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Abstract
This paper contributes to the study of rank-metric codes from an algebraic and combi-
natorial point of view. We introduce q-polymatroids, the q-analogue of polymatroids,
and develop their basic properties. We associate a pair of q-polymatroids with a rank-
metric code and show that several invariants and structural properties of the code,
such as generalized weights, the property of being MRD or an optimal anticode, and
duality, are captured by the associated combinatorial object.

Keywords Rank-metric code · Generalized weights · q-polymatroid · MRD code ·
Optimal anticode · Duality

1 Introduction andmotivation

Rank-metric codes were originally introduced by Delsarte [5] and later rediscovered
byGabidulin [6] and Roth [20]. Due to their application in network coding, the interest
in these codes has intensified over the past years and many recent papers have been
devoted to their study. While interest in these codes stems from practical applications,
rank-metric codes also present interesting algebraic and combinatorial properties.
Therefore, their mathematical structure has also been the object of several works.
This paper belongs to the latter line of study. Our contributions are twofold: on the one
side we study generalized weights of rank-metric codes, and on the other we establish
a link with other combinatorial objects. More precisely, we associate with each rank-
metric code a q-polymatroid, the q-analogue of a polymatroid, which we define here.

In Sect. 2, we define rank-metric codes and vector rank-metric codes. We recall
how to associate a rank-metric code with a vector rank-metric code via the choice of
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a basis and establish a number of basic, but fundamental facts. In particular, we recall
the notions of equivalence for rank-metric codes and vector rank-metric codes and we
discuss in detail why these notions are compatible via the associationmentioned above.
We also explain that, while the choice of a basis affects the rank-metric code obtained
via the association above, the equivalence class of the rank-metric code obtained does
not depend on the choice of the basis.

Generalized weights have been defined and studied in different levels of generality
bymany researchers. Twoof the first definitions of generalizedweights for vector rank-
metric codes are due to Kurihara, Matsumoto, and Uyematsu [12] and to Oggier and
Sboui [14]. More definitions are due to Jurrius and Pellikaan [9] and Martínez-Peñas
and Matsumoto [13], who also compared the various definitions. Using the theory of
anticodes, Ravagnani [18] gave a definition of generalized weights for matrix rank-
metric codes, which extends the one from [12].

In this paper, we develop further the theory of generalized weights for rank-metric
codes, tying together several previously known results on the subject. We adopt the
definition from [18] and, in Sect. 3, we show that it is invariant with respect to equiv-
alence of rank-metric codes. We also show that the definition of generalized weights
for rank-metric codes from [13], which generalizes definitions from [9,11,24], is not
invariant with respect to code equivalence.

Given thewell-known link between codes in theHammingmetric andmatroids, it is
a natural question to ask whether there is a q-analogue of this. Rank-metric codes can
be viewed as the q-analogue of block-codes endowed with the Hamming metric. So
it is natural to ask what is the q-analogue of a matroid. Crapo [3] already studied this
combinatorial object from the point of view of geometric lattices. Recently, Jurrius
and Pellikaan [10] rediscovered q-matroids and associated a q-matroid with every
vector rank-metric code. One goal of the current paper is extending this association
with rank-metric codes.

With this in mind, we define the q-analogue of a polymatroid, that we call a
q-polymatroid. In Sect. 4, we develop basic properties of q-polymatroids, such as
equivalence and duality. In Sect. 5, we associate with every rank-metric code a pair
of q-polymatroids. We also show that the q-polymatroids arising from rank-metric
codes are in general not q-matroids. We then show that several structural properties
of rank-metric codes depend only on the associated q-polymatroid: In Sect. 6, we
do this for the minimum distance and the property of being MRD, in Sect. 7 for the
generalized weights and for the property of being an optimal anticode, and in Sect. 8
for duality. These results are q-analogues of classical results in coding theory.

While preparing this manuscript, we became aware that a slightly different defini-
tion ofq-analogue of a polymatroidwas given independently byShiromoto [21].While
our paper applies this theory to equivalence of codes and to generalized weights, [21]
focuses on the weight enumerator of rank-metric codes.

2 Rank-metric and vector rank-metric codes

We start by establishing the notation and the definitions used throughout the paper.
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Notation 2.1 In the sequel, we fix integers n,m ≥ 2 and a prime power q. For an
integer t , we let [t] := {1, ..., t}. We denote by Fq the finite field with q elements. The
space of n ×m matrices with entries in Fq is denoted by Mat. Up to transposition, we
assume without loss of generality that n ≤ m. We let

Mat(J , c) = {M ∈ Mat | colsp(M) ⊆ J } and

Mat(J , r) = {M ∈ Mat | rowsp(M) ⊆ J }.

Throughout the paper, we only consider linear codes. All dimensions are computed
over Fq , unless otherwise stated.

Definition 2.2 A (matrix) rank-metric code is an Fq -linear subspace C ⊆ Mat. The
dual of C is

C⊥ = {
M ∈ Mat | Tr(MNt ) = 0 for all N ∈ C}

,

where Tr(·) denotes the trace. It is easy to check that C⊥ is a code as well, i.e., that it
is Fq -linear. The minimum (rank) distance of a nonzero rank-metric code C ⊆ Mat
is the integer d(C) := min{rk(M) | M ∈ C, M �= 0}.

The next bound relates the dimension of a code C ⊆ Mat to its minimum distance.
It is the analogue for the rank metric of the Singleton bound from classical coding
theory.

Proposition 2.3 ([5], Theorem 5.4). Let C ⊆ Mat be a nonzero rank-metric code with
minimum distance d. Then dim(C) ≤ m(n − d + 1).

Definition 2.4 A code that attains the bound of Proposition 2.3 is called a maximum
rank distance (MRD) code.

We now introduce some transformations that preserve the dimension and the min-
imum rank distance of a rank-metric code. These will play a central role throughout
the paper.

