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Abstract

Let H be a quasi-Hopf algebra, ZMZ the category of two-sided two-cosided Hopf
modules over H and ZJ}D the category of left Yetter—Drinfeld modules over H. We
show that ZMZ admits a braided monoidal structure for which the strong monoidal
equivalence ZMZ = ZyD established by the structure theorem for quasi-Hopf
bimodules becomes braided monoidal. Using this braided monoidal equivalence, we
prove that Hopf algebras within ZMZ can be characterized as quasi-Hopf alge-
bras with a projection or as biproduct quasi-Hopf algebras in the sense of Bulacu
and Nauwelaerts (J Pure Appl Algebra 174:1-42, 2002) . A particular class of such
(braided, quasi-) Hopf algebras is obtained from a tensor product Hopf algebra type
construction. Our arguments rely on general categorical facts.

Keywords Braided category - Biproduct - Projection - Braided tensor Hopf algebra -
Quantum shuffle quasi-Hopf algebra

Mathematics Subject Classification 16T05 - 18D10

1 Introduction

The so-called quantum shuffle Hopf algebras are cotensor Hopf algebras of a Hopf
bimodule M over a Hopf algebra H. Their importance resides on the fact that all
quantized enveloping algebras associated with finite-dimensional simple Lie algebras
or with affine Kac—-Moody Lie algebras are of this type; see [25]. As the cotensor
defines a monoidal structure on the category of Hopf H-bimodules isomorphic to the
one determined by the tensor product over H, it follows that quantum shuffle algebras
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can be as well introduced as tensor Hopf algebras within the braided category of Hopf
H-bimodules (also known under the name of two-sided two-cosided Hopf modules).

The structure of a Hopf algebra H with a projection w : B — H is due to Radford
[24]. Up to an isomorphism, B is a biproduct Hopf algebra A x H between a left
H-module algebra and left H-comodule coalgebra A and H, satisfying appropriate
compatibility relations. Majid [19] observed that all these conditions are equivalent to
the fact that A is a Hopf algebra within ZJ}D, the braided monoidal category of left
Yetter—Drinfeld modules over H. A second characterization of Hopf algebras with a
projection is due to Bespalov and Drabant [1], where Hopf algebras with a projection
are identified with Hopf algebras within ZMg , the braided monoidal category of
two-sided two-cosided Hopf modules over H introduced by Woronowicz in [28]. The
connection with the Hopf algebras in £ ) D becomes clear now, since # M# and #y D
are braided monoidally equivalent. The latest result was proved by Schauenburg in
[26]; see also [25]. We should mention that in all this theory a key role is played by the
structure theorem for two-sided two-cosided Hopf modules. Furthermore, by moving
backwards, these equivalences associate to any vector space (viewed in a canonical
way as Yetter—Drinfeld module) a two-sided two-cosided Hopf module, and then a
quantum shuffle Hopf algebra.

The purpose of this note is to construct quasi-quantum shuffle groups, i.e., tensor
Hopf algebras within categories of quasi-Hopf bimodules. This is possible because
many of the above-mentioned results have already been generalized to the quasi-Hopf
case. For instance, a structure theorem for quasi-Hopf (bi)comodule algebras was given
in [9,23]. It is not possible to prove a similar structure theorem for quasi-Hopf module
coalgebras, since H is not, in general, a module coalgebra over itself. Instead, it is
more natural to try describing the bimodule coalgebras C over a quasi-Hopf algebra
H, as H is a bimodule coalgebra over itself in a canonical way. We did this in [2,
Theorem 5.6] where we proved that, up to an isomorphism, C is a smash product
coalgebra between a coalgebra in Zy D and H. Note that all the mentioned structure
theorems actually characterize the (co)algebras within some monoidal categories of
quasi-Hopf (bi)modules. Furthermore, the involved structures are a smash product
algebra and a smash product coalgebra, as they were defined in [2,7]; they are required
to define a Hopf like object, and this leads naturally to the biproduct quasi-Hopf algebra
construction from [5], as well to the structure of a quasi-Hopf algebra with a projection
and its relation to the Hopf algebras in Zy D. Although a quasi-Hopf algebra cannot be
regarded as a braided Hopf algebra, we were able to adapt the categorical techniques
used in [1] to the setting provided by quasi-Hopf algebras. Otherwise stated, we could
produce structure theorems for the bialgebras and Hopf algebras in ZM'Z similar
to the ones in [1]. The choice of the category 5/\45 rather than H/\/lg is imposed
by the fact that the former is braided, while the latter is not, and so we can consider
bialgebras and Hopf algebras only within 4 M. Finally, # M# with ®y is strict
monoidal and although is isomorphic to the monoidal structure given by the cotensor
product, the latter is not strict; this led us to work with tensor braided Hopf algebras
instead of cotensor ones.

The paper is organized as follows. In Sect. 2, we briefly recall the definition
of a quasi-Hopf algebra, the language of braided monoidal categories and braided
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monoidally equivalences, and the monoidally equivalence between ZMZ and ,’;y D.
Using a general categorical result, in Sect. 3 we uncover in a canonical way a braiding
on ZMZ for which the strong monoidally equivalence ZMZ = ZJ}D from [2,27]
becomes a braided monoidal equivalence. In Sect. 4, we characterize the Hopf alge-
bras B in gMg as quasi-Hopf algebras with a projection and show that, up to an
isomorphism, such a B is nothing but a biproduct quasi-Hopf algebra in the sense of
[5]. We should stress that our techniques allow us to show in a more elegant and less
computational way that the biproduct is indeed a quasi-Hopf algebra. In addition, we
get almost for free the converse of the construction in [5]: if the smash product algebra
A#H of an algebra A in ZyD and H, and the smash product coalgebra A < H
between the coalgebra A in ZyD and H afford a quasi-Hopf algebra structure on
A ® H, then A is a Hopf algebra in ZyD. Inspired by the work of Nichols [22], in
Sect. 5 we associate to any object M € ZMZ a braided Hopf algebra Ty (M) within
ZMZ, the so-called tensor Hopf algebra of M over H. Furthermore, we describe the
quasi-Hopf algebra structure of T (M) and show that it is isomorphic to the biproduct
quasi-Hopf algebra of T (V) and H, where V is a certain set of coinvariants of M and
T (V) is the tensor Hopf algebra of V built within the braided monoidal category of left
H -Yetter—Drinfeld modules. Actually, the construction of 7' (V) within Zy D makes
sense for any V € Z)}D. This fact is fully exploited in Sect. 6 where a concrete class
of quasi-Hopf algebras with a projection is constructed out of a vector space, a cyclic
group of order 7 and a primitive root of unity of degree n* in k, n > 2.

2 Preliminaries
2.1 Quasi-bialgebras and quasi-Hopf algebras

We work over a field k. All algebras, linear spaces, etc., will be over k; unadorned
® means ®y. Following Drinfeld [10], a quasi-bialgebra is a quadruple (H, A, &, ®)
where H is an associative algebra with unit, ® is an invertible elementin H @ H ® H,
and A: H— H®H ande: H — k are algebra homomorphisms satisfying the
identities

(Idy ® A)(A() = P(ARIdp)(A(h)D ", 2.0
(dg ® &)(A(h) =h, (e @ Idy)(A(h)) = h, (2.2

for all h € H, where ® is a 3-cocycle, in the sense that

(1®P)Idg @ AR Idy)(P)(P® 1)
=(dy @ldy @ A)(P)(A R Idy @ Idy) (D), (2.3)
Id®e@Idy) (@) = 1® 1. (2.4)

The map A is called the coproduct or the comultiplication, ¢ is the counit, and @ is

the reassociator. As for Hopf algebras, we denote A(h) = h ® hy, but since A is only
quasi-coassociative we adopt the further convention (summation understood):
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(ARIdp)(AR)) = ha,1) ® ha) & ha,
(Idg ® A)(Ah) =h1 ®he1) ® hw2),

for all » € H. We will denote the tensor components of ® by capital letters, and the
ones of ®~! by lower case letters, namely

d=X'oxXlexX’=rleriey’=2z'97229 7’ =
o l=xlgx’ex =y ®yey =029 =

H is called a quasi-Hopf algebra if, moreover, there exists an anti-morphism S of the
algebra H and elements «, 8 € H such that, for all h € H, we have:

S(h)ahs = e(h)a and h1BS(hy) = e(h)B, (2.5)
X'8S(xHaX? =1 and S(xHax’BSE?) = 1. (2.6)

Our definition of a quasi-Hopf algebra is different from the one given by Drinfeld
[10] in the sense that we do not require the antipode to be bijective. In the case where
H is finite-dimensional or quasi-triangular, bijectivity of the antipode follows from the
other axioms, see [3,6], so the two definitions are equivalent. Anyway, the bijectivity
of the antipode S will be implicitly understood in the case when S~!, the inverse of
S, appears is formulas or computations.

It is well known that the antipode of a Hopf algebra is an anti-morphism of
coalgebras. For a quasi-Hopf algebra H, there exists an invertible element f =
f'® f? € H® H, called the Drinfeld twist or the gauge transformation, such
thate(f1) /2 = e(f>) f' = 1and

FAGSMH) = (5@ $H(A“P(M)), 2.7

forall h € H, where A°P(h) = hp ® hy. f can be described explicitly: first we define
y,8 € H® H by

y = S6' Xax’ X @ S’ x3F 2 s (x2eyax3x? @ (X Hax?,
2325 @9
5= X1x'BS(X%) @ XIx?BS(X%) RBS(3XY) @ x2X ' BS (3 X).
(2.9)
With this notation f and f~! are given by the formulas
f=E@HAPEHYyAELS(H?)), (2.10)
= ASEHax?)s(S @ $)(A®P(xY)). (2.11)
Moreover, f satisfies the following relations:
fA@) =y, AB)f ' =3s. (2.12)

@ Springer



Journal of Algebraic Combinatorics (2020) 52:405-453 409

We will need the appropriate generalization of the formula 41 @ hoS(h3) = h ® 1
in classical Hopf algebra theory. Following [13,14], we define

pr=7p'®p*=x'®@x*BS(KY), (2.13)
R=q¢'®¢*=X"® S (ax?)X> 2.14)

For all 1 € H, we then have

A(h)pr(1 @ S(h2)) = pr(h ® 1), (2.15)
(1® 57" (h2))grA(h1) = (h ® Dgr, (2.16)

and the following relations hold:

AlgHpr(1® S(@H)) =11, 2.17)
gix' @ 3x? @ ¢*x* = X' @ ¢' X ® ST (X*)g? X3, (2.18)
X'ple x2pl @ X3 p? = x' @ x2p' @ x3p25(x7). (2.19)

2.2 Braided monoidal equivalences

For the definition of a (co)algebra (resp. bialgebra, Hopf algebra) in a monoidal (resp.
braided monoidal) category C and related topics, we refer to [11,16,21]. Usually, for a
monoidal category C, we denote by ® the tensor product, by 1 the unit object, and by
a, 1, r the associativity constraint and the left and right unit constraints, respectively.

A strong monoidal functor between two monoidal categories C, C’ is a triple
(F, @2, ¢0), where F : C — C'is afunctor, ¢y : 1 — F(1’) is an isomorphism, and
wuy: F(U® F(V) — F(U ® V) is a family of natural isomorphisms in C’. ¢g
and ¢, have to satisfy certain properties, see for example [16, X1.4].

When (C, ¢) and (C’, ¢’) are (pre)braided monoidal categories, a (pre)braided func-
tor F : (C,c) — (C',c) is a strong monoidal functor (F, ¢z, ¢9) : C — ('
compatible with the (pre)braidings ¢ and ¢’, in the sense that, for any objects X, Y € C,
the diagram

$2.X.Y

F(X)® F(Y)

C%U(),F(Y)J( lF(CX,Y)

FY)® F(X) ————> F(Y ® X)

P27, X

F(X®Y) (2.20)

commutes.

Finally, for the definition of a natural tensor isomorphism w between two strong
monoidal functors (F, (pf, go(f), (G, (pzc;, gog) : C — C’ we refer to [16, Definition
XI1.4.1]. Note that, according to our terminology, in loc. cit. a tensor functor is nothing
but a strong monoidal functor. This is why, for consistency, we will call @ as above a
natural strong monoidal isomorphism.
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We say that F' is a strong monoidal equivalence if there exists a strong monoidal
functor G : ' — C such that F G is naturally strongly monoidally isomorphic to Id¢:
and G F is naturally strongly monoidally isomorphic to Id¢. If a functor F : C — C’
defines a strong monoidal equivalence between C and C’ we say that the categories C
and C’ are strongly monoidally equivalent.

If a functor F : C — C’ defines a strong monoidal equivalence between two
(pre)braided categories C and C’ we say that the categories C and C’ are (pre)braided
monoidally equivalent, provided that F is a (pre)braided functor, too.

2.3 A strong monoidal equivalence

Let H be a quasi-bialgebra. Then, the category of H-bimodules y My is monoidal,
since it can be identified with the category of left modules over the quasi-Hopf algebra
H°® ® H, where HP is the opposite quasi-bialgebra associated to H. Explicitly,
1M g is monoidal with the following structure. The associativity constraints a;w, E
MON)® P —> MQ® (N ® P) are given by

af‘,,’N’P((m(X)n)(X)p)=X1 m-x'QX?n-x*@X - p-x7). (221

The unit object is k viewed as an H-bimodule via the counit ¢ of H, and the left and
right unit constraints are given by the natural isomorphisms k @ M =M = M @ k.

A (co)algebra in y Mg is called an H-bimodule (co)algebra.

