
Journal of Algebraic Combinatorics (2021) 53:157–175
https://doi.org/10.1007/s10801-019-00924-4

On a conjecture about an analogue of Tokuyama’s theorem
for G2

Mario DeFranco1

Received: 19 May 2018 / Accepted: 29 October 2019 / Published online: 28 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We prove the conjecture of Friedlander et al. (J Algebr Comb 41:1089, 2015) about
sums over Littelmann patterns for the root system of type G2, which is an analogue
of Tokuyama’s theorem Tokuyama (J Math Soc Jpn 40(4):671–685, 1988) for root
systems of type Ar . We use elementary means to show that the conjecture is implied
by a finite set of polynomial identities.
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1 Introduction

For integer r ≥ 2, let slr (C) be the Lie algebra of r × r complex matrices with trace
zero equipped with the Lie bracket [X ,Y ] = XY − Y X . Let θ be a dominant weight
for slr (C), and let V (θ) be the irreducible representation of highest weight θ . A basis
for V (θ) can be given in terms of a set of Gel’fand–Cetlin patterns GC(θ); this is a
set of ordered tuples of integers satisfying certain inequalities depending on θ and is
closely connected to the canonical bases of [6].

Now let χ(θ) be the character of V (θ), and let ρ be the sum of the fundamental
weights of slr (C). Then Tokuyama’s theorem gives a formula for χ(θ) in the form

∑

P∈GC(θ+ρ)

H(P) = D(x, q; Ar−1)χ(θ) (1)
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where D(x, q; Ar−1), defined in Definition 2, is a q-deformation of the usual Weyl
denominator, and where each summand H(P) is a polynomial in q−1 computed using
statistics taken from the pattern P . Therefore, Tokuyama’s theorem connects two
fundamental objects in the representation theory of slr (C).

We note that since a semisimple Lie algebra over an algebraically closed field is
determined by its root system, Tokuyama’s theorem can be expressed solely in terms
of the root system Ar−1 of slr (C).

Amajor question is how Eq. (1) generalizes to other root systems. Now, the polyno-
mial D(x, q; Ar−1) has a natural generalization D(x, q; R) to arbitrary root systems
R, as does χ(θ) by construction, so the right side of Eq. (1) is easily generalized. A
series of papers mentioned below seek combinatorial structures that generalize the left
side of (1) for various root systems R. This paper proves a conjecture of Friedlander
et al. [5], called Theorem 2 in this paper, for such a generalization to G2 using an
elementary bijective proof.

Generalizing Tokuyama’s theorem is a major question in part because the right side
of Eq. (1) is the same formula that provides a closed-form evaluation of certain func-
tions calledmatrix coefficients. Thesematrix coefficients arise from the principal series
representation of an algebraic group over a non-Archimedean field. More specifically,
such a matrix coefficient is defined by a certain integral of a canonical function on the
algebraic group, where that function is viewed as a vector in the principal series rep-
resentation of the algebraic group. Shintani [10] and Casselman–Shalika [2] evaluate
the integral for one such matrix coefficient, known the spherical-Whittaker function,
to be the right side of (1). Generalizations of Tokuyama’s theorem thus would provide
insight into evaluating integrals over algebraic groups and the structure of algebraic
groups in general.

In addition, Tokuyama’s theoremhas played an important part in the development of
Weyl group multiple Dirichlet series. These are Dirichlet series in multiple variables
and are defined in terms of a given root system. A Weyl group multiple Dirichlet
series possesses a set of functional equations isomorphic to the Weyl group of that
root system. These series are also conjectured to be the Fourier–Whittaker coefficients
of certain Eisenstein series on metaplectic groups. This relationship is described in
more detail in [1].

We now mention generalizations of Tokuyama’s theorem to other root systems.
Tokuyama’s theorem has been generalized to type C by Hamel and King [7] in which
they use symplectic shifted tableaux in place of Gel’fand–Cetlin patterns; and to type
B by Friedberg and Zhang [4] in which they use metaplectic double covers in their
proof. A conjectural generalization to type D was given by Chinta and Gunnells [3].
For arbitrary root systems, McNamara [9] shows how to compute p-adic Whittaker
functions as sums over crystal graphs. For type A, these sums may be interpreted as
sums over Gel’fand–Cetlin patterns mentioned above, but have not been computed
explicitly for other root systems. The conjecture of [5] (Theorem 2 here) is the first
conjecture about an analogue of Tokuyama’s theorem for an exceptional root system.

We now describe our proof strategy and compare it to the workmentioned above. In
[11], Tokuyama proves his original theorem using the Pieri rule applied to Schur poly-
nomials. Our proof of Theorem 2 is different from the proof in [11] and other proofs
for the analogues to other root systems in that the proof in this paper is purely alge-
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braic, using elementary combinatorics to establish a bijection. Specifically, we express
both sides of Theorem 2 as polynomials in four indeterminates whose coefficients are
rational functions. We then show that the coefficients are equal. We demonstrate these
techniques for the root system A2 in Sect. 3.

