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Abstract
Production matrices have become established as a general paradigm for calculating
the genus polynomials for linear sequences of graphs. Here we derive a formula for
the production matrix of any of the linear sequences of graphs that we call ladder-like,
where any connected graph H with two 1-valent root vertices may serve as a super-
rung throughout the ladder. Our main theorem expresses the production matrix for any
ladder-like sequence as a linear combination of two fixed 3 × 3 matrices, taken over
the ring of polynomials with integer coefficients. This leads to a formula for the genus
polynomials of the graphs in the ladder-like sequence, based on the two partial genus
polynomials of the super-rung. We give a closed formula for these genus polynomials,
for the case in which all imbeddings of the super-rung H are planar. We show that
when the super-rung H has Betti number at most one, all the genus polynomials in
the sequence are log-concave.

Keywords Linear sequences of graphs · String operations · Imbedding types · Genus
polynomials · Partial genus polynomials · Production matrices

1 Introduction

Given any graph (H , u, v) whose root vertices u and v are both 1-valent, we construct
a sequence of graphs

(LH
1 , u1, v1), (LH

2 , u2, v2), (LH
3 , u3, v3), . . . (1.1)
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recursively, as follows:

• The graph (LH
1 , u1, v1) is isomorphic to (H , u, v).

• We construct the graph (LH
n+1, un+1, vn+1) from the graph (LH

n , un, vn) and a
copy of the graph (H , u, v), in which the roots u and v are renamed un+1 and
vn+1, respectively, by joining the vertex un to the new root un+1 and joining the
vertex vn to the new root vn+1, so that the vertices un and vn (which were roots of
LH
n ) become 3-valent in LH

n+1 and the vertices un+1 and vn+1 (the roots of LH
n+1)

become 2-valent.
• Only the vertices un+1 and vn+1 are regarded as roots of LH

n+1.

We call each of the graphs LH
n a ladder-like graph with super-rung H , and we call

the sequence (1.1) a ladder-like sequence.
In Fig. 1 we see a particular such graph H and the ladder-like graph LH

4 . We have
suppressed the vertex names that are not roots and are not essential to what follows.
We represent H by a “blob with two pendant edges.”

Ladder-like sequences are a special case of linear sequences of graphs, which
are the focus of many papers since [4] gave the two initial examples and Stahl [14]
expanded the idea. The most general formulation to date is given by [1]. Here we will
concentrate only on ladder-like sequences.

The genus polynomial of a graph G is the generating function

�G(z) = g0(G) + g1(G)z + g2(G)z2 + · · ·

where gi (G) is the number of different cellular imbeddings of G in the orientable
surface Si , of genus i . We are concerned here exclusively with finite graphs, in which
case the genus polynomial is a finite polynomial. The smallest number i such that
gi (G) is nonzero is called the minimum genus of the graph, in which case we write
γmin(G) = i . The largest number j such that g j (G) is nonzero is called themaximum
genus [12], and we write γmax(G) = j .

Since calculation of the minimum genus is NP-hard [15], it follows that calculation
of the genus polynomial is at least NP-hard. By way of contrast, the maximum genus
can be calculated in polynomial time [5]. We also know that every surface whose
genus lies between the minimum genus and the maximum genus, there is at least one

H LH4

uu 4

v4v

Fig. 1 A ladder-like graph with super-rung H
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imbedding [3]. It has been conjectured [10] that the genus polynomial of every graph
is log-concave. Most of the families of graphs for which this conjecture has been
confirmed are linear sequences.

In this paper, our main result, Theorem 4.1, gives a recurrence relation for the genus
polynomial of every graph in any ladder-like sequence of graphs, based on the two
partial genus polynomials for the super-rung H , no matter how high the degrees of
these two polynomials. For the case in which γmax(H) = 0, we derive conditions on H
under which every graph in the corresponding ladder-like sequence has a log-concave
genus polynomial.

Partial genus polynomials are developed in full generality in [8]. General back-
ground in topological graph theory is provided by [9]. We denote the valence of a
vertex v in the graph G by valG(v) or val(v).

2 Imbedding types for graphs

When the graph G has one or more root vertices, the imbeddings of G are partitioned
into imbedding types (abbreviated as i-types), according to the incidence of face-
boundary walks (abbr. fb-walks) at a designated set of root vertices. An i-type is
denoted by a string of cyclic sequences, such that for each fb-walk that is incident
on any of the root vertices, the i-type includes a cyclic string that lists the incidences
of (designated) roots in the order in which they occur in an orientation-respecting
traversal. This fully general system of notation for i-types was introduced in [8],
which refined the earlier notational system of [7].

The i-types for a rooted graph (G, v1, v2, . . . , vr ) follow two rules, both of which
are self-evident from the definitions:

(1) Each i-type partitions the multi-set of occurrences of root vertices along the fb-
walks into cycles.

