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Abstract
We establish a dimension formula involving a number of parameters for the mod 2
cohomology of finite index subgroups in the Bianchi groups (SL2 groups over the ring
of integers in an imaginary quadratic number field). The proof of our formula involves
an analysis of the equivariant spectral sequence, combined with torsion subcomplex
reduction. We also provide an algorithm to compute a Ford domain for congruence
subgroups in the Bianchi groups from which the parameters in our formula can be
explicitly computed.
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1 Introduction

Calegari andVenkatesh have recently proven a numerical form of a Jacquet–Langlands
correspondence for torsion classes on arithmetic hyperbolic 3-manifolds [6]. This
can be seen as a new kind of Langlands programme, for which one has to study
torsion in the cohomology of arithmetic groups. A class of arithmetic groups that is
of natural interest here, as well as in the classical Langlands programme, consists of
the congruence subgroups in the Bianchi groups. By a Bianchi group, we mean an
SL2 group over the ring of integers in an imaginary quadratic number field. Our aim
in this paper is to provide new tools for computing the torsion in the cohomology of
the congruence subgroups in the Bianchi groups.

There are already several approaches known for studying congruence subgroups
and their cohomology:

• Grunewald’s method of taking a presentation for the whole Bianchi group, and
deriving presentations for finite index subgroups via the Reidemeister-Schreier
algorithm [8];

• Utilizing the Eckmann–Shapiro lemma for computing cohomology of congruence
subgroups directly from cohomological data of the full Bianchi group [20];

• Construction of a Voronoï cell complex for the congruence subgroup [4,21].

What one typically harvests with these approaches are tables of machine results in
which everything looks somewhat ad hoc. A question posed by Fritz Grunewald to
the third author asks for deeper structure. Specifically, can one determine how the
cohomologywith small prime field coefficients developswhen varying amongBianchi
groups and their finite index subgroups, and considering all cohomological degrees
at once? Our response to this question, in Theorem 1, is that far from being ad hoc,
the cohomology of congruence subgroups of Bianchi groups depends for the most
part on a surprisingly small amount of geometric data. This theorem also closes the
2-torsion gap that could not be addressed by results already in the literature [18]. (The
pertinent formulas could not be applied to the case of 2-torsion for the SL2 subgroups
because the −1 matrix is an omnipresent cell stabilizer of order 2.) Let � be a finite
index subgroup in a Bianchi group not over the Gaussian integers, and let Xs be the
non-central 2-torsion subcomplex of the action of � on hyperbolic 3-space X . Note
that technically we use a 2-dimensional �-equivariant retract for X , but this does not
affect the following formulas; in particular because� is not over the Gaussian integers,
it does not affect Xs .

Theorem 1 Denote by k ≥ 0 the number of conjugacy classes of subgroups of type
Z/4 in � which are not included in any subgroup of type the quaternion group with
8 elements (Q8) or the binary tetrahedral group (Te) in �. Let m, respectively n, be
the number of conjugacy classes of subgroups of type Q8, respectively Te, in �, and
assume that m > 0, or n > 0, or both. Then

dimF2 Hq (�; F2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β1 + m + k − r0,1, q = 1,

β2 + β1 + 2m + n + k − 1 + c − r0,1 − r0,2, q ≡ 2 mod 4,

β2 + β1 + 2(m + n) + k − 1 + c − r0,3 − r0,2, q ≡ 3 mod 4,

β2 + β1 + m + n + k + c − r0,3, q ≡ 4 mod 4,

β2 + β1 + m + k + c − r0,1, q ≡ 5 mod 4,
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where βq = dimF2 H
q(�\X; F2) for q = 1, 2; r0,q is the rank of the d0,q2 -differential

of the equivariant spectral sequence; and c is the rank of the cokernel of the map
H1(�\X; F2) → H1(�\Xs; F2) induced by the inclusion Xs ⊂ X.

We have the following vanishing results for these ranks:

• k = 0 ⇒ r0,3 = 0,
• c = 0 ⇒ r0,2 = 0.

Note that this is a description of the cohomology in all degrees (we start at q = 1),
with the trade-off that the Betti numbers of the quotient space, as a purely topological
ingredient, remain an input. In order to prove this theorem, which we do in Sect. 5, we
describe an approach based on non-central torsion subcomplex reduction [2], which is
especially useful for computing the small torsion in the cohomology of our congruence
subgroups. The data we need for evaluating the formula of the above theorem comes
from a fundamental domain for the action of the groups we are investigating on hyper-
bolic 3-space. Fundamental domains in hyperbolic 3-space for arbitrary arithmetic
Kleinian groups can be computed using the algorithm of Aurel Page [15]. However,
for the extraction of torsion subcomplexes, we need the fundamental domains to be
provided with a cell structure in which every cell stabilizer fixes its cell pointwise, a
condition not produced by Page’s current implementation (version 1.0). Mathemati-
cally, it is straightforward to construct from Page’s fundamental domain a subdivided
one on which all cells are fixed pointwise. Unfortunately, implementation costs for
that approach are very high. For our purposes, it was more useful to start from scratch
with a new algorithm.

Wepresent this algorithm inSect. 6. The algorithmconstructs a fundamental domain
for a congruence subgroup in a 2-dimensional equivariant retract of hyperbolic 3-space
by starting with a fundamental domain for the ambient full Bianchi group which
already has the desired cell structure. Then, the desired property of the cell structure
is inherited by the fundamental domain that we are constructing for the congruence
subgroup. This allows us to efficiently extract torsion subcomplexes as well as to
determine the number and type of connected component types—we use these data to
evaluate the formulas of Theorem 1.

We can furthermore say which types of connected components can appear in
2-torsion subcomplexes for subgroups of Bianchi groups—we give a complete char-
acterization in Corollary 7, which we derive from new results of Norbert Krämer
[11]. They imply in particular that in the notation of Theorem 1, a single connected
component not of type admits either m = 0, n = 2 or m = 2, n = 0.

For the proof of Theorem 1, we extend the tools developed in [2] in order to
reduce these torsion subcomplexes and to analyze the equivariant spectral sequence
converging to group cohomology. By analyzing the remaining differentials in the
equivariant spectral sequence (the lemmas in Sect. 5), we are able to determine almost
all of the mod-2 cohomology of the congruence subgroups we consider, and can often
get a complete answer.

A remark on the above mentioned Voronoï cell complex approach: Recently, we
were able to address the non-triviality of the action of cell stabilizers on their cells via
machine calculations using the Rigid Facets Subdivision algorithm [3]. This allows
us, in the Appendix to this paper, to use Schönnenbeck’s computations of the Voronoï
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cell complex as a check on the computations in this paper, and to illustrate which
values the parameters in our formulas can take.

Organization of the paper

In Sect. 2, we recall background material. In addition to some results from spectral
sequences, this includes the definition of the non-central �-torsion subcomplex, whose
components provide an efficient way to calculate cohomology rings for the groups
we consider. In Sect. 3, we derive from recent results of Krämer a categorization of
all possible non-central �-torsion subcomplexes in congruence subgroups of Bianchi
groups for all occurring prime numbers �. In Sect. 4, we provide new theorems which
calculate the cohomology of all possible reduced 2-torsion subcomplexes. In Sect. 5,
we show that the d2 differential vanishes in many cases in our setting, and provide
the proof of Theorem 1. Section 6 presents our algorithm with which to construct
fundamental domains for the action of the congruence subgroups. Finally, Sect. 7
provides two example computations.

2 Preliminaries

In this section, we provide, without proof, background on subcomplex reduction and
some spectral sequence results. We refer the interested reader to the appropriate ref-
erences for more details. In the sequel, most of our cohomology calculations have
coefficients in the field F2 with two elements (obviously with the trivial action), so we
will assume all cohomology is with F2 coefficients unless explicitly stated otherwise.

2.1 Subcomplex reduction

Let � be any discrete group which acts on a finite-dimensional simplicial complex
X via a cellular �-action so that elements of cell stabilizers fix their cells pointwise.
What we have in mind here is for � to be a congruence subgroup in a Bianchi group
which acts in the well-known way on hyperbolic 3-space. For a fixed prime number
�, the �-torsion subcomplex is the collection of all cells of X whose cell stabilizer
contains some element of order �. If, in addition, for every non-trivial finite (�-)group
G ⊆ � the fixed point set XG is acyclic, we have the following special case of Brown’s
proposition X.(7.2) in [5]:

Proposition 2 There is an isomorphism between the �-primary parts of the Farrell
cohomology of � and the �-equivariant Farrell cohomology of the �-torsion subcom-
plex.

There are instances where the �-torsion subcomplex can be significantly reduced in
size while preserving cohomological information. Heuristically, one determines situa-
tions, like adjacency conditions and isomorphisms on cohomology between stabilizer
groups, which allow cells to be merged. The result, which may have multiple com-
ponents, is a reduced �-torsion subcomplex, and it can be significantly easier to work
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with than X itself. Ad hoc use of elements of this approach appears in a number of
places in the literature (see [9] or [24], for example). A systematic reduction procedure
was developed by the third author in [16–18]. One of the main results from [18] is:

Theorem 3 There is an isomorphism between the �-primary parts of the Farrell
cohomology of � and the �-equivariant Farrell cohomology of a reduced �-torsion
subcomplex.

We note that Farrell cohomology coincides above the virtual cohomological dimen-
sion with the standard cohomology of groups, and by the periodicity that we have for
the family of groups treated in the present paper, we can deduce almost all of the coho-
mologyof groups from theFarrell cohomology (i.e., except for the 1-dimensional part).
This is why, although wemake nomention of Farrell cohomology beyond this section,
Proposition 2 and Theorem 3 allow us to make a significant reduction in our compu-
tations on the cohomology of groups in this work. In cases where the action of � on
X has a trivial kernel, one can use a reduced �-torsion subcomplex to determine the
Farrell cohomology of � [18]. On the other hand, when the kernel contains �-torsion,
then the �-torsion subcomplex is all of X , yielding no reduction at all. The following
way around this difficulty was developed in [2].

