
x

→ w

→ ↓ z
→ y
x

→ w

→→ z
↓ y
x

→ w

→→ z
→ y
x

which according to (6) give the sum qe31 + q2e31 + q2e4 + q3e4.

In the diagrams below, only relevant vertices of the graphs are included.

Proposition 31 If Γa,s is a vertical-strip graph, with ε being a non-strict outer corner,
then

Ĝa∪{ε},s(x; q + 1) = qĜa,s∪{ε}(x; q + 1) + Ĝa,s(x; q + 1). (23)

123



Journal of Algebraic Combinatorics (2021) 53:299–325 315

Proof In diagram form, this amounts to showing that orientations of the diagram in
the left-hand side can be put in q-weight-preserving bijection with the disjoint sets of
orientations in the right-hand side, while also preserving the π(·)-statistic. Thus we
wish to prove1 that

y
x

= q
→ y
x

+ y
x

.

Consider an orientation in the left-hand side. There are two cases to consider:

• The edge (x, y) is ascending. We map the orientation to an orientation of the first
diagram in the right-hand side, by preserving the orientation of all other edges.

• The edge (x, y) is non-ascending. We map this to the second diagram, by preserv-
ing the orientation of all other edges.

In both cases above, note that both the q-weight and π(·) are preserved under this
map. ��
Corollary 32 If Conjecture 10 holds in the unit-interval case, it holds in the vertical-
strip case.

Proof We can use Propositions 31 and 15 to recursively remove all strict edges. Since
both families satisfy the same recursion, we have that the unicellular case of Conjec-
ture 10 implies the vertical-strip case. ��

4.1 The complete graph recursion and line graphs

Analogous to Proposition 25, we have a recursion for the corresponding ĜKn (x; q),
where we again consider the complete graph case. Here,

([n]
k

)
denotes the set of k-

subsets of {1, . . . , n}.
Lemma 33 The polynomial ĜKn (x; q) satisfies ĜK0(x; q):=1 and ĜKn (x; q + 1) is
equal to

n−1∑

i=0

ĜKi (x; q + 1)en−i (x)

⎛

⎜⎝
∑

S∈( [n−1]
n−1−i)

n−1−i∏

j=1

(q + 1)s j − j [(q + 1) j − 1]
⎞

⎟⎠ . (24)

Proof We first give an argument for the recursion in (24). Given an orientation θ of
Ki , we can construct a new orientation θ ′ of Kn by inserting a new part of size n − i
in the vertex partition where vertex n is a member. Choose an i-subset in [n − 1] and
let θ define the orientation of the edges in θ ′ on these vertices.

The remaining set S = {s1, . . . , sn−i−1} of (n − i − 1) vertices will be in the new
part. Let us index them such that n > s1 > s2 > · · · > sn−i−1 ≥ 1. We wish to extend
θ such that the following holds:

1 The edge (x, y) in the rightmost diagram is gray, so this edge is not present in the orientations. We can
think of this as non-ascending.
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• For all pairs of vertices, t , s j with t /∈ S and s j ∈ S, (i) the edge (t, s j ) is not
ascending, and (ii) the edge (s j , t) may or may not be ascending.

• Each s j ∈ S has at least one ascending edge to one of the vertices in the set
{n, s1, . . . , s j−1}.

The first condition ensures that the highest reachable vertex for vertices not in S
remains the same in θ ′. The last condition ensures that all vertices in S has n as the
highest reachable vertex in θ ′. It then follows that for such a subset S, there are

n−1−i∏

j=1

(q + 1)n−s j − j [(q + 1) j − 1]

asc(·)-weighted ways of choosing such subsets of ascending edges in θ ′. Hence,

∑

S∈( [n−1]
n−1−i)

n−1−i∏

j=1

(q + 1)n−s j − j [(q + 1) j − 1]

is the asc(·)-weighted count of the number of orientations of Kn , where the part of the
vertex partition containing n has exactly n − i members. Finally, by sending each si

to n − si , which is an involution on
( [n−1]

n−1−i

)
, we get the desired formula. ��

We shall now prove that ĜKn (x; q) = GKn (x; q). By using Lemma 33 and Propo-
sition 25, this follows from the following lemma.