(2) The total number of times that a given root vertex occurs in any i-type equals its
valence.

To simplify discussion in what follows, we describe three notational conventions
established by [8], which give us a standard notation for an i-type.

(1) When representing an fb-walk by a cycle, we choose the starting point such that
the written form of the cycle is lexicographically least.

(2) Within the sequence of cycles that represents an i-type, if j < k, then a j-cycle
precedes a k-cycle

(3) Within the sequence of cycles that represents an i-type, the cyclic strings of the
same length are ordered lexicographically.

Proposition 2.1 Each of the imbeddings of the graph (H , 0, 1) is either of i-type (0)(1)
or of i-type (01).

Proof The only possible ways to partition the multi-set {0, 1} into cycles are (0)(1)
and (01). ��
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Proposition 2.2 Using 0 for un and 1 for vn as notations for the root vertices of the
ladder-like graph LH

n , the possible i-types, for n ≥ 2 are

(00)(11), (01)(01), and (0011).

Proof For two 2-valent roots, here are the ten possible i-types, each a cyclic partition
of a multi-set of two 0’s and two 1’s.

(0)(0)(1)(1) (0)(0)(11) (0)(1)(01) (1)(1)(00) (0)(011)
(1)(001) (00)(11) (01)(01) (0011) (0101)

Since the roots 0 and 1 are both 2-valent and form a cutset, it follows, as illus-
trated in Fig. 2, that an i-type for LH

n has no 1-cycles. That eliminates the first six
cyclic partitions shown above. The i-type (0101) cannot occur, because it would rep-
resent an fb-walk that goes in the same direction twice at each of two cutpoints (i.e.,
0 and 1) instead of once each way at each cutpoint. This leaves only the i-types
(00)(11), (01)(01), and (0011). In previous papers, the following mnemonic nota-
tions were used for these three respective i-types:

ss0, dd ′′, and ss1.

��
The partitioning of the set of imbeddings into i-types leads to a partitioning of

the genus polynomial for each of the graphs into a set of partial genus polyno-
mials. The larger our designated set of roots, the great the number of i-types. A
formula for the number of i-types of any number of roots of any valences is given
by Theorem 6.3 of [8]. Tables 6.1 and 6.2 of that paper give the numbers of possible
i-types for some smaller numbers of roots and some smaller valences. Unsurprisingly,
the number of i-types grows rapidly with increasing numbers of roots or increasing
valences.

The partition of the genus polynomial is given by a column vector called the pgd-
vector (“pgd” stands for “partitioned genus distribution”) with one coordinate for each
i-type. That coordinate is a partial genus polynomial that enumerates the number of
imbeddings of that i-type in the orientable surfaces of varying genera. The coordinates

Fig. 2 Root incidences along the
fb-walks of the imbeddings of a
ladder-like graph

0

(00)(11)
1

0

(0011)

0

(01)(01)
1
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of a pgd-vector are ordered according to the lexicographic ordering of the induced
partitions for the set of i-types.

Example 2.1 Suppose that we take the “blob” in Fig. 1 to be a 2-cycle. Since H has
two 3-valent vertices and two 1-valent vertices, the total number of imbeddings of H
is (3 − 1)!(3 − 1)!(1 − 1)!(1 − 1)! = 4. Two of them are of i-type (0)(1) and two are
of i-type (01). The partial genus polynomials are

�
(0)(1)
H (z) = 2 and �

(01)
H (z) = 2.

The pgd-vector of H is

[
2
2

]
.

Example 2.2 Using the graph H of the Example 2.1 as the super-rung, the graph LH
2

has four 3-valent vertices, so there are 24 = 16 imbeddings. They partition into four
of i-type (00)(11) in S1, four of i-type (01)(01) in S0, and eight of i-type (0011) in S1.
Thus, the pgd-vector of LH

2 is

⎡
⎣4z
4
8z

⎤
⎦ .

3 Productionmatrices

In general, a linear sequence of graphs is specified by an initial graph and a topological
operation by which each graph in the sequence is transformed into the next graph. We
require that each graph in the sequence has the same number of roots of each valence.
In a ladder-like sequence, the two roots of each sequence are both 2-valent. The
production matrix MLH (z) for the ladder-like sequence LH

n is a matrix such that for
all n ≥ 2, multiplying the pgd-vector for LH

n by MLH (z) produces the pgd-vector for
LH
n+1. Each column of the production matrix represents a rule, called a production,

that describes, for each i-type of LH
n and for any given imbedding of that i-type,

the number of imbeddings of each i-type of LH
n+1 that are derivable from the given

imbedding.