2 Backgroundmaterial for Littelmann patterns and root systems

The authors of [5] replace the Gel’fand–Cetlin patterns of (1) with a set of inequalities
called Littelmann patterns [8]. Littelmann patterns can be defined for any root system
R and yield the Gel’fand–Cetlin patterns when R = Ar . We now briefly describe these
Littelmann patterns following the description in [5].

Let g be a simple complex Lie algebra with root system R. Let wL be a reduced
expression for the longest element in theWeyl group of R. Let θ be a dominant weight,
and let Vθ the irreducible representation of g with lowest weight −θ . As noted in [5],
for some root systems, such as G2, Vθ coincides with the representation with highest
weight θ , but differs for other root systems, such as Ar . Ultimately what matters for
us is the normalized definition of χθ in Definition 1 and the Littelmann inequalities
discussed next.

Given the above data, Littelmann describes how to construct a rational polyhedral
cone Cθ ∈ R

N , where N is the number of positive roots in R. He also constructs a
bijectionbetween the lattice points ofCθ and thevertices of the crystal graph B(θ). This
B(θ) is a finite directed graph constructed from representation-theoretic properties of
Vθ . The Littelmann patterns π are then N -tuples of non-negative integers that index
the lattice points in Cθ . The pattern π satisfies certain inequalities which we call
Littelmann inequalities below. When R = Ar and wL = s1(s2s1)(s3s2s1)...(sr ...s1),
the Littelmann patterns are equivalent to Gel’fand–Cetlin patterns. No knowledge of
crystal graphs is necessary to understand the proof in this paper; we need to consider
only the Littelmann inequalities themselves.

We review the concepts related to root systems necessary to state Theorem 2. Let
R be an irreducible root system of rank r in a vector space V with inner product
〈·, ·〉. Let R+ denote a choice of positive roots in R with simple roots α1, . . . , αr . Let
�1, . . . ,�r ∈ V denote the fundamental weights defined by

2
(�i , α j )

(α j , α j )
= δi j .

Let ΛW ⊂ V denote the weight lattice, and Λ ⊂ V the root lattice, and C[Λ] the
associated ring of Laurent polynomials. Identifying xαi with xi , we express C[Λ] as
C[x±

1 , . . . , x±
r ]. For any linear combination θ of the αi

θ =
r∑

i=1

ciαi
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for some rational numbers ci , we write

xθ =
r∏

i=1

xcii .

Let ρ denote the half-sum of positive roots

ρ = 1

2

∑

α∈R+
α =

r∑

i=1

�i .

For a dominant weight θ ∈ ΛW , the weight θ + ρ is equal to

θ + ρ =
r∑

i=1


i�i

for some positive integers 
i . Let W be the Weyl group of R generated by the simple
reflection si . For w ∈ W , let length(w) be the length of a reduced expression for w

and let sgn(w) be

sgn(w) = (−1)length(w).

Now let wL denote the long element in W . We define χθ to be the character of Vθ

normalized to have constant term 1:

Definition 1

χθ = sgn(wL)

xwL (θ+ρ))

∑
w∈W sgn(w)xw(θ+ρ)

∏
α>0(1 − xα)

.

We next define the notation for factored expressions alluded to in the introduction.

Definition 2 Let q is an indeterminate. For α ∈ R, denote

D(x, q;α) =
(
1 − xα

q

)

and

T (x, q;α) =
(
1 − xα)

q

)

(1 − xα)
.

We also denote

D(x, q; R) =
∏

α∈R+
D(x, q;α)
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T (x, q; R) =
∏

α∈R+
T (x, q;α).

3 Demonstration for A2

We demonstrate our proof techniques for Tokuyama’s theorem for g = sl3(C) with
root system R = A2. The result we prove is

Theorem 1
∑

GC(
1,
2)

h(a11)h(a12)h(a21)x
a11+a12 ya21 = D(x, q; A2)χθ

where the terms are defined below. Note that χθ denotes the character normalized to
have constant term 1 given in Eq. (2).

For A2, the positive simple roots are

α1 = (
√
2, 0)

α2 =
(

−
√
2

2
,

√
6

2

)
.

The fundamental weights �1 and �2

�1 = 2

3
α1 + 1

3
α2

�2 = 1

3
α1 + 2

3
α2.

The simple reflections s1 and s2 act linearly on R according to si (αi ) = −αi and

s1(α2) = s2(α1) = α1 + α2.

