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Abstract
Using the Poisson formula for resultants, and variants of the chip-firing game on
graphs, we provide a combinatorial method for computing a class of resultants cor-
responding to the characteristic polynomials of the adjacency tensors of starlike
hypergraphs including hyperpaths and hyperstars, which are given recursively and
explicitly.
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1 Introduction

Here, a tensor (or hypermatrix) refers to a multi-array of entries in some field, which
can be viewed to be the coordinates of the classical tensor (as multilinear function)
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under an orthonormal basis. The eigenvalues of a tensor were introduced by Qi [17,18]
and Lim [14] independently. To find the eigenvalues of a tensor, Qi [17,18] introduced
the characteristic polynomial of a tensor, which is defined to be a resultant of a system
of homogeneous polynomials. In general, there is not an explicit polynomial formula
yet for resultants except in some very special cases; and many fundamental questions
about resultants still remain open.

To our knowledge, there are currently three tools to compute a concrete resultant.
The first one is Koszul complex, whose terms are given by the graded tensor product of
apolynomial algebra and an exterior algebra, and the differential is built from objective
polynomials in the resultant. The resultant is exactly equal to a certain characteristic of
the related Koszul complex, see [1,16]. The second one is the generalized trace, which
is defined by Morozov and Shakirov [15]. Using the generalized traces and the Schur
function, Cooper and Dutle [ 5] expressed the characteristic polynomial of a hypergraph
and characterized several properties of the characteristic polynomial, including the
characteristic polynomial for a single edge. Hu et al. [12] gave an expression of the
characteristic polynomial of a tensor. Shao, Qi and Hu [19] gave a graph theoretic
formula for the generalized trace. The third tool is the Poisson formula, which may
provide an inductive computing method, see [11, Chapter 13, Theorem 1.2] or [13,
Proposition 2.7]. For example, Cooper and Dutle computed the spectrum of the “all
ones” tensors using the Poisson formula, see [6, Theorem 3]. We refer to [11, Chapter
13] and [7, Chapter 3] for an overview of calculation of resultants.

Recently, spectral hypergraph theory has been developed to explore connections
between the structure of a uniform hypergraph and the eigenvalues of some related
symmetric tensors. Cooper and Dutle [5] proposed the concept of the adjacency tensor
for a uniform hypergraph. Shao et al. [20] proved that the adjacency tensor of a
connected k-uniform hypergraph G has a symmetric H-spectrum if and only if & is
even and G is odd-Obipartite. This result gives a method to check whether a connected
even-uniform hypergraph is odd-bipartite or not. Fan et al. [9,10] use the spectral
symmetry or the eigenvariety associated with spectral radius of the adjacency tensor
to characterize the structural properties of hypergraphs.

The characteristic polynomial of a hypergraph is defined to be the characteristic
polynomial of its adjacency tensor. In this paper, we mainly aim to give a lower dimen-
sion formula to compute the characteristic polynomial of hypergraphs based on the
Poisson formula and variants of the chip-firing game, and determine the characteristic
polynomials of starlike hypergraphs including hyperstars and hyperpaths, recursively
and explicitly.

For simplicity of notation, we denote [n] = {1,2,...,n} and [m,n] = {m,m +
1,...,n} for integers m < n.

2 Preliminaries

In this section, we recall some basic notions and useful results on resultants and
hypergraphs.
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2.1 Resultants
Let Fi(x1,..., %), ..., Fy(x1,...,x,) be n homogeneous polynomials over C in

variables xi, ..., x,, where the degree of F; is d; > 0 for i € [r]. An important
question is whether the system of equations

F]('xlv"'axn)zoa

. 2.1
Fy(xy,...,xp) =0
admits nontrivial solutions.
Generally, each F; can be written as
F = Z Ci.aX",
ler|=d;
where o = (i1, ..., i,), || =i1+---+i, and X* = xi‘ . ~x£,”.N0tethatthenumber

of a’s with |ae| = d is ("7 1).

For each possible pair of indices i, o, we introduce a variable u; ,. Then, given a
polynomial P € Clu; o : || = di,i € [n]], we let P(F1, ..., F,) denote the value
obtained by replacing each variable u; o, in P with the corresponding coefficient ¢; 4.