Example 2.2, continued For instance, let us consider the set of imbeddings of LH
n+1

that can be derived from an imbedding of LH
n of i-type (00)(11). There are two corners

at the root un at which to attach the edgewhose other endpoint is un+1, and two corners
at vn at which to attach the edge whose other endpoint is vn+1. Since there are two
possible rotations at each of the two 3-valent vertices of the next copy of the super-
rung H , that makes a total of 24 = 16 imbeddings of LH

n+1 that are derivable from
any given imbedding of LH

n , no matter what its i-type. As is happens, four of those
imbeddings of LH

n are of i-type (00)(11), with a genus increment of one, four of i-type
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(01)(01) with no genus increment, and four of i-type (0011) with a genus increment
of one. Accordingly, we write the following production:

(01)(01) → 4z(00)(11) + 4(01)(01) + 8z(0011).

The power of the indeterminate z indicates the genus increment. For the other two
i-types, we have the following two productions:

(00)(11) → 8z(00)(11) + 8z(0011) and

(0011) → 8(01)(01) + 8z(0011).

In a number of papers on linear families of graphs, the productions have been
derived by face-tracing. A more recently invented method involving the use of string
operations is described in the next section.

If there are n i-types, then we can represent the collective action of the productions
by an n × n production matrix. For Example 2.2, with three i-types, the production
matrix is

⎡
⎣8z 4z 0
0 4 8
8z 8z 8z

⎤
⎦ .

4 General productionmatrix for ladder-like graphs

The following theorem, our main theorem, presents a pair of 3 × 3 matrices and
establishes a way to express the production matrix for any ladder-like sequence as a
linear combination of those twomatrices, such that the coefficients of the twomatrices
are the partial genus polynomials of the super-rung.

Theorem 4.1 Let (H , 0, 1) be any graph with two 1-valent root vertices. Let p(z) and
q(z) be the partial genus polynomials for H of i-types (0)(1) and (01), respectively.
Then the production matrix for the ladder-like sequence LH

1 , LH
2 , LH

3 , . . . is

MLH (z) = p(z)

⎡
⎣4z 2z 0
0 0 0
0 2z 4z

⎤
⎦ + q(z)

⎡
⎣ 0 0 0
0 2 4
4z 2z 0

⎤
⎦ . (4.1)

Proof Wegive a proofwith a completely symbolic calculation of the productionmatrix
for a sequence of ladder-like graphs, using symbolic manipulation rules first described
in [8]. An alternative proof with pictures is provided by [2].

We view the construction of LH
n+1 from LH

n as involving two edge-adding steps. In
the first step, we take an imbedding of LH

n with the three i-types

(0 0)(1 1), (01)(01), and (0 0 1 1)
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and we add the edge 00 to join the imbedding of LH
n to an imbedding of H with the

two i-types (0)(1) and (01). To complete this step, we suppress all instances of vertex
0, since it plays no further role in the construction of the graph LH

n+1.
To add an edge uv to an i-type, we have two simple string-processing rules, which

first appeared in [8], in which the symbols P and Q denote sequences of vertices that
do not include any occurrences of u or v.

Rule 1 To add edge uv within a face

(uPvQ) → (uPv)(vQu) (4.2)

Rule 2 To add edge uv between two distinct faces of a connected graph

(uP)(vQ) → z(uPuvQv) (4.3)

We have the extra z in the consequent of Rule (4.3), since adding an edge between
faces of a connected graph requires adding a handle, which increases the genus by 1.
When joining a face of an imbedded graph to a face of another imbedded graph, no
extra handle is needed

Note Whenever there are multiple occurrences of u or v in any i-types, we must
apply these rules for each pair of occurrences of u and v.

In particular, when we add the edge 00 to the i-type (0 0)(1 1)(0)(1) where u = 0
and v = 0, we use Rule (4.3), with P = 0 and Q the empty string. The vertices 0 and
0 are initially in imbeddings in different surfaces, and we omit the z, since joining an
imbedding in any given surface with a handle to an imbedding in the sphere does not
involve an increase of genus.

In the i-type (0 0)(1 1)(0)(1), there are two occurrences of 0 and one occurrence of
0. Applying Rule (4.3), we obtain the production

(0 0)(1 1)(0)(1) → 2(0 0 0 0 0)(1 1)(1).

Suppressing 0 (i.e., terminating its designation as a root) is represented by the produc-
tion

2(0 0 0 0 0)(1 1)(1) → 2(00)(1 1)(1).

Combining these two productions yields the production

(0 0)(1 1)(0)(1) → 2(00)(1 1)(1).

Since there are p(z) imbeddings of H of i-type (0)(1), a single imbedding of LH
n of

i-type (0 0)(1 1) gives rise to p(z) imbeddings:

(0 0 1)(1 1)(0)(1) → 2p(z)(00)(1 1)(1).
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Similarly, adding an edge into the two other i-types of LH
n , we obtain the produc-

tions

(0 1)(0 1)(0)(1) → 2p(z)(001)(1)(1) and

(0 0 1 1)(0)(1) → 2p(z)(001 1)(1).