Recall θ ∈ ΛW denotes a dominant weight and

θ + ρ = 
1�1 + 
2�2

where 
1 and 
2 are positive integers. With x = x1 and y = x2, the normalized
character χθ becomes

χθ = 1 − x
2 − y
1 − (xy)
1+
2 + x
1+
2 y
1 + x
2 y
1+
2

(1 − x)(1 − y)(1 − xy)
. (2)

Therefore

D(x, q; A2)χθ = T (x, q; A2)(1−x
2−y
1−(xy)
1+
2+x
1+
2 y
1+x
2 y
1+
2) (3)
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Table 1 Terms for PW ;A2 Multi-degree Coefficient

((0,0),(0,0)) T (x, q; A2)
((0,0),(1,0)) −T (x, q; A2)
((0,1),(0,0)) −T (x, q; A2)
((1,1),(1,1)) −T (x, q; A2)
((1,1),(1,0)) T (x, q; A2)
((0,1),(1,1)) T (x, q; A2)

We consider (3) as a polynomial PW ;A2 in the four indeterminates x
1 , y
1 , x
2 and
y
2 . We say that the term

(xm1 yn1)
1(xm2 yn2)
2

has multi-degree ((m1, n1), (m2, n2)). Therefore the polynomial PW ;A2 has six terms
with the multi-degrees and coefficients listed in Table 1.

We define the set GC(
1, 
2) of Gel’fand–Cetlin patterns π for A2. Consider the
set of triples of integers (A11, A12, A22) such that

1. 0 ≤ A11 ≤ 
1
2. 
1 ≤ A12 ≤ 
1 + 
2
3. A11 ≤ A21 ≤ A12

Such a triple is called a Gel’fand–Cetlin pattern. These patterns are identified with the
Littelmann patterns for A2 after the following change of variables:

A11 = a11, A12 = 
1 + a12, A21 = a21.

The above inequalities then become

1. 0 ≤ a11 ≤ 
1
2. 0 ≤ a12 ≤ 
2
3. a11 ≤ a21 ≤ 
1 + a12.

These are the Littelmann inequalities for the weight θ + ρ = 
1�1 + 
2�2 and
reduced word s1s2s1. Define GC(
1, 
2) to be the set of 3-tuples of integers π =
(a11, a12, a21) that satisfy the Littelmann inequalities. We denote the lower bounds of
these inequalities by Li j and the upper bounds by Ui j :

L11 = 0, L12 = 0, L21 = a11

and

U11 = 
1,U12 = 
2,U21 = 
1 + a12.

Following the terminology of [5], we say that an entry ai j of π is “circled”, denoted
by a◦

i j , if ai j attains the lower bound in its inequality; i.e., ai j is circled if ai j = Li j .We
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say that ai j is “boxed”, denoted by ai j , if ai j attains its upper bound in its inequality;
i.e., ai j is boxed if ai j = Ui j .

We then define h(ai j ) ∈ Z[q−1] by
Definition 3

h(ai j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if ai j is circled and not boxed

1 − q−1, if ai j is neither circled nor boxed

−q−1, if ai j is boxed and not circled

0, if ai j is both boxed and circled.

Now we prove Theorem 1. We note that this proof can be generalized to Ar , r ≥ 1
to provide an elementary proof of Tokuyama’s theorem which we give in another
paper.

Proof We compute the sum

∑

π∈GC(
1,
2)

h(a11)h(a12)h(a21)x
a11+a12 ya21 .

We first perform the sum over a21 and then over a11 and a12. By Lemma 1 in Sect. 5,


1+a12∑

a21=a11

h(a21)y
a21 = (1 − y

q )

1 − y
(ya11 − y
1+a12) (4)

We remember the factor
1− y

q
1−y = T (x, q;α2) and take the ya11 term in (4). We sum

this term over a11 and a12 again using Lemma 1 in Sect. 5 to get


2∑

a12=0


1∑

a11=0

(xy)a11xa12 =
⎛

⎝

1∑

a11=0

(xy)a11

⎞

⎠

⎛

⎝

2∑

a12=0

xa12

⎞

⎠

=
⎛

⎝

(
1 − xy

q

)

1 − xy
(1 − (xy)
1)

⎞

⎠

⎛

⎝

(
1 − x

q

)

1 − x
(1 − x
2)

⎞

⎠. (5)

Similarly we take the y
1+a12 term in (4) and sum over a11 and a12 to get

− y
1


2∑

a12=0


1∑

a11=0

xa11(xy)a12 = −y
1

⎛

⎝

1∑

a11=0

xa11

⎞

⎠

⎛

⎝

2∑

a12=0

(xy)a12

⎞

⎠

= −y
1

⎛

⎝

(
1 − x

q

)

1 − x
(1 − x
1)

⎞

⎠

⎛

⎝

(
1 − xy

q

)

1 − xy
(1 − (xy)
2)

⎞

⎠. (6)
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Fig. 1 The root system G2

α1

α2

5π/6

G2

Adding (5) and (6) and multiplying by T (x, q;α2) gives

T (x, q; A2)
(
(1 − (xy)
1)(1 − x
2) − y
1(1 − x
1)(1 − (xy)
2)

)

= T (x, q; A2)(1 − x
2 + x
2(xy)
1 − y
1 + y
1(xy)
2) − (xy)
2(xy)
1).