Theorem 2.1 [7, Chapter 3, Theorem 2.3] For fixed positive degrees dy, . . . , dy, there
exists a unique polynomial Res € Z[u; ] satisfying the following properties:

W) If Fy,..., F, € Clxy, ..., x,] are homogeneous of degrees dy, . .., d,, respec-
tively, the system (2.1) has a nontrivial solution if and only if Res(Fy, ..., F,) =
0.

(i) Res(x{", ..., xiy =1.

(iii) Res is irreducible, even regarded as a polynomial in Clu; o].

Res(Fy, ..., Fy) is called the resultant of Fy, ..., F,. Resultants have important
applications in algebraic geometry, algebraic combinatorics and spectral hypergraph
theory. However, it is difficult to compute the resultant of general polynomials. Here,
we list some useful properties and calculation methods of resultants which will be
used in this paper.

Lemma 2.2 [5, Lemma 3.2] Let Fy, ..., F, € C[xy, ..., x;] be homogeneous poly-

nomials of degree dy, . .., d,, respectively, and let Gy, --- , Gy, € Cly1, ..., ym] be
homogeneous polynomials of degree 61, . . ., 8y, respectively. Then,
IT3; ﬁ d;
Res(Fy, ..., F,,Gq,...,G,) =Res(Fy, ..., F,)’=' Res(Gq,...,Gp)i=!
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Lemma 2.3 [7, Chapter 3, Theorem 3.1] For a fixed j € [n] and A € C,
Res(Fi, ..., Fj 1, AFj, Fj1, ..., Fy) = 247 41dmdRes(Fy, ., Fy),

where d; is the degree of F; for eachi € [n].

Next, we recall the Poisson formula. Given homogeneous polynomials Fp, ..., F, €
Clx1, ..., x,] of degree dy, ..., d,, respectively, let

filxr, oo ) = Fi(x, oo, xm, D), (1 <i <n),
Fi(xi,...,xp—1) = Fi(x1,...,x,-1,0), 1 <i<n-1).
Observe that Fi, ..., F,_; are still homogeneous in C[xi,...,x,—1] of degree
di,...,dy,—1, respectively, but fi, ..., f, are not homogeneous in general.

Lemma 2.4 [Poisson formula] Keep the above notation. IfRes(I:"l, cel, Fn_l) # 0,

: Clxt, ..., xp—1] ) :
then the quotient algebra A = ———————— has dimension dy ---d,—1 as a

(fioooos fuo1)

vector space over C, where ( f1, ..., fu—1) is the ideal of the polynomial algebra
Clx1,...,Xxn—1] generated by fi, ..., fu—1, and

Res(Fi, ..., Fy) = Res(Fy, ..., Fy_)™ det(my, : A — A),

where my, . A — A is the multiplication map given by f,.

Here, the above form of the Poisson formula follows from [7, Chapter 3, Theorem
3.4], which is different from the original one in [13].

2.2 Hypergraphs

A hypergraph H is a pair (V, E), where V is the set of vertices and E C P(V) is
the set of edges. A hypergraph H is called k-uniform for an integer k > 2 if for each
¢ € E, |¢| = k. Clearly, a 2-uniform hypergraph is just a classical simple graph.

Definition 2.5 [5] Let H = (V, E) be a k-uniform hypergraph. The (normalized)
adjacency tensor A(H) = (aj,...i, )i, ,iyev is defined by

Jif{iy, ..., ik} € E,
aipn = oD ! {i1 ix}

0, otherwise.

For convenience, we use the following notation. Let V be a finite set and m a

positive integer. For each e = (i1,...,i,;) € V™" and¢c = (c1,...,cm) € N, we
denote x{ = xl.cll xlc’:’ We also write xil as Xe, where 1 = (1,...,1) € N If
V =[nl,c=(c1,...,cy) € N", we write an] as x¢.

The eigenvalues of a tensor were introduced by Qi [17,18] and Lim [14] indepen-
dently. The adjacency tensor of a uniform hypergraph was introduced by Cooper and
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Dutle [5]. Here, we briefly give the definition of eigenvalues of uniform hypergraphs
based on the above.