There are q(z) imbeddings of H of i-type (01). By applying the string-processing
rules in similar fashion to the operation of adding edge 00 between LH

n and H -type
(01), we obtain the productions

(0 0)(1 1)(01) → 2q(z)(010)(1 1),

(0 1)(0 1)(01) → 2q(z)(0101)(1), and

(0 0 1 1)(01) → 2q(z)(0101 1).

We can summarize this with a 6 × 3 matrix with 3 × 3 blocks 2p(z)I and 2q(z)I ,
where I is the 3 × 3 identity matrix, whose columns are labeled by the three i-types
for LH

n

(0 0)(1 1), (0 1)(0 1), and (0 0 1 1)

on 0, 1 and whose rows are labeled by the six intermediate i-types on 1, 0, 1:

(00)(1 1)(1) (001)(1)(1) (001 1)(1)
(010)(1 1) (0101)(1) (0101 1).

The second step of the construction of LH
n+1 is to add the edge 11, in order to get a

final imbedding of LH
n+1. This gives us a 3× 6 matrix, whose columns are labeled by

the six intermediate i-types on 1, 0, and 1 and whose rows are the three imbedding
types for LH

n+1 using 0 and 1.
For step (2), we add edge 11 first to the first three intermediate i-types

(00)(1 1)(1), (001)(1)(1), (001 1)(1) and we suppress all instances of 1.

(00)(1 1)(1) → 2zp(z)(00)(11)

(001)(1)(1) → zp(z)(00)(11) + zp(z)(0011)

(001 1)(1) → 2p(z)(0011)

The result is the matrix p(z)A, where

A =
⎡
⎣2z z 0
0 0 0
0 z 2z

⎤
⎦ .
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When we add edge 11 to the second three intermediate i-types (010)(1 1), (0101)(1),
and (0101 1), we obtain:

(010)(1 1) → 2zq(z)(0011)

(0101)(1) → q(z)(01)(01) + zq(z)(0011)

(0101 1) → 2q(z)(01)(01)

The result is the matrix q(z)B, where

B =
⎡
⎣ 0 0 0
0 1 2
2z z 0

⎤
⎦ .

We conclude that the production matrix for the operation of constructing LH
n+1 from

LH
n is 2p(z)A + 2q(z)B. ��

Example 4.1 The easiest example is the usual ladder graph sequence, in which case the
super-rung H is isomorphic to the complete graph K2. Then p(z) = 0 and q(z) = 1,
and Theorem 4.1 implies that the production matrix for the ladders is

MLK2 =
⎡
⎣ 0 0 0
0 2 4
4z 2z 0

⎤
⎦ . (4.4)

We could delete the first row and the first column, which correspond to i-type (00)(11),
since that i-type does not occur among the imbedding of the ladders.We thereby obtain
this familiar production matrix for the ladders:

[
2 4
2z 0

]
.

Remark 4.1 We observe in Eq. (4.1) that when p(z) = 0 for the super-rung H , the
production matrix is q(z) times the 3×3 production matrix (4.4) given in Example 4.1
for the usual ladder sequence. This is what we expect, for topological reasons, as
follows. If there are no imbeddings for H of type (0)(1), then no path P between 0
and 1 passes through a vertex lying on a cycle of H . Thus, every edge of H incident
to a vertex on path P separates H . If the removal of an edge from H separates H
into components H1, H2, then by Theorem 5 of [6], the genus polynomial for H
is a constant times the product of the genus polynomials for H1 and H2. Thus, the
production matrix is just that for the usual ladder with an extra factor q(z) equal to the
product of all the genus polynomials of the components of H − P times a constant.
By contrast, we note that q(z) = 0 is impossible, since the graph H is connected, so
there is always a face of type (01).
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Example 4.2 Let H be the graph of Fig. 1. We easily calculate the partial genus poly-
nomials p(z) = 2 and q(z) = 2. It follows from Theorem 4.1 that the production
matrix is

MLH (z) = 2

⎡
⎣4z 2z 0
0 0 0
0 2z 4z

⎤
⎦ + 2

⎡
⎣ 0 0 0
0 2 4
4z 2z 0

⎤
⎦ =

⎡
⎣8z 4z 0
0 4 8
8z 8z 8z

⎤
⎦ . (4.5)

Corollary 4.2 Let H be any super-rung. Then the determinant of the production matrix
MLH (z) for the ladder-like sequence LH

1 , LH
2 , LH

3 , . . . is zero.

Proof It is easily checked that the sum of the first and third columns of MLH (z) is
twice the second column, so the determinant is zero. ��

5 Genus polynomials for ladder-like graphs

In this section, we calculate genus polynomials for the graphs in any ladder-like
sequence, based on the partial genus polynomials for the super-rung.