Lemma 34 For all n and 1 ≤ i ≤ n − 1, we have that

n−1∏

k=i+1

[
qk − 1

]
=

∑

S∈( [n−1]
n−i−1)

n−1−i∏

j=1

qs j − j [q j − 1].

Proof We first apply the substitution i :=(n − i − 1). This gives

n−1∏

k=n−i

[
qk − 1

]
=

∑

S∈([n−1]
i )

i∏

j=1

qs j − j [q j − 1].

After dividing both sides by
∏i

j=1[q j − 1], we recognize the left-hand side as the q-

binomial coefficient
[n−1

i

]
q and we arrive (after setting n:=n+1) at the fairly standard

identity

[
n

i

]

q
=

∑

S∈([n]
i )

i∏

j=1

qs j − j , (25)

which can be found in [22, Eq. (6.5)]. ��
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The case of line graphs follows immediately from [1, Prop. 5.18].

Proposition 35 Let a = (0, 1, 1, . . . , 1) be a line graph. Then Ĝa(x; q) = Ga(x; q).

4.2 On Lee’s recursion for orientations

We would also like to prove that the Ĝ(x; q) fulfill Lee’s recursions. However, this is
a surprisingly challenging and we are unable to show this at the present time. A proof
that Lee’s recursions hold for Ĝ(x; q) would imply that Ga(x; q) = Ĝa(x; q) at least
for all abelian area sequences a. Computer experiment with n ≤ 7 confirms that the
polynomials Ĝa(x; q) indeed do satisfy these recurrences.

The class of melting lollipop graphs can be constructed recursively from the com-
plete graphs and the line graphs by just using the recursion in Corollary 20. This is in
fact done in [19], so we simply sketch a proof of this statement. Recall that a melting
lollipop graph a is given by

ai =

⎧
⎪⎨

⎪⎩

i − 1 for i = 1, . . . , m − 1

m − 1 − k for i = m

1 for i = m + 1, . . . , m + n

for some m, n ≥ 1 and 0 ≤ k ≤ m −1. Melting lollipop graphs for various parameters
are shown below.

A =
m=7,k=0,n=4

m′=8,k′=6,n′=3

B =
m=7,k=1,n=3

C =
m=7,k=2,n=3

D =
m=7,k=3,n=3

E =
m=7,k=6,n=3

We can use the recursion in Corollary 20 repeatedly to express LLT polynomials by
adding one and removing one shaded box in row m. For example, C can be expressed
in terms of B and D. Similarly, B can be expressed in terms of A and C , and we get
a system of linear equations expressing B, C and D in terms of only A and E .

When k = m − 1 (as for E above), the graph Γa is a disjoint union of a complete
graph and a line graph, which is a base case. Furthermore, when k = 0, (as for A
above) we obtain a melting lollipop graph with the new parameters m′ = m + 1,
k′ = m − 2 and n′ = n − 1, which are dealt with by induction over n.

5 The Hall–Littlewood case

In [16], the modified Macdonald polynomials H̃λ(x; q, t) are expressed as a positive
sum of certain LLT polynomials. The modified Macdonald polynomials specialize to
modified Hall–Littlewood polynomials at q = 0, which in turn are closely related to
the transformed Hall–Littlewood polynomials.
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Definition 36 (See [9,32] for a background) Let λ be a partition. The transformed
Hall–Littlewood polynomials are defined as

Hμ(x; q) =
∑

λ

Kλμ(q)sλ(x)

where Kλμ(q) are the Kostka–Foulkes polynomials.

The Hλ is sometimes denoted Q′
λ and is the adjoint basis to the Hall–Littlewood P

polynomials for the standard Hall scalar product, see [9]. Amore convenient definition
of the transformed Hall–Littlewood polynomials is the following. For λ � n we have

Hλ(x; q) =
∏

1≤i< j≤n

1 − Ri j

1 − q Ri j
hλ(x) (26)

where Ri j are raising operators acting on the partitions (or compositions) indexing
the complete homogeneous symmetric functions as

Ri jh(λ1,...,λn)(x) = h(λ1,...,λi +1,...,λ j −1,...,λn)(x).