Definition 2.6 [5,17] Let H = (V, E) be a k-uniform hypergraph and A = (a;,...;,)
be the adjacency tensor of H. For some A € C, if there exists a nonzero vectorx € C!V!
such that for each j € V,

§ : _ k—1
a]lzl3...lkxlle3 o 'xlk - )\.X] B

12,i3,..,ik€V

or equivalently, for each v € V,

Z Xe\(w) = 2xp

veeeE

then A is called an eigenvalue of H.

For each v € V, define

F, = )Lx{j_l — Z Xe\ (v}

veeeE

The polynomial
¢ug(A) =Res(Fy:veV)

in the indeterminant A is called the characteristic polynomial of H. Consequently, A
is an eigenvalue of H if and only if ¢ (1) = 0.

2.3 The dollar game on graphs

Let G = (V, E) be asimple graph. Recall that a configuration ¢ on G means a function
¢ : V. — N, which can be understood as a pile of ¢(v) tokens (chips, or dollars) at
each vertex v. A dollar game on G starts from a configuration ¢. At each step of the
game, a vertex v is fired, that is, dollars move from v to its adjacent vertices, one dollar
going along each edge incident to v. Fix a vertex w of G, called the bank vertex. A
vertex v other than w can be fired if and only if ¢(v) > deg(v), where deg(v) is the
degree of the vertex v. The bank vertex w is allowed to go into debt such that w can
be fired if and only if no other firing is possible.

Suppose that X is a non-empty finite sequence of (not necessarily distinct) vertices
of G, such that starting from a configuration ¢, the vertices can be fired in the order of
X. If v occurs x (v) times, we shall refer to x as the representative vector for X. The
configuration ¢’ after the sequence of firing X is given by

¢ =c—Lx,
where L is the Laplacian matrix of G.
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The dollar game on graphs was introduced by Biggs [2] and is a variant of the
chip-firing game. It is often described in terms of “snowfalls” and “avalanches” in
the literature. A configuration c¢ is said to be stable if 0 < ¢(v) < deg(v) for every
v # w. A sequence of firing is w-legal if and only if each occurrence of a vertex
v # w follows a configuration ¢ with 7 (v) > deg(v) and each occurrence of w follows
a stable configuration. A configuration ¢ on G is said recurrent if there is a w-legal
sequence for ¢ which leads to the same configuration. A critical configuration ¢ means
that ¢ is both stable and recurrent. We refer to [2] for more details.

Lemma 2.7 [2, Theorem 6.2] If G is a connected graph, then the number of critical
configurations is equal to the number of spanning trees of G.

Example 2.8 Let K be a complete graph on k vertices. Then, the number of critical
configurations is k¥~

3 Poisson formula for characteristic polynomials of hypergraphs
3.1 Poisson formula for hypergraphs

Let H = (V, E) be a k-uniform hypergraph. Recall that the characteristic polynomial
of H is defined as

¢ (A) =Res(F, :v eV),
where

F, = )»xfil — Z Xe\(v) € Clxy 1v e V],

veeeE

In order to use Poisson formula for the resultant Res(F, : v € V), we need fix a vertex
w in V. Denote by E,, the set of all edges containing the vertex w and ez = ¢\{w}
for each ¢ € E,,. Then, we have

Sfw=2x— szm:

ceky

and for all v € V\{w},

fo = axk=t — Z Xe\{v} — Z Xeg\(v}>

veeeE\E,y, veeekEy,

Fy =k — Z X\ (u] (3.1)
veeeE\E,y,

where fy, and f, are obtained from F,, and F) by taking x,, = 1, respectively, and
F, is obtained from F;, by taking x,, = 0.
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__ Deleting the vertex w in V_and the edges in Ey,, one can obtain a sub-hypergraph
= (V, E). Tobe precise, V = V\{w} and E = E\Ey,.

Lemma 3.1 Retain the above notation. Then,

dn(A) = ¢z det(my, 1 A — A), (3.2)
. . Clxy :v e V]

where A is the quotient algebra ————— and my, is the multiplication map of
(foiveV)

A given by f,.
Proof By Lemma 2.4, the characteristic polynomial of H is
og(\) = Res(F, :v e V)k_l det(my, : A — A).
Considering the sub-hypergraph Hof H, by Eq. (3.1), we have
o) = Res(F, :v € \7).

