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Abstract
We study interpretations of the Tutte and characteristic polynomials of matroids. If
M is a matroid with rank function r whose ground set E is given with a linear order-
ing <, then X ⊆ E is called (M,<)-compatible if X ∩ C �= {min(C)} for each
circuit C of M . We show that the Tutte polynomial of M equals

∑
xr(M/X)yr

∗(M|X)

where X runs through the subsets of E such that X and E\X are (M∗,<)- and
(M,<)-compatible, respectively. Similarly, the characteristic polynomial ofM equals∑

(−1)|X |(k − 1)r(M/X) where X runs either through (M∗,<)-compatible subsets of
E , or through the independent sets of M such that X and E\X are (M∗,<)- and
(M,<)-compatible, respectively.

Keywords Tutte polynomial · Characteristic polynomial · Matroid ·
(M,<)-compatible set
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1 Introduction

Let M be a matroid on a finite set E with rank function r . The Tutte polynomial of M
is (see [4])

T (M; x, y) =
∑

Z⊆E

(x − 1)r(M)−r(Z)(y − 1)r
∗(M)−r∗(E\Z). (1)
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This invariant was introduced in [22] and encodes many properties of graphs and
matroids. Applications in combinatorics, knot theory, statistical physics, and coding
theory are surveyed in [3–7,11,24,25]. Evaluating the Tutte polynomial at a point or
finding its coefficients is in general a �P-hard problem [2,14], even for planar graphs
[23], and evaluations are in general difficult even to approximate [10]. T (M; x, y) is
fully characterized by the following rules

T (M; x, y) = 1 if E = ∅,

T (M; x, y) = xT (M−e; x, y) if e is an isthmus of M,

T (M; x, y) = yT (M−e; x, y) if e is a loop of M,

T (M; x, y) = T (M/e; x, y) + T (M−e; x, y) otherwise.

(2)

The duality formula is

T (M; x, y) = T (M∗; y, x) (3)

and the convolution formula (see [8,17,18]) is

T (M; x, y) =
∑

Z⊆E

T (M/Z; x, 0) T (M |Z; 0, y), (4)

where M |Z = M − (E\Z).
The characteristic polynomial of M is (see [4,26])

p(M; k) =
∑

Z⊆E

(−1)|Z |kr(M)−r(Z) = (−1)r(M)T (M; 1 − k, 0). (5)

This generalizes chromatic and flow polynomials of graphs (see [4,25,26]). Relations
with some other combinatorial structures are studied in [1,26]. Polynomial p(M; k)
is fully characterized by the following rules

p(M; k) = 1 if E = ∅,

p(M; k) = (k − 1)p(M−e; k) if e is an isthmus of M,

p(M; k) = p(M−e; k) − p(M/e; k) otherwise.
(6)

2 Interpretations

We recall some basic properties of matroids. If X ⊆ E , we shall usually
write r(M−X), r(M/X), r∗(M−X), r∗(M/X) for rM−X (E\X), rM/X (E\X),
r(M−X)∗(E\X), r(M/X)∗(E\X), respectively. For any X ,Y ⊆ E (see cf. [21]),

rM∗(X) = |X | + rM (E\X) − rM (X), (7)

rM/Y (X) = rM (X ∪ Y ) − rM (Y ). (8)

Denote by IM the set of isthmuses of M . If X ⊆ E and e ∈ E , e /∈ IM , X , then
r((M−e)/X) = r(M−e)(E\{e}) − r(M−e)(X) = rM (E\{e}) − rM (X) = rM (E) −
rM (X) = r(M/X), i.e.,
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r((M−e)/X) = r(M/X). (9)

Let C(M) denote the family of circuits of M . By [21, Proposition 3.1.1],

if C ∈ C(M/e), then either C ∈ C(M), or C ∪ {e} ∈ C(M). (10)

It is an easy exercise to prove that (see cf. Exercise 2 in [21, Section 3.1])

if C ∈ C(M),C �= {e}, then either e ∈ C and C\{e} ∈ C(M/e),
or e /∈ C and C is a union of circuits from C(M/e).

(11)

Let < be a linear ordering of E . For each nonempty X ⊆ E , we denote by min(X)

and max(X) the minimal and maximal element of X with respect to <, respectively.
We say that X ⊆ E is (M,<)-compatible if for eachC ∈ C(M),C∩X �= {min(C)}.