This proves Tokuyama’s theorem for R = A2. 
�

4 Statement of conjecture

We define the terms necessary to state Theorem 2.
Let g be the simple complex Lie algebra of type with root system R = G2 (see

Fig. 1). The simple roots of R are

α1 = (
√
2, 0)

α2 =
(

−3
√
2

2
,

√
6

2

)
.

The fundamental weights are therefore

�1 = 2α1 + α2

�2 = 3α1 + 2α2.

The Weyl group W has order 12 and is generated by the simple reflections s1 and s2,
which act on R via si (αi ) = −αi and

s1(α2) = 3α1 + α2
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s2(α1) = α1 + α2.

Letting x1 = x and x2 = y, we have

D(x, q;G2) =
(
1 − x

q

) (
1 − y

q

) (
1 − xy

q

) (
1 − x2y

q

)(
1 − x3y

q

) (
1 − x3y2

q

)
.

Let θ be a dominant weight. Then θ + ρ = 
1�1 + 
2�2. Recall that the set
B(θ + ρ) is the crystal graph whose vertex set is identified with the set of Littelmann
patterns; we thus refer to B(θ +ρ) as the set of Littelmann patterns which are 6-tuples
π = (a, b, c, d, e, f ) such that the entries a, b, c, d, e, f are non-negative integers
that satisfy the following Littelmann inequalities.
Littelmann Inequalities:

1. 0 ≤ f ≤ 
2 + a − 2b + c − 2d + e
2. b ≤ a ≤ 
1 + 3b − 2c + 3d − 2e
3. c

2 ≤ b ≤ 
2 + c − 2d + e
4. 2d ≤ c ≤ 
1 + 3d − 2e
5. e ≤ d ≤ 
2 + e
6. 0 ≤ e ≤ 
1

These are the inequalities that come from choice of long word s2s1s2s1s2s1. It is
straightforward to check that inequalities i + 1 through 6 imply that the lower bound
of inequality i is less than or equal to the upper bound of inequality i . We refer
to inequalities 1 through 6 as the inequalities for the entries f , a, b, c, d and e, in
that order. As defined for the root system A2 above, we say that an entry u of π is
“circled”, denoted by u◦, if u attains the lower bound in its inequality; e.g., f is circled
if f = 0, a is circled if a = b, b is circled if b = c

2 , etc. Likewise, we say that u is
“boxed”, denoted by u, if u attains its upper bound in its inequality; e.g., f is boxed
if f = 
2 + a − 2b + c − 2d + e, a is boxed if a = 
1 + 3b − 2c + 3d − 2e, b is
boxed if b = 
2 + c − 2d + e, etc. Then for any Littelmann pattern π , the authors of
[5] define Ĥ(π) to be a certain polynomial in Z[q−1]. We express this Ĥ(π) as a sum
of two terms

Ĥ(π) = Hstd(π) + Hadj(π)

where Hstd(π) encompasses the “standard” terms that come fromTokuyama’s original
definition; and Hadj(π) encompasses the special cases, or “adjusted” terms. That is,

Hstd(π) = h(a)h(b)h(c)h(d)h(e)h( f ) (7)

where h(u) is defined by Definition 3. The Hadj(π) is defined below via Eqs. (8) and
(9).

Their conjecture is then
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Theorem 2

∑

π∈B(θ+ρ)

Ĥ(π) xa+c+e yb+d+ f = D(x, q; R+)χθ

We note that to define Ĥ(π), the authors of [5] use a definition depending on whether
π is generic or one of twenty special cases. Considering Hadj(π) on its own allows us
to consolidate the special cases, to simplify their characterization, and also to simplify
the values of Hadj(π). We also see that the after expressing

∑

π∈B(θ+ρ)

Hadj(π) xa+c+e yb+d+ f

as a polynomial, the coefficients have a factored form similar to that of T (x, q; R+).
We now define Hadj(π) by consolidating below the twenty special cases used

by [5]. The adjusted contribution Hadj(π) is defined in general to be 0 unless
π = (a, b, c, d, e, f ) satisfies certain conditions. The first condition is that π has
what in [5] is called a “bad middle”, which means b = d + 1 and c = 2d + 1.
Therefore the Littelmann inequalities for π with a bad middle become
“Bad Middle” Littelmann Inequalities:

1. 0 ≤ f ≤ 
2 + a − 2d + e − 1
2. d + 1 ≤ a ≤ 
1 + 2d − 2e + 1
3. d + .5 ≤ d + 1 ≤ 
2 + e + 1
4. 2d ≤ 2d + 1 ≤ 
1 + 3d − 2e
5. e ≤ d ≤ 
2 + e
6. 0 ≤ e ≤ 
1

Thus such π are determined by the values of a, d, e and f . The definitions for circling
and boxing the entries of π still hold. Let π ′′ = (a, d, e), and we set

Hadj(π) = Hadj(π
′′)h( f ). (8)

By calculating Ĥ(π) and Hstd(π) in each of the twenty cases of [5], we can determine
Hadj(π

′′). We see that the values of Hadj(π
′′) become more concise than those given

in [5] and that the twenty cases are consolidated to the following definition.