The result follows. O

By definition, the algebra A is (k — 1)"~!-dimensional as a vector space over C
where r is the number of vertices of H. In general, it is difficult to compute the

determinant det(m s, : A — A). However, we can give a description for some special
cases.

3.2 Hypergraphs with a cut vertex

Let H = (V, E) be ak-uniform connected hypergraphand w € V.Denote Ej = {¢7 |
¢ € Ey}. Deleting the vertex w, we can get a (non-uniform) hypergraph H=(V,E),
with V = V = V\{w} and E = (E\Ey) U Eg. Recall the vertex w is called
a_cut vertex 1f H is not connected; see Fig. 1. Suppose that w is a cut vertex and
H] = (V1, E1) ,H, = (Vn, E ) (n > 2) are the connected components of H.
For each i € [n], weset V; = Vi, E; = E; \E%w, and then obtain a sub-hypergraph
H; = (V;, E;) of H. Note that each H; is a k-uniform hypergraph and may not be
connected.
For each i € [n], we denote

={eeEy|lenV; £}
By definition, we have
¢p(A) =Res(Fy:veV),
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Fig.1 A k-uniform hypergraph

w
H with a cut vertex w o
///_‘\\ Bl E,Z///_\\\
/ \ VA \
\ Hi / \ Hy I
\ / \ /
/
AN _ 7 H AN -
where
n
Famial =3 Y e
i=1 ecE,
and for all v; € V;, i € [n],
Fy =y ! — Z Xe\{vi} — Z Xe\ (v}
vieeek; vieeeEl
Therefore,
n
fo=h=2 ) X,
i=1 geEl
and for all v; € V;,i € [n],
fo =2 = 3" Xap = DL Xep\(ui)s
v €cEE; vi€e€El
Fvi = )\'xl]j,'_l - Z Xe\{vi}-
vieeek;
Clxy:veV
Let A be the quotient algebra [U—A], and let my, : A — A be the
(fo:veV) R
multiplication map given by f,,. Since Vi, ..., V, form a partition of V and for

each v; € V;, fi, € Clx, : v € V;], each monomial of A can be expressed as
c c C C, . . - . . : .
X5 = Xy, Xy, -+ - Xy by considering f, = 0 inside A forv € V; and i € [n]. So we

have A=A, ® -- -’® A,, where

_(D[xv:veVi]

A= hven el

We define and denote m; ,, : A; — A; the linear map given by the multiplication by
ZSEE{U X, foreach i € [n]. Then,
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n
my, = Alds — ZIdAl ® - ®Ida,_, @®m; y ®IdAi+1 ®---®Idy,,
i=1

where Id denotes the identity map on certain vector space.

Assumption 1 For each i € [n], there exists an ordered C-basis x%:1, ..., x%4 for
A; such that the matrix of m; ,, with respect to this basis is a lower triangular matrix
with the diagonal entry o; j;, ji € [d;], where d; = (k — 1)"" and r; = |V;].

Under Assumption 1, {x*/1 ...x%.in | j; € [d;],i € [n]} with the left lexico-
graphic order is a basis for A such that the matrix of m 7, with respect to this basis is

still a lower triangular matrix with diagonal entries A — ) «;, j; for j; € [d;] and
1<i<n
i € [n]. In this situation, we have

det(my, :A— A= [] (x - Za,,jl) ) (3.3)
i=1

1<ji<d;
1<i<n

Corollary3.2 Let H be a k-uniform hypergraph with a cut vertex w. Then, under
Assumption 1,

n 1+ gvr‘,‘ n
— JFL
o) = om0)* " [ (A - Zai,ji) :

i=1 1<ji<d; i=1

1<i<n
Proof By definition, the characteristic polynomial of H; = (V;, E;) is
1, (0) = Res(Fy, : vi € V7).