Clearly, no (M,<)-compatible set can contain a loop of M .
Denote by E(M,<) the family of all (M∗,<)-compatible subsets of E , by

D(M,<) = {X ∈ E(M,<); E\X ∈ E(M∗,<)}, and by P(M,<) the set of
couples (X ,Y ) such that X ,Y ⊆ E , X ∩ Y = ∅, X is (M∗,<)-compatible,
Y is (M,<)-compatible, and X and Y are maximal with this property (i.e., for
each e′ ∈ E\(X ∪ Y ), X ∪ {e′} is not (M∗,<)-compatible and Y ∪ {e′} is not
(M,<)-compatible). Clearly, IM∗ ⊆ X and IM ⊆ Y for each (X ,Y ) ∈ P(M,<).
Furthermore, {(X , E\X); X ∈ D(M,<)} ⊆ P(M,<), but the inclusion is an equal-
ity because in the following statement we prove thatD(M,<) and P(M,<) have the
same cardinality.

Theorem 1 Let < be a linear ordering of elements of a matroid M. Then
|D(M,<)| = |P(M,<)| = T (M; 1, 1) and

T (M; x, y) =
∑

X∈D(M,<)

xr(M/X)yr
∗(M|X). (12)

Proof In order to unify and simplify notation, denote by P1(M,<) = P(M,<),
P2(M,<) = {(X , E\X); X ∈ D(M,<)}, and by g(M,<; x, y) the right hand side
of (12), i.e.,

g(M,<; x, y) =
∑

(X ,Y )∈P2(M,<)

xr(M/X)yr
∗(M−Y ).

Clearly, P2(M,<) ⊆ P1(M,<) and the equality occurs if and only if |P1(M,<)| =
|P2(M,<)|.We use induction on |E\(IM∗∪IM )| to prove that T (M; x, y) = g(M,<;
x, y) and |Pi (M,<)| = T (M; 1, 1) for i = 1, 2.

If E = IM∗ ∪ IM , then Pi (M,<) = {(IM∗ , IM )}, |Pi (M,<)| = 1 = T (M; 1, 1)
(i = 1, 2), and T (M; x, y) = x |IM |y|IM∗ | = g(M,<; x, y).

If E �= IM∗ ∪ IM , choose e = max (E\(IM∗ ∪ IM )) and define

P ′
i (M,<) = {(X ,Y ) ∈ Pi (M,<); e ∈ Y } (i = 1, 2),
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g′(M,<; x, y) =
∑

(X ,Y )∈P ′
2(M,<)

xr(M/X)yr
∗(M−Y ).

Suppose that (X , Y ) ∈ P1(M−e,<) and e′ ∈ E\(X ∪ Y ∪ {e}).
(i) Let C ∈ C(M∗). If C\{e} ∈ C(M∗/e), then e /∈ X , min(C) = min(C\{e}), and

X ∩ C = X ∩ (C\{e}) �= {min(C\{e})}. If C = ⋃n
i=1 Ci , Ci ∈ C(M∗/e), then

X ∩Ci �= {min(Ci )}, i = 1, . . . , n, min(C) ∈ {min(Ci ); i = 1, . . . , n}, whence
X ∩C �= {min(C)}. Thus by (11), X ∩C �= {min(C)}. Since this holds for each
C ∈ C(M∗), X is (M∗,<)-compatible.

(ii) If C ∈ C(M) and e ∈ C (resp. e /∈ C), then e ∈ (Y∪{e}) ∩ C �= {min(C)}
because e �= min(C) (resp. (Y∪{e}) ∩ C = Y ∩ C �= {min(C)}), i.e., Y ∪ {e} is
(M,<)-compatible.

(iii) If X ∪ {e′} is not (M∗/e,<)-compatible, there exists C ′ ∈ C(M∗/e) such that
C ′ ∩ (X∪{e′}) = {min(C ′)}, thus e′ = min(C ′) �= e. If C ′∪{e} ∈ C(M∗) (resp.
C ′ ∈ C(M∗)) then e /∈ X , min(C ′) = min(C ′∪{e}), and (C ′∪{e})∩ (X∪{e′}) =
C ′ ∩ (X∪{e′}) = {min(C ′∪{e})} (resp. C ′ ∩ (X∪{e′}) = {min(C ′)}), whence by
(10), X ∪ {e′} is not (M∗,<)-compatible.

(iv) If Y ∪ {e′} is not (M−e,<)-compatible, there exists C ′ ∈ C(M−e) such that
C ′ ∩ (Y∪{e, e′}) = C ′ ∩ (Y∪{e′}) = {min(C ′)}, i.e., Y ∪ {e, e′} is not (M,<)-
compatible.