Notation 2.5 LetC ⊆ Mat be a rank-metric code, let A ∈ GLn(Fq) and B ∈ GLm(Fq).
Define

ACB := {AMB | M ∈ C} ⊆ Mat.

When n = m, define the transpose of a rank-metric code C ⊆ Mat as

Ct := {Mt | M ∈ C} ⊆ Mat.

As we are interested in structural properties of rank-metric codes, it is natural to
study these objects up to equivalence. Linear isometries of the space of matrices of
fixed size induce a natural notion of equivalence among rank-metric codes.
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Definition 2.6 Two rank-metric codes C1, C2 ⊆ Mat are equivalent if there exists an
Fq -linear isometry f : Mat → Mat such that f (C1) = C2. If this is the case, then we
write C1 ∼ C2.

The next theorem gives a characterization of the linear isometries of Mat. It com-
bines results by Hua and Wan, and it can be found in the form stated below in [23,
Theorem 3.4].

Theorem 2.7 ([8,22]). Let f : Mat → Mat be an Fq-linear isometry with respect to
the rank metric.

(1) If m < n, then there exist matrices A ∈ GLn(Fq) and B ∈ GLm(Fq) such that
f (M) = AMB for all M ∈ Mat.

(2) If m = n, then there exist matrices A, B ∈ GLm(Fq) such that either f (M) =
AMB for all M ∈ Mat, or f (M) = AMt B for all M ∈ Mat.

A class of codes that has recently received a lot of attention is that of vector
rank-metric codes, introduced independently by Gabidulin and Roth in [6] and [20],
respectively.

Definition 2.8 The rank weight rk(v) of a vector v ∈ F
n
qm is the dimension of the

Fq -linear space generated by its entries. A vector rank-metric code is an Fqm -linear
subspace C ⊆ F

n
qm . The dual of C is the vector rank-metric code

C⊥⊥ := {v ∈ F
n
qm | 〈v,w〉 = 0 for all w ∈ C},

where 〈·, ·〉 is the standard inner product of F
n
qm . When C �= {0} is a nonzero vector

rank-metric code, the minimum (rank) distance of C is d(C) = min{rk(v) | v ∈
C, v �= 0}.
Notation 2.9 Let C ⊆ F

n
qm be a vector rank-metric code and B ∈ GLn(Fq). Define

CB := {vB | v ∈ C} ⊆ F
n
qm .

Similarly to the case of rank-metric codes, the linear isometries of F
n
qm induce a

notion of equivalence for vector rank-metric codes.

Definition 2.10 Two vector rank-metric codes C1,C2 ⊆ F
n
qm are equivalent if there

exists an Fqm -linear isometry f : F
n
qm → F

n
qm such that f (C1) = C2. If this is the

case, then we write C1 ∼ C2.

The linear isometries of F
n
qm can be described as follows.

Theorem 2.11 ([1]). Let f : F
n
qm → F

n
qm be an F

n
qm -linear isometry with respect to

the rank metric. Then there exist α ∈ F
∗
qm and B ∈ GLn(Fq) such that f (v) = αvB

for all v ∈ F
n
qm .
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There is a natural way to associate a rank-metric code C with a vector rank-metric
code C , in such a way that the metric properties are preserved. Given an Fq -basis
� = {γ1, ..., γm} of Fqm and given a vector v ∈ F

n
qm , let �(v) denote the unique n×m

matrix with entries in Fq that satisfies

vi =
m∑

j=1

�i j (v)γ j for all 1 ≤ i ≤ n.

Proposition 2.12 ([7], Section 1). The map v → �(v) is an Fq-linear isometry. In
particular, if C ⊆ F

n
qm is a vector rank-metric code of dimension k over Fqm , then

�(C) is anFq -linear rank-metric code of dimensionmk overFq .Moreover, if C �= {0},
then C and �(C) have the same minimum rank distance.

As one expects, the rank-metric codes obtained from equivalent vector rank-metric
codes using different bases � and �′ are equivalent.

Proposition 2.13 Let C1,C2 ⊆ F
n
qm be vector rank-metric codes. Let � and �′ be

bases of Fqm over Fq . If C1 ∼ C2, then �(C1) ∼ �′(C2).

Proof By [18, Lemma 27.2], �(C) ∼ �′(C). Hence we may assume without loss of
generality that � = �′ = {γ1, . . . , γm}. By definition of �

γkγ j =
m∑

�=1

�(γkγ1, . . . , γkγm) j�γ�

If C1 ∼ C2, then by Theorem 2.11 there exist α ∈ F
∗
qm and B = (bi j ) ∈ GLn(Fq)

such that C2 = αC1B. If v = (v1, . . . , vn) ∈ F
n
qm , then

αvi =
m∑

h=1

�(v)ihαγh =
m∑

j=1

m∑

h=1

�(v)ih�(αγ1, . . . , αγm)h jγ j

=
m∑

j=1

(�(v)�(αγ1, . . . , αγm))i jγ j .

Therefore,

�(αv) = �(v)�(αγ1, . . . , αγm).

On the other side

vB =
(

n∑

k=1

bk1vk, . . . ,
n∑

k=1

bknvk

)

=
⎛

⎝
n∑

k=1

m∑

j=1

bk1�(v)k jγ j , . . . ,

n∑

k=1

m∑

j=1

bkn�(v)k jγ j

⎞

⎠ ,
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hence

�(vB)i j =
n∑

k=1

bki�(v)k j = (Bt�(v))i j ,

that is

�(vB) = Bt�(v).