Hadj(π
′′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−q−1)
q , if π ′′ = (a◦, d◦, e◦, )

− (1−q−1)

q2
, if π ′′ = (a, d or d◦, e◦)

(1−q−1)

q3
, if π ′′ = (a = 2d + 1 − e, d, e or e◦)

(1−q−1)2

q if π ′′ = (a◦, d◦, e), (a, d◦, e◦), (a◦, d, e◦), (a, d◦, e), (a◦, d, e)

− (1−q−1)2

q2
, if π ′′ = (a, d, e or e◦, ) such that a = 2d + 1 − e

(1−q−1)3

q , if π ′′ = (a, d, e)
(1−q−1)3

q , if π ′′ = (a, d, e◦) such that a = 2d + 1 − e
(1−q−1)((1−q−1)2+q−1)

q , if π ′′ = (a = 2d + 1 − e, d, e◦).

(9)
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This means, for example, that if π = (a, b, c, d, e, f ) = (1, 1, 1, 0, 0, 0), then π has
a bad middle with a, d and e circled (because we assume 
1, 
2 > 0), so

Hadj((1, 1, 1, 0, 0, 0)) = (1 − q−1)

q
.

We see that the definition of Hadj(π) depends only on the circling and boxing of a, d
and e and whether a = 2d + 1 − e.

5 Proof of conjecture

Now we can prove Theorem 2.
The strategy of the proof is to interpret

∑

π∈B(θ+ρ)

Ĥ(π) xa+c+e yb+d+ f (10)

as a rational function in x, y and q−1. This rational function depends on the numbers

1 and 
2, which appear only as exponents of x and y in the numerator of the rational
function. We therefore interpret this rational function as a polynomial, say PH , in the
four indeterminates

x
1 , y
1 , x
2 , y
2 (11)

whose coefficients we prove will be of the form

p1(x, y, q−1)

p2(x, y)
(12)

where p1 and p2 are polynomials.Now the right side ofTheorem2 is also a polynomial,
say PW , in the four indeterminates (11) with coefficients of the form (12). Therefore
Theorem 2 can be proved by equating the coefficients of the two polynomials PH and
PW . Recall

PW = D(x, q;G2)χθ

where χθ is the normalized character defined in Definition 1. The polynomial PW has
12 terms, as there are 12 elements in the Weyl group W , and the coefficients are of
the form

sgn(w)T (x, q;G2).

We denote the multi-degree of the term

(xm1 yn1)
1(xm2 yn2)
2
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Table 2 Terms for PW

Multi-degree Coefficient Multi-degree Coefficient

((0,0),(0,0)) T (x, q;G2) ((3,1),(6,3)) T (x, q;G2)

((1,0),(0,0)) −T (x, q;G2) ((4,2),(6,3)) −T (x, q;G2)

((1,1),(0,1)) T (x, q;G2) ((1,1),(3,3)) −T (x, q;G2)

((0,0),(0,1)) −T (x, q;G2) ((3,2),(3,3)) T (x, q;G2)

((1,0),(3,0)) T (x, q;G2) ((3,2),(6,4)) −T (x, q;G2)

((3,1),(3,1)) −T (x, q;G2) ((4,2),(6,4)) T (x, q;G2)

by

((m1, n1), (m2, n2)).

The twelve multi-degrees of PW and the coefficients are given in Table 2.
We showhow to express (10) as a polynomial in the indeterminates (11).As Ĥ (π) =

Hstd(π) + Hadj(π), we compute separately the two sums

∑

π∈B(θ+ρ)

Hstd(π) xa+c+e yb+d+ f (13)

and ∑

π∈B(θ+ρ)

Hadj(π) xa+c+e yb+d+ f . (14)

We first compute (13). We sum over the six entries in the order f , a, b, c, d, e. We
write (13) as

∑

e

h(e)xe
(∑

d

h(d)yd
(∑

c

h(c)xc
(∑

b

h(b)yb
(∑

a

h(a)xa
(∑

f

h( f )y f
)))))

(15)
where each entry ranges over integers satisfying its respective Littelmann inequality.
Thus f ranges from0 to 
2+a−2b+c−2d+e,a ranges fromb to 
1+3b−2c+3d−2e,
b ranges from c

2 to 
2 + c − 2d + e, etc.
Note that, depending on the values of a, b, c, d, and e, the bounds in the Littelmann

inequalities may or may not be integers. In particular, the lower bound for the entry
b is c

2 . This means that if c is odd, then b, which we require to be an integer, cannot
attain the lower bound in its Littelmann equality, and furthermore when b = � c

2� it
is not circled. Therefore, in the following lemmas we evaluate sums over Littelmann
patterns considering whether or not the bounds may be attained.