Note that sλ(x) = Hλ(x; 0), and (26) gives sλ(x) = ∏
i< j (1− Ri j )hλ(x) which is just

the Jacobi–Trudi identity for Schur functions in disguise. Furthermore, note that (26)
immediately implies that

Hλ(x; q) = hλ(x) +
∑

μ�λ

cμ(q)hμ(x), cμ(q) ∈ Z[q] (27)

where � denotes the dominance order, since the raising operators Ri j can only make
partitions larger in dominance order.

We now connect the transformed Hall–Littlewood polynomials with certain
vertical-strip LLT polynomials.

Definition 37 Given a partition μ � n, let si be defined as si :=μ1 + · · · + μi , with
s0:=1. From μ, we construct a vertical-strip diagram Γμ on n vertices with the fol-
lowing edges:

(a) For each j = 1, . . . , ‘(μ), let the vertices {s j−1, . . . , s j } constitute a complete
subgraph of Γμ,

(b) For each j = 2, . . . , ‘(μ), we also have the
(μ j
2

)
edges

{s j−1 − i → s j−1 + k + 1 whenever 0 ≤ i, k and i + k ≤ μ j − 1}.
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Thus, for each j ≥ 2 in item (b), we obtain a triangular shape of boxes with edges, as
marked in (28), where μ j = 5.

s j

→
→ →

→ → →
→ → → →

s j−1

(28)

Furthermore, all outer corners are taken as strict edges, see Example 39. As before,
let O(Γμ) denote the set of orientations of the edges of Γμ.

Proposition 38 Let μ be a partition and let Γμ be the vertical-strip diagram con-
structed from μ and let Gμ(x; q) be the corresponding LLT polynomial. Then

ωGμ(x; q) = q
∑

i≥2 (
μi
2 )Hμ′(x; q). (29)

Brief proof sketch Weuse [15,A.59]which states that for anypartitionλ, the coefficient
of tn(λ) in the modified Macdonald polynomial H̃λ(x; q, t) is almost a transformed
Hall–Littlewood polynomial:

[tn(λ)]H̃λ(x; q, t) = ωHλ′(x; q).

The H̃λ(x; q, t) is a sum over certain LLT polynomials and in particular, the coefficient
of tn(λ) is a single vertical-strip LLT polynomial, multiplied with q−A, where A is the
sum of arm lengths in the diagram λ. Unraveling the definitions in [15, A.14], we
arrive at the identity2 in (29). ��
Example 39 The Hall–Littlewood polynomial H3321(x; q) is related to the vertical-
strip diagram Γ432 in (29).

Γ432 =

→ 9
→ · 8

→ 7
→ · 6

→ · · 5
4

3
2

1

(30)

The edgesmarkedwith a dot are the edges in item (b). There are
∑

i≥2

(
μi
2

)
such edges.

Notice that the vertex partition of this orientation is {974, 863, 52, 1}. Furthermore, it
is fairly straightforward to see that for any orientation θ of Γμ, we must have that the
partition π(θ) dominates μ′.

2 It was pointed out by the referee that (29) also follows directly from [15, Thm. 6.8].

123



320 Journal of Algebraic Combinatorics (2021) 53:299–325

We can now easily give some strong support for Conjecture 10.

Corollary 40 For any partition μ, the vertical-strip LLT polynomial Gμ(x; q + 1) is
e-positive.

Proof Using (29), it suffices to prove that Hλ′(x; q + 1) is h-positive. From (26), we
have that

Hμ′(x; q + 1) =
∏

i< j

1 − Ri j

1 − (q + 1)Ri j
hμ′(x) (31)

=
∏

i< j

(1 − Ri j )(1 + (q + 1)Ri j + (q + 1)2R2
i j + · · · )hμ′(x) (32)

=
∏

i< j

(1 + q Ri j + q(q + 1)R2
i j + q(q2 + 1)R3

i j + · · · )hμ′(x) (33)

=
∏

i< j

⎛

⎝1 +
∑

t≥1

q(1 + q)t−1Rt
i j

⎞

⎠ hμ′(x). (34)

This proves positivity. ��
Problem 41 Find a bijective proof that Ĝμ(x; q + 1) is equal to Gμ(x; q + 1), by
interpreting each term in Eq. (34), and combine with (29).

It is tempting to believe that summing over the orientations of Γμ in Definition 37
where all edges in condition (b) are oriented in a non-descending manner would give
exactly ωHμ′(x; q + 1). However, this fails for μ = 222.