Then for every v ∈ C1, we obtain �(αvB) = Bt�(v)�(αγ1, . . . , αγm), i.e.,

�(C2) = �(αC1B) = Bt�(C1)�(αγ1, . . . , αγm) ∼ �(C1)

since Bt ∈ GLn(Fq) and rk(�(αγ1, . . . , αγm)) = rk(αγ1, . . . , αγm) = rk(γ1, . . . ,
γm) = m, hence �(αγ1, . . . , αγm) ∈ GLm(Fq). ��

Proposition 2.13 suggests a natural definition of Fqm -linear rank-metric code in the
Fq -linear matrix space Mat.

Definition 2.14 Let C ⊆ Mat be a rank-metric code. We say that C is Fqm -linear if
there exists a vector rank-metric code C ⊆ F

n
qm and a basis of � of Fqm over Fq such

that C ∼ �(C).

3 Optimal anticodes and generalized weights

Optimal linear anticodes were introduced in [18] with the purpose of studying gener-
alized weights in the rank metric.

Definition 3.1 The maximum rank of a rank-metric code C ⊆ Mat is

maxrk(C) := max{rk(M) | M ∈ C}.

A rank-metric code A ⊆ Mat is an optimal anticode if dim(A) = m · maxrk(A).

The class of optimal anticodes is closed with respect to duality [17, Theorem 54]
and code equivalence. The properties of optimal anticodes were exploited in [18] to
study a class of algebraic invariants of rank-metric codes, called (Delsarte) generalized
weights.

Definition 3.2 Let C ⊆ Mat be a nonzero code. For i ≥ 1, the i-th generalized weight
of C is

ai (C) := 1

m
min{dim(A) | A ⊆ Mat is an optimal anticode, dim(C ∩ A) ≥ i}.

Remark 3.3 a1(C) is theminimum rank distance of C. See [18, Theorem 30] for details.
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As one may expect, equivalent codes have the same generalized weights.

Proposition 3.4 Let C1, C2 ⊆ Mat be nonzero codes and assume C1 ∼ C2. Then

ai (C1) = ai (C2) for every integer i ≥ 1.

Proof Since C1 ∼ C2, there exist A ∈ GLn(Fq) and B ∈ GLm(Fq) such that either
C2 = AC1B, or C2 = ACt1B and n = m. We prove the proposition in the second case,
as the proof in the first is similar.

Let Ant(Mat) denote the set of optimal anticodes in Mat, and fix a positive integer
i . The chain of equalities

A(A ∩ C1)t B = (AAt B) ∩ (ACt1B) = (AAt B) ∩ C2

implies that the isometry f : Ant(Mat) → Ant(Mat) defined by f (A) := AAt B
gives a bijection between the anticodes A ⊆ Mat such that dim(A ∩ C1) ≥ i and
the anticodes B ⊆ Mat such that dim(B ∩ C2) ≥ i . Then C1 and C2 have the same
generalized weights by definition. ��

The definition of generalized weights in terms of anticodes suggests the following
natural questions. Let C ⊆ Mat be a rank-metric code, and letA be an optimal anticode
such that dim(C ∩ A) ≥ i and ai (C) = dim(A)/m.

(1) Can one find an optimal anticodeA′ such thatA ⊆ A′, dim(C ∩A′) ≥ i + 1, and
ai+1(C) = dim(A′)/m?

(2) Can one find an optimal anticode A′′ such that A′′ ⊆ A, dim(C ∩ A′′) ≥ i − 1,
and ai−1(C) = dim(A′′)/m?

The following example shows that the answer to both questions is negative.

Example 3.5 Let q = 2 and n = m = 3. Let C be the rank-metric code generated by
the three independent matrices

M1 :=
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , M2 :=
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ , M3 :=
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

It is easy to check that a1(C) = 1 and a2(C) = 2. By [4, Theorems 4 and 6], the
optimal anticodes in Mat3×3(F2) are of the form Mat(J , c) or Mat(J , r) for some
J ⊆ F

3
2. Let A1 be an optimal anticode of dimension 3 with dim(C ∩ A1) ≥ 1.

Then we have A1 = Mat(〈(1, 0, 0)〉 , c) or A1 = Mat((〈(1, 0, 0)〉 , r). Let A2 be
an optimal anticode of dimension 6 with dim(C ∩ A2) ≥ 2. Then we have A2 =
Mat((〈(0, 1, 0), (0, 0, 1)〉 , c) or A2 = Mat((〈(0, 1, 0), (0, 0, 1)〉 , r).

Notice that one could also define generalized weights for rank-metric codes fol-
lowing a support-based analogy with codes endowed with the Hamming metric. This
naturally leads to generalizing the invariants proposed in [11], [24] and [9] as in the
following Definition 3.6. This approach has been followed, e.g., in [13]. Notice that
in [13] supports are defined as column spaces also in the case when n > m.
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Definition 3.6 Let C ⊆ Mat be a nonzero code. The support of a subcode D ⊆ C is

supp(D) :=
∑

M∈D
colsp(M) ⊆ F

n
q ,

where the sum is the sum of vector spaces. The i-th support weight of C is

csi (C) := min{dim(supp(D)) | D ⊆ C, dim(D) = i}.

Remark 3.7 Although Definition 3.6 produces an interesting and well-behaved alge-
braic invariant, we observe that the analogue of Proposition 3.4 does not hold for
support weights. In other words, while equivalent codes always have the same gener-
alized weights, they might not have the same support weights. We illustrate this in the
following example.

Example 3.8 Let C be the binary code defined by

C :=
{(

a a
b b

)
| a, b ∈ F2

}
.

Then C is an optimal anticode of dimension 2. Therefore, a2(C) = 1. On the other
hand, supp(C) = F

2
2, hence cs2(C) = 2 �= a2(C). Now observe that C ∼ Ct . In

particular, a2(C) = a2(Ct ) = 1. However, cs2(C) = 2, while cs2(Ct ) = 1.

Generalized weights and support weights relate to each other as follows.