By Lemma 2.2, we have

n %_\V_,'I n %_rj

Res(Fy:ve V) =[[Res(Fy, s v € V&7 =T om®D" .
i=1 i=1

From Lemma 3.1, it follows that

du(A) = Res(F, :v e V) ldet(my, : A — A)

n 1+ é'rj n
— J7Ft
~flonor ! 1 (1 F)
i=1 Jji€ldil i=1
i€(n]

O
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Fig.2 A hypergraph H with a PN
cored vertex w Vs N N
/ ~
\
AT H \
w o | © o |
e |
\ /
/
\ N P
~ ~ - -

3.3 Hypergraphs with a cored vertex

Let H = (V, E) be a k-uniform hypergraph. Recall that a vertex w € V is called a
cored vertex if it is contained in only one edge; see Fig. 2. Deleting the cored vertex
w and the edge ¢, containing w, one can obtain a sub-hypergraph H = (V,E) with
V = V\{w} and E = E\{e,}. Then,

k—1
Fy =ixy, — X5,

Fo=2xt"" = 3" Xy = D Xey\)s v # w.

veeeE VEEy

Moreover, f, = A — X.., and for all v # w,

w2

fo=0x7 = D Xev = D Xep\pos

veeeE veEy

Fv = )»x{fil — Z Xe\ (v}

veseE

Corollary 3.3 Let H be a k-hypergraph with a cored vertex w. Retain the above nota-
tion. Then,

o (L) = pp () detmy, 1 A — A),

Clx,:veV
where A is the quotient algebra % and m z, is the multiplication map of
VIV E

A given by fy.

4 Hyperpaths

Let P,’l‘ be a k-uniform hyperpath with n edges or of length n, which has vertices
labeled as 0, 1,...,r = n(k — 1) from left to right as in Fig. 3, and edges ¢, =
(k=D -1, k=D -1 +1,...,(k—Dt}fort e [n].

In this section, we will give a recursive formula for the characteristic polynomials
of hyperpaths. By the Poisson formula introduced in Lemma 3.1, it suffices to compute
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€] €2 €n

Fig.3 A k-uniform hyperpath P,f with n edges

the related determinant. For this, we introduce the following model of the dollar game
on hypergraphs.

4.1 The dollar game on hypergraphs and the firing graph

We now define a dollar game on a hypergraph, considered as a variant of the dollar
game on a graph. Let H = (V, E) be a k-uniform hypergraph with a specified bank
vertex w. A function ¢ : V — N is called a configuration on H. A dollar game starts
from a configuration c¢. At each of step of the game, a vertex v is fired on an edge ¢
containing v, that is, the vertex v decreases k — 1 dollars, and each of the vertices of
¢ other than v increases 1 dollar, which yields a new configuration on H. Note that
such v will be fired on all edges containing v, one edge each step, which yields deg(v)
new configurations. A vertex v other than w can be fired if and only if ¢(v) > k — 1.
The bank vertex w can be fired regardless of the value ¢(w), but only when no other
vertex can be fired. We say that a configuration c is stable if 0 < ¢(v) < k — 1 for all
v # w. The above setting of the dollar game on hypergraphs is different from that of
the dollar game on simple graphs in Sect. 2.3, but will be useful for our discussion.

Let “<” be a total ordering on the set V= V\{w}. Let ¢ be a configuration on
H. The weight of ¢ is defined and denoted to be w(c) = ), . ¢(v). We define the
left anti-lexicographical order < for all configurations on H. To be precise, for any
configurations ¢ and ¢/, ¢ < ¢’ if and only if either w(¢) < w(c¢), or w(c) = w(c),
c(i)y=c(i)forany 1 <i <t —1andc(t) > ¢(¢) for some ¢.

Based on the above discussion, we now define a directed graph, called a firing
graph G(cp) associated with a stable configuration ¢g on the hypergraph H, which is
closely related to the dollar game on H starting from ¢g. Here, a vertex of G(cp) is a
configuration and a directed edge will be called an arrow.

Step 1 Initially, set Vo = {¢p} and & = @.
Step 2 For each edge ¢ containing w, let ¢p . be a configuration given by

co(v) + 1, ifv € e\{w},
co(v), otherwise.

Co,e(v) = {

— Qe _
Put Vi =VWoU({co,: w e e}and &1 = {cg — Cp : w € ¢}, where the arrow o, ¢
means that the configuration ¢y ¢ is obtained from ¢¢ by firing the bank vertex w on
the edge €.