Definition 4 The non-central �-torsion subcomplex of a�-cell complex X is the union
of the cells of X whose cell stabilizer in � contains some element of order � which is
not in the center of �.

We specialize to the case of our paper. Let O−m be the ring of integers in the
field Q(

√−m), form ∈ N square-free. For a subgroup � of SL2 (O−m), let P� be the
central quotient group�/({1,−1}∩�) in PSL2 (O−m). As noted in [2], the non-central
�-torsion subcomplex for � is the same as the �-torsion subcomplex for P�. In the
sequel, we use this correspondence to identify the non-central �-torsion subcomplex
for the action of a congruence subgroup of SL2 (O−m) on hyperbolic 3-space as the
�-torsion subcomplex of the image of the subgroup in PSL2 (O−m).

It is well known [22] that the finite orders which can occur for elements of
SL2 (O−m) are 1, 2, 3, 4 or 6; so in PSL2 (O−m) the finite orders are 1, 2 and 3.
From this, one can completely determine the finite subgroups of the PSL2 Bianchi
groups (see [10], for example), as well as their preimages in the SL2 Bianchi groups:
the cyclic groups Z/2, Z/4, Z/6, the quaternion group Q8 of order 8, the dicyclic
group Di of order 12, and the binary tetrahedral group Te of order 24. Hence, we only
need to analyze the 2-torsion subcomplex and the 3-torsion subcomplex.

To characterize the latter �-torsion subcomplexes, recall that any element of finite
order in PSL2 (O−m) fixing a point inside hyperbolic 3-space H acts as a rotation
of finite order. By Felix Klein’s work, we also know that any torsion element α is
elliptic and hence fixes some geodesic line. So our �-torsion subcomplexes are one-
dimensional and consist of rotation axes of elements of finite order.We can nowdeduce
that for � = 2 or 3, the �-quotient of the �-torsion subcomplex is a finite graph (we
use either the finiteness of a fundamental domain, or a study of conjugacy classes of
finite subgroups as in [11]).

For the�-quotient of the 3-torsion subcomplex, Theorem 2 of [18] tells us that there
are only two types of connected components, and gives the number of each. Hence, the
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mod 3 cohomology groups of � are explicitly expressed in terms of conjugacy classes
of order-3-rotation subgroups and triangle subgroups in �. The reduced non-central
2-torsion subcomplex for a congruence subgroup � in SL2 (O−m) is considerably
more complicated, and its explicit determination is an emphasis of this paper. To start,
it has the following properties:

• All edges of the non-central 2-torsion subcomplex have stabilizer type Z/4.
• The stabilizer type of the vertices that yield an end point in the quotient graph is
the binary tetrahedral group Te.

• After carrying out the reduction, there are no vertices with precisely two neigh-
boring vertices.

• The stabilizer type of the vertices where there is a bifurcation in the quotient graph
is the quaternion group Q8 with eight elements.

• Prior to reduction, there are no vertices with more than three neighboring vertices
in the quotient graph.

We note that the degree of each vertex in the�-quotient of X is the same as the number
of distinct conjugacy classes of Z/4 in the vertex stabilizer. We also observe that all
stabilizers which contain a copy of Q8 are associated with vertices. This observation
will be used in Sect. 2.3.

2.2 Spectral sequences

Weuse two spectral sequences in this paper. The primary one is the equivariant spectral
sequence in cohomology, since it is particularly well suited to our situation, that is,
a cellular action of � on the contractible cell complex X . This spectral sequence is
developed in detail in [5, Chapter VII]. For our purposes, we note that the E1 page of
the spectral sequence has the form

Ei, j
1

∼=
∏

σ ∈ �\X (i)

H j (�σ )

and converges to the cohomology of the group, Hi+ j (�), where X (i) is a set of �-
representatives of i-cells in X and �σ ⊆ � is the stabilizer of the cell σ . The dr
differential of this spectral sequence has bidegree (r , 1 − r).

We summarize a number of useful properties of the equivariant spectral sequence:

(1) The differential d1 can be described (withF2 coefficients) as the sum of restriction
maps in cohomology between cell stabilizers (cohomology analog of [5, VII.8])

∏

σ ∈ �\X (i)

H j (�σ )
di, j1−−→

∏

τ ∈ �\X (i+1)

H j (�τ ).

(2) There is a product on the spectral sequence, E pq
r ⊗ Est

r → E p+s,q+t
r , which is

compatible with the standard cup product on H∗(�) [5, VII.5].
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(3) On the E2-page, the products in E0,∗
2 , the vertical edge, can be identified with the

restriction of the usual cup product to the classes in
∏

σ∈�\X (0) Hq(�σ ) which are
in ker d1 [5, X.4.5.vi].

(4) Let r ≥ 2. Then, there are well-defined Steenrod operations, Sqk : E p,q
r →

E p,q+k
r when 0 ≤ k ≤ q [23, Theorem 2.15].

(5) When k ≤ q − 1, d2Sqku = Sqkd2u, i.e., the Steenrod operations commute with
the differential [23, Theorem 2.17].

In Sects. 4 and 5, we also use the Lyndon–Hochschild–Serre spectral sequence in
cohomology associated with the extension

1 → H → �
π−→ �/H → 1.

This short exact sequence yields an associatedfibration of classifying spaces. TheSerre
spectral sequence for this fibration has Ei, j

2
∼= Hi (�/H ; H j (H ; M)) for untwisted

coefficients M and converges to Hi+ j (�; M). For the development of this spectral
sequence, we refer readers to either [1, IV.1] or [5, VII.5]. A more general version for
twisted coefficients can be found in [13].

2.3 Calculation of the second page of the spectral sequence

One can use the reduced non-central 2-torsion subcomplex of � as input into the
equivariant spectral sequence. It is one of the main results in [2] that the E2 page
of the spectral sequence can be computed knowing limited data about the action of
the congruence subgroup � via linear fractional transformations on hyperbolic 3-
space, H3. Let X be the 2-dimensional cellular retraction of H

3 from which we build
the Ford domain for the action of � (see [19]). We denote by Xs the non-central 2-
torsion subcomplex of X , and by X ′

s the 0-dimensional subcomplex of X consisting of
vertices whose stabilizer is eitherQ8 or Te. We define c to be the rank of the cokernel
of H1(�\X; F2) → H1(�\Xs; F2) induced by the inclusion Xs ⊂ X . That is, the
case c > 0 corresponds to the situation where loops in the quotient of the non-central
2-torsion subcomplex are identified in the quotient space. We also define v to be the
number of conjugacy classes of subgroups isomorphic toQ8 in�; these occur in vertex
stabilizers isomorphic to Q8 or Te. There is a geometric meaning for v, related to the
2-torsion subcomplex components found in X as listed in Sect. 3. Specifically, it is
shown in [2] that v counts the number of vertices in the non- 2-torsion subcomplex
components of X . Finally, we define sign(v) to equal 0 when v = 0 and 1 otherwise.
In the following theorem from [2], we add the trivial case when Xs is empty. That
situation did not arise in that paper, but it is straightforward to work it out.

Theorem 5 [2, Corollary 21] The E2 page of the equivariant spectral sequence with
F2-coefficients associated with the action of � on X is concentrated in the columns
p ∈ {0, 1, 2}. If Xs is empty, then E p,q

2
∼= H p(�\X; F2) for all p, q ≥ 0; otherwise

this E2 page has the following form:
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q ≡ 3 mod 4 E0,3
2 (Xs) E1,3

2 (Xs) ⊕ (F2)
a1 (F2)

a2

q ≡ 2 mod 4 H2
�(X ′

s) ⊕ (F2)
1−sign(v) (F2)

a3 H2(�\X)

q ≡ 1 mod 4 E0,1
2 (Xs) E1,1

2 (Xs) ⊕ (F2)
a1 (F2)

a2

q ≡ 0 mod 4 F2 H1(�\X) H2(�\X)

p = 0 p = 1 p = 2

with

a1 = χ(�\Xs) − 1 + β1(�\X) + c
a2 = β2(�\X) + c
a3 = β1(�\X) + v − sign(v)

where βq = dimF2 H
q(�\X; F2) for q = 1, 2; and χ(�\Xs) is the usual Euler

characteristic of the orbit space of the 2-torsion subcomplex �\Xs.

Theorem 5 implies that H∗(�) is eventually periodic with period 4. We remark that
dimF2 H

2
�(X ′

s) is twice the number of orbits of vertices of stabilizer type Q8 (cf. [2,
note 30]). Finally, we note:

Lemma 6 [2, Lemma 22] The terms E p,q
2 (Xs) split into direct summands each with

support on one connected component of the quotient of the reduced non-central 2-
torsion subcomplex (again denoted Xs).

3 Connected component types of the 2-torsion subcomplex

At first glance, the number of possible connected component types satisfying the
properties listed in Sect. 2 is countably infinite. But, in fact, there are only four types.
This reduction is made possible by using recent results of Krämer [11], which we
summarize next.

Corollary 7 (to theorems of Krämer) Let �0(η) be a congruence subgroup in
SL2(O−m), where O−m is the ring of integers in the imaginary quadratic field
Q(

√−m) (m square-free) with discriminant � �= −4, and subject to the congru-
ence condition that the lower left entry is contained in the ideal η � O−m. Let t
be the number of distinct prime divisors of �. We consider the action of �0(η) on
the associated symmetric space, hyperbolic 3-space. Then, the reduced non-central
2-torsion subcomplex consists exclusively of connected components of types , ,

and , with multiplicities as follows.