Proposition 3.9 ([13], Theorem 9). Let C ⊆ Mat be a nonzero code, and let i ≥ 1 be
an integer. If m > n, then ai (C) = csi (C). If m = n, then ai (C) ≤ csi (C).

We stress that there exist codes C ⊆ Mat with m = n and ai (C) < csi (C), e.g., the
code C of Example 3.8.

4 The q-analogue of a polymatroid

This section introduces q-polymatroids, that are a q-analogue of polymatroids. For
more on (poly)matroids, see the standard references [15,25].

Definition 4.1 A q-polymatroid is a pair P = (Fn
q , ρ)where n ≥ 1 and ρ is a function

from the set of all subspaces of F
n
q to R such that, for all A, B ⊆ F

n
q :

(P1) 0 ≤ ρ(A) ≤ dim(A),
(P2) if A ⊆ B, then ρ(A) ≤ ρ(B),
(P3) ρ(A + B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B).

Notice that a q-polymatroid such that ρ is integer-valued is a q-matroid according
to [10, Definition 2.1].
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Remark 4.2 Our definition of q-polymatroid is slightly different from that of (q, r)-
polymatroid given by Shiromoto in [21, Definition 2]. However, a (q, r)-polymatroid
(E, ρ) as defined by Shiromoto corresponds to the q-polymatroid (E, ρ/r) according
to our definition. Moreover, a q-polymatroid whose rank function takes values in Q

corresponds to a (q, r)-polymatroid as defined by Shiromoto up to multiplying the
rank function for an r which clears denominators.

Remark 4.3 One could also define a q-polymatroid P as a pair (Fn
q , ρ) that satisfies

ρ(A) ≥ 0 for all A ⊆ F
n
q , (P2), and (P3). Up to multiplying the rank function by a

suitable constant, one may additionally assume that ρ(x) ≤ 1 for all 1-dimensional
subspaces x ⊆ F

n
q . It is easy to show that this is equivalent to Definition 4.1.

The definition of q-polymatroid that we propose is a direct q-analogue of the
definition of an ordinary polymatroid, with the extra property that ρ(A) ≤ dim(A) for
all A. As in the ordinary case, a q-matroid is a q-polymatroid. At the end of Sect. 6
we give an example of a q-polymatroid that is not a q-matroid. One has the following
natural notion of equivalence for q-polymatroids.

Definition 4.4 Let (Fn
q , ρ1) and (Fn

q , ρ2) be q-polymatroids. We say that (Fn
q , ρ1) and

(Fn
q , ρ2) are equivalent if there exists an Fq -linear isomorphism ϕ : F

n
q → F

n
q such

that ρ1(A) = ρ2(ϕ(A)) for all A ⊆ F
n
q . In this case, we write (Fn

q , ρ1) ∼ (Fn
q , ρ2).

We start by introducing a notion of duality for q-polymatroids.

Definition 4.5 Let P = (Fn
q , ρ) be a q-polymatroid. For all subspaces A ⊆ F

n
q define

ρ∗(A) = dim(A) − ρ(Fn
q) + ρ(A⊥),

where A⊥ is the orthogonal complement of Awith respect to the standard inner product
on F

n
q . We call P∗ = (Fn

q , ρ
∗) the dual of the q-polymatroid P .

The proof of the next theorem is essentially the same as the proof of [10, Theo-
rem 42].

Theorem 4.6 The dual P∗ is a q-polymatroid.

We will need the following property of dual q-polymatroids.

Proposition 4.7 Let P1 = (Fn
q , ρ1) and P2 = (Fn

q , ρ2) be q-polymatroids. If P1 ∼ P2,
then P∗

1 ∼ P∗
2 . Moreover, for every q-polymatroid P we have P∗∗ = P.

Proof By definition, there exists an Fq -isomorphism ϕ : F
n
q → F

n
q with the property

that ρ1(A) = ρ2(ϕ(A)) for all A ⊆ F
n
q . In particular, ϕ(Fn

q) = F
n
q . Therefore, by

definition of ρ∗
1 , for all A ⊆ F

n
q we have

ρ∗
1 (A) = dim(A) − ρ2(F

n
q) + ρ2(ϕ(A⊥)).

Now let ψ : F
n
q → F

n
q be the adjoint of ϕ with respect to the standard inner product of

F
n
q . Then ϕ is an Fq -isomorphism, and ϕ(A)⊥ = ψ(A)⊥ for all A ⊆ F

n
q . Therefore,
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ρ∗
1 (A) = dim(A) − ρ2(F

n
q) + ρ2(ψ(A)⊥) = ρ∗

2 (ψ(A)).

If P = (Fn
q , ρ) is a q-polymatroid, then it is straightforward to check that ρ∗∗(A) =

ρ(A). This implies P∗∗ = P . ��

5 Rank-metric codes and q-polymatroids

Starting from a rank-metric code C ⊆ Mat, in this section we construct two q-
polymatroids: one associated with the column spaces, and the other to the row spaces.
They will be denoted by P(C, c) and P(C, r), respectively. As the reader will see
in the next sections, several structural properties of C can be read off the associated
q-polymatroids.

We start by studying subcodes of a given code, whose matrices are supported on a
subspace J ⊆ F

n
q or K ⊆ F

m
q . See [19] for a lattice-theoretic definition of support.

Notation 5.1 Let C ⊆ Mat be a rank-metric code, and let J ⊆ F
n
q and K ⊆ F

m
q be

subspaces. We define

C(J , c) := {M ∈ C | colsp(M) ⊆ J } and C(K , r) := {M ∈ C | rowsp(M) ⊆ K },

where colsp(M) ⊆ F
n
q and rowsp(M) ⊆ F

m
q are the spaces generated over Fq by the

columns, respectively the rows, of M .

Notice that C(J , c) and C(K , r) are subcodes of C for all J ⊆ F
n
q and K ⊆ F

m
q .