By (i)–(iv), (X ,Y∪{e})) ∈ P ′
1(M,<). From (i) and (ii), it also follows that if

(X ,Y ) ∈ P2(M−e,<) then (X ,Y∪{e}) ∈ P ′
2(M,<).

Suppose that (X , Y ′) ∈ P ′
1(M,<) and e′ ∈ E\(X ∪ Y ′).

(v) If C ∈ C(M∗/e) and C ∪ {e} ∈ C(M∗) (resp. C ∈ C(M∗)), then min(C) =
min(C∪{e}), and X ∩ (C∪{e}) = X ∩ C �= {min(C∪{e})} (resp. X ∩ C �=
{min(C)}), whence by (10), X is (M∗/e,<)-compatible.

(vi) If C ∈ C(M−e), then (Y ′\{e}) ∩ C = Y ′ ∩ C �= {min(C)}, i.e., Y ′\{e} is
(M−e,<)-compatible.

(vii) If X ∪ {e′} is not (M∗,<)-compatible, there exists C ′ ∈ C(M∗) such that
C ′ ∩ (X∪{e′}) = {min(C ′)}, whence e′ = min(C ′) �= e. If C ′\{e} ∈ C(M∗/e),
then (C ′\{e}) ∩ (X∪{e′}) = {min(C ′)}. If C ′ = ⋃n

i=1 C
′
i , C

′
i ∈ C(M∗/e),

there exists j such that min(C ′) ∈ C ′
j , whence min(C ′

j ) = min(C ′) and C ′
j ∩

(X∪{e′}) = {min(C ′
j )}. Thus by (11), X ∪ {e′} is not (M∗/e,<)-compatible.

(viii) If Y ′ ∪ {e′} is not (M,<)-compatible, there exists C ′ ∈ C(M) such that C ′ ∩
(Y ′∪{e′}) = {min(C ′)}, thus e′ = min(C ′) �= e, e /∈ C ′ (because e ∈ Y ′),
and C ′ ∩ ((Y ′\{e}) ∪ {e′}) = {min(C ′)}, i.e., (Y ′\{e}) ∪ {e′} is not (M−e,<)-
compatible.

By (v)–(viii), (X ,Y ′\{e})) ∈ P1(M−e,<). From (v) and (vi), it also follows that
if (X ,Y ′) ∈ P ′

2(M,<) then (X ,Y ′\{e}) ∈ P2(M−e,<).
Therefore P ′

i (M,<) = {(X ,Y ∪ {e}); (X ,Y ) ∈ Pi (M−e,<)} (i = 1, 2). For
any (X ,Y ′) ∈ P ′

2(M,<), we have e /∈ IM , X whence by (9), r((M−e)/X) =
r(M/X) and clearly, M − Y ′ = (M−e) − (Y ′\{e}). Thus by induction hypothesis,
|P ′

i (M,<)| = |Pi (M−e,<)| = T (M−e; 1, 1) (i = 1, 2) and
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T (M−e; x, y) = g(M−e,<; x, y) =
∑

(X ,Y )∈P2(M−e,<)

xr((M−e)/X)yr
∗((M−e)−Y )

=
∑

(X ,Y ′)∈P ′
2(M,<)

xr(M/X)yr
∗(M−Y ′) = g′(M,<; x, y).

The latter equation holds true also for M∗, whence by (3),

|P ′
i (M

∗,<)| = |Pi (M
∗−e,<)| = T (M∗−e; 1, 1) = T (M/e; 1, 1) (i = 1, 2),

T (M/e; x, y) = T (M∗−e; y, x) = g′(M∗,<; y, x).

Since Pi (M∗,<) = {(Y , X); (X ,Y ) ∈ Pi (M,<)} and for each (X ,Y ) ∈ Pi (M,<),
r(M/X) = r∗(M∗−X), r∗(M−Y ) = r(M∗/Y ), and e ∈ X ∪ Y , we have

|Pi (M,<)| = |P ′
i (M,<)| + |P ′

i (M
∗,<)| (i = 1, 2),

g(M,<; x, y) = g′(M,<; x, y) + g′(M∗,<; y, x).

Thus by (2), |Pi (M,<)| = T (M; 1, 1) (i = 1, 2) and T (M; x, y) = g(M,<;
x, y). 
�

Denote by S(M,<) = {X ∈ D(M,<); r(X) = |X |}.
Theorem 2 Let < be a linear ordering of elements of a matroid M. Then
|E(M,<)| = T (M; 1, 2), |S(M,<)| = T (M; 1, 0), and

p(M; k) =
∑

X∈E(M,<)

(−1)|X |(k − 1)r(M/X)

=
∑

X∈S(M,<)

(−1)|X |(k − 1)r(M)−|X |. (13)

Proof We use induction on |E\IM | to prove the first equation from (13) and that
|E(M,<)| = T (M; 1, 2). If E = IM , then E(M,<) = {∅}, |E(M,<)| = 1 =
T (M; 1, 2), r(M) = |IM |, and p(M; k) = (k − 1)r(M) as claimed.