: For every connected component of type , there must be two conjugacy
classes of binary tetrahedral subgroups in �0(η). Such subgroups exist precisely
when η = 〈2〉, m ≡ 3 mod 8 and for all prime divisors p of �, p ≡ 1 or 3
(mod 8). There are then precisely 2t−1 connected components of this type.

& :The existenceof either type and requires twoconjugacy classes
of maximalQ8 groups per connected component. The congruence subgroup�0(η)

contains maximal Q8 subgroups if and only if m �≡ 3 mod 4 and in addition,
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• either η = 〈2〉 and
p ≡ 1 mod 4 for all odd prime divisors p of �,

• or η2 = 〈2〉 and
for all divisors D ∈ N of �, we have D �≡ 7 mod 8.

: A sufficient condition for all maximalQ8 groups to sit on -components
is that η2 = 〈2〉,m ≡ 2 mod 4 and there exist x, y ∈ Z with x2 −my2 = 2. When
this condition holds, there are 2t−1 connected components of type .

: Conversely, sufficient conditions for all maximal Q8 groups to sit on -
components are that η = 〈2〉; or that m �≡ 2 mod 4; or that x2 − my2 �= 2 for all
x, y ∈ Z. The number of connected components of type is then

• 2t−1, if η = 〈2〉.
• 2t−1, if η2 = 〈2〉 and p ≡ 1 mod 8 for all odd prime divisors p of �.
• 2t−2, if η2 = 〈2〉 and p ≡ ±3 mod 8 for some prime divisor p of �.

Note that the existence conditions directly imply that p �≡ 7 mod 8.

The remaining conjugacy classes of cyclic groups of order 4 (i.e., those not involved
in the components mentioned above) constitute components.

Proof of the corollary We first provide a sketch of the overall argument. The theorems
that we quote are results in Krämer’s preprint [11], so we refer the reader there for
more details. Satz 9.7 in [11] implies that every stabilizer group of binary tetrahedral
type occurs only as an endpoint of a component of type . For maximal Q8 vertex
stabilizer subgroups, the conditions for the existence of components of types and

are complementary, so these are the only components that can occur in this case.
The remaining connected components admit exclusively Z/4 vertex stabilizers, so
they are of type .

For the individual component types, we observe:

: Satz 9.4.(i) states the conditions given in this Corollary for the existence of
binary tetrahedral groups. Satz 9.6.(i) specifies the number of conjugacy classes
of binary tetrahedral type as 2t . There are two such conjugacy classes needed for
each component.

& : The proof of conditions for existence is given in Satz 9.4.(iii).
: The proof of the sufficient condition for is given with Satz 9.9.(i).

This condition yields, as is stated in Satz 9.9.(i), that for all odd prime divisors p
of �, we have p ≡ 1 (mod 8). Therefore by Satz 9.6.(iii), there are 2t conjugacy
classes of maximal Q8-groups.

: The proof of the sufficient conditions for is given in Satz 9.9.(ii). The proof
of the number of conjugacy classes is given in Satz 9.6.(iii). ��
Examples.We have explicitly computed the type and number of components for a

number of fundamental domains computedwith the algorithm inSect. 6. The following
results for the non-central s-torsion subcomplex quotient, �\Xs for s ∈ {2, 3}, are in
accordance with Corollary 7.

123



536 Journal of Algebraic Combinatorics (2020) 52:527–560

Example � �\X3 �\X2

(1) �0(1 + √−2) ⊂ SL2(Z[√−2]) Empty
(2) �0(2) ⊂ SL2(Z[√−2]) Empty
(3) �0(5) ⊂ SL2(Z[√−2])
(4) �0(

√−2) ⊂ SL2(Z[√−2]) Empty
(5) �0(3 + 2

√−2) ⊂ SL2(Z[√−2]) Empty

(6) �0(2) ⊂ SL2(Z[ −1+√−11
2 ])

(7) �0(
−1+√−11

2 ) ⊂ SL2(Z[ −1+√−11
2 ]) Empty

Details for Examples (3) and (4) in the table above are given in Sect. 7.

4 Cohomology of 2-torsion subcomplexes

The cohomology of the 2-torsion complexes is built from the cohomology of its finite
stabilizers. We get from the former to the latter via a spectral sequence argument,
using a general description of the 2-torsion subcomplex. We begin with a list of the
cohomology rings for the stabilizer groups, where polynomial classes are given in
square brackets, exterior classes are given in parentheses, and a subscript on a class
denotes its degree. Since SU2 acts freely on S3, the rings are all periodic of period
dividing 4.

Proposition 8 (See [1]) The mod 2 cohomology rings of the finite subgroups of
SL2(O−m) are:

H∗(Z/4) ∼= H∗(Di) ∼= F2[e2](b1)
H∗(Z/2) ∼= H∗(Z/6) ∼= F2[e1]
H∗(Q8) ∼= F2[e4](x1, y1)/〈R〉,
with R generated by x21 + x1y1 + y21 and x21 y1 + x1y

2
1

H∗(Te) ∼= F2[e4](b3)

The calculation of the cohomology of the reduced 2 torsion subcomplexes from a
graph of groups description requires knowledge of restriction maps in cohomology
between finite subgroups. The proof of the following Proposition can be found in [2,
Proposition 10].

Proposition 9 The following are the non-trivial restriction maps involving polynomial
generators in cohomology for finite subgroups of SL2(O−m):

Z/4 : resZ/4
Z/2(e2) = e21

Di : resDi
Z/6(e2) = resDi

Z/2(e2) = e21
Q8 : resQ8

Z/4(e4) = e22, resQ8
Z/2(e4) = e41

Te : resTe
Z/6(e4) = resTe

Z/2(e4) = e41, resTe
Z/4(e4) = e22
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In addition, resZ/6
Z/2 and resDi

Z/4 are isomorphisms.

The restriction map between H1(Q8) and H1(Z/4) is trivial or not depending on
the choice of Z/4 subgroup. This is the subject of the next lemma.

Lemma 10 Given a class in H1(Q8), its image under resQ8
Z/4 is non-trivial for two

copies of Z/4 ⊆ Q8 but trivial on the third.

Proof Let D2 denote the Klein four-group. There are three elements of order 2 in
D2, and their central extensions become the three copies of Z/4 in Q8. Fix x and y,
two generators of D2, viewed multiplicatively, and let x1 and y1 ∈ H1(D2) be their
corresponding duals in cohomology. We identify the three subgroups of order 2 inD2
as Z1 = 〈x〉, Z2 = 〈y〉, and Z3 = 〈xy〉, with corresponding cohomology generators
z1,1, z1,2, and z1,3.

Determination of most of the restriction maps resD2
Zi

is straightforward, but as xy

is the product of the distinguished generators, in resD2
Z3

both x1 and y1 are sent to z1,3.
So

resD2
Z1

(x1) = z1,1 resD2
Z1

(y1) = 0

resD2
Z2

(x1) = 0 resD2
Z2

(y1) = z1,2

resD2
Z3

(x1) = z1,3 resD2
Z3

(y1) = z1,3

We determine resD2
Zi

(x1 + y1) by addition, and the result for Q8 follows from a
comparison of the Lyndon–Hochschild–Serre spectral sequence associated with

1 → Z/2 → Q8 → D2 → 1

with the Lyndon–Hochschild–Serre spectral sequence for

1 → Z/2 → Z/4 → Z/2 → 1.

��
We calculate the �-equivariant mod 2 cohomology of a generic component of the

non-central reduced 2-torsion subcomplex via a graph of groups description and the
equivariant spectral sequence.We use Proposition 9 and Lemma 10 to determine the d1
differential. By the cohomology periodicity of the stabilizer subgroups, it is sufficient
to restrict ourselves to dimensions q ≤ 4. The restriction map between H1(Q8) and
H1(Z/4) requires the most attention, since each Q8 vertex stabilizer contains three
non-conjugate copies of Z/4, a fact reflected in the three edges incident to that vertex.
There are two cases, according as whether two of the incident edges form a loop or
not. We call an edge which forms a loop in �\Xs a looped edge.

Lemma 11 Let Q8 be a vertex stabilizer with no looped edges. Then under d1, any
class in H1(Q8) restricts isomorphically to exactly two copies of H1(Z/4) and is
trivial on the third.
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Proof This follows directly from Lemma 10. We note that the three classes in H1(Q8)

are detected on different pairs of Z/4 subgroups. ��
Lemma 12 Let Q8 be a vertex stabilizer adjacent to a looped edge, and let b1,1 and
b1,2 be the classes in H1(Z/4) associated with the looped edge and unlooped edge,
respectively. Then under d1, any class in H1(Q8) is either detected by the cohomology
of both edge stabilizers, or neither.