Step 3 If all of configurations in V;\V;_| are stable, then we define V(G(cp)) = V;
and £(G(cg)) = &;. Otherwise, for each non-stable configuration ¢ € V;\V;_{, we
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1 2 2 2 ©) 0 0 0
1 @ 0 0 1 ®@ 0 0
1 1 é) ® 0 0 é) 1
1 1 0 1 1 0
0 0 0 1 1 1 1 2
0 0 0 1 1 1 1 ®

corro@
ooo@um
HE=O O

HHO@HO

O@s.’l)>d>i o o

Fig.4 Firing graph of P33 associated with ¢g

choose the vertex R
ue :=maxfv e V|c(v) >k —1}.

.. Qye,e  _
For each edge ¢ € E containing u., we define an arrow ¢ —% ¢,, where the
configuration ¢, is given by

c(v) — (k—1), ifv =uc,
C(v) = c(w)+1, if v € e\{uc},
c(v), otherwise,

and

Vig1 = Vi U{c: | uc € € € E, cisnot stable in V;\V,_1},

Uye,e  _ . .
Eiv1 =& Ufe %5 & | uc € € € E, cisnot stable in V;\Vi_1}.

Note that ¢, may have been in V;. If ¢, ¢ V;, we say that ¢; is obtained from ¢ by
firing uc on ¢.

Step 3 tells us the firing rule, thatis, which vertex will be fired at the next step among
all non-stable vertices other than the bank vertex. We use the maximal principle, the
non-stable vertex with the maximal order will be firstly fired. In addition, from the
construction of G(cp), we have 0 < w(c) < w(cy) + k — 1 for any ¢ € V(G(cp)),
which implies that G(c) is a finite directed graph.

Example 4.1 Let P33 be the 3-uniform hyperpath with 3 edges as in Fig. 3 by taking
n = 3 and k = 3. Let 0 be the bank vertex of P33, and letcyg = (%, 1,1,1,1,0,0).
Here, the value of the bank vertex 0 is omitted in each configuration of the dollar game
starting from ¢g. The firing graph G(cp) is drawn in Fig. 4, where each vertex within
a circle means that it will be fired at the next step.

Generally speaking, it is difficult to obtain the firing graphs G(cg) for all stable
configurations ¢( on a general hypergraph. However, for some special classes of hyper-
graphs, e.g., hyperpaths, we can characterize the structure of G(cp).
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4.2 Firing graphs of hyperpaths

In this part, we characterize the structure of the firing graph of P,’f in Fig. 3 associated
with the arbitrary fixed stable configuration, where the vertex O is the bank vertex. For
a configuration ¢ on [0, n(k — 1)], we denote ¢ = (¢(0), cl ..., ¢"), where ¢ is the
restriction of ¢ on'g; 1= & \{(i — 1)(k — 1)}, i.e.,

¢ = c(@—Dk—-1+1D,...,cik—1))),i € [n].
Let & be the restriction of ¢ on ¢;, i.e.,
¢ = c(@—Dk—=1),c(@G—Dk—=1)+1),...,ci(k—1))),i € [n].

Then, for each i € [n], & can be considered as a stable configuration on the complete
graph K with the vertex set ¢; and the bank vertex (i — 1)(k — 1).

Let S be the set of all stable configurations on the complete graph K, and Cy be the
set of all critical configurations on Kj. Denote by B the set of all stable configurations
on PX, and fors € [0,n — 1]

n?
By ={(c',....¢") | & eCyfori €[s], & ¢, and & € Sy fori € [s + 1, nl},

and B, = {(c!,...,¢") | & € C, i € [n]}. Note that the bank vertex in the graph
dollar game for every edge other than the first edge inherits its stability with respect
to hypergraph dollar game from the stability in the graph dollar game for the previous
edge. So, B is the disjoint union of By, ..., B,.

Lemma 4.2 Suppose that ¢ is a stable configuration on P,f, the labeled k-uniform
hyperpath described in the opening of Sect. 4, with 0 as the bank vertex, and G(cg) is
the firing graph of P,]l‘ associated with ¢q. Then,

(1) foranyt € [n], ife(t(k — 1)) =k — 1, thenc(v) < k — 1 forany v > t(k — 1).
(i) for any t € [n], the vertex t(k — 1) is fired at ¢ € V(G(¢co)) if and only if
cttk—1)=k—1.
(iii) for any configuration ¢ € V(G(cp)), w(c) > w(cy), where the equality holds if
and only if the vertices 1, ...,k — 1 have been fired on ¢ exactly once along any
directed path from ¢y to c.