If E �= IM , choose e = max(E\IM ) and denote by E+ = {X ∈ E(M,<); e /∈ X},
E− = {X ∈ E(M,<); e ∈ X}.

If X ∈ E(M−e,<), then by item (i) from the proof of Theorem 1, X is (M∗,<)-
compatible, i.e., E(M−e,<) ⊆ E+. Similarly, the reverse implication follows from
item (v). Thus E(M−e,<) = E+.

If X ∈ E(M/e,<), then for each C ∈ C(M∗) satisfying e ∈ C (resp. e /∈ C), we
have e ∈ (X∪{e}) ∩ C �= {min(C)}, because e �= min(C) (resp. (X∪{e}) ∩ C =
X ∩ C �= {min(C)}), whence X ∪ {e} is (M∗,<)-compatible. If X ′ ∈ E−, then
for each C ∈ C(M∗−e), (X ′\{e}) ∩ C = X ′ ∩ C �= {min(C)}, whence X ′\{e} is
(M∗−e,<)-compatible. Thus E(M/e,<) = {X ′\{e}; X ′ ∈ E−}.

By (6) and induction hypothesis,

p(M; k) = p(M−e; k) − p(M/e; k)
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=
∑

X∈E(M−e,<)

(−1)|X |(k − 1)r((M−e)/X)

−
∑

X∈E(M/e,<)

(−1)|X |(k − 1)r((M/e)/X)

=
∑

X∈E+
(−1)|X |(k − 1)r(M/X)

−
∑

X ′∈E−
(−1)|X ′\{e}|(k − 1)r(M/X ′)

=
∑

X∈E(M,<)

(−1)|X |(k − 1)r(M/X)

because by (9), r((M−e)/X) = r(M/X) for each X ∈ E(M−e,<) = E+. Further-
more, |E(M,<)| = |E+| + |E−| = |E(M−e,<)| + |E(M/e,<)| and M−e = M/e
if e is a loop of M , thus by the last two rows of (2), |E(M,<)| = T (M; 1, 2).

We prove the second part of (13). By (7), r∗(M |X) = |X | − r(X) whence
S(M,<) = {X ∈ D(M,<); r∗(M |X) = 0}. Moreover by (8), r(M/X) =
r(M) − r(X) = r(M)−|X | for each X ∈ S(M,<). From (5) and (12), we have

p(M; k) = (−1)r(M)T (M; 1−k, 0) = (−1)r(M)
∑

X∈S(M,<)

(1 − k)r(M/X)0r
∗(M|X)

=
∑

X∈S(M,<)

(−1)|X |(k − 1)r(M)−|X |.

Hence p(M; 0) = |S(M,<)|(−1)r(M) and by (5), |S(M,<)| = T (M; 1, 0). 
�
If IM∗ �= ∅ then S(M,<) = ∅ (because IM∗ ⊆ X for each X ∈ S(M,<) and

r(IM∗) = 0) and by (13), p(M; k) = 0.
Clearly, S(M,<) ⊆ E(M,<), whence by (13),

0 =
∑

X∈E(M,<)\S(M,<)

(−1)|X |(k − 1)r(M/X). (14)

Corollary 1 Let < be a linear ordering of elements of a matroid M. Then

T (M; x, y) =
∑

Z⊆E

(−1)r(M)+|Z |
⎛

⎝
∑

X∈E(M/Z ,<)

(−1)|X |(−x)r((M/Z)/X)

⎞

⎠

⎛

⎝
∑

Y∈E((M|Z)∗,<)

(−1)|Y |(−y)r
∗((M|Z)−Y )

⎞

⎠

=
∑

Z⊆E

⎛

⎝
∑

X∈S(M/Z ,<)

xr(M/Z)−|X |
⎞

⎠

⎛

⎝
∑

Y∈S((M|Z)∗,<)

yr
∗(M|Z)−|Y |

⎞

⎠ .

(15)
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Proof By (3), (4), and (5),

T (M; x, y) =
∑

Z⊆E

T (M/Z; x, 0) T ((M |Z)∗; y, 0)

=
∑

Z⊆E

(−1)r(M/Z) p(M/Z; 1−x) (−1)r
∗(M|Z) p((M |Z)∗; 1−y).