Lemma 1 Let u be an entry of π and let U and L be the upper and lower bounds,
respectively, of the Littelmann inequality for u. Recall the expression h(u) from
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Definition 3. If U and L are integers and U ≥ L, then

∑

L≤u≤U

h(u)Xu = (1 − q−1X)

1 − X
(XL − XU ). (16)

Proof Since U and L are integers, u attains the values of U and L . First consider
U > L . Directly applying the definition of h(u) yields

∑

L≤u≤U

h(u)Xu = XL + (1 − q−1)
XL+1 − XU

1 − X
− q−1XU

which simplifies to
(1 − q−1X)

1 − X
(XL − XU ). (17)

If U = L , then in the left side of (16) u attains only one value which is both boxed
and circled. Thus h(u) = 0 and the sum is zero. But if U = L , then (17) is also zero.
Therefore the lemma is true in the case U = L as well. 
�

Lemma 1 suffices to evaluate the sums for the entries f and a in the nested sum
(15). Lemma 1 also shows that, in order to evaluate the sum for b, we must consider
sums of the form

∑

c/2≤b≤U

h(b)Xb

where X = xm yn for some integersm and n. As discussed above, this sumwill depend
on the parity of c. We therefore make use of characteristic function 10mod2(n), where

10mod2(n) =
{
1, if n ≡ 0 mod 2

0, if n ≡ 1 mod 2.

The next lemma evaluates the sum for b.

Lemma 2 Let U = 
2 + c − 2d + e be the upper bound in the Littelmann inequality
for the entry b. If U ≥ c

2 , then

∑

c
2≤b≤U

h(b)Xb =
(
X

c
2 + X

c
2+1(1 − q−1)

1 − X

)
10mod2(c)

+
(
X

c+1
2 (1 − q−1)

1 − X

)
10mod2(c + 1)

− XU (1 − q−1)

1 − X
− q−1XU .
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Proof If c is even, then u attains the lower bound in its Littelmann inequality. IfU > c
2 ,

then directly applying the definition of h(u) as in Lemma 1 yields

∑

c
2≤b≤U

h(b)Xb = X
c
2 + X

c
2+1(1 − q−1)

1 − X
− XU (1 − q−1)

1 − X
− q−1XU . (18)

Equation (18) is also true if U = c
2 , because both sides are 0 as in Lemma 1.

If c is odd, then the smallest value b attains is � c
2� = c+1

2 ; at this value b is not
circled. Therefore in this case for U > c+1

2

∑

c
2≤b≤U

h(b)Xb =
U∑

b= c+1
2

h(b)Xb =
(
X

c+1
2 (1 − q−1)

1 − X

)
− XU (1 − q−1)

1 − X
− q−1XU .

(19)
Equation (19) is also true when U = c+1

2 , as the sum then consists of only one term
for which the entry u is boxed.

Combining (18) and (19) using characteristic functions proves the lemma. 
�
From Lemma 2, we see that the sum over c in (15) is a sum of sums of the form

p1(x, y, q−1)

p2(x, y)

∑

L≤c≤U

h(c)Y cX
C1+C2c

2 10mod2(C1 + C2c) (20)

where X and Y each are monomials in x and y; p1 and p2 are polynomials with integer
coefficients; C1 and C2 are integers; and U = 
1 + 3d − 2e and L = 2d are integers
as well. If C2 is even, this sum may be evaluated by Lemma 1. If C2 is odd, we use
Lemma 3.

Lemma 3 Let U and L be the upper and lower bounds, respectively, of the Littelmann
inequality for the entry u. Let C1 and C2 be integers with C2 odd. If U ≥ L, then

∑

L≤u≤U

h(u)Yu X (C1+C2u)/210mod2(C1 + C2u)

=
(
Y L X (C1+C2L)/2 + (1 − q−1)Y L+2X (C1+C2(L+2))/2

1 − Y 2XC2

)
10mod2(C1 + C2L)

+ (1 − q−1)Y L+1X (C1+C2(L+1))/2

1 − Y 2XC2
10mod2(C1 + C2(L + 1))

−
(

(1 − q−1)YU X (C1+C2U )/2

1 − Y 2XC2
+ q−1YU X (C1+C2U )/2

)
10mod2(C1 + C2U )