5.1 A recursion for the pgd-vectors of a ladder-like sequence

In the initial graph LH
1 , the root vertices 0 and 1 are 1-valent. To remedy this inconve-

nience, we define the extended super-rung H+ to be the graph obtained by attaching
a pendant edge at the root vertex 0 and another pendant edge at the root vertex 1. In
the graph H+, the root vertices 0 and 1 are 2-valent. We will use the pgd-vector of the
graph H+ as the initial pgd-vector in our recursion for the pgd-vectors of the graphs
in the ladder-like sequence with super-rung H .

Proposition 5.1 Let the partial genus polynomials of the super-rung (H , 0, 1) be p(z)
for i-type (0)(1) and q(z) for i-type (01). Then the partial genus polynomials of the
extended super-rung (H+, 0, 1) are p(z) for i-type (00)(11), 0 for i-type (01)(01), and
q(z) for i-type (0011).

Proof Clearly, any imbedding of H of type (0)(1) induces an imbedding of H+ of
type (00)(11), in the same surface. Similarly, any imbedding of H of type (01) induces
an imbedding of H+ of type (0011) in that same surface. The conclusion follows. ��
Corollary 5.2 Let MLH (z) be the production matrix (4.1), and let [p(z) 0 q(z)]T be
the pgd-vector for the extended super-rung H+. We define

X1 =
⎡
⎣p(z)/4

0
q(z)/4

⎤
⎦ .

Then the pgd-vector of the graph LH
n is given by MLH (z)n−1X1, for n ≥ 2.
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0

1

0

1

0

1

0

1

Fig. 3 Adding pendant edges quadruples each imbedding of LH
n

Proof As illustrated in Fig. 3 for LH
2 , the extension of LH

n by two pendant edges has
four imbeddings for each imbedding of LH

n . ��
Example 4.2, continued The ladder-like sequence of Fig. 3 has the initial pgd-vector
[2 0 2]T and the production matrix (4.5). Therefore, the pgd-vector of the graph LH

2
is

⎡
⎣8z 4z 0
0 4 8
8z 8z 8z

⎤
⎦

⎡
⎣

1
2
0
1
2

⎤
⎦ =

⎡
⎣4z
4
8z

⎤
⎦ (5.1)

and the pgd-vector of the graph LH
3 is

⎡
⎣8z 4z 0
0 4 8
8z 8z 8z

⎤
⎦

⎡
⎣4z
4
8z

⎤
⎦ =

⎡
⎣ 16z + 32z2

16 + 64z
32z + 96z2T

⎤
⎦ . (5.2)

5.2 Formulas for the genus and partial genus polynomials

In this subsection, we derive closed formulas for the partial genus polynomials of
a ladder-like sequence and for the genus polynomial. For the special case in which
the partial genus polynomials of the super-rung H are the constants p(z) = a and
q(z) = b, we prove log-concavity of the genus polynomials of the ladder-like graphs
LH
n whenever a ≤ b.
We recall that Chebyshev polynomials of the second kind are defined, for r ≥ 0,

by the formula

Ur (cos θ) = sin(r + 1)θ

sin θ

Equivalently, Ur (x) is a polynomial of degree r in x with integer coefficients, given
by the recurrence

U0(x) = 1,
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U1(x) = 2x, and

Ur (x) = 2xUr−1(x) −Ur−2(x).

Chebyshev polynomials were invented for the needs of approximation theory, and
they are also widely used in various other branches of mathematics, including combi-
natorics, number theory, and algebra (see [13]). We further recall that the generating
function for the Chebyshev polynomials is given by

∑
n≥0

Un(x)t
n = 1

1 − 2xt + t2
. (5.3)

Theorem 5.3 Let [p(z) q(z)]T be the pgd-vector of the super-rung H. Then for all
n ≥ 2, the pgd-vector MLH (z)n−1X1 of the graph LH

n is given by

vn−1(z)

4

⎡
⎢⎢⎢⎣
p(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2p(z)(2zp(z)+q(z))

v(z) Un−2

(
4zp(z)+q(z)

C)

)
4q2(z)
v(z) Un−2

(
4zp(z)+q(z)

v(z)

)
q(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2q2(z)

v(z) Un−2

(
4zp(z)+q(z)

v(z)

)

⎤
⎥⎥⎥⎦ ,

where

v(z) = 2
√
2z(2zp2(z) + p(z)q(z) − q2(z)).

Proof Let LH (t) be the generating function for the pgd-vectors for the graph LH
n .

According to Corollary 5.2, we can express LH (t) as follows:

LH (t) =
∑
n≥1

MLH (z)n−1X1t
n−1,

which is equivalent to

LH (t) = (I − tMLH (z))−1X1.

We define

d = 1 − 2(4zp(z) + q(z))t + 8z(2zp2(z) + p(z)q(z) − q2(z))t2.