In the sequel, we denote by J⊥ the orthogonal of a space J ⊆ F
n
q with respect to the

standard inner product of F
n
q . We use the same notation for subspaces K ⊆ F

m
q . No

confusion will arise with the trace-dual of a code C ⊆ Mat.

Notation 5.2 Let C ⊆ Mat be a rank-metric code. For subspaces J ⊆ F
n
q and K ⊆ F

m
q

define the rational numbers

ρc(C, J ) := (dim(C) − dim(C(J⊥, c))/m,

ρr(C, K ) := (dim(C) − dim(C(K⊥, r))/n.

For simplicity of notation, in the sequel we sometimes drop the index C and denote
the rank functions simply by ρc and ρr. The following result shows that a rank-metric
code C ⊆ Mat gives rise to a pair of q-polymatroids via ρc and ρr.

Theorem 5.3 Let C ⊆ Mat be a rank-metric code. The pairs (Fn
q , ρc) and (Fm

q , ρr) are
q-polymatroids.

To prove the theoremwe need a preliminary result, whose proof is left to the reader.

Lemma 5.4 Let I , J ⊆ F
n
q be subspaces. We have:

Mat(I ∩ J , c) = Mat(I , c) ∩ Mat(J , c) and Mat(I + J , c) = Mat(I , c) + Mat(J , c).
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Proof of Theorem 5.3 We prove that (Fn
q , ρc) is a q-polymatroid. The proof that

(Fm
q , ρr) is a q-polymatroid is completely analogous, hence we omit it.
We start by proving (P1). It is clear from the definition that ρc(J ) ≥ 0. The other

inequality follows from [17, Lemma 28]:

ρc(J ) = (dim(C) − (dim(C) − m(n − dim J⊥) + dim(C⊥(J ))))/m ≤ dim(J ).

Now let I , J ⊆ F
n
q such that I ⊆ J . Then C(J⊥, c) ⊆ C(I⊥, c), thus ρc(I ) ≤ ρc(J ).

This establishes (P2). For (P3), we have

dim C((I + J )⊥, c) + dim C((I ∩ J )⊥, c)

= dim(C ∩ Mat(I⊥ ∩ J⊥, c)) + dim(C ∩ Mat(I⊥ + J⊥, c))

≥ dim(C ∩ Mat(I⊥, c) ∩ Mat(J⊥, c)) + dim((C ∩ (Mat(I⊥, c))

+(C ∩ Mat(J⊥, c)))

= dim(C ∩ Mat(I⊥, c)) + dim(C ∩ Mat(J⊥, c)),

where the first equality follows from [17, Lemma 27]. The inequality follows from
combining Lemma 5.4 with C ∩ (Mat(I⊥, c) + Mat(J⊥, c)) ⊇ (C ∩ Mat(I⊥, c)) +
(C ∩ Mat(J⊥, c)). ��
Notation 5.5 The q-polymatroids associated with a rank-metric code C ⊆ Mat are
denoted by P(C, c) and P(C, r), respectively.

6 Structural properties of codes via q-polymatroids

In this section, we investigate some connections between rank-metric codes and the
associated q-polymatroids. We show that the q-polymatroids associated with a code
C determine the dimension of the code and its minimum distance, and characterize the
property of being MRD.

Proposition 6.1 Let C ⊆ Mat be a rank-metric code. Then

dim(C) = m · ρc(C, F
n
q) = n · ρr(C, F

m
q ).

The above result follows directly from the definitions. We now relate the minimum
distance of a code to the rank functions of the associated q-polymatroids.

Proposition 6.2 Let C ⊆ Mat be a nonzero rank-metric code. The following are equiv-
alent:

(1) d(C) ≥ d,
(2) ρc(J ) = dim(C)/m for all J ⊆ F

n
q with dim(J ) ≥ n − d + 1,

(3) ρr(K ) = dim(C)/n for all K ⊆ F
m
q with dim(K ) ≥ m − d + 1.

Proof It is easy to see that the following are equivalent:
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1′ d(C) ≥ d,
2′ C(J , c) = {0} for all J ⊆ F

n
q with dim(J ) ≤ d − 1,

3′ C(K , r) = {0} for all K ⊆ F
m
q with dim(K ) ≤ d − 1.

Bydefinition, for all J ⊆ F
n
q and K ⊆ F

m
q wehavemρc(J ) = dim(C)−dim(C(J⊥, c))

and nρr(K ) = dim(C) − dim(C(K⊥, r)). Hence (2) ⇔ (2′) and (3) ⇔ (3′). ��
Therefore, the minimum distance of a rank-metric code can be expressed in terms

of the rank function of one of the associated q-polymatroids as follows.

Corollary 6.3 Let 0 �= C ⊆ Mat. The minimum distance of C is

d(C) = n + 1 − min

{
d | ρc(J ) = dim(C)

m
for all J ⊆ F

n
q with dim(J ) = d

}

= m + 1 − min

{
d | ρr(K ) = dim(C)

n
for all K ⊆ F

m
q with dim(K ) = d

}
.

This allows us to characterize the property of being MRD in terms of the rank
function of one of the associated q-polymatroids.

Theorem 6.4 Let C ⊆ Mat be a nonzero code of minimum distance d. The following
are equivalent:

(1) C is MRD,
(2) ρc(J ) = dim(J ) for all J ⊆ F

n
q with dim(J ) ≤ n − d + 1,

(3) ρc(J ) = dim(J ) for some J ⊆ F
n
q with dim(J ) = n − d + 1.

Proof Assume that C is MRD. We claim that

dim(C(J , c)) = dim(C) − m(n − dim(J )) for all J ⊆ F
n
q with dim(J ) ≥ d − 1.