Proof (i) Assume to the contrary, there exists a configuration ¢ such that ¢(r(k — 1)) =
k—1,and ¢(v) > k — 1 for some v > #(k — 1). According to the construction of firing
graphs, there exists a directed path P (cg, ¢) from ¢y to ¢ (without repeated vertices on
the path). We also assume that ¢ is the first occurrence of the configuration with the
above property, so that along the path P (¢, ¢), except ¢ no configurations of P (cy, ¢)
hold the above property.

Case 1: 7 (k — 1) is not fired before ¢ along the path P (co, ¢). Then, ¢(v) = ¢o(v) <
k — 1 for any v > t(k — 1) since such v cannot gain more dollars before #(k — 1) is
fired, a contradiction.
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Case 2: 7(k — 1) is fired at some configuration say ¢’ before ¢ along the path
P (co, ¢). We may assume #(k — 1) is last fired at ¢’ | before ¢. Consider the directed
path P(co, ¢):

, k-1, gy, , Oy % ; Qum
co . c_l CO c] . Cp,

Note that ¢ (f(k — 1)) > k — 1l and ¢’ [ (v) < k — 1 for any v > r(k — 1) by the
firing rule. If e(r(k — 1)) > k, there exists a configuration ¢’ before ¢’ ; such that
¢(ttk—1)) =k —1and ¢'(v) > k — 1 for some v > t(k — 1), a contradiction to the
assumption about ¢. So ¢’ (r(k — 1)) =k — 1, and ¢;(t(k — 1)) = 0.

From ¢ to ¢, the vertex 7(k — 1) obtains k — 1 dollars by firing some vertices on
g or &41. If t(k — 1) obtains one dollar by firing some vertex on ¢, at configuration
say ¢, then ¢} (v) < k — 1 for any v > #(k — 1) by the firing rule. Furthermore, such
v cannot gain more dollars from ¢ to ¢ as #(k — 1) would not be fired before ¢. So,
c(v) = ¢} (v) < k — 1 forany v > t(k — 1), a contradiction.

Otherwise, #(k — 1) obtains k — 1 dollars only by firing vertices on &,41. Then,

0, ifo=rtk—1)
cé(v): c’_l(v)—i—l, ifvelttk—1)+1,+ 1)k —1)],
¢ (v), ifv>@¢+Dk—-1)+1.

It follows that the number of configurations in {c; [ oty v = Oy g0, =0,1,...,m}
isk—lasc(t(k—1)) = k—1.Observethatforanyv € [t(k—1)+1, (t+1)(k—1)—1],

W) <))+ k—2)=c (W) + (k—1) < 2k —2.

It forces that each vertex in [t(k — 1) + 1, (# + 1)(k — 1) — 1] is fired exactly once
on the edge &;41 from ¢;, and ¢, implying that the vertex (r + 1)(k — 1) is also fired
exactly once on &;41.

Letu; be the vertexin [f(k—1)+1, (t+1)(k—1)] last fired on &,11. Then, c; v) <
k—1forany v > (r+1)(k—1) by the firing rule. Also, we have c;.+1 (tk—1)) =k—1,
c}H(v) < k—1foranyv € [t(k — 1) + 1, (t + 1)(k — 1)] by the assumption on
uj, and c/jH(v) <k —1forany v > (¢ + 1)(k — 1) by the firing rule, which implies
that c}+1(v) <k —1forany v > r(k — 1). As t(k — 1) is last fired at ¢’_;, we have
c. =c also a contradiction.

(i1) The sufficiency of (ii) follows by the result (i) and the firing rule. For the
necessity of (i), if #(k — 1) is fired, then ¢(¢(k — 1)) > k — 1. If c(¢(k — 1)) > k, there
exists a configuration ¢’ before ¢ such that ¢/(¢(k — 1)) = k — 1 and ¢/(v) > k — 1 for
some v > t(k — 1), a contradiction to (i).