With its regular comultiplication and counit, H is a coalgebra in gz M pg. Then, we
can define ZMZ as being the category of H-bicomodules in M . For the explicit
definition of an object M in ZMZ, we refer to [2,8,27]. Roughly speaking, we have a
left H-coactionon M, denotedby Ay : M > m +— m_1y @m(oy € H ® M, and at the
same time aright H -coactionon M, denotedby py : M 5 m — m)®@my) € MQH,
which are counital and coassociative up to conjugation by the reassociator ® of H
and, moreover, compatible each other, and also with the H-bimodule structure of M,
respectively.

ZMZ is monoidal in such a way that the forgetful functor U/ : Z MZ —
(gMpy, g, H) is strong monoidal. If M, N € ZMZ then the left and right coac-
tions of H on M ® y M are defined by those of M and N, and the multiplication of H.

It was proved by Schauenburg in [27] that ZMZ is monoidally equivalent to the
left center of the monoidal category M. The latter is denoted by ZyD and called
the category of left Yetter—Drinfeld modules over H. Its objects were described for
the first time by Majid in [20]. They are left H-modules M on which H coacts from
the left such that e(m[—1)m[o) = m and

X'mi_n ® (X% mpoD—nX° ® (X* - mpopo)
=x'0r' w2 X2 my L, Y2 @ X3 (Y m)), (2.22)
forallm € M.Here, and in whatfollows, wedenoteby Ay : M — HQM, Ay (m) =
m_1) @ mo) the left H-coaction on M. Itis compatible with the left H-module struc-

ture on M, in the sense that, forallh € H andm € M,
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him_1) ® hy -mpo] = (h1 - m)[—11h2 ® (hy1 - m)g). (2.23)

The monoidal structure on g))D is such that the forgetful functor g)) D — gMis
strong monoidal. The coaction on the tensor product M ® N of two Yetter—Drinfeld
modules M and N is given by
Amen(m@n) = X Y m)_yx2 (Y2 ) Y?
X2 (x'ylom @ X3x3 - (Y2 mo, (2.24)
forallm e M andn € N.

The strongly monoidally equivalence between ZMZ and Z YD is produced by the
following functors, see [2].

Proposition 2.1 Consider the functors F : Z)}D — ZMZ and G : ZMZ — ZyD
defined as follows:
— For M € ZyD, we have F(M) = M ® H € g/\/lZ with the structure given by

hem@h)y-h' =hy-mhh'h (2.25)
menm®h) = X (x! - m)_1 - x2hy ® <X2 @l m)g ® X3x3h2) . (2.26)
puen(m®@h) = (x'-m @ x*h) ® x*ha, (2.27)
forall h,h',h" € Handm € M. If f : M — N is a morphisms in 5D then

F(f)=f®ldn.
—IfMeZMZ then

GM) = M = (m e M | py(m) = x"-m - SC3X°) f1 @ x2X' BS(xiX2) £2).

the set of alternative coinvariants of M, which belongs to Z)}D via the structure
defined by

hom=hy-m-Sy), (2.28)

oy (m) = X'V m_y8' S(Z*YaZ’Y? @ X2Y) - myy - 2S(XZ'Y]),
(2.29)

forallh € H andm € M where f~! = g! @ g? is the inverse of the Drinfeld’s
twist f. On morphisms, we have that G(f) = f1, . a well-defined morphism in
ZyD,for any morphism f : M — N in ZMZ

Then, F and G are inverse strong monoidal equivalence functors.

According to [2], the strong monoidal structure on F is given, forall M, N € Zy D,
meM,h,h" € Handn € N, by

Gun(m@h) @y n@K)) = x'-m@x>hy -n) @x k', (2.30)
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and the morphism gp =Idy : H > F(k) =k Q@ H = H.
The strong monoidal structure on G is determined by

PN m@n) =q'xi -m-S(qPx)x® @ n- S, (2.31)
forall M, N € HMH m e MU andn € N°UH) and ¢y : k — G(H) = kP

defined by ¢ (k) = kB, for all k € k, respectively. Using arguments similar to the
ones in the proof of [2, Corollary 3.2], a straightforward computation ensures us that

__1 — —

G n(m @ n) = Ep(mq) ® Ey(mqy - n), (2.32)
forall M, N € ZMZ andm @y n € (M @y N where Epy : M — MW
determined by Ey(m) = m) - BS(m(1y), for all m € M, is the projection defined in

[8].

Furthermore, for all M € g Mg,

Ty MDD SHsSm@h—> X' -m-S(X)aX>heM, (2.33)

is an isomorphism in # M with inverse ¥, : M 3 m > E(m)) ® ma, €

MH) @ H. The family of all morphisms ¥y, define a natural strong monoidal
isomorphism v between FG and Idg M- Likewise, for all M € ’,ij,

i MQH) M smQ@h— e(hyme M (2.34)

is an isomorphism in Z YD and defines a natural strong monoidal isomorphism ¢
between GF and Idf] V-

3 A braided monoidal equivalence

In Hopf algebra theory, it is well known that Z MZ is braided monoidally equivalent
to gyD. A remarkable braiding on ZMZ was introduced by Woronowicz [28], and
the fact that with respect to this braiding g./\/lg and ZyD are braided monoidally
equivalent was proved by Schauenburg in [26, Theorem 5.7].

The aim of this section is to generalize the two results above to the quasi-Hopf
setting. To this end, we start with a lemma of independent interest.

The results below are stated without proofsin[11, Remark 2.4.10] and [15, Example
2.4]. For the sake of completeness and also for further use, we outline them in what
follows.

Lemma3.1 Let F : C — D be a functor between two monoidal categories
C,®,a,1,l,ryand (D,O0,a, I, A, p).

(1) F defines a strong monoidal equivalence if and only if F is strong monoidal and
an equivalence of categories.
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(i) If F is as in (i) and C is, moreover, braided then there exists a unique braiding on
D that turns F into a braided monoidal functor. Consequently, a functor defines
a braided monoidal equivalence if and only if it is braided and an equivalence of
categories.

Proof If F : C — D is an equivalence of categories then by the proof of [18, IV.4
Theorem 1] there exist a functor G : D — C and natural isomorphisms p : Idp —
FGandv : GF — Id¢ such that, forall X € C,

Fux) = ir(y (3.1

(1) The direct implication is immediate. For the converse, we only indicate the unique
strong monoidal structure ((sz , 908; ) of G that turns p and v into monoidal trans-
formations. To this end, we denote by ((péF = (go{ X’Y) X.YeC go(f ) the strong
monoidal structure of F, and by (?5; R &)’g the inverse morphisms of gozF , respec-
tively, (p(f . Then, gog = G((?f(l)F oy "and

G —1 —1\~F —1
Py yv =Gy By )(pZ,G(U),G(V))vG(U)@G(V)9 YU, VeD. (32

(ii) Any braiding ¢ for C defines a braiding d on D as follows. For any objects U, V
of D take dy v to be the following composition:

nyOwy $2,G(U),G(V)

UI:JV — FGW)OFG(V) —— FGWU)®GV)) (3.3
dyv \LF(CG(U),G(V))

Y
VU <— FGV)OFGWU) =— F(G(V)® G(U))

wy Oy %2.G(v).G)

Then, (D, d = (dy,v)u,vep) is a braided category and F : (C, ¢) — (D, d) becomes
a braided monoidal functor. O

We specialize the above result to the strong monoidal equivalence in Proposition 2.1.
Note that, according to [20] the category ZJ}D is braided via the braiding given by
c= (CMJV)M,NEZ))D’ where, forallm € M andn € N,

cu Nm @n) =m—1y-n Q m. (3.4)

From now on, throughout the paper H is a quasi-Hopf algebra with bijective
antipode. If M € ZMZ then by Eyy : M — M we denote the projection on the
space of coinvariants of M, defined by Ey(m) = X' - m) - BS(X’m))aX?® =
q' - Ey(m)-S(g?),forallm € M.Here, M 3 m > py(m) :=my®@m) € M@ H
denotes the right coaction of H on M and g is the element in (2.14).

Record from [14] the following properties of Ey;:

h-Ey(m) = Ep(hy-m)-hy, (3.5
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Ey(m-h) =e(hW)Ey(m), Ey(h- Eyy(m)) = Ey(h-m) , (3.6)
E3 = Em, Ey(m) -may =m,
En(Ey(m) ) ® Ep(m))
=Eum ®1, (3.7)
p(Ey(m)) = Ey(x'-m) x> ®x?, (3.8)

forallm € M and h € H. Also, recall from [8] that M°™ in invariant under the
left adjoint action of H, thatis h > E y(m) = Ep(h -m), forallh € H andm € M,
where > is defined by (2.28). Furthermore, the image of E y; is M,

Another property of E y is the following.

Lemma 3.2 Let H be a quasi-Hopf algebra and M a two-sided two-cosided Hopf
module over H. Then, for allm € M, we have that

mi—1y ® Ep(mioy) = X' Y Ep(mo)—1y8' S@@* Y mq,
®X2Yy - Em(moyio) - 82 S(X3q'YP). (3.9)
Proof Forallm € M € ZMZ, we have
X1§117EM(’”(0)){71}81S(qzyzz)Y3m(1) ® XY, - Ep(moy)oy - 82S(X3q'Y)
(2.1)
='X'Y{mo.o)_,Bi18" S(@Ysmo1,)Y may
®X2Y2] 10,00, IBZgZS(XSQIYEWZ(Q’l)I)

2.12) 4 lglgy 2 2 3
=X m(()){fl}YI‘S S(q m(l)(l,z)Y2 ymy,Y
2®éf2 My - Y282 S g may, YD)
2.16)
=Umn XY 8 S(@PYHY @ mygy, - X7Y) 87 S(moy, X' YD)
2.18)
= m{—l}XICIfl,1>xl]5]S(q2x3) ® mo), - qu(11,2)x2152S(m{0}<1)X3q21x2)
2.9.,2.1 1 2 1 1
=" "mnq1BS@q@°) @ mye, - 4.1y BS(M0)1,92.2))
(2.5),_(2.6) (=141 {0}y “ 42,1 0}n92,2)

mi—1y ® Moy, - BS(mioy,))
=mi_1) ® Ey(m)),
as needed. O
One can provide now a braiding for ZMZ

Theorem 3.3 If H is a quasi-Hopf algebra then gMZ is a braided monoidal category
with the braiding defined by

du N My Nom @y n— Exn(m_1y -n@o)) ®u mpy-nqy e N®y M, (3.10)
forall M, N € ZMZ

Furthermore, if we consider ZMZ braided with the braiding d, then ZMZ is
braided monoidally equivalent to ZJ}D, where the braiding on ZyD iscasin(3.4).
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f
Proof Let ZyD brm— Z MZ be the inverse strong monoidal equivalence functors
g

defined in Proposition 2.1. We have that v defined by (2.33) is a natural strong monoidal
isomorphism between FG and IdZ M while ¢ given by (2.34) is a natural strong
monoidal isomorphism between GF and Idzy p- respectively.

We prove now that (F, v, ¢) obeys the conditionin (3.1),i.e., thatvV gy = F({y) -
MeH)*WH > M®H,forall M € 2YD.

To this end, by [8, Remark 2.4] we have (M ® H)®°® = (p! . m ® p?> | m € M},
where pr = p! ® p? is the element defined in (2.13). Thus, ¢y (p! - m ® p?) = m,
for all m € M, and therefore ]-"(Q“M)((p1 -m® pz) ®h) =m®h, forallm € M and
heH.

If gr is the element in (2.14) we then compute that

VEun((p'-m® pz) ® h)

2.33), 214
= )qllp m®q2p2$( )h mQh,

forallm € M and h € H. We conclude that V) = F({p), as stated.

It follows by Lemma 3.1 that the braiding ¢ for ZyD transports along F to a
braiding d on Z./\/lg such that F becomes a braided monoidal equivalence. It only
remains to show that d is as in (3.10). Using (3.3), we see that

® v
dy.n = (m ®pgn Gt (EM(m(())) ®@my) O (En(n)) ®n())

$2,6(M),G(N) — —
— (x1 > Ep(m (o)) ®x2m(1)1 > En(n))) ® x3m(1)2n(1)
3=6(EM(XI -m() ® *my, > En(n)) ® Xmpy,ncy
3.6) — -
="(Epm(m@,0) ® m,1)> En(n))) ® mayn)

cgon,g)®ldn — —= —=
(Epm(m o, 0)) m(o 1> En(mo) ® Ep(mo,0))[0) ® mayn)
229
CEX Y Enmo.0)i-18' Sa> YQ)Y mo.1) > En(n(0))

39®X2Y2 “Emmo.0)0) - 875X ¢ YD) @ maynqy

3.9) - -

= "(m),_,, > En(n)) @ En(mg))) @ mpyn()

—1

P2.6(N).G(M) — —
SR (le(O)(,” > En(nq) ® 1g) ®g x?> EN(m)) ® X3m<1)"(1))

3.6 — _

(=)(m{—l}‘>EN(”(0))®1H)®H (E pm (mi0) ) @ 1m0y, 1 (1))

VN®VM
—

Q14 1

1-EN(m{ 1}'"(0))~S(q2) ®y 0! 'EM(m{O}(O))‘S(Qz)m{O}(l)n(l)
mi_1y, - En(n)) - S(x? m{_1},)d
@uX> Q' - Epylmi)) - S(QHmo),nq)

216
2% i1y, - Enngy) - SKPmi_py)a
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®y 0! ,EM(X? S0} ) - S(QZ)X%’"{O}(])”(U

(3.6) —
='m_1yX' - En(ng)) - Stmpo,—1XHa @y Ep(m0,0,) 'm{O,O}(l)X3”(1)

3.7 —

='m_1y X' En(nq)) - Stmpo,—1yXHa @y myo 0y - X>n (1)
2.14 —
“s )ql “En(m(—1y-n()) - S(g*) ®p myoy - n1y

= En(m{—1y - nq)) @y mo) 'n(1)>,

forallm € M and n € N, as desired. O

4 Hopf algebras within I A1}

The aim of this section is to characterize the bialgebras and the Hopf algebras in
ZMZ Inspired by some categorical results of Bespalov and Drabant [1], we show
that giving a Hopf algebra in Z Mg is equivalent to giving a quasi-Hopf algebra
projection for H as in [5]. Consequently, we obtain almost for free that quasi-Hopf
algebra projections are characterized by the biproduct quasi-Hopf algebras constructed
in [5], and therefore by Hopf algebras in ZyD, too.