This is straightforward if dim(J ) = d − 1. When dim(J ) ≥ d, it follows from [19,
Lemma 48]. Let J ⊆ F

n
q be a subspace with dim(J ) ≤ n − d + 1. Since dim(J⊥) ≤

d − 1 and dim(C(J , c)) = dim(C) − m(n − dim(J )), we obtain

mρc(J ) = dim(C) − dim(C(J⊥, c)) = dim(C) − dim(C) + m dim(J ) = m dim(J ).

This establishes (1) ⇒ (2).
It is clear that (2) implies (3). So we assume that (3) holds and prove (1). Since

dim(J ) = n−d +1, then dim(J⊥) = d −1, therefore dim(C(J⊥, c)) = 0. It follows
that

m dim(J ) = mρc(J ) = dim(C) − dim(C(J⊥, c)) = dim(C),

from which we obtain dim(C) = m dim(J ) = m(n − d + 1). Hence C is MRD. ��
Remark 6.5 Ifm = n and 0 �= C ⊆ Mat, then the same proof as in Theorem 6.4 shows
that the following are equivalent:
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• C is MRD,
• ρc(K ) = dim(K ) for all K ⊆ F

m
q with dim(K ) = m − d + 1

• ρc(K ) = dim(K ) for some K ⊆ F
m
q with dim(K ) = m − d + 1.

Combining Proposition 6.2 and Theorem 6.4, we obtain an explicit formula for the
rank function of the (column) q-polymatroid associated with an MRD code.

Corollary 6.6 Let C ⊆ Mat be a nonzero MRD code of minimum distance d. Then for
all J ⊆ F

n
q we have

ρc(J ) =
{
n − d + 1 if dim(J ) ≥ n − d + 1,
dim(J ) if dim(J ) ≤ n − d + 1.

(1)

In particular, the q-polymatroid associatedwith anMRDcode has an integer-valued
rank function, i.e., it is a q-matroid. It is in fact the uniform q-matroid, as explained
in [10, Example 4.16]

It is natural to expect that equivalent rank-metric codes give rise to equivalent
q-polymatroids. This is true in the following precise sense.

Proposition 6.7 Let C1, C2 ⊆ Mat be rank-metric codes. Assume C1 ∼ C2. If m > n,
then P(C1, c) ∼ P(C2, c) and P(C1, r) ∼ P(C2, r). If n = m, then one of the following
holds:

• P(C1, c) ∼ P(C2, c) and P(C1, r) ∼ P(C2, r),
• P(C1, c) ∼ P(C2, r) and P(C1, r) ∼ P(C2, c).

Proof Since C1 ∼ C2, then either C2 = AC1B for some invertible A, B, or C2 = ACt1B
for some invertible A, B andm = n. Since the proofs are similar, we only treat the case
when there exist invertible matrices A, B such that C2 = AC1B. Let ψ : F

n
q → F

n
q be

the Fq -linear isomorphism associated with the matrix A with respect to the standard
basis. Fix a subspace J ⊆ F

n
q . Multiplication by A on the left and B on the right

induces a bijection
C1(J⊥, c) → C2(ψ(J⊥), c). (2)

Let ϕ : F
n
q → F

n
q denote the Fq -linear isomorphism associated with the matrix (A−1)t

with respect to the standard basis. Then we have ψ(J⊥) = ϕ(J )⊥, hence bijection
(2) can be thought of as a bijection

C1(J⊥, c) → C2(ϕ(J )⊥, c). (3)

Therefore, for all subspaces J ⊆ F
n
q we have ρc(C1, J ) = ρc(C2, ϕ(J )). This

establishes the q-polymatroid equivalence P(C1, c) ∼ P(C2, c). The equivalence
P(C1, r) ∼ P(C2, r) can be shown similarly. ��

Proposition 6.7 says that equivalent codes have equivalent associated q-polymatr-
oids. The next example shows that the converse is false in general, i.e., that inequivalent
codes may have equivalent (in fact, even identical) associated q-polymatroids.
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Example 6.8 Let q = 2 and m = n = 4. Let C1 be the code of [2, Example 7.2], i.e.,
the code generated by the four linearly independent binary matrices

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0 1 0 0
0 0 1 1
0 0 0 1
1 1 0 0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0 0 1 0
0 1 1 1
1 0 1 0
1 0 0 1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0 0 0 1
1 1 1 0
0 1 0 1
0 1 1 1

⎞

⎟⎟
⎠ .

The code C1 is MRD and has minimum distance d(C1) = 4. Let C2 be a rank-metric
code obtained from a Gabidulin code C ⊆ F

4
24

of minimum distance 4 via Proposi-
tion 2.12. By [2, Example 7.2], the code C1 has covering radius cov(C1) = 2, while it
is well known that cov(C2) = d(C) − 1 = 3. Since the covering radius of a code is
preserved under isometries, we conclude that the codes C1 and C2 are not equivalent.

On the other hand, the four codes C1, C2, Ct1 and Ct2 are all MRD with the same
parameters. Therefore, by Corollary 6.6 the rank function of their q-polymatroids is
determined and given by the formula in (1). This shows that P(C1, c) = P(C1, r) =
P(C2, c) = P(C2, r), although C1 � C2.

It is known from [10] that a vector rank-metric code C ⊆ F
n
qm gives rise to a q-

matroid M(C) on F
n
q . In our notation, M(C) = P(�(C), c), where � is any Fq -basis

of Fqm .

Proposition 6.9 Let C ⊆ F
n
qm be a vector rank-metric code, and let �,�′ be Fq -bases

of Fqm . We have P(�(C), c) = P(�′(C), c) and P(�(C), r) ∼ P(�′(C), r).

Proof The statement that P(�(C), c) = P(�′(C), c) follows from [10, Corollary 4.7].
The statement that P(�(C), r) ∼ P(�′(C), r) follows by Propositions 2.13 and 6.7.