Proof Let y be the group element of � associated with the unlooped edge, and x and
xy be the group elements of � associated with one side of the looped edge. We again
use Lemma 10. However, we note that the subgroup Z3 is now identified with Z1, so
in cohomology b1,1 = b1,3. For the unlooped edge stabilizer, associated with Z2, we
have

resQ8
Z/4(x1) = 0 resQ8

Z/4(y1) = b1,2

The restriction to the looped edge stabilizer is induced by the difference of restriction
maps to Z1 and Z3 in Lemma 10. Therefore, this restriction map is given by

resQ8
Z/4(x1) = b1,1 − b1,1 = 0 resQ8

Z/4(y1) = b1,1

We determine the restriction on x1 + y1 by additivity, and the result follows. ��
It is usually clear by Proposition 9 which classes are in the kernel of d1 and which are
in its image. However, Lemmas 11 and 12 show that the situation is more subtle for
classes in degree 1. We introduce a graphical idea which will aid us in determining
ker d1 in this case. First, note that the only classes in E0,1

2 come from copies of Q8

vertex stabilizers. Therefore, any class in E0,1
2 can be written as σ ∈ ⊕SH1(Q8),

where the finite index set S gives the support of σ . By Property 1 in Sect. 2.2, the map
d1 is the difference of restriction maps for vertex stabilizer groups to edge stabilizer
groups. We make the following observation about unlooped edges e with endpoints v0
and v1: For a class to be in ker d1, a necessary condition (mod 2) is that the restriction
maps to the edge stabilizers must both vanish, or both must be non-trivial. That is, for
unlooped edges,

res
�v1
�e

= res
�v0
�e

. (1)

We understand the restriction maps from H1(Q8). When there are no looped edges,
a class in H1(Q8) is detected by the stabilizers of exactly two edges by Lemma 11;
and when there is a looped edge, by Lemma 12, a class in H1(Q8) is either detected
by stabilizers on both the looped and unlooped edge, or it is sent to 0.

We remark that it is possible to order basis elements in such a way that d1 is
described by a block matrix where each block is associated with a single connected
component C . Therefore, we can analyze d0,11 one component at a time. We have our
first result.

Lemma 13 For each looped edge in a non-central 2-torsion subcomplex quotient C
not of type , there is a class which is in ker d0,11 .
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Proof The class in ker d0,11 is x1 from Lemma 12. ��
Given a cohomology class σ ∈ ⊕SH1(Q8) from a non-central 2-torsion subcom-

plex quotient component C not of type , the support of σ is a subgraph of C built
as follows: For each copy of G ∼= Q8 which contributes to σ , add to the subgraph its
associated vertex, and the incident edges which detect σ |G as given by Lemmas 11
and 12.

Lemma 14 If σ ∈ ⊕SH1(Q8) has support which includes an edge incident to a loop
in C, then σ /∈ ker d0,11 .

Proof We note that the only reduced non-central 2-torsion subcomplex quotient com-
ponents which have Z/4 vertex stabilizers are loops, so they do not fall under the
hypothesis of this lemma. Like all edge stabilizers in C , the stabilizer of e, Stab(e),
is isomorphic to Z/4. We will focus on a Q8 vertex stabilizer on the other side of e,
denoting this distinguished copy of Q8 by Q.

Since e is adjacent to a looped edge, by Lemma 12, the restriction map in coho-
mology from the vertex group adjacent to the looped edge either maps non-trivially to
both edge groups or to neither. If both, then there can be no second restriction map to
the cohomology of the looped edge to make d0,11 vanish. If neither, then the support

arises because resQStab(e) �= 0. By Eq. (1), such a class cannot be in ker d0,11 . ��
Theorem 15 Given C, a reduced non-central 2-torsion subcomplex quotient compo-
nent not of type , the block of d0,11 supported on C satisfies dimF2(ker d

0,1
1 |C ) =

β1(C), where β1(C) is the first Betti number of C.

Proof Since the reduced non-central 2-torsion subcomplex quotient components are
disjoint, we can arrange classes in the equivariant spectral sequence so that cohomol-
ogy calculations may be done one component at a time.

For components of type , denote the two Q8 vertex stabilizers by Q1 and Q2
and the three edges by e1, e2, and e3. By Lemma 10, we can pick bases for H1(Q1)

and H1(Q2) so that two classes restrict non-trivially to edges e1 and e2, and the other
two classes restrict non-trivially to edges e1 and e3. Moving to the equivariant spectral
sequence calculation for , the sum of the first two basis elements maps to zero as do
the sum of the second two. Therefore, dimF2 ker d

0,1
1 ≥ 2. As the classes in H1(Q1)

are linearly independent, we conclude that the dimension is exactly two, which is
.

For a component of type , we recall that by Lemma 13, each looped edge
results in exactly one class in ker d0,11 , so dimF2 ker d

0,1
1 ≥ 2. As above, denote the

two copies of Q8 stabilizers by Q1 and Q2. By Lemma 10, we can pick bases for
H1(Q1) and H1(Q2) so that one class in each of H1(Q1) and H1(Q2) restricts non-
trivially to a loop and to the edge connecting the vertices. These classes are linearly
independent, which implies .

Finally, for a component of type the result follows by Proposition 8, since
H1(Te) = 0. ��

In our non-central reduced 2-torsion subcomplexes, edge stabilizers are always of
type Z/4, and vertex stabilizers are of one of the types
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• Te, with one edge adjacent to the vertex in the quotient space, or
• Z/4, with one edge adjacent at both of its ends, yielding a connected component

, or
• Q8, with three edges (counted once or twice) adjacent to the vertex in the quotient
space.

Corollary 7 tells us that the only possible types of connected components in our
quotients of reduced non-central 2-torsion subcomplexes are , , and . In
the following theorem, we treat the components of types , and in a unified
way, making use of the fact that the only types of vertex stabilizers on these three
connected component types are Q8 and Te.

Theorem 16 Let C be the collection of connected components not of type in some
reduced 2-torsion subcomplex, where m vertices have Q8 stabilizers and n vertices
have Te stabilizers. Then, the E2 page of the equivariant spectral sequence restricts
on C to the following dimensions over F2:

q ≡ 3 mod 4 m + n 3m
2 + n

2

q ≡ 2 mod 4 2m 3m
2 + n

2

q ≡ 1 mod 4 m m
2 + n

2

q ≡ 0 mod 4 m
2 + n

2 m

p = 0 p = 1

Proof By Krämer’s results (see Corollary 7), the collection C contains 3m
2 + n

2 edges,
all of which have Z/4 stabilizer. The E1 page of the equivariant spectral sequence has
the following dimensions over F2.

q ≡ 3 mod 4 m + n −→ 3m
2 + n

2

q ≡ 2 mod 4 2m −→ 3m
2 + n

2

q ≡ 1 mod 4 2m −→ 3m
2 + n

2

q ≡ 0 mod 4 m + n −→ 3m
2 + n

2
p = 0 p = 1

To get to the E2 page, we need to determine the d1 differential. In the bottom row,
the E p,0

2 term of C is isomorphic to the simplicial homology Hp(G) of the graph G
underlying C. The dimension of H0(G) is the number of connected components of
G, namely m

2 + n
2 . And the dimension of H1(G) is the number of loops of G; using

Krämer’s results (see Corollary 7), we see that there are as many loops in the collection
C as bifurcation points, namely m.

In dimensions q ≡ 1 mod (4), Theorem 15 implies that dim ker d0,q1 = m. And

from Proposition 9, we know that d0,q1 vanishes in dimensions q ≡ 2, 3 mod (4). ��
For the excluded case, we recall a lemma that has already been established.
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Lemma 17 ([2, Lemma 26]) Let C be a connected component of type . Then,

dimF2 H
q(C) =

{
1, q = 0;
2, q ≥ 1

and E p,q
2 |C ∼= F2 for all q ≥ 0, p ∈ {0, 1}.

The proof of Lemma 17 is straightforward. Briefly, at the level of graph of groups
a connected component of type is an HNN extension where the twisting sends a
generator of the vertex stabilizer to another generator. Property 1 in Sect. 2.2 then
implies that d1 is the zero map.

5 Determination of the d2 differential

In order to complete our cohomology calculations, we need to understand the d2
differential in the equivariant spectral sequence. In general, this can be quite difficult,
but in our situation the existence of Steenrod operations in the spectral sequence helps
out a great deal. We mirror the approach laid out in [2], quoting results as needed.
We treat first the degenerate case where the non-central 2-torsion subcomplex Xs is
empty, so we can afterward assume that it is non-empty.

Proposition 18 Let the non-central 2-torsion subcomplex Xs be empty. Then

dimF2 H
q(�; F2) =

{
β1 + 1, q = 1,

β2 + β1 + 1, q ≥ 2,

where βq = dimF2 H
q(�\X; F2).

Proof In view of Theorem 5, we only have to show that the d2 differential van-
ishes completely. For this purpose, we consider the homological equivariant spectral
sequence with integer coefficients. That sequence is, modulo 3-torsion and apart from
the zeroth row, concentrated in the odd rows, with (p, q)th entry (Z/2)β

p
. Therefore,

its d2 differential is zero modulo 3-torsion in rows above q = 1. Comparing via the
universal coefficient theorem, we see that the d2 differential in rows above q = 1 must
vanish also for the cohomological equivariant spectral sequence with mod 2 coeffi-
cients. By the periodicity, we obtain that the latter differential vanishes also in low
degrees. ��

Recall from Sect. 2.3 the definition of c as the rank of the cokernel of

H1(�\X; F2) → H1(�\Xs; F2)

induced by the inclusion Xs ⊂ X .

Lemma 19 When c = 0, the d2 differential vanishes on E0,4q+2
2 .

Proof This is essentially Lemma 31 in [2], although a necessary hypothesis that c = 0
is missing there. We sketch the argument, indicating the need for c = 0 right after the
proof.
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We note that Sq1 vanishes on H2(G) for all finite groups G which appear as vertex
stabilizers. In the equivariant spectral sequence, a nonzero target of the d2 differential
is an odd-dimensional class in the cokernel of d1. Since all 2-cells have Z/2 stabilizer,
the cohomology groups in E2,q

1 are F2-vector spaces. Therefore, we may consider

classes in E2,q
2 to be equivalence classes of the form ⊕H∗(Z/2), where the sum is

over appropriate 2-cells in �\X . (Note: In what follows, we will simply refer to sums
on the E2 page, althoughwemean equivalence classes.) Looking back at the derivation
of Theorem 5, classes of this form have non-trivial Sq1 when c = 0 since all classes
in the second column arise from cohomology of stabilizers of 2-cells in �\X and
the F2-dimensions of E2,q

2 are equal for all q. However, by Property 5 in Sect. 2.2,
Sq1d2 = d2Sq1, so this is impossible. ��
On the other hand, when c > 0, some classes in E2,1

2 will have trivial Sq1 simply for
dimensional reasons. These classes can be the target of a non-trivial d2 differential.