A quasi-bialgebra map between two quasi-bialgebras H and A is an algebra map
i : H — A which intertwines the quasi-coalgebras structures, respects the counits and
satisfies (I ®i ®1)(Py) = P4.If H, A are quasi-Hopf algebras then i is a quasi-Hopf
algebra map if, in addition, i (¢g) = a4, i(By) = Paand Sy 0i =i o Sy.

For a quasi-Hopf algebra H denote by H — gBialgProj (resp. H — qHopfProj)
the category whose objects are triples (A, i, ) consisting of a quasi-bialgebra (resp.
quasi-Hopf algebra) A and two quasi-bialgebra (resp. quasi-Hopf algebra) morphisms

H é A such that 7i = Idg. A morphism between (A, i, ) and (A’,i’, ') in

T

H — gBialgProj (resp. H — qHopfProj) is a quasi-bialgebra (resp. quasi-Hopf algebra)
morphism 7 : A — A’ such that ti =i’ and 7't = 7. In what follows, the objects of
H —qBialgProj (resp. H —qHopfProj) will be called quasi-bialgebra (resp. quasi-Hopf
algebra) projections for H.

We also denote by Bialg(ZMZ) (resp. Hopf (ZM Z)) the category of bialgebras
(resp. Hopf algebras) and bialgebra morphisms within ZMZ

As expected, we next prove that the categories Bialg(ZMZ) and H — gBialgProj
(resp. Hopf (Z M Z) and H —qHopfProj) are isomorphic. We first need some lemmas.

Lemma4.1 Take M, N € ZMZ, and the elements m, m’ € M andn,n’ € N. Then,

mun=m @uyn < E(mq) @my-n = E(m’(o)) ® m’(l) -n'. (4.0)
Proof From [14], we have that vy,' : M 3 m > Ep(m)) @ may € MM ® H is
an isomorphism in £ M for all M € % MH . Here, M©® is the image of Ey, a

left H-module via the structure given by h—Ey(m) = Ep(h - m), forall h € H and
m e M.Forak-space U and V € gMdenoteby Yy v : (UQH)QrV - UV
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the canonical isomorphism. We then have that m ® y n = m’ ® g n’ if and only if

TMco(H)’Nco(H)®H(VA_/[l QH V;l)(m ®u n)
= Y ppeoin_ vty (V' ®u vy )(m' @p n')
< En(m)) ® En(mqy, - n©)) @ m(,ny
= En(m(g)) ® En(m(y), - njg) ® m(y) ng.

Thus, if m @y n =m’ @y n’ then

Epm(mo) ® En(mqy, - n©) - may,nay = Em(mig) ® Ex(miyy, 1) - mp,n,

3.5

& En(mo) ® mqy - En(no)) - nay = Em(mg) ® miy - En(n(g) - ngy
3.7

& En(m@) @ mq) -n = Ey(mg) ®mg, - n'.

The converse follows easily from (3.7), and we are done. O

Now we can construct the functor that gives the desired categorical isomorphism.
For the definition of an H-bicomodule algebra (A, A, p, ®,, ®,, &y ), we refer to
[13].

Proposition 4.2 Let H be a quasi-Hopf algebra. Then, there is a functor
V : Bialg(¥ M%) — H — qBialgProj.

On objects, V sends a bialgebra (B,mpg,i: H — B,Ap,m : B — H)in ZMZ to
the triple (B, i, ), where B is considered as a quasi-bialgebra via mp := mpqp B,
qp.B : B® B — B ®pu B being the canonical surjection, 1 = i(1p),

Ap(b) = by, by | ®by, by, es=em: Bk, 4.2)

and p = (I Q@i ®i)(P). V acts as identity on morphisms.

Proof We must check that (B, mp, 1p, Ap, ep, ®p) is indeed a quasi-bialgebra and,
moreover, that i, 7 become quasi-bialgebra morphisms.

By [2, Lemma 4.9], (B, mp, i) is an algebra in ZMZ if and only if (B, mp, 1p)
is a k-algebra and at the same time an H-bicomodule algebra via the original left and
right H-coactions and reassociators ®; = X' ® X2 ®i(X?),®, =i(X")®@ X?® X?
and ®; , = X'® i(Xz) ® X3, such that, forall h € H,

A@i(h)) =h1 ®i(h2) and p(i(h)) =i(h1) ® ha. (4.3)
Otherwise stated, i is an H-bicomodule algebra morphism. Furthermore, the H-
bimodule structure on B is nothing but the one induced by the restriction of scalars

functor defined by i.
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Likewise, by [2, Theorem 5.3], we have that (B, Ap, ep = &) is a coalgebra in
aMpy = (gMpy, @, k,a’,l',r"), i.e., an H-bimodule coalgebra, and 7 : B — H
is a coalgebra morphism in My . If we denote A g(b) = b1 ® by we then have

i(XHba 1i(x") ® i(X?)ba1.2)i(x?) ® i (X )bai (x*) = by ® bea.1) ® b2.2), (4.4)

forallb € B, er = ep and A(w (b)) = m(b1) ® m(by), forall b € B.
The left and right H-coactions on B can be recovered from Ay and 7 as

Ab) = (b)) ® by and p(b) = by @ (b)), Vb € B. (4.5)

Since i is the unit and 7 is the counit of the bialgebra B within Z./\/l p it follows
that 7i = Idy, and therefore, 7 is surjective. Furthermore, # : B — H is an
algebra morphism in ZMZ, so m is a k-algebra morphism as well. As we have
seen, 7 intertwines the comultiplications Ap and A of B and H, too. If we define
OPp =(0(QIQRi)(D),itisclearthat (m @ 7T Q m)(Pp) = D

Combining (4.3) and (4.5) we get

Ai(h) =7 @(@i(h)) @i(h)2 =h ®i(hy), Vhe H,

and therefore 7 (i (h)1) ®i(h)2 = n(i(h1)) ®i(hy), forall h € H. As 1 is surjective,
we obtain that i intertwines the comultiplications A and Ap of H and B, and so
Ap(lp) = Ap(i(lg)) =i(lg) ®i(ly) = 1p ® 1. Itis also an algebra morphism
suchthat ( ® i ® i)(P) = &g and egi = «.

The most difficult part is to show that A g is multiplicative, that is

Ap(bb) = (bry b B, <y ) ® (b - ba B, By ) (46)

for all b, b’ € B. Toward this end, observe first that by (3.10) and (4.1) we have that
Ay is multiplicative in ZMZ if and only if
E((bb)1,) ® (b)), - (bb)2

=E(b1,Ey_,, - /l«»)(o)) ® b1, Eby ) 'b/i(m)(l) < by, )by, (4.7)

/
Loy

for all b, b’ € B, where, for simplicity, from now on we denote Eg by E. This allows
us to compute that

Ap®b) = (b)), - (b)), ® (BB, - (b')yy,
(3 ) / ’
iy E(0B)150) - BB))1, (6D, ® (BB, - (b)),
G2 LB (b)) -3 (OB)1,) - (0B (—1) @ 6 - (BB, - (BB Do)
1 / 2 / / /
EGe-bug Ehy ) by D) - x7b1y Eby - by daayy (b - b1, IB2) (-1

b)) 0}

4.

3 /
O b1y, By b Jn - (b2 b,
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(3.6) ’ ’ ’ ’
=" E10 EGayy b10)0.0)  brg BBy b1 )01 B2y - by D=y

/ / /
®by Eby_,, 'bl(O))(l)'(bZ ~b1(1)){0}bg{0]

(3 ) ’
b1, Eby 171(0))(0) by, 1b1(1) b;(_])

®b1,, Elby_y, 'bl(()))(l) Iy 'b1<1> ) /3(0)
3. 8)

) x2b2 Wbl

3
bl(O)E(x by, (" b L ® By, x7 by - b )b’;

21— Lay,
bl(o 0) 1} bl(o,l)bZ(—l) ® bl(l) ' (b2 ) 1(1))b2
(bl(o) bz{ n )(E(bl 00)) bl(o b 7( )® (b1, - b2y, )(b](l ;{0})

/
(bl(o) ' ;(—l})(bl(()) 'bZ[_l)) ® (b, -b )(bl(n 2 )’

by Lo 0)

)by,

for all b, b’ € B, as needed. The remaining details are left to the reader. O
We can construct an inverse for ) as follows.

Proposition 4.3 Let H be a quasi-Hopf algebra and (B, i, ) a quasi-bialgebra pro-
Jjection forit. Then, B is a bialgebra in ZMZ with the structure given, forallh, h’ € H
and b, b’ € B, by

hob-h =i(hbi(h); (4.8)
AMBob—>nab)®bre HRB, p:B>b+— b Q@na(by) e BQH;, (4.9)
mg(b®pb')=">bb, i:H— B, (4.10)
Ap(b) =E()) Qy by and g5 = m. 4.11)

In this way we have a well-defined functor T : H — qBialgProj — Bialg(ZMZ). T
acts as identity on morphisms.

Proof 1t is easy to see that B is an object in ZMZ with the structure as in (4.8)
and (4.9). Since (b - h)b' = b(h - V'), for all b,b’ € B and h € H, it follows that
mp:B®y B — Bgivenbymg(b®pu b') =bb', forall b, b’ € B, is well defined.
By [2, Lemma 4.9] we deduce that (B, m, i) is an algebra in ZMZ since

Ai(h)) = m(i(h)1) ®i(h)2 = hy ®i(h2) and
p(i(h) =i(h) @ m(i(h)2) =i(h1) ® ha,

forallh € H,i.e.,iisan H-bicomodule morphism, where the H-bicomodule structure
of Bis(B,A,p, 0, = X' @ X?®i(X?),0, =iXH®X’®X>,d, ,=X'®
i(X?) ® X?). We should point out that all these facts follow because i : H — Bisa
quasi-bialgebra morphism.

[2, Theorem 5.3] guarantees that B is a coalgebra in Z Mg with the structure in
(4.11). Thus, it only remains to show that A is an algebra morphism, where the
algebra structure on B ® y B is the tensor product algebra one, modulo the braiding
in (3.10). We compute
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Agi(h) = E(i(h)1) ®p i(h)>

=q" - i(hD) - BS(G*i(h))) @ i(ha)
:16i)(‘]1h(l,l)ﬁs(qzh(l,Z))]’Q) ®u 1y
="i(hq'BS(q*) ®u 1

ith) @ 14,

Q

and this shows that, up to the identification given by the unit constraints of the monoidal
category (FMpy, Qu, H), Agi =i Q@p i.
Due to (4.7) and (4.11), that A  is multiplicative is equivalent to

Ap(bb)
= E(b)E(by_y, - E(b)) ) ®n (b2, - E(B))1))b)
3.8
BB E((bay) - EG' b)) - x2) @u (b - ¥)b,

3.6
D EX - ba1)EX (b)) - b)) - X3 @p babh,

for all b, b’ € B. Since, for all b, b’ € B, we have that

EX"-b)EX?n(by) - b)) - X3

5 Si(q‘X})ba,ni(ﬂS(qQXén(b(l,z»QlX%n(b<z,1>>)b’1i(ﬂS<Q2X§n(b<z,z>)n<bg>>x3)
C2¥iq 0l 1) b1 (BS(@P 0} 5y (- b)) Qb (¥ - b1y

i (BS(Q*m(x* - ba,2))(by))
20 014 1) i (BS@2m(B1)1.2)7 (b1)2)B i (BS(Q* (ba)m (B)))
= i(QYb1i(q' BS(gH)b1i(BS(Q* 1 (b2bh)))
OEww),

it follows that A p is multiplicative if and only if
E((bb')1) @ (bb')y = E(b1b}) @p baby, Vb, b’ € B.

The latter equivalence is immediate since A p is multiplicative. This ends the proof. O
At this point, we can prove one of the main results of this paper.

Theorem 4.4 Let H be a quasi-Hopf algebra. Then, the functors
. H H V . .
Bialg(; M) =— H — gBialgProj
T es

define a category isomorphism.
They also produce a category isomorphism between Hopf(Z/\/lZ) and H —
qHopfPro;j.
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Proof One can check directly that V and 7 are inverse to each other; see also [2,
Lemma 4.9 & Corollary 5.4].
Take (B, i, ) € H — qHopfProj, and denote by Sp the antipode of B. We claim

that 7 ((B, i, 7)) = B is a Hopf algebra in ZMZ with antipode determined by

S(b) = q'm(ba1)B - Sp(g* - b)) -7 (b2), Vb € B.

Indeed, a technical but straightforward computation ensures that S is a morphism in
" M. Then, one can check that

S(E(b)) =q'w(b1)B - Sp(g” - b2), ¥ € B,
and this fact allows us to compute that

Sby = S(E(b1))b2
=i(@(X" - ba1)B)SB(X? - ba.2)i(@) (X - b))
=in(h)i(X'BS(XP)aX?) =inb),
for all b € B, as required. Similarly, one can easily see that
i(S((b1)a)S(b2) = ep(b)i(a), Vb € B,
and from here we get that
b1S(by) = E(b1)Sp(b2)
ir(X" b 1)BSET(X? - b2y))S(X? - by)

i(m(b) X' BS((b.1) XHa)S(b2.2)i(X?)
= ep(b2)i(w(b))i(X'BS(XH)aX?) = in(b),

for all b € B. Hence, our claim is proved.