Starting with MLH (z) from (4.1), and using a mathematical computational engine,
we can obtain the inverse matrix

(I − tMLH (z))−1

= 1

d

⎡
⎣1−2t(2zp(z)+q(z))−8zq2(z)t2 2ztp(z)(1 − 4ztp(z)t) 8zt2 p(z)q(z)

16zt2q2(z) (1 − 4ztp(z))2 4tq(z)(1 − 4ztp(z))
4ztq(z)(1 − 2tq(z)) 2zt(p(z)+q(z)−4ztp2(z)) (1−2tq(z))(1−4ztp(z))

⎤
⎦ .
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Hence, by using the pgd-vector X1 = [p(z)/4, 0, q(z)/4]T for the graph H+, we can
write the generating function LH (t) in the form

LH (t) = [A(t), B(t),C(t)]T ≡ 1

4d

[
p(z) − 4ztp2(z) − 2tp(z)q(z), 4tq2(z), q(z) − 2tq2(z)

]T
.

We notice that d can be written as d = 1− 4zp(z)+q(z)
v(z) (v(z)t) + (v(z)t)2. Thus, by

(5.3), we obtain

1

d
=

∑
n≥0

Un

(
4zp(z) + q(z)

v(z)

)
vn(z)tn .

Hence, the coefficient of tn−1 in the generating functions

A(t) = p(z)

4d
− (4zp2(z) + 2p(z)q(z))t

4d
,

B(t) = q2(z)t

d
, and

C(t) = q(z)

4d
− q2(z)t

2d
,

is given by

vn−1(z)

4

(
p(z)Un−1

(
4zp(z) + q(z)

v(z)

)
− 2p(z)(2zp(z) + q(z))

v(z)
Un−2

(
4zp(z) + q(z)

v(z)

))
,

vn−2(z)q2(z)Un−2

(
4zp(z) + q(z)

v(z)

)
, and

vn−1(z)

4

(
q(z)Un−1

(
4zp(z) + q(z)

v(z)

)
− 2q2(z)

v(z)
Un−2

(
4zp(z) + q(z)

v(z)

))
,

respectively. It follows that the coefficient of tn−1 in the generating function LH (t)
is given by

MLH (z)n−1X1 = vn−1(z)

4

⎡
⎢⎢⎢⎣
p(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2p(z)(2zp(z)+q(z))

v(z) Un−2

(
4zp(z)+q(z)

v(z)

)
4q2(z)
v(z) Un−2

(
4zp(z)+q(z)

v(z)

)

q(z)Un−1

(
4zp(z)+q(z)

v(z)

)
− 2q2(z)

v(z) Un−2

(
4zp(z)+q(z)

v(z)

)

⎤
⎥⎥⎥⎦ ,

which completes the proof. ��
As a corollary of the above theorem and its proof, we derive a recurrence relation

and an explicit formula for the genus polynomial of LH
n .

Theorem 5.4 Let [p(z) q(z)]T be the pgd-vector of the super-rung H, and let

v(z) = 2
√
2z(2zp2(z) + p(z)q(z) − q2(z)).
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Then for all n ≥ 2, the genus polynomial gn(z) of the graph LH
n is given by

vn−1(z)

4

[
(p(z) + q(z))Un−1

(
4zp(z) + q(z)

v(z)

)

− 4zp2(z) + 2p(z)q(z) − 4q2(z)

v(z)
Un−2

(
4zp(z) + q(z)

v(z)

)]
.

Moreover, the sequence satisfies the recurrence relation

gn(z) = 2(4zp(z) + q(z))gn−1(x) − 8z(2zp2(z) + p(z)q(z) − q2(z))gn−2(x)

with

g2(z) = zp2(z) + 2zp(z)q(z) + q2(z),

g3(z) = 4z2 p3(z) + 12z2 p2(z)q(z) + 12zp(z)q2(z) + 2zq3(z) + 2q3(z).

Proof From the definitions, we calculate that gn(z) = (1, 1, 1)MLH (z)n−1X1. Thus,
by Theorem 5.3, we obtain the formula

gn(z) = vn−1(z)

4

[
(p(z) + q(z))Un−1

(
4zp(z) + q(z)

v(z)

)

− 4zp2(z) + 2p(z)q(z) − 4q2(z)

v(z)
Un−2

(
4zp(z) + q(z)

v(z)

)]
.

From the recurrence relation Un(x) = 2xUn−1(x) − Un−2(x) for the Chebyshev
polynomials, we obtain

gn(z)

vn−1(z)
= 2

4zp(z) + q(z)

v(z)

gn−1(z)

vn−2(z)
− gn−2(z)

vn−3(z)
,

which leads to the recurrence

gn(z) = 2(4zp(z) + q(z))gn−1(x) − 8z(2zp2(z) + p(z)q(z) − q2(z))gn−2(x),

as required. ��
Corollary 5.5 Suppose that the maximum genus of the super-rung H is 0, so that its
two partial genus polynomials p(z) = a and q(z) = b, are constants. If a ≤ b, then
the genus polynomial of each of the graphs LH

n is log-concave.