− (1 − q−1)YU+1X (C1+C2(U+1))/2

1 − Y 2XC2
10mod2(C1 + C2(U + 1)).
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Proof The proof is very similar to that of Lemma 2. Since C2 is odd, the entries that
are neither boxed nor circled contribute a geometric sum with common ratio Y 2XC2 .
Then the parities of U and L determine the highest and lowest values, respectively,
of u that can contribute a nonzero term to the sum. The four terms of characteristic
functions in the lemma thus come from these cases. 
�

Lemma 3 allows us to evaluate the sum for c in (15) and shows that the sum for d
is a sum of sums of the form

∑

L≤d≤U

h(c)Yd X
C1+C2d

2 10mod2(C1 + C2d)

where X and Y each are some monomials in x and y; where C1 and C2 are integers;
and where U = 
2 + e and L = e are integers as well. But this sum for d can be
evaluated using Lemmas 1 or 3, depending on whetherC2 is even or odd, respectively.
Likewise these lemmas can also evaluate the sum for e.

Lemma 3 motivates the following definition.

Definition 4 A function f : Z2 → Q(x, y)[q−1] is called exponential-congruent if

f (
1, 
2) = AX
1Y 
2 Z (C1
1+C2
2+C3)/210mod2(C1
1 + C2
2 + C3)

where A ∈ Q(x, y)[q−1]; X ,Y and Z are monomials in x and y; and C1,C2 and C3
are integers. If C1 and C2 are both even, then such a function f is called exponential.

Note that we abuse notation in the following because even though we interpret
PH and PW as polynomials in the indeterminates (11), we write PH (
1, 
2) and
PW (
1, 
2).

Theorem 3 Let B(θ +ρ) be the set of Littelmann patternsπ for θ +ρ = 
1�1+
2�2,
where 
1 and 
2 are positive integers. Let Ĥ(π) = Hstd(π)+Hadj(π) be the coefficient
defined previously. Then

∑

π∈B(θ+ρ)

Ĥ(π) xa+c+e yb+d+ f = PH (
1, 
2)

where PH (
1, 
2) is a finite sum of exponential-congruent functions.

Proof Recall from Sect. 4 that

Ĥ(π) = Hstd(π) + Hadj(π)

where Hstd(π) is defined by Eq. (7) and Hadj(π) by (8) and (9). Let fstd(
1, 
2) denote

fstd(
1, 
2) =
∑

π∈B(θ+ρ)

Hstd(π) xa+c+e yb+d+ f .
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The function fstd(
1, 
2) is expressed as the nested sum (15), which Lemmas 1, 2,
and 3 evaluate as a finite sum of exponential-congruent functions. Now let fadj(
1, 
2)
denote

fadj(
1, 
2) =
∑

π∈B(θ+ρ)

Hadj(π) xa+c+e yb+d+ f . (21)

This is a sum over Littelmann patterns with bad middle which are described by the
“bad middle” Littelmann inequalities in Sect. 4. This sum can also be expressed as a
nested sum over the entries f , a, d and e whose upper and lower bounds are always
integer. Therefore Lemma 1 suffices to evaluate the sum for the entry f . For each of
the cases in (9), geometric sums can evaluate the sums for entries a, d and e. This
shows that fadj(
1, 
2) is finite sum of exponential functions.

Thus

fstd(
1, 
2) + fadj(
1, 
2) = PH (
1, 
2)

is a finite sum of exponential-congruent functions. 
�

Let PW (
2, 
2) denote the right side of Theorem 2. Theorem 3 shows that Theorem
2 is equivalent to the statement

PH (
1, 
2) = PW (
1, 
2)

for all integer 
1, 
2 > 0. The function PW (
1, 
2) is a sum of twelve exponential
functions, while PH (
1, 
2) is a finite sum of congruent-exponential functions. Now
a priori an arbitrary finite sum of exponential-congruent functions may not reduce to
a finite sum of exponential functions. However, in Theorem 4 we verify that this is the
case for PH (
1, 
2) and that it is equivalent to PW (
1, 
2), proving the theorem.

Theorem 4 Let PH (
1, 
2) and PW (
1, 
2) be as defined above. For any positive inte-
gers 
1 and 
2, then

PH (
1, 
2) = PW (
1, 
2).

Proof The strategy of the proof is to calculate the coefficients of the exponential terms
on either side of the theorem statement and verify that they are equal. Lemmas 1, 2,
and 3 allow for automated calculation of PH (
1, 
2) by a computer.