In a similar manner, we can prove that if S is antipode for the bialgebra B in
ZMZ then the quasi-bialgebra V(B) is actually a quasi-Hopf algebra with antipode
determined by

Sp(b) = S(hy_y P e - Sy - P*S(b(1)), Vb € B, (4.12)

and distinguished elements «p = i(«) and fp = i(B). We leave the verification of
the remaining details to the reader. O

We end this paper by presenting a second characterization for the bialgebras (resp.
Hopf algebras) in Z MZ

By Theorem 3.3, the categories ZMZ and Z)) D are braided monoidally equivalent.
Therefore, bialgebras (resp. Hopf algebras) in ZMZ are in a one to one correspon-
dence to bialgebra (resp. Hopf algebra) structures in ZyD. More precisely, if B is
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a bialgebra (resp. Hopf algebra) in ZMZ then A := B is a bialgebra (resp.
Hopf algebra) in Zy D. The inverse of this correspondence associates to any bialge-
bra (resp. Hopf algebra) A in ZJJD the bialgebra (resp. Hopf algebra) F(A) = AQ H
in ZMZ Thus, B and A ® H are isomorphic as braided bialgebras (resp. Hopf
algebras) in ZMZ Consequently, V(B) and V(A ® H) are isomorphic as objects in
H — gBialgProj (resp. H-qHopfProj).

Firstly, A ® H is an object in ZMZ with the structure as in (2.25)—(2.27). By [2,
Theorem 4.11], as an algebra V(A ® H) = A#H, the smash product algebra of A and
H from [7]. The multiplication of A#H is given by

(a#h)(@#h) = (x' - a)(x>h; - ) hol,

foralla,a’ € Aandh, h' € H,andits unitis 14 ® 1. This contributes to the structure
of VIAQ H)ywith j : H> h— 14 ®h € A#H, so far an H-bicomodule algebra
morphism, provided that A is an algebra in Z YD (see [2, Proposition 4.10] for more
details).

Secondly, by [2, Theorem 5.6], as a coalgebra V(A ® H) = A »< H, the smash
product coalgebra of A and H. More exactly, the comultiplication is defined by

Alav<h) = (y' X' a) o< y? Y (x' X2 - a0)_)x° X3h1)
Y2 (X' X2 ax)jo) < Y3Y3x3X3hy), (4.13)

and the counit is e(a ® h) = ga(a)e(h), foralla € A and h € H. This contributes
to the structure of V(A ® H) with p : A< H > av< h +— ¢e4(a)h € H, so
far an H-bimodule coalgebra morphism, provided that A is a coalgebra in ZyD. As
before, a — aj—1] ® ajo is the left coaction of H on A, As(a) = a1 ® ap is the
comultiplication of A in ZJJD and g4 is its counit.

Summingup, V(F(A)) = (AxH, j, p),thebiproduct quasi-bialgebra (resp. quasi-
Hopf algebra) constructed in [5], provided that A is a bialgebra (resp. Hopf algebra) in
Z YD. Note that, in [5] we gave the coalgebra structure of A x H by adapting the one
in the Hopf algebra case, and that by hard computations we showed that A x H is a
quasi-bialgebra (resp. quasi-Hopf algebra), provided that A is a bialgebra (resp. Hopf
algebra) in ZJJ D. Now we have a more conceptual and less computational proof, and
at the same time a converse for the cited result in [5].

Corollary 4.5 Let H be a quasi-Hopf algebra, and B an object of ZJJD which is at
the same time an algebra and a coalgebra in Zy D. Then, the smash product algebra
and the smash product coalgebra afford a quasi-bialgebra (resp. quasi-Hopf algebra)
structure on A @ H if and only if A is a bialgebra (resp. Hopf algebra) in ZyD. If
this is the case, then A x H is a bialgebra (resp. Hopf algebra) in ZMZ

Proof Everything follows from the above comments, and the fact that F : Zy D —
g/\/lg is a braided monoidal equivalence, and that 7, V are inverse isomorphism
functors.

Remark that, the antipode s of the quasi-Hopf algebra A x H can be obtained from
the antipode S4 of A in ZJ}D and the antipode S of H as follows. The antipode S of
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F(A)in ZMZ is F(S4) = Sa ® Idy, and so we have that

S((a x h) ), Pl)a -S((a x h) ) - p*S((a x h)1))
(2 27)5((x cax 2h)npha - S ax 2hp - pES(ho)
2.25),2. 26)S(X1( L a2k phe
S ('xt @) x Xy agha 0 p? S hy)
@ 1(52)2(;19)5()( (! a) lpgh)a S(X2 (! 3)2 | % X3p?)
035 S(X'plag i (Sa(x? p22 ao) x X°p")
"4 x (X' plar-nha) (X2 ph - Sa(ap) x X*p?),

foralla € A and h € H. Clearly, the distinguished elements that together with s
define the antipode for A x H are j(«) = 14 x o and j(B) = 14 x B. In this way,
we gave an alternative proof for [5, Lemma 3.3]. In the computation above, we wrote
a x h in place of a ® h in order to distinguish the quasi-bialgebra structure on A ® H
given by the biproduct construction. O

Collecting the results proved in this section, we get the following.

Theorem 4.6 Let H be a quasi-Hopf algebra. Then, there is a one-to-one correspon-
dence between:

bialgebras (resp. Hopf algebras) in ZMZ

quasi-bialgebra (resp. quasi-Hopf algebra) projections for H;
bialgebras (resp. Hopf algebras) in ZJ/D;

biproduct quasi-bialgebra (resp. quasi-Hopf algebra) structures for H.

We end this paper by applying Theorem 4.6 to a class of braided Hopf algebras in
ZMZ obtained from a tensor Hopf algebra type construction.

5 Tensor Hopf algebras within [ AM}!

Let H be a quasi-Hopf algebra and M an object of MH We show that the tensor
algebra Ty (M) associated to M within ( HMZ, Ry, H ) admits a braided Hopf alge-
bra structure in ( HMZ, ®pu, H) or, equivalently, a quasi-Hopf algebra structure with
a projection.

Recall that the tensor algebra Ty (M) of M within ZM’; is Tg(M) = H&
@D M®H" where M®H! := M and M®H" .= M®#" ' @y M, for all n > 2. For

n>1
I < n, we denote by m®#+11 the element m'*! @p - @y m" € M®H#"~; when
I =0andn > 1 we will write m®#" instead of m®# 1.,

The product * on Ty (M) is given by concatenation over H, i.e.,
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h+h' =hQ®gh' =hh,
ham®! = h@ym® =hm' @y m?> @y - @y m',
m®”l*h=m®”l®HhEml®H-~-®Hmlh,

®ul * m®Hl+1,n — m®yn7

m
forallh,h € H,1 > 1,n >2andm!,..., m" € M. The unit of Ty (M) is given by
the unit 1 of H. As the monoidal category (ZMZ, ®p, H) is strict, in the writing of
an element of M®H" we do not have to pay attention to parenthesis.

Using the monoidal structure on ZMZ given by ®p, we find that Ty (M) is an
object in ZM Z via the structure induced by those of H and M, as follows: the H-
bimodule structure of T (M) is given by the above product %, while the H-bicomodule
structure is defined, forallh € H,l > landm!, ..., m' e M, by

A(h) = p(h) = A(h)y =h1 ®hy € (HQ Ty (M)) N (Ty(M) ® H),
)\(m®Hl) — m}—l} .. 'ml{,]} ®mg0} ®H P ®H mio}’

5.1 A braided Hopf algebra structure on Ty (M)

Denotebyi : H— Tyg(M) and j : M — Ty (M) the canonical embedding maps. It
can be easily checked that i is an H-bicomodule algebra map, provided that Ty (M)
is considered as an H-bicomodule algebra via (x, 1, A, p) as above and reassociators
D), =0, =, , = XI@XZ@X3, where, in general, by ® we denote the tensor
product between Ty (M) and itself within the category of k-vector spaces. Otherwise
stated, (T (M), *, i) is an algebra in (A M%, @y, H) and i : H — Ty(M) is an
algebra morphism in M. Finally, it is immediate that j is a morphism in # M#.

Similar to the Hopf case [22], the tensor algebra Ty (M) in ZMZ is uniquely
determined by the following universal property.

Proposition 5.1 Let H be a quasi-Hopfalgebraand M € ZMZ Then for any algebra
morphismu : A — A’ in ZMZ and any morphism ¢ : M — A’ in g/\/lg, there
exists a unique morphism ¢ : Ty (M) — A’ of algebras in ZMZ suchthattj = ¢.

Proof 1t is similar to the one given for [22, Proposition 1.4.1]. O

The above universal property allows to define a Hopf algebra structure on Ty (M) as
follows. To avoid any possible confusion, by ® we denote the tensor product between
Ty (M) and itself within the strict braided monoidal category (z M Qu, H).

Proposition 5.2 If H is a quasi-Hopf algebra and M € ZMZ then there exist algebra

morphisms A : Ty(M) — Ty(M) ® Tu(M) and ¢ : Tu(M) — H in T M1,
uniquely determined by

A(h) = h®1 = 1®h and A(m) = 1@m +m®1, resp. e(h) =h and g(m) = 0,

@ Springer



Journal of Algebraic Combinatorics (2020) 52:405-453 425

forallh € H and m € M. Furthermore, (x, 1, A, €) provides a bialgebra structure
on Ty (M) within M8,

Proof To define A, we apply Proposition 5.1 for A = H, A’ = Tg(M) ® Ty (M),
(:M>me— ml+1®m € A’ andu : A — A’ the unit morphism of A’,
where A’ has the tensor product algebra structure of Ty (M) and itself, within ZMZ
Thus, u is an algebra morphism in # M and is given by u(h) = h®l = 1®h,
for all h € H. Keeping in mind the monoidal structure of ZMZ, one can easily
check that ¢ is a morphism in ZMZ Therefore, there is a unique algebra morphism
A:Ty(M) — Ty (M) ® Ty(M) in ¥ M such that Aj = ¢. Equivalently, A is the
algebra morphism in ZMZ completely determined by

A(h) = Ai(h) =u(h) =h®1 =1Qh, Vh e H
Am)=Ajm) =t(m) =mR1 +1@m , Ym e M.

Since A is an algebra morphism, inductively, we can uncover how it acts on an arbitrary
element of Ty (M). For instance, A(h®@ g m)=hA(m)=hm®@1+1®hm=A (hm), and

Am®?) = m'®1 + 1@m") (M’ ®1 + 1@m?)
=m! ®H m2®1 + ml@mz + 1@7’11 Ru m? + dTH(M),TH(M)(mlgmz),

forallh € H and m, m', m® € M, where, as before, d is the braiding on ZMZ as in
(3.10). And so on.

To define &, we proceed in a similar manner. This time we apply Proposition 5.1
toA =A = H,u=1Idgand¢ : M > m — 0 € A, the null morphism.
This gives an algebra morphism ¢ : Ty(M) — H, completely determined by
e(h) = ei(h) = u(h) = h,forall h € H, and e(m) = ¢j(m) = ¢(m) = 0, for
all m € M. Consequently, for any nonzero natural number n we have

e(h@um®"™)y =0, Vhe Handm', ..., m" € M.

So it remains to prove that (Tg (M), A, ¢) is a coalgebra in ZM Z To show that
A is coassociative we apply again Proposition 5.1, this time to the following datum:
A = H, A’ equals the tensor product algebra Ty (M) ® Ty (M) ® Ty (M) in EME,
u equals the unit morphism of A" and

C:M>sm— m®RIR1 + 19mR1 + 1Q91Qm € A,
a morphism in Z/\/lg We have, for all m € M, that

(A ®@ ldr, ) A(m) = Am)®1 + A()®m
=mR1IR1 + 1@mR1 + 1®1®m
=m@A(l) + 1®A(m)

dd7, m) ® A)A(m),
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so (A ® ldr,m)Aj = (Idr,m) @ AAj = ¢. As (A ® Idz,u))A and
(d7,;m) ® A)A are algebras morphisms in Z M it follows from the universal
property of Ty (M) that (A ® Id7,, (m))A = (Id7,m) ® A)A, as desired.

Up to the identifications given by the left and right unit constraints of Z MZ, we
compute that (¢ ® g Id7,; (m)Aj = j = ddry,m) Qn &)A). (6 @y Idry, (m))A and
(d7, (M) ®u &)A are algebra morphisms in # M implying (¢ @y 1d7, (1)) A =
(d7y ) @1 €)A = Id7, (m), as required. O

Next, we construct the antipode of Ty (M). It is well known that, in general, the
antipode S of a braided Hopf algebra B is an anti-morphism of the algebra B. Otherwise
stated, S is an algebra morphism from B to B°P, where B°P is the opposite algebra
associated to B. Coming back to our setting, Ty (M)°P equals Ty (M) as object in
ZMZ, and is the algebra in ZMZ having the same unit as Ty (M) and multiplication
*op given by *op = *odry (M), 14 (M)- Thus, if Ty (M) admits an antipode S then it will
be completely determined by its restrictions to H and M, since, forall z, w € Ty (M),

S(z@w)=* odry m), 1y (M) (S(2)RS (W)= * o(SRS)dry (M), Ty (M) (2BW). (5.1)

Theorem 5.3 Let H be a quasi-Hopf algebra and M an object in ZMZ Then, the
tensor product algebra Ty (M) in ZMZ admits a Hopf algebra structure within
HMH
H H

Proof We know that Ty (M) is a braided bialgebra. As in the proof of Proposition 5.2,
if we take A = H, A’ = Ty (M)°P, u the unit morphism of A’ and ¢ : M > m
—m € A’, then from the universal property of Ty (M) we get an algebra morphism
S:Tg(M) — Ty (M)°P in ZMg , uniquely determined by

S(hy=h,VheHand S(m)=—m , ¥Ym e M.