Remark 20 The d0,2q2 differential may vanish also in cases where c �= 0. In the latter

cases, we rely on the machine computations in order to find the rank of d0,2q2 .

In addition, we have

Lemma 21 The d2 differential vanishes on E0,4q
2 .

Proof By periodicity, it is sufficient to show this in E0,4
2 . If d2 does not vanish, then

its image is in E2,3
2 which is generated by a class in⊕H3(Z/2), where the sum is over

2-cells in �\X . We follow the argument in Lemma 19, noting that since dimF2 E
2,3
2 =

dimF2 E
2,5
2 , Sq2 of any class in E2,3

2 is nonzero. On the other hand, Sq2 of the 4-
dimensional polynomial class is always 0.NowProperty 5 inSect. 2.2 implies Sq2d2 =
d2Sq2, which forces the vanishing result. ��

The next few results relate to components of type .

Lemma 22 [2, Lemma 33] The d2 differential is non-trivial on cohomology on com-
ponents of type in degrees q ≡ 1 mod 4 if and only if it is non-trivial on these
components in degrees q ≡ 3 mod 4.

Lemma 23 Let the non-central2-torsion subcomplex Xs admit as quotient components
of type only. Then, the d2 differential vanishes on E0,2q

2 .

Proof To prove this lemma, we will compare results from two different spectral
sequences, the equivariant spectral sequence for the PSL2 group (ESS), and the
Lyndon–Hochschild–Serre spectral sequence (LH3S). We will distinguish the dif-
ferentials in the spectral sequences via their superscripts. Let � ⊆ SL2 (O−m) be
a congruence subgroup and P� be its image in PSL2 (O−m). By the discussion after
Definition 4, the reduced non-central 2-torsion subcomplex of� and reduced 2-torsion
subcomplex of P� are the same (although the cell stabilizers differ by a central Z/2).

Recall from Theorem 5 that under the assumptions of this lemma, X ′
s is empty and

sign(v) = 0.Therefore, it is sufficient to show that the 2-dimensional class in E0,2
2 from
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Theorem 5 is a permanent cocycle. We note that this class is the unique polynomial
generator in H∗(�). Let � be a congruence subgroup where P� ⊆ PSL2 (O−m) has
a reduced 2-torsion subcomplex which consists solely of k components of type . In
PSL2 (O−m), components of type correspond to a graph of groups where there is
a single vertex and single edge, both with Z/2 stabilizer. This, in turn, corresponds
to the HNN extension 〈t, x |x2 = 1, t−1xt = x〉. In other words, in PSL2 (O−m),

. By an argument similar to the one after Lemma 17, the d1
differential vanishes on E0,q

1 for q > 0. We conclude that the E2 page of the ESS for
H∗(P�) has the form

3 (F2)
k (F2)

k

2 (F2)
k (F2)

k

1 (F2)
k (F2)

k

0 F2 ⊕β1F2 ⊕β2F2

0 1 2

where βq = dimF2 H
q(�\X; F2). Once the dESS2 differential is determined in this

spectral sequence, E3 = E∞ and the calculation is complete. We note that in the
ESS for H∗(P�), classes in E1,q

2 with q > 0 survive to E∞ and are products of an

exterior class with a polynomial class. Classes in E0,q
2 with q > 0 are polynomial by

Property 3 in Sect. 2.2.
The setup is similar for the calculation of H∗(�) using the ESS. As noted above,

the 2-torsion subcomplex for � is the same as the reduced non-central 2-torsion sub-
complex for P�. However, although in SL2 (O−m) a component is again a single
edge and single vertex, this time the cell stabilizers are isomorphic to Z/4. As a graph
of groups, this corresponds to an HNN extension Z/4∗Z/4 which has the presentation
〈t, x |x4 = 1, t−1xt = xi 〉 with i = ±1. Analogous to the argument presented after
Lemma 17, in this situation d1 vanishes and . We note for
later that dimF2 H

j (Z × Z/4; F2) = 2 when j > 0.
We next determine H∗(�) using the Lyndon–Hochschild–Serre spectral sequence

associated with the extension

1 → Z/2 → � → P� → 1.

Analogous to the calculation of H∗(Z/4) from H∗(Z/2), it follows that dLH3S2 �= 0.
To analyze the image of this differential, let z1 be the polynomial generator of the
cohomology ring of the central Z/2 which forms the vertical edge of the LH3S. The
horizontal edge of this spectral sequence can be identifiedwith H∗(P�)with untwisted
coefficients. We will show that the class represented by z21 survives to E∞; this will
be our unique polynomial generator.

Assume that dLH3S2 has a nonzero image in some component of H∗(P�) on the
horizontal edge of the spectral sequence. By direct calculation, one can show that if
in this component the image of dLH3S2 is the exterior class from , then in the
abutment, the F2-dimension of the resulting cohomology in dimension k associated
with that component is k + 1. This is not possible, as Theorem 5 implies that H∗(�)
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is 4-periodic. We conclude that if the image of dLH3S2 is nonzero, then its image must
be the polynomial class. By Property 2 in Sect. 2.2, there is a multiplicative structure
in the ESS which is compatible with the cup product structure. This structure implies
that the image of dLH3S2 cannot live in E1,1

2 or E2,0
2 , so it must live in E0,2

2 .
Moving on to the E3 page of theLH3S,we calculate using the compatibility between

Sq1 and the differential, applying the general version of Property 5 in Sect. 2.2 as given
in [23, Theorem 2.17]. We have

dLH3S3

(
(z1)

2
)

= dLH3S3

(
Sq1(z1)

)
= Sq1dLH3S2 (z1).

We claim that Sq1dLH3S2 (z1) = 0. The summands in dLH3S2 (z1) lie on the horizontal
edge of the spectral sequence; hence, they originate in H2(P�). From the analysis of
the image of dLH3S2 at the end of the prior paragraph, these classes originate in E0,2

2 ,
which in turn is generated by squared 1-dimensional polynomial classes which map
to 0 under Sq1. Therefore, dLH3S3 is the zero map on E0,2

2 . We conclude that this class,
represented by z21, is a permanent cocycle and hence is the 2-dimensional polynomial
class in H∗(�). ��

Combining Lemmas 21, 22 and 23 with Theorem 5 and Lemma 17, we obtain

Corollary 24 Let the non-central 2-torsion subcomplex Xs admit as quotient k ≥ 1
components of type . Then,

dimF2 H
q(�; F2) =

{
β1 + k − r , q = 1,

β2 + β1 + k + c − r , q ≥ 2,

where r := rank d0,12 , c the co-rank of Sect. 2.3 and βq = dimF2 H
q(�\X; F2).

This next result about arbitrary reduced 2-torsion subcomplex components is moti-
vated by Lemmas 34 and 35 in [2].

Lemma 25 The d2 differential is trivial in dimensions congruent to 3 mod 4 on all
non-central 2-torsion subcomplex components which are not of type .

Proof By Theorem 9, the only non-trivial restriction map on cohomology in odd
dimensions for finite subgroups is resQ8

Z/4(x1) = b1. In particular, the restriction maps
on cohomology are zero in dimensions 4k + 3, so d1 is trivial on these classes. Hence,
these classes survive to the E2 page. We note that Sq2 is trivial on classes in both
H3(Te) and H3(Q8). The former follows since H5(Te) = 0; the latter follows since
Sq2(x21 y1) = x41 y1 = 0 by ring relations in H∗(Q8). On the other hand, d2 : E0,3

2 →
E2,2
2

∼= ⊕
H2(Z/2), so the image of d2 lies in

⊕
S H

2(Z/2) where the finite sum is
over 2-cells in its support. In the cohomology ringsH∗(Z/2) in this sum, Sq2(z21) = z41.

Since d2Sq2 = Sq2d2, we conclude that d2 must vanish on E0,3
2 , and more generally

on E0,4k+3
2 by periodicity. ��

Now we have all the ingredients for the proof of Theorem 1 that was stated in the
Introduction

123



Journal of Algebraic Combinatorics (2020) 52:527–560 545

Proof of Theorem 1 Theorem 5 gives us the general form of E2 page of the equivariant
spectral sequence:

q ≡ 3 mod 4 E0,3
2 (Xs) E1,3

2 (Xs) ⊕ (F2)
a1 (F2)

a2

q ≡ 2 mod 4 H2
�(X ′

s) ⊕ (F2)
1−sign(v) (F2)

a3 H2(�\X)

q ≡ 1 mod 4 E0,1
2 (Xs) E1,1

2 (Xs) ⊕ (F2)
a1 (F2)

a2

q ≡ 0 mod 4 F2 H1(�\X) H2(�\X)

p = 0 p = 1 p = 2

with

a1 = χ(�\Xs) − 1 + β1(�\X) + c
a2 = β2(�\X) + c
a3 = β1(�\X) + v − sign(v)

We determine components of the E2 page of the spectral sequence as follows:

(1) We have dimF2 H
2
�(X ′

s) = 2m, since only Q8 has non-trivial cohomology in
dimension 2 and H2

�(Q8) = F
2
2.

(2) To calculate χ(�\Xs), we note that the Euler characteristic takes the following
values on the connected components of �\Xs :

• 0 on a component of type ;
• 1 on a component of type ;
• −1 on a component of type or .