Proof Theorem 5.4 establishes that the genus polynomial of the graph LH
n satisfies

the recurrence

gn(z) = (8az + 2b)gn−1(z) − (16a2z2 + 8abz − 8b2z)gn−2(z)

for n ≥ 4, with
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g2(z) = (a2 + 2ab)z + b2 and

g3(z) = (4a3 + 12a2b)z2 + (12ab2 + 2b3)z + 2b3. (5.4)

By induction on n, it is not hard to see that the degree of the polynomial gn(z) is n−1
with leading coefficient 4n−2an−1(a + nb). Then by [11], the polynomial gn(z) is LC
when a ≤ b. ��
Example 4.2, continued For the super-rung H of this example, we have p(z) = 2 and
q(z) = 2. Substituting these values into the recursion (5.4), we obtain the recursion

�LH
n
(z) = (16z + 4)�LH

n−1
(z) − 64z2�LH

n−2
(z) for n ≥ 4, with

�LH
2
(z) = 12z + 4 and

�LH
3
(z) = 128z2 + 112z + 16.

We see that the initial values as given by Theorem 5.4 and its corollary agree with
what we calculated in (5.1) and (5.2). Moreover, the recursion above gives the genus
polynomial

�LH
4
(z) = (16z + 4)(128z2 + 112z + 16) − 64z2(12z + 4)

= (2048z3 + 2304z2 + 704z + 64) − (768z3 + 256z2)

= 1280z3 + 2048z2 + 704z + 64

which equals the sum of the coordinates of the pgd-vector for LH
4 , as calculated via

Corollary 5.2.

⎡
⎣8z 4z 0
0 4 8
8z 8z 8z

⎤
⎦

⎡
⎣16z + 32z2

16 + 64z
32z + 96z2

⎤
⎦ =

⎡
⎣ 256z3z + 384z2 + 64z

768z2 + 512z + 64
1024z3 + 896z2 + 128z

⎤
⎦ . (5.5)

5.3 Some ladder-like sequences with log-concave genus polynomials

Weestablish a fewkinds of super-rungs forwhich the corresponding ladder-like graphs
have log-concave genus polynomials.

The simplest families of ladder-like graphs to study are those having a super-rung
(H , 0, 1) with partial genus polynomials p(z) and q(z) for i-types (0)(1) and (01),
respectively, such that p(z) = a and q(z) = b, for constants a, b. This means the
super-rung H is a planar-only graph—that is, all of its imbeddings are planar, which
is equivalent to saying γmax(H) = 0. In what follows, a cycle in the graph G is a
connected subgraph, each of whose vertices has valence 2, and a path is a connected
subgraph with two vertices of valence one and the others of valence two.

Weview imbeddings of theplanar-onlygraphH as beingbuilt up froman imbedding
of a smaller subgraph of H , starting from a single edge with endpoints 0 and 1, using
edge additions within a face or adding an edge to a new vertex of valence one.
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Remark 5.1 Within this process, there are no edge additions between two faces, since
such an addition would increase the genus by one, and no subsequent edge additions
can decrease the genus.

Proposition 5.6 Let (H , 0, 1) be a planar-only graph with root vertices 0, 1 of valence
one.

(a) Every subgraph of H is planar-only.
(b) Any two distinct cycles C and C ′ of H are mutually disjoint.
(c) Any imbedding of H obtained by adding an edge to a connected subgraph imbed-

ding of i-type (0)(1) also has i-type (0)(1).
(d) Suppose that adding an edge uv transforms an imbedding of H of i-type (01) into

one of i-type (0)(1). Then the edge uv lies on a cycle C that intersects every path
in H + uv between 0 and 1.

Proof For (a), this follows from the observation that edge adding cannot decrease the
genus of an imbedding.

For (b), we suppose, by way of contradiction, that cycles C and C ′ in H intersect,
and we suppose that some edge uv is in C , but not in C ′. Then we extend uv (as a
path) in one directions along the cycle C until the first intersection with a vertex u′ of
the cycle C ′, and we extend uv in the other direction until we meet a vertex v′ of C ′.
If u′ = v′, then C ∪ C ′ ∼= B2. Otherwise, if A is one of the arcs from u′ to v′ in C ,
then A ∪ C ′ ∼= D3. That is, the super-rung H contains a homeomorphic copy either
of the bouquet B2 or of the dipole D3, both of which have imbeddings in the torus,
contradicting (a).

For (c), we simply observe that if 0 and 1 are on separate faces of an imbedding,
then the only kind of edge addition that can put them on the same face must join two
faces, and such edge addition do not occur, as per Remark 5.1.