With the help of (5.1), we can see how S acts on an arbitrary element of 7Ty (M). To
this end, for a fixed natural number n > 2, let {s; = ([,[+ 1) | 1 <] <n —1} be
the set of generators s; of the symmetric group S, permuting / and / + 1. Also, for
any 1 </ <n—1,taked; =Idyeyi-1 p dy,m ®u 1d),eyn-1—1, an automorphism
of M®H" foralll <[ < n — 1. Finally, for o € S, define T, := dj, ...d,,,
where o = sy, ..., is areduced expression for o (i.e., r is minimal among all such
expressions of o). Note that, according to [17, Theorem 4.12], T is well defined.
Now, if og € Sy, is given by opg(l) =n — 1+ 1, forall 1 </ < n, then

Sm®H) = (=1)" Ty (m®H"), (5.2)

forall n > 2 and m',...,m" € M. Observe that s;(s251)...(sy—1...51) is a
reduced expression for ogp, since op is what is called the longest element of S,
(for more details see the comments made before [17, Lemma 4.13]). Thus, 7,, =
dy(dady) -+ - (dy—1 -+ - dy).

We show that S is antipode for the bialgebra structure of T (M), that is,

* (S®Id7y, (M) A2) = ie(z) = *(dr, ) @) A(2), (5.3)
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for all z € Ty (M). Toward this end, remark first that (5.3) is satisfied for any z =
h e Handz=m e M. Also, if we define ** = * and, in general, xk = *(*k’l RH
Id7,; (ar)), for all k > 3, we have

#*(SQId 7y, (M) A *
= %(S®Id 7y, (m)) (x@%) Id 7y, (1) @y, (M), Ty () @I T (M) (AR A)
2 (S®S@Id7, (1)) (A1 (M), 727 (3 %) (7, () @7y (1) T3y (1) BN Ty, (1)) (ABA)
= *4(§®§@IdTﬂ an@) Az, an @Ay, (u)) (dryy (M), Ty () ®1d 7y (1)) A Ty (1) B D)
S (SBIdy, (3122 (1d 7y, (1) @ (+(SBId7, (1) MBIy, (1))
(dry (), 11 @17y (1)) Ad T (1) R A).

We used that A is an algebra morphism in the first equality, the fact that S : Ty (M) —
Ty (M)°P is an algebra morphism in ZM Z in the second equality, the naturality of
the braiding d in the third equality, and the associativity of * in the last equality.

The above computation says that if the first equality in (5.3) is satisfied by two
elements of Ty (M) then it is also satisfied by their productin Ty (M). As M generates
Ty (M) as an algebra, this implies that the first equality of (5.3) is satisfied by any
z € Tg(M). In a similar manner, we can show the second equality in (5.3), so our
proof is finished. O

5.2 A quasi-Hopf algebra structure on Ty (M)

It follows now from Theorem 4.6 that Ty (M) admits also the structure of a quasi-Hopf
algebra with a projection or, equivalently, it has the structure of a biproduct quasi-Hopf
algebra. More exactly, we have the following.

Proposition 5.4 Let H be a quasi-Hopf algebra and M an object of H./\/IH Then,
the tensor algebra (Ty (M), *, 1) within & MH admits the structure of a quasi-Hopf

algebra with a projection. Its comultlplzcatlon A is given by A(h) = A(h), for all
h € H, and

A(m) = iy (m) + py(m) = mi_y®@myoy + my®m) € Tg(M)QTy (M) ,

for all m € M, extended to the whole Ty (M) as an algebra morphism from Ty (M)
to Tg(M)®TH (M), while its counit is determined by €(h) = e(h), forall h € H,
and €(m) = 0, for all m € M, extended this time to the whole Ty (M) as an algebra
morphism from Ty (M) to k. The reassociator of Ty (M) lS d=Xx (X)X2®X3 where
& = X' @ X2® X3 is the reassociator of H. An antlpode (S a, ,B)for Ty (M) can be
obtained from an antipode (S, o, B) of H as follows: @ = i(a) = «, ,3 =i(B) =P,
S(h) = S(h), forall h € H, and

g(m) = —S(m(O)(,”Pl)Ol ' m(O)(o) : PZS(m(l)),
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forallm € M, extended to the whole Ty (M) as an anti-morphism of k-algebras from
Ty (M) to itself, that is, foralln > 1 and m', ..., m" € M, we have

Sy = (=" S(mip, | pHe-miy - pPS(mly) @
Q-+ @ Smgy,_ P -migy P S(mfy)  (54)

( each tensor component over H contains a different copy of pr = p ® p = =
2
p' ®p?)

Finally, via this structure we have quasi-Hopf algebra morphisms H é Ty (M)
w

such that wi = Idy, where m = ¢ is the counit of Ty (M) in ZMZ

Proof The unital k-algebra structure on Ty (M) is given by concatenation, i.e., by *,
and 1, the unit of H. The fact that (Ty (M), *, 1, A, g, ®, S, a, B) is a quasi-Hopf
algebra is an immediate consequence of Theorems 4.4 and 5.3. O

Remarks 5.5 (i) The formula in (5.4) can be also obtained from (5.2) and (4.12), we
leave the verification of this fact to the reader.

(i) The quasi-Hopf algebra structure of Ty (M) can be deduced as well from the
following universal property of Ty (M): for any k-algebras A, A’, any k-algebra
morphismsu : H — A,v: A — A’and any H-bimodule morphism¢ : M — A
there exists a unique k-algebra morphism ¢ : Ty (M) — A’ which is H-bilinear
and such that {i = vu and ¢ j = ¢; here A, A’ are considered H-bimodules via u
vu, respectively.

Explicitly, E(h) = vu(h), forall h € H, and, for all n > 1 and ml, ... om"eM,

C(m®Hmy = ¢(m'y - c(m™).

Now, A, Z and S are uniquely determined by the following data: (A = HQH, A’ =
Tu(M)@Tg(M),u = A,v = iQ®i,{ = Ay + pm), (A = H A = ku =
Idy,v =6,¢ =0)and (A = H,A' = Ty(M)*?P, y = Idyg,v = iS, ¢ : M >
m = =S(moy_,pHa - moy - p*S(mqy) € Tr(M)PP), respectively. Note that
H® H and Ty (M)®TH (M) are viewed as H-bimodules via A, and Ty (M)°PP is the
opposite k-algebra associated to Ty (M), regarded as an H-bimodule via the actions
h sop 2 %op h' = S(h') % 2% S(h), forall h, k' € H and z € Ty (M).

Next, we want to describe, in two equivalent ways, how A acts on an element of
Ty (M). By the universal property of ®p, if A is a k-algebra and an H-bimodule,
and f1, f» : M — A are H-bimodule morphisms, then We have a well-defined H-
bimodule morphism fi - f>» : M @ gy M — A sending m! @y m? e M ®» M to
fi(m") f(m?) € A. We use this simple observation in order to see how A extends to
the whole Ty (M). Actually, we have that Ay + pyy : M — Tp(M)QTH (M) is an
H-bimodule morphism and
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Am®H"y = oy 4 par)(mY) -~ Coar + par) (m™),

foralln > 1 and m!, ..., m" € M, where, once more, the product in the right hand
side is made in the tensor product algebra Ty (M)®Ty (M) built within the category
of k-vector spaces, viewed as an H-bimodule via the monoidal structure of g Mg
given by ®. Equivalently,

Am®HYY = Oy + o) (' Qp -+ @ m"),

where, in general, by f" we denote the product - of n copies of f, an H-bimodule
morphism from M to a k-algebra that is an H-bimodule, too. Since - is not commu-
tative, we get that A restricted to M®H" is the sum of 2" distinct terms, each of them
having the form fi -... - f;, with f; € {Ay, py}, forall 1 <1 < n. For instance,
Am®H?) = (03; + At - v+ P - Ay + o) (m! @ m?)
1 2 1 2 1 2 1 2
=mp_pymi_ 1}®’" {0y ®H ’”{0} gy - mig)Qmygy - mi,

+m(0) m }®m(]) m{o} + m(o) QH m(0)®m(])m(]),

forall m!, m? e M.

A second description for A can be derived from the following result. It is a gener-
alization of [25, Lemma 7] to the quasi-Hopf setting.

Lemma 5.6 Forany M € ZMZ we have Ay - py = (Pm - Am) o dym-

Proof Form', m? € M, we compute

(P - 2m) o dy m(m' @p m?)
= pM<E<m{1 h m%())))xM(m{lo} -mg)
= (E@'m{_y) -my) - x*@x) (g _ 1}’”<1>1®’"{0} “miy,)
= E(cm{_yy-my) - x*migy  my @7 - migy - my),
= En|_y,x' - mig) - mi_y),x*miyy @mig) - x*my),
=m(_y) - E(miy),) - mi, ®mig) - mp,

= m{_y) - migy®mig) - miyy = O - oy (m' @py m?),
as needed. |

Forany 1 < k < n,let Sy, be the set of (k, n —k)-shuffles, that is the set of permuta-
tionso € S, forwhicho (1) < ---o(k)ando(k+1) < ---o(n). It can be easily seen
that giving an element o € Si ,— is equivalent to giving a subset Xy = {i1, ..., ix} of
{1, ..., n}: we can assume that the elements of Xy, are arranged in ascending order, and
thus, the one-to-one correspondence maps Xy to the permutation o given by o (1) =
i1,...,0(k) =ixand,forj > k,o(j) equalsthej‘h-elementofthe set{l, ..., n}\Xx,

ordered in ascending order. Consequently, Sk ,—x has (n

)= ﬁlk), elements.
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Following [25], Ek,n_k = ZU—]ESk ok T, where T, is defined by a reduced
expression of o as in the proof of Theorem 5.3.

Corollary 5.7 With the above notation, the comultiplication A of the quasi-Hopf alge-
bra Ty (M) is given by A(h) = A(h), forall h € H, and
n
Am®H"y = "(phy - M3 ™) 0 Binx(m®1™),
k=0
foralln > landm',....m" € M.

Proof Exactly as in the proof of [25, Proposition 6], we can show that, for any two
H-bimodule morphisms f1, f> from M to a k-algebra A that is also an H-bimodule,
we have

it )" =D (- 7 0 Brns,
k=0

provided that f> - f1 = (f1 - f2) o dy, m. Our assertion follows now by taking in the
above formula A = Ty (M)QTH (M), fi = py and fo = Ay. O

5.3 Ty(M) as a biproduct quasi-Hopf algebra

For simplicity, for M € ZMZ we denote M°H) by V. Also, by T'(V) we denote the
k-vector space @ T™(V), where TO(V) = k, T®V(V) = V, T®(V) =V ®V
n>0
and T®" =V @ T®"~D(V), forall n > 3. Since V € #YD with structure (2.28—
2.29) and ZyD is monoidal, it follows that 7 (V) is a left Yetter—Drinfeld module
over H. As ZyD is not strict monoidal, the order of the parenthesis in the definition
of T' (V) is essential for the structure of 7(V) in ZyD; the notation 7®" (V) suggests
that we deal with the tensor product of n-copies of V in ZJ)D such that all the
closing parentheses are placed on the right-handed side of the last term of ®, i.e.,
TV =VR(VR(--@(VRV)---)),as objects in ZyD. This also motivates

todenote by v/ 1" = Tl @ T?Q(-- - @ I®@v") - - - )) anelement of T®" D (V),

<«

for all I < n;in the case when [ = 0 and n > 1, in place of v"-" we simply write v" .
We next show that Ty (M)°H) and T'(V) are isomorphic objects of g)}D.

1,n

Lemma5.8 Let H be a quasi-Hopfalgebra, M € T MH, vV = M) and E = E .
Then, for any n > 2, 5;1 S (M@EM)COH) @) gjven by

— _ -
br (m®1") = E(mfy) @ my, - (E(m%O))
®m%l) . ( QR m?l_)Z . (F(m?(;l) ® ml(ll—)l DE(mn)) . )) ’
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for all m®H" e (M®HM)OWH) is an isomorphism of left Yetter—Drinfeld modules.
Consequently, if we set 51_1 = Idy and 551 : HOW) = kB 5 kf — k € k then

¢ =Pa THH©D = P BT (V) = T(V)

n>0 n>0 n>0
is an isomorphism in Zy D.

Proof Observe that §, = ¢, }w s defined by (2.32), and this justifies our notation.
By mathematical induction on n > 2, we show that

—1 I —| —1 —1
¢, =Y @by pr ) Uy ® By y yyoun2)Pa 4y yromn1-

Actually, 5,;11 = (Idy ® 5;11)$£L’M®Hn, for all n > 2, and since

¢2,M,M®H” (m®Hn+ )

= E(m()) @ m{y, - migy ®p -~ @ miy @ Em"™ ) - Smfyy,my ---mi)),

for all m®u"+1 ¢ (M®untlycotH) it follows that
E;_Il_l(meHnJrl)
=Emly) @, (mly), -m%) ®@p ---®n Em"*") - Smlyy m2) - -ml))
= E(mgo)) ® <E(m21)(1,1) 'm%(),O)) ® mél)(l,Z)m%O,l) . (E(m?O,O)) ® m?o’l).
( <+ (E(mfy g) @ miy 1y > E(E@" ™) - S(myy,my - miy)) -+ >))
= E(mg) ®m(y, - (F(m%m) ®m) - ( - @mly!