From the two vertices involved per component, we see that there are n
2 components

of type and m
2 components of type either or . Therefore, χ(�\Xs) =

n
2 − m

2 . This implies that a1 = n
2 − m

2 − 1 + β1 + c.
(3) We use Lemma 17 to determine contributions of the connected components of

�\Xs of type . For the other three types of connected components, we apply
the proof of Theorem 16, which states in odd dimensions:

Involved types dimF2 E0,1
2 dimF2 E0,3

2 dimF2 E1,1
2 dimF2 E1,3

2

, , m m + n m
2 + n

2 3m2 + n
2

(4) We have v = m + n. Since either m > or n > 0 , sign(v) = 1. We conclude that
a3 = β1 + m + n − 1.

We can now write down the E3 = E∞ page of the spectral sequence. We let r0,q

be the F2-rank of the d2 differential E
0,q
2 → E2,q−1

2 . We substitute in the calculated
values from the list and simplify. For clarity, we write down the dimensions of the
F2-vector space.
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q ≡ 4 mod 4 1 β1 β2 − r0,1

q ≡ 3 mod 4 m + n + k − r0,3 m + n + k − 1 + β1 + c β2 + c
q ≡ 2 mod 4 2m − r0,2 β1 + m + n − 1 β2 − r0,3

q ≡ 1 mod 4 m + k − r0,1 n + k − 1 + β1 + c β2 + c − r0,2

q = 0 1 β1 β2 − r0,1

p = 0 p = 1 p = 2

We conclude:

dimF2 H
q(�; F2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1 + m + k − r0,1, q = 1,

β2 + β1 + 2m + n + k − 1 + c − r0,1 − r0,2, q ≡ 2 mod 4,

β2 + β1 + 2(m + n) + k − 1 + c − r0,3 − r0,2, q ≡ 3 mod 4,

β2 + β1 + m + n + k + c − r0,3, q ≡ 4 mod 4,

β2 + β1 + m + k + c − r0,1, q ≡ 5 mod 4.

To get the special cases, we apply our vanishing results for the d2 differential:

• Lemma 25 for the case k = 0,
• Lemma 19 for the case c = 0. ��
We have not been able to prove a result about the vanishing/non-vanishing of the d2

differential in dimensions ≡ 1 mod 4. However, there is an alternative way to derive
this information using the universal coefficient theorem,

H1(�; F2) ∼= Hom(H1(�; Z), F2).

The rank of the right-hand side is readily determined by finding the abelianization of
�. By the table in Theorem 5, this rank is also equal to

dimF2

(
E0,1
2 (Xs)

)
+ dimF2H

1(�\X) − rank
(
d0,12

)
.

6 Ford fundamental domains

In this section, we present an algorithm which constructs a fundamental domain for
a congruence subgroup that allows us to efficiently extract torsion subcomplexes as
well as to determine the number and type of connected component types—we use
these data to evaluate the formulas of Theorem 1. In particular, we construct a Ford
fundamental domain for the congruence subgroup P�0(π) ⊂ PSL2(O−11) where 〈π〉
is a prime ideal in O−11 = Z[ω], the ring of integers of the number field Q[√−11],
and ω = (−1 + √−11)/2. We prove that, given a prime ideal 〈π〉 ⊂ O−11, there
exists a Ford domain for the congruence subgroup P�0(π) ⊂ PSL2(O−11) which has
a particular structure similar to that found by Orive [14] for congruence subgroups of
PSL2(Z).

Due to the specific structure of these congruence subgroups of prime level, the
Ford domains have a uniform structure, with one face for each residue class modulo
p, and a small fixed number of additional faces. Similar Ford domains may be found
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for congruence subgroups of this form in other Bianchi groups. We first recall the
definition of such a fundamental domain.

Given γ ∈ Isom+(H3) ∼= PSL2(C), the isometric sphere Sγ of γ is defined to be
the (hemi)sphere on which γ acts as a Euclidean isometry; it can be shown that if

γ =
(
a b
c d

)

, then Sγ has radius 1/|c| and center −d/c ∈ C. The isometric sphere

Sγ −1 of the inverse γ −1 has the same radius and center a/c. A Ford fundamental
domain F for P� is then the intersection between the region B ⊂ H

3, exterior to all
isometric spheres, and a fundamental domain F∞ for the subgroup P�∞ ⊂ P� of
elements which fix ∞. For background on Ford domains, see, for example, Maskit
[12], Chapter II.H.

We shall call visible spheres those isometric spheres which contribute to the bound-
ary of B, because they are the spheres one “sees” when viewing the boundary of B
from above; beneath them are infinitely many smaller spheres, each completely cov-
ered by the collection of spheres which bound B. We say that an isometric sphere S
covers a point p ∈ C if p lies in the interior of S, and we say that the sphere S is
covered by other spheres {Si } if the union of the interiors of the Si contains the interior
of S.

We note that a Ford domain for PSL2(O−11) is constructed as follows. The region
B exterior to all isometric spheres is bounded by those isometric spheres of radius 1
centered at points of the ringO−11. The fundamental domain F∞ can be taken to have
vertices at

± z1 = ±(3/11 + 6ω/11) = ±3i/
√
11, (2)

± z2 = ±(−3/11 + 5ω/11) = ±(−1/2 + 5i/(2
√
11)), (3)

± z3 = ±(8/11 + 5ω/11) = ±(1/2 + 5i/(2
√
11)), (4)

and thus, the Ford domain is the convex hyperbolic polyhedron with vertices at the
cusp ∞ and above these six points of C at height

√
2/11 (see Fig. 1).

In the rest of this section, we will appeal to the following lemmas about isometric
spheres of elements of PSL2(O−11).

Lemma 26 The only elements of PSL2(O−11) whose isometric spheres cover 0 are

those of the form

(
a −1
1 0

)

for a ∈ O−11.

Proof In order for an isometric sphere to cover 0, the radius of the sphere must be

strictly larger than the complex modulus of its center. For an element

(
a b
c d

)

∈
PSL2(O−11), the radius is 1/|c| and the complex modulus of the center is | − d/c| =
|d|/|c|. Therefore, the isometric sphere covers 0 if and only if we have 1 > |d| for
d ∈ O−11, and hence, we must have d = 0. The requirement that the determinant be
1 then means that we have ad − bc = −bc = 1. The only nonzero elements of O−11
of modulus at most 1 are ±1, and so we see that b = −c = ±1. Since we are working
in PSL2(O−11), we may choose c = 1. ��
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Fig. 1 Ford domain for PSL2(O−11)

As a consequence of Lemma 26, we see that there is only one isometric sphere
covering 0, and it is the sphere of radius 1 centered at the cusp 0.

Lemma 27 If the isometric sphere of radius 1 centered at the cusp 0 is removed from
the Ford domain for PSL2(O−11), the isometric spheres which become visible are
those corresponding to the elements

(
1 0
ω 1

)

,

(
1 0

ω + 1 1

)

,

and their inverses.

Proof To see this, consider the isometric spheres of radius 1 centered at elements
of O−11 and consider removing the sphere centered at the cusp 0. We then see the
isometric spheres of

(
1 0
ω 1

)

,

(
1 0

ω + 1 1

)

,

and their inverses, visible between the spheres of radius 1 centered at ±1, ±ω and
±ω. These smaller spheres are centered at ±1/6 ± √−11/6 and have radius 1/

√
3.
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Together with the radius 1 spheres centered at ±1, these six spheres all intersect at
the cusp 0, and in vertical circles of radius

√
11/6. The smaller spheres intersect the

radius 1 spheres centered at ±ω and ±ω in the same locus which the removed sphere
did.

By Lemma 26, no other sphere can cover 0. Another visible sphere which intersects
0must have radius at least

√
11/6, because itmust be visible above the circleswhere the

existing spheres intersect. But since this radius is larger than 1/2, the only possibilities
are that the radius could be 1 or 1/

√
3, and thesematrices have already been considered.

��
In the following, we will denote by B the collection of isometric spheres of radius 1

centered at all elements ofO−11. Then, given an ideal 〈π〉 ⊂ O−11, we will denote by
B′〈π〉 the collection of isometric spheres B with those centered at elements of the ideal
〈π〉 removed. The spheres which then become visible are described by Lemma 27.

Let p ∈ Z be an odd rational prime.

6.1 Case 1: p splits inO−11

Suppose that p = ππ , where π = a+bω. We suppose that a ≥ 0 and that b > 0. We
will find a Ford domain for the subgroup P�0(π). We first establish which isometric
spheres form the boundary of the set B.

For each α ∈ O−11\〈π〉, there is a corresponding element

(∗ ∗
π −α

)

and for no α ∈ 〈π〉 is there a similar element, as this would cause the determinant
to be divisible by π . The isometric sphere of the given element has center α/π and
radius 1/

√
p. Consider the collection of spheres S〈π〉 of radius 1/

√
p centered at α/π

for α ∈ O−11\〈π〉. Include also in S〈π〉 the isometric spheres of

(
1 0

ωπ 1

)

,

(
1 0

(ω + 1)π 1

)

,

their inverses, and the translates of these spheres by P�∞; these spheres have radius
1/

√
3p. We claim that the spheres of S〈π〉 suffice to determine the boundary of B.

Suppose for sake of contradiction that there exists an element

M =
(

α β

δπ γ

)

where δ �= 1, whose isometric sphere is visible above S〈π〉. Then, we may apply an
isometry

ψπ =
(√

π 0
0 1/

√
π

)
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of H
3 which moves S〈π〉 to B′〈π〉 and conjugates M to

M ′ = ψπ Mψ−1
π =

(
α βπ

δ γ

)

.

By the assumption, the isometric sphere of M ′ is visible above those of B′〈π〉. But by
Lemma 27, no such spheres are visible, and we have a contradiction.