6 Generalized cocharge and e-positivity

In [19], the authors consider a certain classes of unicellular LLT polynomials that can
be expressed in a particularly nice way. These are polynomials indexed by complete
graphs, line graphs and a few other families. In this section, we prove that the corre-
sponding LLT polynomials are positive in the elementary basis. In fact, we do this by
giving a rather surprising relationship between a type of cocharge and orientations.

For a semi-standard Young tableau T , the reading word is formed by reading the
boxes of λ row by row from bottom to top, and from left to right within each row. The
descent set of a standard Young tableau T is defined as

Des(T ):={i ∈ [n − 1] : i + 1 appear before i in the reading word}.

Given a Dyck diagram a, we define the weight as

wta(T ) =
∑

i∈Des(T )

an+1−i . (35)
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The weight here is also known as cocharge whenever a is the complete graph
(0, 1, 2, . . . , n − 1), see for example [15]. If we let T ′ denote the transposed tableau,
then for any T and a, we have

Des(T ′) = [n − 1] \ Des(T ) and wta(T
′) = (a1 + · · · + an) − wta(T ).

It will be convenient to define

w̃ta(T ):=wta(T
′) =

∑

i /∈Des(T )

an+1−i . (36)

Example 42 Let a = (0, 1, 2, 3, 3, 2, 2, 3) and

T =
1 3 4
2 6 8
5
7

The readingword of T is 75268134, Des(T ) = {1, 4, 6} sowta(T ) = a8+a5+a3 = 7
and w̃ta(T ) = 9.

Definition 43 Given an area sequence a of length n, we define the polynomial

G̃a(x; q):=
∑

λ�n

∑

T ∈SYT(λ)

qwta(T )sλ(x). (37)

From this definition, it follows that

ωG̃a(x; q) =
∑

λ�n

∑

T ∈SYT(λ)

qw̃ta(T )sλ(x). (38)

The following proposition is a collection of results in [19].

Proposition 44 We have that G̃a(x; q) = Ga(x; q) for the the families of graphs listed
in Sect.2.1: the complete graphs, line graphs, lollipop graphs, melting complete graphs
and melting lollipop graphs.

Given a composition γ , let

D(γ ):={γ1, γ1 + γ2, . . . , γ1 + γ2 + · · · + γ
}.

Lemma 45 Let λ � n and let γ be a composition of n with 
 parts. Then the standard-
ization map

std : {S ∈ SSYT(λ, γ )} → {T ∈ SYT(λ) : Des(T ) ⊆ D(γ )}

is a bijection.
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Proof This is straightforward from the definition of standardization and descents, see
for example [15, p. 5]. ��

We shall now introduce a different statistic on orientations. Given θ ∈ O(Γa), we
say that a vertex v is a bottom of θ if there is no u < v such that (u, v) is ascending in
θ . Let s1, . . . , sk be the bottoms ordered decreasingly and let s0:=n +1. By definition,
vertex 1 is always a bottom. Let σ(θ) be defined as the composition of n with the
parts given by {si−1 − si : i = 1, . . . , k} and note that D(σ (θ)) = {n + 1 − si : i =
1, 2, . . . , k − 1}.
Example 46 The orientation θ in (39) has vertices 1, 3 and 6 as bottoms. Furthermore,
σ(θ) = (1, 3, 2) and D(σ (θ)) = {1, 4}.

6
→→ 5

→→ 4
3

→ 2
1

(39)

Note that π(θ) = (5, 1) so σ and π are indeed very different.

The following theorem was proved for the complete graph and the line graph in
[1]. We can now generalize it to all unit-interval graphs.

Theorem 47 Let a be an area sequence of length n. Then

G̃a(x; q + 1) =
∑

θ∈O(Γa)

qasc(θ)eσ(θ)(x). (40)

Proof We apply ω on both sides of Eq. (40), so it suffices to prove that

ωG̃a(x; q + 1) =
∑

θ∈O(Γa)

qasc(θ)hσ(θ)(x). (41)

Recall, in, e.g., [25], the standard expansion

hν(x) =
∑

λ

Kλ,νsλ(x), (42)

where Kλ,ν = |SSYT(λ, ν)| are the Kostka coefficients. Thus, comparing both sides
of (41) in the Schur basis, it suffices to show that for every partition λ,

∑

T ∈SYT(λ)

(1 + q)w̃ta(T ) =
∑

θ∈O(Γa)

qasc(θ)Kλ,σ (θ).