(Eniy) @ my, = Eon™™) - )

. . . —1
for all m®un+1 ¢ (M@unthycol) " aq required. It is clear at this moment that ¢,
is an isomorphism in ZyD, for all n > 2. Note that its inverse, denoted by ¢,,, is
determined by

60" =g'x} 0" S22 @ - @m gty v S(@y)y? @m vt SG3 -y,

for all v € T™(V), where each tensor component contains a distinct copy of gg =
q1®611 - ... =q1_®q2;also,<b*1 =x'x2®x3 =m:y1 ®y2®y3appears
in the definition of ¢,, for (n — 1)-times. O
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Ty (M) is a Hopf algebra in the braided category ZyD, and this induces a
Hopf algebra structure on 7' (V') within ZyD as follows.

The comultiplication A of H is not coassociative, and this forces to introduce the
notation Ayy = A, A3y = (Idy ® A)A and, in general, A,y = (Idy ® A,_1)) A, for
alln > 3.If h € H and n > 2, we denote

An)(h):Zhl®"-®/’ln=h]®h(2’1)®-~-®h(2 2
ey 2,

n—2 n—2

®h

Proposition 5.9 In the hypothesis of Lemma 5.8, we have that T (V) is a Hopf algebra
in ZyD via the following structure. The multiplication, denoted by ©, is given by

Ul o) v2 — vl ® U2, Ul ® v2,n+1 — U"+1,
V"ol =xle ' @ (Y IXF s ¥ (-
IVARRED Y CAPE S i
(2% Y2 ,X2 b1 @273 Y3X3 e Ty ),

P

V@t — xl oyl g (YIX% e O N VA YI%1—3X12n—2 >l

S VARS yl%l_zxfn_l s @ Z3 . yIX3 Ly tmEnyy oy,

forallm,n > 2 and vl ., vt € V) and the unit equals the unit of the field k.
The comultiplication A and the counit ¢ are defined, for all k € k and v € V, by

Ak) =k®1 =1Q«k and A(v) =vQ1 + 1Qv,

and, respectively, by (k) = k and ¢(v) = 0, extended to the whole T (V) as algebra
morphisms in ZyD. As before ® stands for the tensor product over k between T (V)
and itself.

The antipode S of T (V) is determined by S(k) = k and S(v) = —v, forallk € k
andv €V, extended as an anti-morphism oj_calgebras in ;’;yD between T (V) and
itself.

Proof We show that the structure in the statement is the unique Hopf algebra structure

on T (V) within ZyD that turns 5_1 s Ty (M) — T(V) into a braided Hopf
algebra isomorphism. In this sense, the multiplication © is given by

52,TH (M), Ty (M)
—

O:T(V)®T(V) = T (M) Ty (M)

7!

99 Ty 2, vy,

(T (M)® Ty (M)

where % is_the multiplication on Ty (M) and G is the functor defined in Proposition 2.1.
We have ¢; = Idy, and therefore viovE =v! @v?, forallv!, v? e V.

@ Springer



Journal of Algebraic Combinatorics (2020) 52:405-453 433

For a generic v € V, let us denote w ® x3 = qlx} SV - S(qzle))c2 ® x3. Then,
since E (vi0)) ® vy = p' > v ® p?, forall v € V, we have

Ew) ® way @ x* = (¢'x))1 > E(ve) ® (¢'x])2v1)S(g*xh)x?* @ x°
= (¢'xD1p' 2 v ® (g'x])2p?S(¢Px))x* @ x°
= qllplx1 >v®q21p2S(q2)x2 ol =x'vvex?®@x’

This fact allows to compute

U'; @ Um+;n+n

771 J—

= Gpn 9D 74 (M), TH (M) (¢'x] - v' - S(gPx))x?
®u - @u gyl - v S(qPy)y?
@uv™ - Sy ® Qe vt s(Q% P en -
®HQlt11 . vm+n—l . S(tazl)tz Qu vm—H’l . S(Z3 . [3))
—1 _

=@ pin (qlu} w' @ uwr @y - @y w" T @y v™ - S(qzuéx3 ey
®me+l ®H . ®H wm+n71 ®H varn . S(M3Z3 . .t3))

= aju(y,y > E(wig) ® @ufy g)2w(y - (Ewiy) @ wiy - (- @ w(j " - (E(vp) @
v:’f)S(qzu%f . y3)u2 . (E(wr(rési-l) ® wf’ﬁH . ( ® w?;i-n—Z . (E(w%;_n_l)
Qu(i" B EQ" - S@ - 1)) )) )

—glx v @@ 0 e @y (@G T @22 (p s ™
@p*S(@2x3y? - 2 " @ W@ (- @ (T @ vy ))))) <)),

2

for all m,n > 2 and v!,...,v"t" € V. Now, to get the formula claimed in the
statement we must apply (2.19) and (2.1) until we are able to use (2.17). We illustrate
this way of computation with few examples: for all v!, ..., v> € V we have

' ®12) 0 ¥ ®v?
=qix' 20" @ (@267 (p' 207 ® p*S(g°xY) - (¥ @)
=gix' 00! @ (gh1) 1P > v ® 4h 013 PP S(@2 ) - (P @ vh)
(2.19;(2.1)}(1(6111]91)1 sl ® (Xz(qllpl)2 b1l ® X3q2]p25(q2) L3 @ o)
(227)X1 vl @ (X2 QX (v3 ® v4)),

and similarly

v3 @(v4®v5)

=glx' vt @ (g2 ' e P @y (p' e 0P @ pPS(gRyY) - (v @ vY)))
(2191(21) 1.1 1
= g x >v

®(qy - (V' @iphie v’ @ (P2 pae v’ @ Y p?Sgis®) - (v* @ v°))

@ Springer



434 Journal of Algebraic Combinatorics (2020) 52:405-453

2.19),2.1)
2D ¥ gl phi s (V' X2l phae v @ (V2 X3(g) pHs

Y’ X’q) p*S(g?) - ! ® 1))

CAD ¥, ' x2 e @ (X2 0 Y3XP - (v @ %)),

In a manner similar to the one above we can show the remaining two relations related
to the definition of ©®, we leave the verification of this fact to thi reade& _
As ¢o(k) = kB, forallk € k, we getk Ok’ = kk’ andk O v" =v" Ok =«kv",
forall«, x’ € kand v',...,v" € V.In particular, we deduce that © is unital with
unit given by the unit of k. This completes the algebra structure of 7 (V) in ,’ij.
The coalgebra structure (A, g) of T(V) in g))D is obtained from the one of

—1
T (M)°H) as follows: € : T(V) N Ty (M)tH) 99 yeoan o, k and
) o B -
AT L e ® G an@Ty (M)

—1_—1
co(H) ®
Tu M= DTy, (=@ * 2L 1)eT(V).

—1
2.1y (M) Ty (M)
—>

Explicitly, ¢ and A are algebra morphisms in Z))D, completely determined by £(«) =
e =0,A) = k(@ @ )(BP) = xk®] = 1@k and

AW) = @' 8% NEe)®E#wa)) + Ex(DRE®))

=@ '®p Hwes + pRV)
=v®l + 1Qv,

for all «k € k and v € V. In general, for all n > 2 and vl, ... 0" € V we have

g(vg) =0and

A@") = A@HAE)-- A HAW") ),

where in the right hand side the product is made in the tensor product algebra
T(V)®T (V) within Y D.

Finally, the formula for the antipode S follows from the equality S = ¢ ' G(S)g.
Note only that it extends to the whole T (T/) as an anti-morphism of al_gebras in ZyD;
thus, the braiding ¢ of ZJ}D plays an important role in this case. O

Remark 5.10 Any object V of g YD is the set of right coinvariants of a certain M €
ZMZ Thus, the braided tensor Hopf algebra construction 7' (V') makes sense for any
Ve ZyD: the structure is the one in Proposition 5.9, of course wth the left adjoint
H-action > replaced by the given left H-action, say -, on V.

By the above results, we get the following.
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Theorem 5.11 Let H be a quasi-Hopf algebra, M € ZMZ and V = M) Then,
Ty (M) is isomorphic to the biproduct quasi-Hopf algebra T (V) x H.

Proof We know that 5_1 :Tg(M )m — T (V) is an isomorphism of Hopf alge-
bras in 2 YD, and therefore o ' x1dy : Ty(M)®® x H - T(V) x H is an
isomorphism of quasi-Hopf algebras. But V;; oy - TH M) - Tp(M )W x H
is a quasi-Hopf algebra isomorphism as well, and from here we conclude that
r .= (a_l X IdH)V;;(M) : Tg(M) — T(V) x H is a quasi-Hopf algebra iso-
morphism. More precisely, I'(h) =1 x h, I'(m) = E(m(y)) % m() and

L(m®1") = E(m ) ® (m{q 1, - (E(mg o) @ my q - (-

-2 - —1 —1 — 1
®mig 1y - (E(mig ) ® m & E(mig)) -+ ) X myy - - miy),

forallh e H,m e M, andf > 2andm1,...,m” € M. The inverse of T" is '~}
givenby 'z x h) = ¢' - ¢(2) - S(¢g*)h, forallz € T(V)and h € H. O

6 An example

Denote by C,, the cyclic group of order n > 2, assume that k contains a primitive root
of unity q of order n? and take ¢ := ¢, a primitive root of unity in k of order n (in
particular, n # 0 in k). If g is a generator of C,, then, forany 0 < j <n — 1,

n—1

1 P
1= oY gt

i=0

is an idempotent of the group algebra k[C,]. Furthermore, g1; = q’1 j»and so g1 ji=
qulj, forall0 </, j <n — 1. This implies 1;1; = §;;j1;,forall0 <[, j <n —1,
and Z’;;(l) 1; =1, the identity element of C,,.

For a rational number r, denote by [r] the integer part of r. According to [12,
Lemma 3.4] or [4, Proposition 5.1], we know that

n—1 T
= Z ql[JTH]li®lj®11 6.1)

i,j,1=0

~

is a non-trivial normalized 3-cocycle on C, (in the Harrison cohomology, we refer to
[4] for more details). Thus, we can endow k[C,, ] with a quasi-Hopf algebra structure as
follows: the algebra structure is that of the group algebra k[C},], the coalgebra structure
is given by

A(g') =g ®g’ and £(g") =1,
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forall 1 <s < n — 1, the reassociator is ® as above, and the antipode is determined
by S(g¥) = g"*, forall 0 < s < n — 1, and distinguished elements &« = g~ ! and
B = 1. Otherwise stated, the fact that k[C, ] is a commutative algebra allows to view
the Hopf group algebra k[C, ] as a quasi-Hopf algebra with reassociator ®. We will
denote this quasi-Hopf algebra structure on k[C,,] by k¢ [C,].

Let now V be a k-vector space. We equip V with a left Yetter—Drinfeld module
structure over kq;[C ], and then, we construct a Hopf algebra 7' (V) in the braided
category k“’{g YD. Thus, T(V) x ke[Cy] is a quasi-Hopf algebra with projection,
and our goal is to compute explicitly this quasi-Hopf algebra structure.

Lemma 6.1 With the above notation, V is a left ke[C,]-Yetter—Drinfeld module via
the structure given, for all v € V, by

gv=g'v, YVO<s<n—1land Ay :V3v—~> KQv €kolC,]®V,

n—1 i

where K ==Y q/1; = Zq%
j=0 j=0

Proof Forany 0 < j,l <n — 1, we have

n—1
AK)YA;®1) =D qi A1 ® 1)
s=0

1 n—1
P Z q("_s)”rﬁgllj ®g’11
5,i=0

ity Ll Sel L ifjl<n
- qg Zq(j-i-[—s)l 1] ® ll — qj+] . I > J
n= i=0 1,1, ifj+1=n.

N

We use this equality together with 1 ;-v = L S5 g =Digh .y = Lozt g n=j+ iy,
=4j v, forall0 < j <n—1andv € V, to compute that

X't o Ve X2t v, Y e xt - (v vy

nolori
=3 q[T]lellj ® X*K>1; ® X - v

=0
3 AT e X e X
JjHl<n
+ 3 AT X e X e X0
JjH=n
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= Z CI%H[%]lj@lz@v—i- Z q%ﬂ[T]lj@ll@v
JjHl<n JjHi=n

n—l oy .[1 1]
" 1] ® ll ® Uv
j,1=0
for all v € V. Likewise, since 1; K = q% 1;,forall 0 <i <n — 1, we see that

X' ® (X7 oD X ® (X7 - vpoppo) = X'K © (X2 0)-X° @ (X7 - )

Ay
/[ " ]le®U|71]1[®U[O]

Il

I
n]+"1j®1<11®v

Il

Jtl
]+ " 1j®1l®v’

Il

forall v € V, and this shows (2.22). The Yetter—Drinfeld condition in (2.23) is satisfied
by our structure since k¢[C,] is a commutative algebra. Finally, as ¢(1;) = §; o, for
all0 < j <n — 1, we deduce that ¢(K) = 1, and this finishes our proof. O

We start to describe the braided Hopf algebra structure of 7 (V') by computing its

algebra structure in ’;g{gg}y D. For this, we need first a lemma.

Lemma 6.2 For any m > 2, we have

(Idke[c,1 ® Amy & Idig(c, )P

n—1

-y 4l

i»jl,nnjmal:O

J1+tim+H :I_l- |: J1ttim
n

" ]1i®1j1®"'®1jm®11-

Proof We prove the formula by mathematical induction on m > 2. To this end, for
any natural number p we denote by p’ the remainder of the division of p by n, that is
p=[£]n+ p. Consequently, [%] = [”TH] — [£], for any natural numbers p, /.