For (d), we observe that combining the premise of (d) with Rule 4.2 implies the
transformation

(uPvQ) → (uP)(vQ)

of i-types, for some sequences P and Q of vertices of H with 0 ∈ P and 1 ∈ Q.
Since the sequence P describes a walk from u to v. It follows that there is a cycle C
containing uv and some of the edges along walk P . By the Jordan curve theorem, the
cycle C separates the plane into two components. The face with fb-walk (uP) lies in
one component and face with fb-walk (vQ) lies in the other component, since they
lie on opposite sides of the shared edge uv. In particular, root vertex 0 lies in one
component and root vertex 1 in the other, so that every path between 0 and 1 intersects
C . ��
Theorem 5.7 Let (H , 0, 1) be a planar-only graph with 1-valent roots 0, 1. Let P be
a path between 0 and 1.

(a) Then the intersection of any cycle of H with the path P is empty, a single vertex,
or a path.
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(b) Let r be the number of cycles with one-point intersection, and let s be the number
of cycles that intersect P in a path. Then the partial genus polynomials are

p(z) = (6r4s − 4r2s)N for i-type (0)(1), and

q(z) = 4r2s N for i-type (01),

where N = �v(dv − 1)!/6r4s .
Proof Let H ′ be the union of the path P and all of the cycles of H that intersect path
P . Then the subgraph H ′ has exactly r 4-valent vertices, exactly 2s 3-valent vertices,
and exactly two 1-valent vertices, namely 0 and 1; all other vertices of subgraph H ′
are 2-valent. It follows that the subgraph H ′ has (3!)r (2)2s imbeddings. Let N be the
number of imbeddings to which each imbedding of H ′ extends, and let dv denote the
valence of a vertex v.

The vertices of H contribute the following factors to the value of N .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(dv − 1)! if v is not in H ;
(dv − 1)!

3! if v is 4-valent in H ;
(dv − 1)!

2! if v is 3-valent in H ;

Thus,

N =
∏

v∈VH
(dv − 1)!

6r4s
.

By part (c) of Proposition 5.6, every imbedding of i-type (0)(1) in H ′ extends
only to imbeddings of i-type (0)(1) in H . By part (d), there is no edge addition that
transforms an i-type (01) imbedding of H ′ into an i-type (0)(1) imbedding of H , since
otherwise, there is a cycle not in H ′ that intersects the path P .

It remains, therefore, to calculate the number of imbeddings of H ′ of each of the
i-types (0)(1) and (01). We have an i-type (01) imbedding of H ′ if and only if at every
intersection of path P with each cycle of H ′, the path P remains on the same side of
that cycle. At each of the r intersections of P with a cycle at a single vertex (a 4-valent
vertex of H ′), there are 4 rotations at that vertex for which P remains on the same
side of the cycle. For each of the s path intersections of path P with a cycle, there are
2 pairs of rotations at the endpoints of that path (which are 3-valent vertices) such that
P remains on the same side of the cycle. Thus, there are 4r2s such rotations in all. The
remaining 6r22s − 4r2s imbeddings of H ′ are the imbeddings with i-type (0)(1). ��
Corollary 5.8 Let (H , 0, 1) be a planar-only super-rung, so that its partial genus poly-
nomials are constants. Let p(z) = a be the partial genus polynomial for i-type (0)(1),
and let q(z) = b be the partial genus polynomial for i-type (01). Furthermore, let P
be a path in H between root vertex 0 and root vertex 1, let r be the number of cycles
of H at which the incidence of P is a single vertex, and let s be the number of cycles
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H LHn

u

v

Fig. 4 A ladder-like graph with log-concave genus polynomial

at which the incidence of P is a subpath of P with at least one edge. If r + s ≤ 1, then
the genus polynomial of every ladder-like graph with super-rung H is log-concave.

Proof It follows from Theorem 5.7 that if 6r4s − 4r2s ≤ 4r2s , then a ≤ b. Since
the inequality r + s ≤ 1 implies that 6r4s − 4r2s ≤ 4r2s , it follows, in turn, from
Corollary 5.5, that the genus polynomials of the ladder-like graphs with super-rung H
are log-concave whenever r + s ≤ 1. ��
Corollary 5.9 Let (H , 0, 1) be a super-rung whose Betti number β(H) is at most one.
Then the genus polynomial of every graph in the corresponding sequence of ladder-like
graphs is log-concave.

Example 5.1 It follows from Corollary 5.9 that the genus polynomials of the graphs
in Figs. 1 and 4 are log-concave.

6 Summary

This paper continues the pursuit of families of graphs for which genus polynomials can
be calculated by recursions or closed formulas. It establishes a formula for the genus
polynomials of the graphs in the ladder-like sequence, combining the partial genus
polynomials of the super-rung. It derives sufficient conditions on the super-rung H
under which each of the genus polynomials of the graphs in the ladder-like sequence
is log-concave, and it exhibits examples of super-rungs that satisfy these conditions.
In particular, these genus polynomials are log-concave whenever β(H) ≤ 1.
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