We nowhave a complete list of visible isometric spheres.We note that the vertices at
which these spheres intersect are exactly those of B′〈π〉 with the isometry ψ−1

π applied
to them; the vertices of B′〈π〉 are the vertices at ±z1, ±z2, ±z3, and their translates by

P�∞, and at height
√
2/11, where z1, z2 and z3 were defined in Eqs. (2)–(4) above.

After applying ψ−1
π , these vertices are located at (±z1 + α)/π , (±z2 + α)/π , and

(±z3 + α)/π , for α ∈ O−11, at height
√
2/11p.

It remains to choose a fundamental domain for the action of P�∞. We claim that
each isometric sphere of radius 1/

√
p is P�∞-equivalent to one centered at a point

c/π for c ∈ Z\〈p〉, where 〈p〉 ⊂ Z is the prime ideal generated by p. To see this, we
wish to show that there exist l,m ∈ Z such that α/π + l + mω = c/π for c ∈ Z.
Writing α = x + yω, we have

α

π
+ l + mω = x + yω + (l + mω)π

π
.

Writing π = a + bω,

x + yω + (l + mω)π

π
= x + yω + al + amω + blω + bmω2

π
.

Writing ω2 = −3 − ω,

x + yω + al + amω + blω + bmω2

π
= x + al − 3bm + (y + am + bl − bm)ω

π
.

Since a, b, l,m, x, y ∈ Z, the numerator is a rational integer if and only if

y + am + bl − bm = y + bl + (a − b)m = 0.

But since a and b are necessarily relatively prime, it follows that so are b and a − b,
and so we may choose rational integers l and m so that bl + (a − b)m = −y.

We next note that none of the isometric spheres centered at j/π , for 1 ≤ j ≤ p−1,
are P�∞-equivalent, and that for all j ∈ Z, j/π is P�∞-equivalent to ( j + p)/π =
( j/π) + π . Thus every visible sphere of S〈π〉 is P�∞-equivalent to one of those
centered at j/π , 1 ≤ j ≤ p − 1, or to one of those of radius 1/

√
3p which intersect

at the cusp 0. It is most convenient to have our fundamental domain have its faces on
the isometric spheres centered at j/π for −(p − 1)/2 ≤ j ≤ (p − 1)/2 (and j �= 0).

We therefore take as our fundamental domain for P�∞ the region above these faces.
This is the convex hull of the cusps 0, ∞ and the vertices above ±z1/π,±z2/π , and
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Fig. 2 Ford domain for �0(2 + ω) ⊂ PSL2(O−11), corresponding to p = 5

Fig. 3 Projection to the complex plane of the Ford domain for �0(1+ 2ω) ⊂ PSL2(O−11), corresponding
to p = 11

±z3/π , and the following convex hulls: for each j where−(p−1)/2 ≤ j ≤ (p−1)/2,
the hull of the vertices at ( j ± z1)/π , ( j + ±z2)/π , ( j ± z3)/π at height

√
2/(11p),

and the vertex at ∞. See Fig. 2 for this domain when p = 5, and π = 2 + ω.

6.2 Case 2: p ramifies inO−11

In this case, we have p = 11, and we will find a Ford domain for the group P�0(π)

where π = √−11 = 1 + 2ω. This works the same as Case 1, with a = 1 and
b = 2. Applying the method described above, we find a Ford domain bounded by
isometric spheres of radius 1/

√
11 and centered at j/

√−11 for j = ±1,±2,±3,±4,
and ±5, along with four spheres of radius 1/

√
33 centered at ±1/(ω

√−11) and
±1/((ω+1)

√−11). The vertices of this domain are at 0 and∞, and the finite vertices
at ( j ± z1)/

√−11, ( j ± z2)/
√−11, and ( j ± z3)/

√−11 for −5 ≤ j ≤ 5 at height√
2/121 = √

2/11 (see Fig. 3).

123



552 Journal of Algebraic Combinatorics (2020) 52:527–560

6.3 Case 3: p is inert inO−11

We will find a Ford domain for the group P�0(p). We first determine the isometric
spheres which contribute to B.

For each element α ∈ O−11\〈p〉, there is a sphere of B corresponding to the
element

(∗ ∗
p −α

)

.

We therefore have spheres of radius 1/p centered at all points α/p for α ∈ O−11, with
those spheres centered at (ap + bpω)/p = a + bω for a, b ∈ Z (i.e., those centered
at points ofO−11) removed. Consider the collection of spheres S〈p〉 which consists of
these spheres and of the isometric spheres of the elements

(
1 0
pω 1

)

,

(
1 0

p(ω + 1) 1

)

,

their inverses, and the translates of these spheres by P�∞. We claim that the spheres
of S〈p〉 suffice to determine the boundary of B.

To see this, suppose that another isometric sphere, belonging to an element

M =
(

α β

δ p γ

)

,

is visible above those of S〈p〉. We conjugate by the element

ψp =
(√

p 0
0 1/

√
p

)

which has the effect of moving S〈p〉 to B′〈p〉. As such, the isometric sphere of the
element

M ′ = ψpMψ−1
p =

(
α β p
δ γ

)

is visible above those of B′〈p〉. But by Lemma 27, no such spheres are visible, and we
have a contradiction.

We nowhave a complete list of visible isometric spheres.We note that the vertices at
which these spheres intersect are exactly those of B′〈p〉 with the isometry ψ−1

p applied
to them; the vertices of B′〈p〉 are the vertices at ±z1, ±z2, ±z3, and their translates by

P�∞, and at height
√
2/11. After applying ψ−1

p , these vertices are located at

(±z1 + α)/p, (±z2 + α)/p, and (±z3 + α)/p,

for α ∈ O−11, at height
√
2/(11p2).

123



Journal of Algebraic Combinatorics (2020) 52:527–560 553

Fig. 4 Projection to the complex plane of a Ford domain for �0(7) ⊂ PSL2(O−11)

It remains to choose a fundamental domain for the action of P�∞. Each of the
visible spheres of radius 1/(p

√
3) is P�∞-equivalent to one of those which intersects

0. Each sphere of radius 1/p is P�∞-equivalent to one of those centered at j/p+kω/p
for j, k integers with −(p − 1)/2 ≤ j, k ≤ (p − 1)/2 and j, k not both 0. Since
these spheres are not pairwise P�∞-equivalent, we may take the vertices where these
spheres intersect (including vertices where they intersect spheres adjacent to these
spheres) as the vertices of our fundamental domain. The vertices are therefore located
at (z1 + j + kω)/p, (−z1 + j + kω)/p, (z2 + j + kω)/p, (−z2 + j + kω)/p,
(z3 + j + kω)/p, and (−z3 + j + kω)/p, for −(p− 1)/2 ≤ j, k ≤ (p− 1)/2. These
vertices are located at height

√
2/(11p2). Our fundamental domain is the union of

the convex hull of the vertices above ±z1/p,±z2/p,±z3/p and the cusps 0 and ∞,
and each copy of the domain for PSL2(O−11) with vertices at (z1 + j + kω)/p,
(−z1 + j + kω)/p, (z2 + j + kω)/p, (−z2 + j + kω)/p, (z3 + j + kω)/p, and
(−z3 + j + kω)/p and ∞. See Fig. 4 for the case p = 7.

Other Bianchi groups

A similar method produces Ford fundamental domains for congruence subgroups
P�0(π) of prime level in the Bianchi groups PSL2(O−m), where O−m is another
Euclidean ring, i.e., the ring of integers in the imaginary quadratic number field
Q(

√−m ), form = 1, 2, 3, 7. The argument abovemay be adapted to show that the set
B is bounded by isometric spheres of radius 1/|π | centered at a/π for a ∈ O−m\〈π〉,
and by at most six smaller isometric spheres, which meet at the cusp 0, and their trans-
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lates by P�∞. Note that the set of spheres in question is invariant under the action of
P�∞; hence, the local picture is the same at every point ofO−m : At every such point,
one sees translated copies of those spheres one sees at 0. Furthermore, the fundamental
domain for the action of P�∞ may be chosen so that the resulting fundamental domain
is bounded by N (π)−1 spheres of radius 1/|π | (where N (π) = |π |2 ∈ N denotes the
norm of the prime element π ∈ O−m), by the smaller spheres which meet at the cusp
0, and by the vertical sides which make up the boundary of the fundamental domain
of the action of P�∞.

The fundamental domains constructed in this section for P�0(π) are composed
of N (π) + 1 copies of a Ford domain for the Bianchi group PSL2(O−m), where
N (π)+1 = [PSL2(O−m) : P�0(π)].We believe that it should be possible to construct
fundamental domains for congruence subgroups of prime level in the other Bianchi
groups in a similar way. Furthermore, it should be possible to construct Ford domains
for composite levels from copies of those for prime levels in a fashion akin to that
described by Lascurain Orive [14] in the case of PSL2(Z).

7 Example computations

We print the details for only two of our example calculations. Checking the other
outcomes of example calculations mentioned in Sect. 3 is made straightforward by
the algorithm of Sect. 6.

7.1 Level
√−2 in SL2(Z[√−2])

Let

� := �0(
√−2) :=

{(
a b
c d

) ∈ SL2(Z[√−2]) ∣
∣ c ∈ 〈√−2〉

}
.