We have g° = g1 = ZZ;(I) g1, = ZZ;(l) q®1,, forall0 < s < n —1, and
therefore

—1 ; —1 .
ani[%]A(lj) _ % nz qi[%]ﬂn—j)sgs ® g
Jj=0 j.s=0
! S l[ji[] S (”—1 (a+b—j )
O g 1@ 1
nlgo a,bZ:O g ‘
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S v e ¥ A e,
j=0 \a+b=j a+b=n+j
n—1 |:(11+12)+1]

= Z ’ l;®1j
J1.j2=0

n—1 S L
;[ Attt [ it
q[ A ]1j1®1j2
J1.2=0
forall 0 < i,/ < n — 1, proving the equality in the statement for m = 2. Using the
mathematical induction and a computation similar to the one above, we get that

(Idreic) @ Apr1y @ Idgg(c, ) P

n—1 FietimH [ i
Z q:[/w - +1]_,[/1+n+/ ]li Bl @ ol ©Al)® 1
i j1senes s 1=0

n—1

= Y L®lel,
L j1yeees jm—1,1=0

Z JU I ) e

Jm=0
n—1 l.[j1+---+jm_1+</m+jm+1>’+l} [m “+im— l+(]m+]m+|)i|
q 1

z : n n

i j1sees Jm+1,1=0
®1]1 -.-®1jn1+l ® ll
n—l i[j1+---+jm+1+l}7i[j|+---+jm+1 ]
= > gt el e, 81
ivjl:--wl.erl’l:O

i

as needed. m]
We can describe now the monoidal algebra structure of 7 (V).

Proposition 6.3 Let V be the left keo[C,l-Yetter—Drinfeld module defined in
Lemma 6.1. Then, T(V) is a left ke[C,]-Yetter—Drinfeld module via the structure
given by

«— «— <—

gS-KZK, gs.vmzqsmvm "M |_>g[ ]Km®v Km+n[%]®vn€1’

)

forallO<s<n—1K€km>1andv L,ume V.
Furthermore, T(V) is an algebra in ,f{cn}yD via the multiplication © determined

by
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«— «— «— . «—
Vot = vl @2, vl @2t =yl gm gl o q[;]vmﬂ’
— _ / - ’
« -+ [M]_m my] <= m[m +p ]+ [M+p —
NG Um-l—l,m—i—p — q( p) n [n]vm-‘rp =gq n Pl ™ L P’
forallm, p >2andv',... v"TP €V, and is unital with unit equals the unit of k.

Proof We specialize the structure in Proposition 5.9 for H = k¢[C,] and V as in
Lemma 6.1. As any element of C,, is grouplike, it follows from the monoidal structure
on ke(c,]M that T'(V) is a left ke [C,]-module via the action - defined above.

We prove the formula concerning the left k¢ [C,,]-coaction on 7' (V) by mathemat-
ical induction on m > 1. Let us start by noting that, forallm > 2and 1 </ <n —1,
we have

“— <«

1™ =8 ™. (6.2)

For m = 1, we recover the formula for the left k¢ [C,,]-coaction on V. If we assume
that it is true for m > 1 and for any m elements of V, then it is also true for any m + 1
elements v!, -, v"T! € V, since, by (2.24) and the fact that 1; - v = §; jv, for all
0<j<n-—1landv eV, wehave

”’+1 — Z [ ]X HCARE T TRl S PR e TP
j. =0

(X% - (x! - vy @ X3 - (1 - v )

I4+m”

(6 2)2 |: n ]Xl(xl . Ul)[_l]ng[%]Kmll ® (X2 . (Xl . Ul)[o] ® X3X3 . v2,m+l)

n—1 —
(";) Zg[%]Km-l—lell ® (X2 X Ul ® X3 . UZ,m-H)
=0

n—1 ,

=3 Ll g, g o

m+1

(x2) [%]-ﬁ-["”:—l}Km-;-] ® vm+l g[ + ]Km-H ® Umtl’

Jj+

as required. In (1), we used that o1l = 27,11 04 l[ " ]li ®1; ®1;, and in (x7)
the facts that g%1; = qlall, for alla e Nand0 <! <n—1, and 27;0] 1, =1. We
have also that K¢ = >}~ 01 qnr 11, forall a € N, and therefore K" = )"} _0 q'1 =g.
This implies g? K? = K™% for all a, b € N, proving the second formula for the left
ko[Cp]-coaction on T (V) clalmed in the statement.

Now, the first two relations defining © follow directly from the definition of ©,
while the third one can be derived from 1; - v = §; v, forall 0 < j <n — 1 and
v € V, and the formula in Lemma 6.2 as follows:
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Vot — l~v1®(Y1X2~v2®( VAR 23S Ay

®(ZZ 2X Um®ZS"'Y3X3'vm+1))"'))

m-1"~

_ q[%]’[mnl]vl®(yl v2®(T1Y2 3
®C@ (2" T gV g "
R(Z% - T2 Y2 5" ®Z3---T3Y3~v’"+1))---))
_ q[%]_[?]‘k mnl] [mnz]v ®(v ®(Tl U ® (-
(z‘ T2 T @ (22 TR e 2 -T3-v’”+‘))---))
_ R R R e [%H%]
v! ®(v ®(-@W" 2R (Z VT e (ZP v ®Z "))
_ Byt

The proof of the fourth relation involving © is quite technical. Note that (6.2) implies

U;E o) Um—i-f,—m+p
_Xl'vl®(Y1X2‘U2®( ®(zl 3X n—l
CIVAREED CP CARRE L
®73 ---Y3X3 "R WM R (@ TP @™t L)) )
-1 m— — m— — i
B SIS nt i R SR RN
I,..., lp—2=0
Ul ® (U2 (- ® (vm—2 ® (Zl . vm—l ® (Z2 -
®Z3llm_2 . lll . <vm+1
QW' R (- @ TP gumtr). .. )))))) )
L e )
®(U2 ® ( .. ® (Um—2 ® (Zl . vm—l
VAR WAR (um“ QWP (@ Iyt .. )))))) )

_ LR e ) L,

This leads to the first formula for the © mentioned above, since

[1]+...+[g]:(1+2+...+[g]_DHWH)[;]

B R H AR
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for any nonzero natural number a, and therefore

[p’:l]:,..Jr[%}l

-1 }*"*[%}—(ml—n[f] |
SR (e B0
o 2] - o[

Y]

and

[ e BB 05 - ]
=n[1-EIET)3

The second formula involving the product v @ v +1-"+7 follows from the first one

and the fact that
—1
a<[f]—[“ :|>50m0dn,VaeN. (6.3)
n n

So our proof is finished. O

Next, we complete the algebra structure on 7 (V) up to a braided Hopf algebra one,
making the coalgebra structure of it explicit in terms of the braid group action. Recall
that for 1 </ <m — 1 by S ,,—; we denoted the set of (I, m — [)-shuffles. We extend
this notation to 0 < [/ < m, by defining So,» = {e} = Sm.0, where e is the identity
permutation of S,,. In what follows, by S,, we understand the symmetric group of
{2, ..., m 4+ 1}. Finally, the length of a permutation o € S; ,,—; is the length of any
reduced expression for ¢ in terms of the generators s; = (I,[ +1),1 <l <m — 1.
We will denote it by r(o); by convention, r(e) = 0.

Proposition 6.4 The algebra T (V) in *[¢"\V D built in Proposition 6.3 admits a Hopf

algebra structure in the braided category ; ko [C”]yD The coalgebra structure is defined

by the comultiplication A, A(k) = kQ1 = 1®K forall k € k, and

ool ]

R S (B

1=0 6=1eS) 1y

vU(l) ® ( .. ® (UU(I—I) ® vo(l)) .. )®v0(1+1) ® ( .. ® (vo(m—l) ® va(m)) . )’
(6.4)
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forallm > 1andv', ... v" € V (if a component of the ® monomial does not make
sense then it is equal to the unit of k), and counit ¢ determined by (k) = «k, for all
Kekandg(' ® (- @™ @v")--)) =0, forallm > 1andv',...,v" € V.

The antipode S of T (V) is completely determined by S(k) = «, for all k € k, and

m m me=h g, 2 1
SN =ED"g 7 V"R @ ®v) ), (6.5)

forallm > landv',...,v" € V.

Proof We specialize Proposition 5.9 for H = k¢[C,] and V as in Lemma 6.1. The
defining relations for £ are immediate, as well as that for A restricted to k. We prove
now by mathematical 1nduct10n onm > 1that A restrlcted to T7®™ (V) has the form
stated in (6.4). For m = 1, this reduces to A(v) = v®1 + IQu, forall v € V,
which is just the definition of A restricted to V. To see that m implies m + 1, we

proceed as follows. Firstly, from (3.4) and K - (0> @ (--- @ (™ ® v"t1)...)) =

g ® (@@ @umty..) forallm > 1and v2, ..., v € V, we get that
CT(V),T(V)(UI@Uz’erl) — q n U2 m+1®v
for all m > 1 and vl, ..., v"™ € V. Secondly, by the definition of ® and the above

formula for ¢ we deduce that

m

- - o] [ ep" ]y m
(1@v1)(v2,m+1@Um+2,m+p+l) — qm[ n ] |: ]JF 2m+1®(v ® Um+2 m+p+1)

[ o 5 X
n vm+ ®vm+ ,m+p+ ,

(vl@I)(v2,m+1@vm+2,m+p+l) — q

forallm, p > landv!, ..., v"*? € V. Once more, the product is made in the tensor

product algebra T'( V)®T(V) built within the braided category k‘P[C"]y D

Now we use that A is an algebra morphism in ﬁg{g:]yz) and the mathematical

induction to compute that
A" = AEHAE™

R e

=0 a*leS,,m,l

<v0(2) (- ® D @ulHD) . gy +2

](v ®1+18v')

®( .. ® (vo(m) ® vo(m+1)) . ))

3y el

=0 0-1eS) m

vl ® (UU(Z) R(® (va(l) ® va(l+1)) o ))@UG(H_Z)

]7[1/+(n1fl)/ ]
n
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R ® (va(m) ® Utr(erl)) S

m rie~H+t! -1 m—1 m—1 U'+m=1)’ [ 14m=1)’
+ Z Z qurl[T}*m[ 7 ]+m[ 7 H n }H[ n ]

=0 O_IGS],,,,,[

vd(z) ® ( .. ® (va’(l) ® U(T(l+1)) .. _)@vl ® (UU(I-'FZ)

®( .. ® (vo(m) ® Ua(erl)) - ))

So we have two double sums, each of them having 2" summands. Now, for the first
double sum we can write its general term under the form

gF1 D @ (. @ O @ v+ L ut (4D @ (.. g (10D @ 1 Dy ),
1 2 - m+l

lo ') o7 tm+1
r(al_l) =r(c~ 1. Also,

E r(e™hH +l|:l—1]_m[m—li|+m|:m—l:|_|:l’+(m—l)/]
= n n n n n
-1
_ @ )+l[1_1]+[£}—m[m—_l]—[ﬂ]ﬂmjtl)[m—_l]
n n n n n n

r(al_l) m
n

[ m—1
—+(1+1>H—(m+1)[ ]+(m+1)[—} (mod 1),
n n n

where 61_1 = < ) It is clear that 01_1 € Si+1,m—1 with

where the congruence modulo 7 is due to (6.3).
Analogously, we can write a summand of the second double sum under the general
form

qEzvﬁz(l) R(-® (Utfz(l—]) ® Utfz([)) .. ,)®vr72(1+1) RC--® (vrfz(m) ® UUz(m+1)) S,

r - l I+1 I4+2 - m+1
o '@ oA+ 1 o7 +2) o m+ 1)) € Stm 1t
By [17, Lemma 4.7], forw € S, and 1 <[ <n — 1 we have r(ws;) = r(w) + 1 if
and only if w(l) < w(l + 1). By using inductively this result and the fact that

. -1 _
witho, " =

(12 e ml cs
% 1o71Q) - o~ m—4 1)) 8177750 S Omtt

we get that r (o, Y =r@ Y+ and consequently, a reduced expression for o, !

can be obtained by multiplying to the right a reduced expression for ¢~ with 57 - - - 5;
in S,,41. Hence, we have that

—1 ’ _ _ —
i e
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_ [1'+(m—1)’]+l/[1+(m—l)’]
n n
_ r(a—1)+1+l[1—1]_m[m—1]
n n n
+(m—z+1)[m—_l]—[f]+l[’"——l+l] (mod n)
n n n

_1
Er(az )+l|:l—1i|_(m+1)[ﬂi|+(m+1)|:m_—l+]:| (mod n).
n n n n

Otherwise stated, we have proved that all the summands of the two double sums
considered above are also summands of the double sum

m+1

reh [ 5] one D[ ] nrn [ 25 ]
Z Z q n + n n n
=0 g-1 ESl.mflJrl

D g (@ (D @ D). @) g (. @ (P @ DY Ly,

which means that the latter double sum contains the two mentioned double sums.
Actually, it is the sum of the two because in both cases we have 2”1 summands. This
completes the induction.