Recall that

PH (
1, 
2) = fstd(
1, 
2) + fadj(
1, 
2)

in the notation of the proof of Theorem 3. We calculate that fstd is a sum of 544
terms that are exponential-congruent functions and that fadj is a sum of 106 terms
that are exponential functions. We now specify parities for 
1 and 
2 so that PH ,
when restricted to such 
1, 
2, becomes a finite sum of exponential functions. That is,
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suppose

p1(x, y, q−1)

p2(x, y)
(xm1 yn1)
1(xm2 yn2)
2(xm3 yn3)

C1
1+C2
2+C3
2 10mod2(C1
1 +C2
2 +C3)

(22)
is a term in PH (
1, 
2). For a choice of ε1, ε2 ∈ {0, 1}, we set


1 = 2L1 + ε1, 
2 = 2L2 + ε2

where L1 and L2 range over the set of positive integers. The term (22) then becomes

p1(x, y, q−1)

p2(x, y)
(xm1 yn1)ε1(xm2 yn2)ε2(xm3 yn3)

C1ε1+C2ε2+C3
2

× (x2m1+C1m3 y2n1+C1n3)L1(x2m2+C2m3 y2n2+C2n3)L2 (23)

if

C1ε1 + C2ε2 + C3 ≡ 0 mod 2

and 0 otherwise. If the term (23) is not 0, then we say it has multi-degree

((2m1 + C1m3, 2n2 + C1n3), (2m2 + C2m3, 2n2 + C2n3))

and coefficient

p1(x, y, q−1)

p2(x, y)
(xm1 yn1)ε1(xm2 yn2)ε2(xm3 yn3)

C1ε1+C2ε2+C3
2 .

We then consider the set of multi-degrees that occur in these sums. We choose
ε1 = ε2 = 0. There are 33 distinct multi-degrees that occur from the standard terms,
and 14 distinct multi-degrees that come from the adjusted terms. The union of these
sets contains 35 distinct multi-degrees. When we combine like terms for the standard
terms, there are 18 multi-degrees with nonzero coefficients, and when we combine
like terms for the adjusted terms, there are 10 multi-degrees with nonzero coefficients.
We present the multi-degrees and coefficients with ε1 = ε2 = 0 for the standard terms
in Table 3 and for the adjusted terms in Table 4. Note that because we are considering

i = 2Li + εi for i = 1 and 2, a multi-degree in Table 2 must be multiplied by 2 to
obtain the corresponding multi-degree in Tables 3 and 4.

To express these coefficients, we define

T1(x) = (1 − q−1)(1 − q−1x)(1 − q−1y)(1 − q−1x3y2)

(1 − x)(1 − y)(1 − x4y2)(1 − x3y2)

T2(x) = (1 − q−1)(1 − q−1y)(1 − q−1xy)(1 − q−1x3y)

(1 − y)(1 − xy)(1 − x4y2)(1 − x3y)
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Table 3 Standard terms for PH with ε1 = ε2 = 0

Multi-degree Coefficient Multi-degree Coefficient

((0,0),(0,0)) T (x) − q−1x2yT1(x) ((8,4),(8,6)) −q−1x2yT2(x)

((2,0),(0,0)) −T (x) + q−1x2yT1(x) ((2,0),(6,0)) T (x)

((0,0),(0,2)) −T (x) + q−1x2yT2(x) ((6,2),(6,2)) −T (x)

((2,2),(0,2)) T (x) − q−1x2yT2(x) ((6,2),(12,6)) T (x)

((2,0),(8,4)) −q−1x2yT1(x) ((8,4),(12,6)) −T (x)

((2,2),(8,6)) q−1x2yT2(x) ((2,2),(6,6)) −T (x)

((0,0),(6,4)) q−1x3yT3(x) ((6,4),(6,6)) T (x)

((8,4),(6,4)) −q−1x3yT3(x) ((6,4),(12,8)) −T (x)

((8,4),(8,4)) q−1x2yT1(x) ((8,4),(12,8)) T (x)

Table 4 Adjusted terms for PH with ε1 = ε2 = 0

Multi-degree Coefficient Multi-degree Coefficient

((0,0),(0,0)) q−1x2yT1(x) ((2,2),(8,6)) −q−1x2yT2(x)

((2,0),(0,0)) −q−1x2yT1(x) ((0,0),(6,4)) −q−1x3yT3(x)

((0,0),(0,2)) −q−1x2yT2(x) ((8,4),(6,4) q−1x3yT3(x)

((2,2),(0,2)) q−1x2yT2(x) ((8,4),(8,4)) −q−1x2yT1(x)

((2,0),(8,4)) q−1x2yT1(x) ((8,4),(8,6)) q−1x2yT2(x)

T3(x) = (1 − q−1)2(1 − q−1y)(1 − q−1x4y2)

(1 − x)(1 − xy)(1 + x2y)(1 − x3y)(1 − x3y2)

and abbreviate T (x) = T (x, q;G2) defined above.
Now we add the coefficients for the standard terms and adjusted terms for each

multi-degree and see that they add up to

sgn(w)T (x)

which gives us PW . We do the same procedure the three other combinations of ε1
and ε2 and obtain similar results; the coefficient in Tables 3 and 4 for multi-degree
((m1, n1), (m2, n2)) gets multiplied by (xm1 yn1)

ε1
2 (xm2 yn2)

ε2
2 . This proves the theo-

rem. 
�
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