��
We continue by showing that there exist rank-metric codes whose associated q-

polymatroids are not q-matroids. Even more, in the next example we show that there
are q-polymatroids such that no nonzero multiple of their rank function defines a
q-matroid.

Example 6.10 Let q = 3 and n = m = 2. Let C be a rank-metric code generated by
the matrices

M1 :=
(
1 0
0 0

)
, M2 :=

(
0 1
0 0

)
, M3 :=

(
0 0
1 0

)
.

Consider the subspaces J := (〈(1, 0)〉 and I := (〈(0, 1)〉. Since C(J⊥, c) = (〈M3〉,
we have ρc(C, J ) = 1. As C(I⊥, c) = (〈M1, M2〉 , then ρc(C, I ) = 1/2. Hence
P(C, c) is a q-polymatroid which is not a q-matroid.

Let α ∈ R with α �= 0, and consider the function ρ := αρc. Since ρ(J ) = α, in
order for ρ to be the rank function of a q-polymatroid it must be 0 < α ≤ 1. Then
ρ(I ) = α/2 is not an integer, so ρ cannot be the rank function of a q-matroid.
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7 Generalized weights as q-polymatroid invariants

In this section, we provide further evidence that the q-polymatroids associated with a
rank-metric code adequately capture the structure of the code. More precisely, in the
next theorem we show that the generalized rank-weights of the code are an invariant
of the associated q-polymatroids. Later in the section, we show that the property of
being an optimal anticode can be characterized in terms of the rank function of the
associated q-polymatroids.

Theorem 7.1 Let C ⊆ Mat be a nonzero rank-metric code and let 1 ≤ i ≤ dim(C) be
an integer. If n > m, we have

ai (C) = min{n − dim(J ) | J ⊆ F
n
q , dim(C) − mρc(C, J ) ≥ i}.

If n = m, we have

ai (C) = min{ai (C, c), ai (C, r)},

where

ai (C, c) := min{n − dim(J ) | J ⊆ F
n
q , dim(C) − mρc(C, J ) ≥ i},

ai (C, r) := min{m − dim(K ) | K ⊆ F
m
q , dim(C) − nρr(C, K ) ≥ i}.

Proof Let J ⊆ F
n
q , then by [17, Lemma 26]

dim(Mat(J⊥, c)) = m dim(J⊥) = m(n − dim(J )). (4)

Assume thatm > n. By [4, Theorem 6], the optimal anticodes inMat are the spaces
of the form Mat(J⊥, c), where J ranges over the subspaces of F

n
q . Therefore,

m · ai (C) = min{dim(Mat(J⊥, c)) | J ⊆ F
n
q , dim(C ∩ Mat(J⊥, c)) ≥ i}

= m · min{n − dim(J ) | J ⊆ F
n
q , dim(C) − mρc(C, J ) ≥ i},

where the last equality follows from (4) and the definition of ρc(C, J ).
Now assume that n = m. By [4, Theorem 4], the anticodes in Mat are the spaces

of the form Mat(J⊥, c) or Mat(J⊥, r), as J ranges over the subspaces of F
n
q . Then

ai (C) = 1

n
min

{
dim(Mat(J⊥, c)) | J ⊆ F

n
q , dim(C ∩ Mat(J⊥, c)) ≥ i

}

∪
{
dim(Mat(J⊥, r)) | J ⊆ F

n
q , dim(C ∩ Mat(J⊥, r)) ≥ i

}

= min{ai (C, c), ai (C, r)},
where the last equality follows from (4) and the definition of ρc(C, J ), ρr(C, J ). ��

In the next theorem, we prove that the property of being an optimal anticode is
captured by the rank function of the associated q-polymatroids.
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Theorem 7.2 Let C ⊆ Mat be a rank-metric code and let t = maxrk(C). The following
are equivalent:

1. C is an optimal anticode,

2.
{
ρc(C, J ) | J ⊆ F

n
q

}
= {0, 1, . . . , t}, or

{
ρr(C, J ) | J ⊆ F

n
q

}
= {0, 1, . . . , t}

and m = n,
3. ρc(C, F

n
q) = t , or ρr(C, F

n
q) = t and m = n.

In particular, the q-polymatroid associated with an optimal anticode is a q-matroid.

Proof (1) ⇒ (2) By [4, Theorems 4 and 6], either C = Mat(K , c) for a t-dimensional
subspace K ⊆ F

n
q , or C = Mat(K , r) for a t-dimensional subspace K ⊆ F

m
q , where

the latter is only possible if m = n. We assume that C = Mat(K , c), as the proof in
the other situation is analogous. One has, for all J ⊆ F

n
q ,

ρc(C, J ) = (mt − dim(Mat(K , c) ∩ Mat(J⊥, c))/m = t − dim(K ∩ J⊥),

where the second equality follows from Lemma 5.4 and [17, Lemma 26]. Hence we
obtain

{
ρc(C, J ) | J ⊆ F

n
q

}
= {0, 1, . . . , t} if C = Mat(K , c),

{
ρr(C, J ) | J ⊆ F

n
q

}
= {0, 1, . . . , t} if C = Mat(K , r).

(3) ⇒ (1) We have

ρc(C, F
n
q) = dim(C)/m and max{ρr(C, K ) | K ⊆ F

m
q } = ρr(C, F

m
q ) = dim(C)/n.

Then either dim(C)/m, or dim(C)/n = t andm = n. Eitherway one has dim(C) = mt ,
hence C is an optimal anticode. ��
Corollary 7.3 Let C ⊆ Mat be an optimal anticode and let t = maxrk(C). If m > n,
then P(C, c) ∼ (Fn

q , ρ) where

ρ(J ) = dim(J + 〈e1, . . . , en−t 〉) − (n − t) (5)

and ei denotes the i-th vector of the standard basis of F
n
q . If m = n, then either

P(C, c) ∼ (Fn
q , ρ) or P(C, r) ∼ (Fn

q , ρ).