Finally, by definition S(kx) = «, for all k € k. We have S(v) = —v, forallv € V,
and

é(vm-‘rl) — _q%g(vz,m-‘rl) o Ul,
forallm > 1and v!, ..., v"™*! € V. Thus, the formula in (6.5) is a consequence of
the mathematical induction and of the explicit definition of ® in the statement. O

By using the biproduct quasi-Hopf algebra construction, to the triple (V, C,, q) we
associate a quasi-Hopf algebra with projection H (n, q, V) := T(V) x ke[C,], where
g = q" and @ is as in (6.1). We next describe this structure.

azl . a ,ifk=1
Recall that, for «k € k\{0} and a € N\{0}, (@)x := > k) =1 a_y . .
= Jifk #£1

Kk—1

" ='W QC-- @@ '®@v") ) thenv" =" @ V" 'Q (- ®
(> ® v!)--+)). Also, the Heaviside symbol [i > j] stands for the integer 1if i > j
and for O otherwise.

Theorem 6.5 Let k be a field containing a primitive root of unity q of degree n>, n > 2,
V a k-vector space and C,, the cyclic group of order n generated by g. If ¢ = (" then
the quasi-Hopf algebra structure of H(n,q, V) = T(V) X ke[C,] is the following.

The multiplication is given by
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m+p’ m'+p’
e[

(vm X gS)(Um+l,m+p X gl) — qp(s+|:
_ -1
m(:p p/ P/ —m s+t 1—61 " / N\ i s+t
e e e A I +TZ(1—(p+1)ql)g :
i=1

«—

forallm,p e Nand 0 < s,t < n — 1, where, by convention, v° = 1, the unit of k.

It is unital with unit 1 x 1.
The comultiplication A is completely determined by

o g

m—1 =1 m
- ]iqz[T}HmJ)[ -
=0 J’IES]Ym,I

AG7 x g =g 7"l

n—1
(mfl)s_"_(l_,’_s) m—Il+t
q n |: n ]
s,t=0
getIEE e W g (@ (7D @7 ®) ) x 1,
@@ (@@ " eu ™). x 1,

and is counital with counit given by g(v x gl) = S, ov ‘L forallm € N, j €

0,....n—1}andv',... V" € V.
The antipode s is defined, for all vl v eVandO<l<n—1, by

n—1
s x g ) =(-D"qg~ (m+1)_ml mT x <Zq [2]-2—i(+[i>n—m )1)

i=0

The distinguished elements o and B that together with s define the antipode of
H(n,q,V)arel x g~" and 1 x 1, respectively.

Proof We have

(1j)1 . vm+1,m+p x (lj)zll Z (n— ])z i _Um+l,m+p % gill

—1
— l q(n J)i+pi+i m+1 m+p x 1;
n =0

1,
= 8/»(P+l)/vm+ ",

and therefore

«—

@™ X 1)@ TP 1) = (™) © (1)1 TP s 3 (1)a 1

=8 (papy (x' V") © (2 WP 13
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7m’[p/+l] m m+17+
=8 pryqg LT VT OV

= 5j,(p+1)’qm[#]+p[#]im[%}Um?p x 1.

From here, we get

(U;; % gs)(vzn—FI,TrL-FP x gf) — qb‘j‘Hl(vn(; x lj)(vm+f7"+P x 1;)
j1=0
= E‘IWHD’HHM[#}r [#]ﬂ"[ﬂnﬂ]vm(:p x 1y
=0
_ qp(v«k[mtp ])+m[ P ]vm‘:p y (Sqm[')/nﬂ] ll) g~x+t7
=0
and since
n—1 , n—p'—1 n—1
Zq_ [ﬁnﬂ]ll: Z I +q™ 1
=0 =0 l=n—p’
| _m n—1 [n=p'—1
=C]7m1+ q Z (ql)n*l gl
i=0 1=0

we conclude that

«—

(vm X gS)(Um+1,m+p X gt)

D i (1224 2 ) g

n n

m

—1
1-q~ i+
+ T Z (1 _ (p/ + 1)qi)gl+v+t) ,

i=1

as stated. For the computation of A(v"™" x g*), we proceed in a similar manner. First,
we use (4.13) to calculate

A" x 1;)
m

-1
B R R e
o leS mo

]ylxl
1=0
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WD) gu®y.. .y
xy? Pt x? 7T @ (@ D @ v ™) ) et X (1))
@y?yz . (xlxz . (vU(I-'rl) ® (‘ ® (vo(m—l) ® vU(l‘Vl)) L )))[0]
xy3 Y33 X3(15)2
m n—1 —1 .
r(c™") -1 m—1 m—1 m—Il+i s+t
_ Z Z Z qTH[T]—’”[T]“’"—”[T]H[%]—(’”—’)[%]
1=0 6-1€8) s 5:1=0
YV @ @ ?). )
)y P 7 @ (@ D @7 M) )yl
@y Y2 @ (@ TN @ v ™)) g x y3 Y1 (1)2
m
=0 U_IES[JVI#
W(Uil) -1 m—1 m—I m—I+s s
Z g " —H[T]—m[ - ]—}—(m—l)[T]—H[i,:r +’]—m[%]

{0<s,t<n—1|(s+t)'=i}

_ m=l
V@D @@ @D @y D))y x YK l+n[ - ]15
@Y @ (@ T @u7 ™)) x 33V,
=~ w_;’_l =1 —m m—1 +(m—1I) m=l 45 m—Il+t
=2 2 > g e 2 o0 [ [ 25
1=0 g=1eS) s {0=s,t<n—1|(s+1)'=i}

([ mts ] rst _
I o0 g (o (00D @00 D) ) x 421,

&yt @ (@ W @7 ™). ) x 31,
= r(a_l) =1 m—1 m—I
] el e e RGO e
=y 5 Sl o]
=0 6=1eS) 1y
(m=Ds m—I+t
St U+s) | e
> q o]
{0<s,1<n—1|(s+1)'=i}
q—m[snj]va(l) RC--® (Ua(l—l) ® va([)) %,
"V @ (@@ "D @uT ™)) x 1,

This leads to the claimed formula for A(v’; x g/) since g/ = Z?:_ol q'1;.

So it remains to prove the formula for s. For this, notice that S(1;) = 1,,_;, for all
0 <1 < n—1, where by convention 1,, = 1. Therefore, the element pg in ko[C,]1®2
is
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n—1

_i| i
=3 o e,
i,j. =0
n—1 ) n—1
=1® 1o+ (Zq"h) ® (Z 1n—l>
i=0 =1
=101p+¢ ' @A -10)=101i+g '®1—-g ' ® I,
where in the last but one equality we used the fact that g Z” ! _i 1; =1inke[Cy].
Thus,

lp%®X2 1®X3 2

=X'oX’X 0+ X'¢'ex’s lex? - x's e X% @ X1
n—1 |:]+l:| -

=101®10+ Y ¢ L®1el-g'ee !l
i,j,[=0

Remark also that K is invertible with inverse K ~! = Z":(l) g1 j» and this allows

to prove that K¢ = Z —0 q“f 1;, for any integer number a. Hence, for a € Z and

vl eV,

n— n—1
aj a(n—i) _
SKD =) g" lnj=lo+y g = li=lo+q"(K™* ~1o)
= —-qM1o+q"K™,

(U KD" x 1) = 3 ¢“ % 10" x 151 — 4" % 1,

i.j=0
Finally, form € Nand j € {0, ..., n — 1} the equation (m’ 4 t)’ = j has a unique
solutionin {0, ..., n — 1}. Namely, if j € {0, ...,m’ — 1} thent =n + j —m’, and
ifje{m,...,n+m’ — 1} thenr = j —m’. By using all these facts and the formula

for the antipode s of a biproduct quasi-Hopf algebra found in Corollary 4.5, we get
that
s x gh)
= (1 x Sk ghg ™) (s ™) x 10)
— (1 x Sg k™l lghg (g S™) x 1o)
n—1 l|:]+t] i ] m «
+ > g (1 x S K™ ghe=h ;- s@™) x 1)

i,j,1=0

(m

(1 x (1= g™1g+ 1 x g" K=l 1=n@+0y e o 1)
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+(=DmHg" (1 x (1 — g™ 1o+ 1 x gm K LE]=nDy =" yme x 10)

R 1, ) x 1)

i,t=0

— (_1)mqm(rg;l) (qml x K*ﬂ’l*n[%]*n(l“r]) —1x K*Wl*l’l[%]*ﬂl) (vnz X 10)

n—1
+(=1)"g (Zq (1 x 1) (0" x 1)
t=0
n—1n—1 e i -
+ 33 IEEE A < ) x 1)
j=11=0

m(m—1) <~
= (_1)mq n "™ x Li—m

n—1
(m—1) T 14 jm . <~
2n E E q_][ nm]_T_]lva X 1;

J=1{0<t<n—1|(m'+1)'=j}

mm mmm 1)
"Xy +(=D"g

—( 1)'"

m jm . <~
Z q ; " —j(l+1)vmz X 1,1+j—m’

m m(m—1) ﬂ 7]-1 W(l_
+(=D"g Z q n vVt X lj—m’

n—m '—1

_m(m+1l) m _im by
=(=D"g = E q —i[R]-5 ihyme 1;

mm—1)
+(=1)"g 2 mvmr X 1p—m
—1
m 77'"('”“) ml s ,i[m],m,l(1+1) i
+(=D"q E g 'tn Tx
i=n—m'+1

(m+) m im __: . ’
— (_Dm - —ml mt < (Zq o —7—1(1+[1>n—m ])11') ,

«

as stated (for the third equality we used that (1 x 19)(v" x lg) = &, 0v™ x 1lp). O

We end by specializing Theorem 6.5 for V = kv, a one dimensional vector space. In
this situation {v, };,en is abasis for 7(V), where v, (= vQ (VR (--- Q@ (VQv) --+)) €
T’”)(V); by convention vy = 1, the unit of k. It follows that {vmgl lmeN, 0<I]<
n — 1} is a basis for H(n, ¢, kv), where we identify v,, = v,, x 1and g/ = 1 x g/,
and therefore v x g/ = (v, x 1)(1 x g') = v,,g'. With these identifications in mind,
we have that
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n—1 n—1
gom= 1 x g x1) = qu<m+]) vy X 1 = qlmvm X Zglj 1
j=0 =0

=q""vm x ' =¢"vng',

forallm € Nand 0 <! < n — 1. Therefore, H (n, g, kv) is the unital associative
algebra generated by {v,, };men and g with relations

/ —
p|:»Hn~p ]+m[m :p j|

p/ p/ 1 — q_m n—1
<1 -+ ;q"”) Uiy +——— D (1= (' + D) omips’ |
=1

UnVp = (¢

(6.6)
gt =g " =1, gum=q"vmg, (6.7)

forallm e Nand0 </I,a,b <n — 1. The unitis 1 = vy.

In order to give a nicer form for the comultiplication of H (n, g, kv), we need a
preliminary result. We believe that it was proved already somewhere else, but because
we were not able to find a reference we decided to include its proof here. Recall that
(0)!q := 1and (p)lq = (Dq(2)g---(p)q is the g-factorial of p, p € N, and that

(f ) = %, with 0 < s < p, are the so-called Gauss polynomials.
q

Lemma 6.6 We have Y q' ™ = (m”il) ,forallm e Nand0 <1 < m.
q

weSLm—/
Proof For simplicity, denote A, (q, 1) := Y q’(w). As we observed, any (I, m —1)
WES] m—1
shuffle is completely determined by a subset {iy, ..., i;} of {1, ..., m}, arranged in

ascending order. Actually, any (I, m — [) shuffle is of the form

1l I4+1-- I +ig—kl+ig—k+1--- i ii+1---m
ip--oip 1 =1 iy + 1 ceefp—=1ig+1---m)’

forsome 1 <ij <--- < i} <--- < i; <m.Consequently, the inversions of it are
kil+1, ..., kl+ig—k), 1<k=<lI,

and so these are in number of i| + ---i; — l(lnLl) According to [17, Lemma 4.7], the
length of a permutation is equal to the number of its inversions, and so

1441 . .
(@D =q 23 gt

1<ij<--<ij<m

"
—q Y gt » ity
=q 2 q q
i1=1 i1+1<ir<iz<--<ij<m
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L(I+1) m
— a7 liy TR
=a ) 2 a’t

i1=1 I<ji<ja<-<ji—1=m—ij
m—I+1

Y a i, =D,
i=1

forallm € Nand 1 </ < m. This recurrence together with 1,,(q,0) = 1 and the
Pascal identity, see [16, Proposition IV.2.1],

(1),= (), e (E20),

valid for any 0 < k < n in N, allows to obtain in an inductive way the formula for
Am(q, 1) stated above. We leave this detail to the reader. O

One can present now the quasi-Hopf algebra structure of H (n, g, kv).

Corollary 6.7 Foranyn € N, n > 2 and q, a primitive root of unity of degree n> in k
denote by Hx(n, q) the k-algebra generated by {v,,}men and g with relations (6.6),
(6.7) and unit 1 = vo, where g = q"*. Then, Hx(n, q) is a quasi-Hopf algebra with
projection, via the quasi-coalgebra structure given, for allm € N, by

m—1
—m m j| m

A(vp) = Z( ) [ ] m—n[ 2t

=0
n—1
T g T [ ]
a,b,s,t=0
—sa—th a b =3
q V8" @18, €(Wm) =m0,

Alg) =g®¢g, e(g) =1,
1 n—-l1 Jtl
CD=—3 Z ql[ ]ta jb— jcg“@g ®g,
n
i,j,l,a,b,c=0

—1

and antipode s determined by s(g) = g~ and

(—l)m 7m(m+l) o ﬂ 7,-&7, . . o X
s(vy) = - q 2 Z Zq B (j+[i>n—m']) ¢/

j=0

forallm € N, and distinguished elements « = g~' and p = 1.
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Proof We have Hy(n,q) = H(n, g, kv), so everything follows from the comments
made after Theorem 6.5 and the formula in Lemma 6.6. O
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