Using Lemma 45 in the right-hand side and unraveling the definition in the left-hand
side, it is enough to prove that

∑

T ∈SYT(λ)

∏

i /∈Des(T )

(1 + q)an+1−i =
∑

T ∈SYT(λ)

∑

θ∈O(Γa)
Des(T )⊆D(σ (θ))

qasc(θ).
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It then suffices to prove that for a fixed T ∈ SYT(λ) we have

∏

i /∈Des(T )

(1 + q)an+1−i =
∑

θ∈O(Γa)
Des(T )⊆D(σ (θ))

qasc(θ). (43)

Both sides may now be interpreted as a weighted sum over all orientations ofΓa where
no ascending edges end in {i : n + 1 − i ∈ Des(T )}. ��
Corollary 48 All families of unicellular LLT polynomials Ga(x; q + 1) indexed by
complete graphs, line graphs, lollipop graphs and melting lollipop graphs are e-
positive.

Notice that the formula in (40) is different from the conjectured formula in Con-
jecture 10, since π(θ) and σ(θ) are different. This is not surprising as Ga(x; q) and
G̃a(x; q) are not equal for general a. However, it is rather remarkable that Conjec-
ture 10 implies that (40) and Eq. (6) agree whenever Ga(x; q) = G̃a(x; q).

7 A possible approach to settle themain conjecture

In [1] and later in [2] (with a different approach) we gave formulas for the power-sum
expansion of all vertical-strip LLT polynomials. The unicellular case is a straightfor-
ward consequence of Lemma 12 (see [1,20]) together with the power-sum expansion
formula for the chromatic symmetric functions. We note that the formula in the
chromatic case was first conjectured by Shareshian–Wachs and later proved by
Athanasiadis [3].

It is straightforward to expand (6) in the power-sumbasis, so to settle Conjecture 10,
it suffices to show that ωGa(x; q + 1) = ωĜa(x; q + 1) for all a by comparing
coefficients of pλ/zλ. We shall now introduce the necessary terminology from [2] to
state Conjecture 10 in this form.

For any subset S ⊆ E(Γa), let P(S) denote the poset given by the transitive closure
of the edges in S. Given a poset P on n elements, letO(P) be the set of order-preserving
surjections f : P → [k] for some k. The type of a surjection f is defined as

α( f ):=(| f −1(1)|, | f −1(2)|, . . . , | f −1(k)|),

and this is a composition of n with k parts. LetOα(P) ⊆ O(P) be the set of surjections
of type α. Finally, letO∗

α(P) ⊆ Oα(P) be the set of surjections f ∈ Oα(P) such that
for each j ∈ [k], f −1( j) is a subposet of P with a unique minimal element.

Proposition 49 (See [2, Thm. 5.6, Thm. 7.10]) The power-sum expansion of
ωGa(x; q + 1) is given as

ωGa(x; q + 1) =
∑

θ∈O(a)

qasc(θ)
∑

λ�n

pλ(x)
zλ

|O∗
λ(P(θ))| (44)
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where P(θ) is the poset on [n] and edges given by the transitive closure of the ascending
edges in θ .

The family of functions Ĝa(x; q +1) has a similar expansion in terms of the power-
sum symmetric functions.

Lemma 50 The power-sum expansion of ωĜa(x; q + 1) is given as

ωĜa(x; q + 1) =
∑

θ∈O(a)

qasc(θ)
∑

λ�n

pλ(x)
zλ

|O∗
λ(B(θ))| (45)

where B(θ) is the poset consisting of a disjoint union of chains with lengths given by
π(θ).

Proof This follows easily from the definition of Ĝa(x; q +1) and the expansion of the
elementary symmetric functions into power-sum symmetric functions, see [13] and
[2, Section 7]. ��
Conjecture 51 (Equivalent with Conjecture 10) For any area sequence a of length n
and partition λ � n,

∑

θ∈O(a)

qasc(θ)|O∗
λ(P(θ))| =

∑

θ∈O(a)

qasc(θ)|O∗
λ(B(θ))|.
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