Proof If m > n, then C = Mat(K , c) for some K ⊆ F
n
q of dim(K ) = t . If m = n,

then either C = Mat(K , c) or Ct = Mat(K , c), for some K ⊆ F
n
q of dim(K ) = t .

Since P(Ct , c) = P(C, r), it suffices to consider the case when C = Mat(K , c).
Up to code equivalence, we may also assume without loss of generality that K =
〈en−t+1, . . . , en〉.

It follows from the proof of Theorem 7.2 that ρc(C, J ) = t −dim(K ∩ J⊥). There-
fore, ρc(C, J ) = t−(n−dim(〈en−t+1, . . . , en〉∩ J⊥)⊥) = dim(J+〈e1, . . . , en−t 〉)−
(n − t). ��
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Remark 7.4 One consequence of our results is that, in certain cases, the generalized
weights of a code determine the associated q-polymatroid P(C, c) up to equivalence.
This is the case, e.g., in the following situations:

• if C has the generalized weights of an MRD code, then C is MRD and P(C, c) is
the uniform q-matroid (see Corollary 6.6),

• if C has the generalized weights of an optimal anticode, then C is an optimal
anticode and P(C, c) is the q-matroid described in Corollary 7.3,

• if dim(C) = 1, then C = 〈M〉 and a1(C) = dmin(C) = rk(M). Moreover, P(C, c)
is given by

ρc(C, J ) =
{
0 if colsp(M) ⊆ J⊥,
1
m else.

Notice that if C1 = 〈M1〉 and C2 = 〈M2〉 have the same minimum distance, then
P(C1, c) ∼ P(C2, c). In fact, ρc(C1, J ) = ρc(C2, ϕ(J )), where ϕ : F

n
q → F

n
q is

an Fq -linear isomorphism such that ϕ(colsp(M1)) = colsp(M2).

One should, however, not expect this to be the case in general. In other words, the gen-
eralizedweights of a rank-metric code C are invariants of the associated q-polymatroid
P(C, c), but they do not determine it, as the next example shows. Similar examples
may be found for rectangular matrices.

Example 7.5 Let C1, C2 ⊆ Mat2×2(F2),

C1 =
〈(

1 0
0 1

)
,

(
0 1
0 0

)〉
, C2 =

〈(
0 1
1 0

)
,

(
0 1
0 0

)〉
.

The codes C,D have generalized weights a1(C1) = a1(C2) = 1 and a2(C1) =
a2(C2) = 2. In fact, any rank-metric code of dimension 2 and minimum distance
1 which is not an optimal anticode has the same generalized weights as C1 and C2.

Let P(C1, c) = (F2
2, ρ1) and P(C2, c) = (F2

2, ρ2). Let J ⊆ F
2
2 be a 1-dimensional

linear subspace. Then

ρ1(J ) =
{ 1

2 if J = 〈(0, 1)〉
1 if J = 〈(1, 0)〉 or J = 〈(1, 1)〉

while

ρ2(J ) =
{ 1

2 if J = 〈(0, 1)〉 or J = 〈(1, 0)〉,
1 if J = 〈(1, 1)〉

Therefore, P(C1, c) � P(C2, c). Notice moreover that P(C1, c) ∼ P(C1, r) and
P(C2, c) ∼ P(C2, r).
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8 Duality

In this last section of the paper, we establish a connection between the notions of
code duality and q-polymatroid duality. We start by showing that the q-polymatroids
associated with the dual code C⊥ are the duals of the q-polymatroids associated with
the original code C.

Theorem 8.1 Let C ⊆ Mat be a rank-metric code. We have P(C, c)∗ = P(C⊥, c) and
P(C, r)∗ = P(C⊥, r).

Proof We only show the result for P(C, c). The proof for P(C, r) is analogous. Let
J ⊆ F

n
q be a subspace. Since ρc(C, J ) = (dim(C) − dim(C(J⊥, c)))/m, then

ρ∗
c (C, J ) = dim(J ) − dim(C)/m + (dim(C) − dim(C(J , c)))/m

= dim(J ) − dim(C(J , c))/m.

Therefore, by [17, Lemma 28] one has

mρ∗
c (C, J ) −mρc(C⊥, J ) = m dim(J ) − dim(C⊥) − dim(C) +mn −m dim(J ) = 0.

��

Finally, it is natural to ask how the q-polymatroids associated with the dual of
a vector rank-metric code relate to the q-polymatroids associated with the original
vector rank-metric code. It turns out that they are dual to each other, as the following
result shows.

Corollary 8.2 Let C ⊆ F
n
qm be a vector rank-metric code, and let � be a basis of Fqm

over Fq . We have

P(�(C⊥⊥), c) = P(�∗(C), c)∗ = P(�(C), c)∗ and P(�(C⊥⊥), r)

= P(�∗(C), r)∗ ∼ P(�(C), r)∗

where �∗ is the dual of the basis �.

Proof Applying [17, Theorem 21] to C , we obtain �(C⊥⊥) = �∗(C)⊥, hence
P(�(C⊥⊥), c) = P(�∗(C)⊥, c) and P(�(C⊥⊥), r) = P(�∗(C)⊥, r). On the other
hand, Theorem 8.1 gives P(�∗(C)⊥, c) = P(�∗(C), c)∗ and P(�∗(C)⊥, r) =
P(�∗(C), r)∗. By Proposition 6.9 we have P(�∗(C), c) = P(�(C), c) and
P(�∗(C), r) ∼ P(�(C), r). Therefore, byProposition4.7 it follows that P(�∗(C), c)∗
= P(�(C), c)∗ and P(�∗(C), r)∗ ∼ P(�(C), r)∗. ��
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