By (7) and (8), r(M/Z)+r∗(M |Z) = rM/Z (E\Z)+r(M|Z)∗(Z) = rM (E)−rM (Z)+
|Z | + rM|Z (∅) − rM|Z (Z) = r(M) + |Z | − 2r(Z) + 0, whence

T (M; x, y) =
∑

Z⊆E

(−1)r(M)+|Z | p(M/Z; 1−x) p((M |Z)∗; 1−y)

and applying the first equation from (13) for p(M/Z; 1−x) and p((M |Z)∗; 1−y) we
get the first part of (15). By the second equation from (13),

T (M; x, y) =
∑

Z⊆E

(−1)r(M)+|Z |
⎛

⎝
∑

X∈S(M/Z ,<)

(−1)|X |(−x)r(M/Z)−|X |
⎞

⎠

⎛

⎝
∑

Y∈S((M|Z)∗,<)

(−1)|Y |(−y)r
∗(M|Z)−|Y |

⎞

⎠

=
∑

Z⊆E

(−1)r(M)+|Z |
⎛

⎝
∑

X∈S(M/Z ,<)

(−1)r(M/Z)xr(M/Z)−|X |
⎞

⎠

⎛

⎝
∑

Y∈S((M|Z)∗,<)

(−1)r
∗(M|Z)yr

∗(M|Z)−|Y |
⎞

⎠

and the second part of (15) follows from the fact that r(M) + |Z | + r(M/Z) +
r∗(M |Z) = r(M) + |Z | + r(M) − r(Z) + |Z | + r(∅) − r(Z) is even. 
�

For example, suppose that M = U1,n , M∗ = Un−1,n , and E = {e1, . . . , en} has
a linear ordering < such that e1 < · · · < en . Denote by 2E the powerset of E ,
Si = {e1, . . . , ei }, and S∗

i = E\Si (i = 0, . . . , n, S∗
n = S0 = ∅). We can check that

E(M,<) = 2E\{S1},
D(M,<) = {Si ; i = 0, 2, . . . , n},
S(M,<) = {S0} = {∅},

E(M∗,<) = {S∗
i ; i = 0, . . . , n},

D(M∗,<) = {S∗
i ; i = 0, 2, . . . , n},

S(M∗,<) = {S∗
i ; i = 2, . . . , n},

P(M,<) = {(Si , S∗
i ); i = 0, 2, . . . , n},
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and by (12) and (13),

P(M; k) = k − 1,
P(M∗; k) = ∑n−1

i=1 (−1)n−1−i (k − 1)i ,
T (M; x, y) = x + ∑n−1

i=1 yi .

In accordance with Theorems 1, 2, and (3),

|E(M,<)| = 2n − 1 = T (M; 1, 2),
|S(M,<)| = 1 = T (M; 1, 0),
|E(M,<)\S(M,<)| = 2n − 2,

|E(M∗,<)| = n + 1 = T (M; 2, 1),
|S(M∗,<)| = n − 1 = T (M; 0, 1),
|E(M∗,<)\S(M∗,<)| = 2,

|D(M,<)| = |D(M∗,<)| = |P(M,<)| = |P(M∗,<)| = n = T (M; 1, 1),

and in accordance with (14),

0 =
∑

X∈E(M,<)\S(M,<)

(−1)|X |(k − 1)r(M/X)

=
∑

Y∈E(M∗,<)\S(M∗,<)

(−1)|Y |(k − 1)r
∗(M−Y ).

It would be interesting to study relations between E(M,<), D(M,<), P(M,<),
and S(M,<) and other structures, that have the same cardinalities or are known to
give expressions to compute the Tutte polynomial or the characteristic polynomial.
Obvious examples are the bases, independent sets, internal and external activities
(see [5,22]), broken circuits (sets of the form C\{min(C)}, C ∈ C(M)), and the
partitioning of 2E into T (M; 1, 1) intervals of type [B\Int(B),B ∪ Ext(B)] (where
B ranges over all bases of M and Int(B) and Ext(B) denote the usual sets of active
elements with respect to B, see [9,12,19,20]). Finally, notice a classical interpretation
of p(M; 0) = T (M; 1, 0) introduced in [13] in terms of totally cyclic and acyclic
orientations of graphs satisfying additional conditions. These orientations represent
certain equivalence classes of totally cyclic and acyclic orientations of graphs (see
[15,16]).

Acknowledgements Author thanks unknown referees for comments.
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