A fundamental domain for � is given in Fig. 5a. Then, the orbit space including the
non-central 2-torsion subcomplex is drawn in Fig. 5b. Hence, , v = 2,
χ(�\Xs) = −1. Using Fig. 5b, we convince ourselves that c = 0, β1(�\X) = 2 and
β2(�\X) = 1. From Theorem 16, we see that the non-central 2-torsion subcomplex
contributes the following dimensions to the E2 page.

q ≡ 3 mod 4 (F2)
2 (F2)

3

q ≡ 2 mod 4 (F2)
4 (F2)

3

q ≡ 1 mod 4 (F2)
2

F2

q ≡ 0 mod 4 F2 (F2)
2

p = 0 p = 1

From Lemma 25 and applying the method described just below it, we know that
the d2 differential of the equivariant spectral sequence vanishes. Applying Theorem 5,
this allows us to conclude that the dimensions of the cohomology ring that we are
looking for are
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(A) Strict fundamental domain for the
2-dimensional equivariant retract (away
from the principal ideal cusps). The do-
main is extracted from a Ford funda-
mental domain for Γ0(

√−2), after the
Borel–Serre bordification, replacing the
cusps by Euclidean planes with wallpa-
per group action (hence a rectangle with
identified sides in the fundamental do-
main).

(B) Orbit space of the displayed fun-
damental domain for Γ0(

√−2), with
the cusp having become a 2-torus in
the Borel–Serre compactification. The
2–torsion subcomplex is given by the
edges labeled by Z/4, and their vertices.

Fig. 5 Fundamental domain for �0(
√−2) ⊂ SL2(Z[√−2])

dimF2 H
q(�0(

√−2); F2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c + β1(�\X) + β2(�\X) + 2, q = 4k + 5,

c + β1(�\X) + β2(�\X) + 2, q = 4k + 4,

c + β1(�\X) + β2(�\X) + 3, q = 4k + 3,

c + β1(�\X) + β2(�\X) + 3, q = 4k + 2,

β1(�\X) + 2, q = 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

5, q = 4k + 5,

5, q = 4k + 4,

6, q = 4k + 3,

6, q = 4k + 2,

4, q = 1.

7.2 Level 5 in SL2(Z[√−2])

Let

� := �0(5) :=
{(

a b
c d

) ∈ SL2(Z[√−2]) ∣
∣ c ∈ 〈5〉

}
.

With the algorithm described in Sect. 6, we produce the Ford fundamental domain
displayed in Fig. 6a. Carrying out the side identifications, under which each face
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(A) Bottom facets of a Ford fundamen-
tal domain for Γ0(5).

(B) Strict fundamental domain for the
2-dimensional equivariant retract (away
from the principal ideal cusps). The do-
main is extracted from the displayed
Ford fundamental domain for Γ0(5), re-
placing the cusp by a rectangle in the
Borel–Serre bordification (passing to a
2-torus in the Borel–Serre compactifica-
tion). The 2–torsion subcomplex is given
by the edges labeled by a digit 2, and
their vertices.

Fig. 6 Ford fundamental domain for �0(5) in SL2(Z[√−2])

of the Ford domain has a conjugate face, we are left with the strict (in its interior)
fundamental domain of Fig. 6b, which is subject to the indicated edge identifications.
Then, the 2-cells boundary matrix ∂2 has elementary divisors

• 1, of multiplicity 12
• 2 and 4, each of multiplicity 1.

Its kernel is one-dimensional. The edges boundary matrix ∂1 has the only elementary
divisor 1, of multiplicity 6. Therefore, the cellular chain complex of the orbit space,

Z
15 ∂2−→ Z

22 ∂1−→ Z
7,

has homology

H2(�\X , Z) ∼= Z, H1(�\X , Z) ∼= Z
2 ⊕ Z/2Z ⊕ Z/4Z, H0(�\X , Z) ∼= Z.

Hence, the remaining parameters for Theorem 5 are β1 = 4, β2 = 3, a3 = 4,
a2 = 3 + c and a1 = 3 + c.

From Fig. 6b, we see that , so χ(�\Xs) = 0 = v; furthermore for
the quotient of the 3-torsion subcomplex, we also read off the type . Let P� be
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the quotient group �/({1,−1} ∩ �). Because of non-adjacency of the torus 2-cell to
the torsion subcomplexes, the d22,0-differential of the equivariant spectral sequence
converging to Hp+q(P�, Z) vanishes, and therefore, this spectral sequence yields the
short exact sequence

1 → (Z/2)2 ⊕ (Z/3)2 → H1(P�, Z) → Z
2 ⊕ Z/2 ⊕ Z/4 → 1,

which is compatible with the abelianization of the presentation for P� produced with
the algorithm of Sect. 6, as well as with Schönnenbeck’s machine result

H1(P�, Z) ∼= Z
2 ⊕ (Z/12)2 ⊕ Z/2.

We now apply Theorem 5 and get dim H1(�, F2) = 6 − rankd0,12 . Using the
abelianization that we get from the fundamental domain in Fig. 6a, or alterna-
tively Schönnenbeck’s machine computation described in the Appendix, we infer
rank d0,12 = 1.
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Appendix A: Machine computations

We use Sebastian Schönnenbeck’s implementation [21] of the Voronoï cell complex to
compute the cohomology of a sample (six levels η in each of ten imaginary quadratic
fields) of congruence subgroups �0(η). Then, we use Bui Anh Tuan’s implementation
of Rigid Facets Subdivision in order to extract the non-central 2-torsion subcomplex.
This allows us to check our example computations with the algorithm of Sect. 6, and
to illustrate which values the parameters in our formulas can take.

Let O−m be the ring of integers in the field Q(
√−m) with discriminant �.

We present the ideal η ⊂ O−m with the smallest possible number of genera-
tors; hence, when we use two generators, it is because η is not principal. We
let c be the co-rank defined in Sect. 2.3; let βq = dimQ Hq(�0(η)\H; Q) and
βq = dimF2 H

q(�0(η)\H; F2) for q = 1, 2; and �0(η)\Xs the orbit space of the
non-central 2-torsion subcomplex. We further write Hq := dimF2 H

q(�0(η); F2).
Let r be the rank of the d0,12 -differential of the equivariant spectral sequence. In many
cases, notably for c = 0, or when there are no components different from in

�0(η)\Xs , the d0,2+4k
2 -differential vanishes because of the lemmata in Sect. 5. Note

that for one case in our sample, �0(〈2,
√−6〉) in SL2(Z[√−6 ]), the machine com-

putation yields rank(d0,2+4k
2 ) = 1. In all other cases in our sample, the computation

yields d0,2+4k
2 = 0, so we do not print d0,2+4k

2 . The machine calculations in HAP
[7] allow us to produce Hq and β1 directly from Sebastian Schönnenbeck’s cell com-
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Table 1 Cases �0(η) in the sample with non-empty non-central 2-torsion subcomplex

� −m Level η �0(η)\Xs β1 β1 r c H1 H2 H3 H4 H5

−3 − 3 〈2〉 (note χ = 2) 0 0 0 0 0 2 4 3 1

−11 − 11 〈2〉 2 2 0 0 2 4 6 5 3

−15 − 15 〈2, 3+√−m
2 〉 4 4 0 0 5 8 8 8 8

−7 − 7 〈 1−
√−m
2 〉 2 2 0 0 3 4 4 4 4

−15 − 15 〈 5−
√−m
2 〉 8 8 + r r ≤ 1 1 − r 10 18 18 18 18

−7 − 7 〈3 1−
√−m
2 〉 4 4 + r r ≤ 1 1 − r 6 10 10 10 10

−8 − 2 〈5〉 2 3 + r r ≤ 2 2 − r 5 9 9 9 9

−8 − 2 〈3 + 2
√−m〉 2 2 + r r ≤ 2 2 − r 4 7 7 7 7

−56 − 14 〈2, √−m 〉 10 10 1 0 12 21 21 21 21

−56 − 14 〈2〉 16 16 0 0 19 34 34 34 34

−52 − 13 3〈2, 1 + √−m 〉 25 30 + r r ≤ 3 3 − r 33 65 65 65 65

−40 − 10 〈2 + √−m 〉 10 10 + r r ≤ 2 2 − r 13 24 24 24 24

−40 − 10 〈5〉 25 26 + r r ≤ 3 3 − r 29 57 57 57 57

−40 − 10 〈5,√−m 〉 5 6 + r r ≤ 3 3 − r 9 17 17 17 17

−24 − 6 〈2〉 7 7 0 0 10 16 16 16 16

−20 − 5 〈10, 5 + √−m 〉 8 8 + r r ≤ 3 3 − r 11 21 21 21 21

−40 − 10 〈√−m 〉 5 10 12 + r r ≤ 5 5 − r 17 33 33 33 33

−24 − 6 〈2 + √−m 〉 5 8 8 + r r ≤ 3 3 − r 13 23 23 23 23

−56 − 14 〈10, 4 + √−m 〉 6 18 18 + r r ≤ 5 5 − r 24 45 45 45 45

−40 − 10 〈2, √−m 〉 5 5 + r r ≤ 1 1 − r 8 14 14 13 13

−24 − 6 〈2, √−m 〉 4 4 0 1 7 11 11 11 11

−52 − 13 〈2, 1 + √−m 〉 7 7 0 0 9 16 16 15 15

−20 − 5 〈2, 1 + √−m 〉 4 4 0 0 6 10 10 9 9

−8 − 2 〈2〉 3 3 0 0 5 8 8 7 7

−52 − 13 〈2〉 12 12 0 0 16 30 30 27 27

−40 − 10 〈2〉 9 9 0 0 13 24 24 21 21

−20 − 5 〈2〉 6 6 0 0 10 18 18 15 15

−8 − 2 〈√−m 〉 2 2 0 0 4 6 6 5 5

plexes. From Hq and β1, we use the corollaries in Sect. 5 to get β1, r and c in Table 1.
When �0(η)\Xs is empty, then because of Proposition 18, only the Betti numbers are
of interest; results for those cases can be found in Table 2. In all cases except for the
Eisenstein integers in Q(

√−3 ), the Euler characteristic χ of �0(η)\H vanishes [25],
so we only need β1. Therefore, we indicate χ = 1− β1 + β2 only in those Eisenstein
integers cases, where it can be nonzero.
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