(iii) By definition, we have w(¢y) = w(cp) + k — 1. Observe that for any arrow
¢ Zwer, ¢/, whereu # 0, w(¢) = w(c) — 1if g = g1, and w(¢') = w(c) if & # €.
Therefore, we need only show that no vertex is fired on £; more than one time in any
directed path starting from cy. Let
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®0,6q _ Xy x Quy.eq e
cg—=C) = C| ) ¢

be such a walk in G(c¢p). If there exists a vertex in [k — 1] be fired more than one
time on &1, we may assume that u, is the first occurrence of the vertex satisfying
Qe = Oyy,g forsome £ < ¢ If 1 <up = u, <k — 2, by our assumption, we have

¢ (up) <Co(ur) —(k—1) +(k=2) =co(us) <k —1,

since there are at most k — 2 vertices different from u, in £1\{0}, each fired at most
once, a contradiction.

Ifu; =u, =k — 1, we have ¢p(v) < k — 1 for any v > k — 1 by the firing rule,
u; € [k —2]foreachi € [£+ 1,¢ — 1] and each of them is fired only one time by our
assumption on u,. By the part (i), we have ¢, (k — 1) = k — 1. Therefore,

ck—D<ck—1)—k—-—D+*k—-2)=k-—2.
This is also a contradiction. O

Lemma4.3 Let Plk be the k-uniform hyperpath on vertices 0,1, ...,k — 1 with a
single edge €. Let ¢ be a stable configuration on Plk with 0 as the bank vertex. Then,
¢ is a critical configuration if and only if the firing graph G(cg) is a directed cycle of
length k, and ¢y is a non-critical configuration if and only if G(co) is a directed path
of length less than k.

Proof By the firing rule, as Plk contains only one edge ¢, each firing is on the edge ¢ so
that every vertex (configuration) of G(cp) has out-degree 1. So we have a sequence of
finite configurations: ¢g€ocy - - - €, starting from ¢g and ending at ¢,,. Note w(¢g) =

w(cg) +k — 1, and for any ¢ BN ¢/, where u # 0, w(¢’) = w(c) — 1. So, starting
from ¢y, the weight of configurations in the sequence is strictly decreasing.

If ¢, = cg, or equivalently ¢y is critical, then G(c¢p) is a directly cycle. As w(c;,;) =
w(cp), by Lemma 4.2(iii), each vertex of ¢ is fired exactly once, implying that G(cp)
is a directed cycle of length k. Otherwise, ¢ is non-critical, and G(cp) is a directed
path. We assert that not all of vertices in ¢ is fired; otherwise, by the proof of Lemma
4.2(iii), no vertex in ¢ is fired more than once so that each of them is fired exactly
once. In this case, we would get ¢,,, = ¢, a contradiction. So G(c¢g) is a directed path
of length less than k. O

Remark 4.4 In Lemma 4.3, the dollar game on the hypergraph Plk (a single edge ¢) is
equivalent to considering the standard dollar game on a complete (simple) graph Ky
on vertices 0, 1, ...,k — 1 with O as the bank vertex. For the dollar game on simple
graphs, the order of the firing can be arbitrary. However, here for dollar game on K,
the firing order obeys the maximal principle; see Sect. 4.1.

Next, we describe the structure of the firing graph of P,f associated with any stable
configuration.
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ARV
NN\ SN

Fig.5 Firing graph of P,/f associated with ¢g € By

Fig.6 Directed cycle obtained

o—> - )
by firing the vertices in &1 / \ /
Ak —1,e,
Co C1
\ /O‘kl,el
R g

Proposition 4.5 Let P,f be the k-uniform hyperpath as in Fig. 3. Then, for a given
stable configuration ¢o € By on P,f with 0 as the bank vertex, where s € [n], the firing
graph G(cp) of P,]l‘ associated with ¢o has the structure as in Fig. 5, where G' is the
subgraph induced by the configurations obtained by first firing the vertex s(k — 1) on
the edge €511, each directed cycle in G(co)\G' has length k, such that

(i) G’ is not empty if and only if s < n;
(ii) if's < n, there are no arrows from G' to G(¢g)\G';
(iii) ifs <n, ¢g < ¢ foranyc € G'.

Proof (i) Let ¢y € By be a fixed stable configuration on P,’f, where s € [n]. Recall
that 56 is a stable configuration on Ky for each i € [n], where 66 is defined at the
beginning of this section. By definition, ¢y € B; means that 66 e€Crforl <i <sand
cf)H € Sk \Cr. By Remark 4.4, to fire the vertices of &; on the edge ¢;, it is equivalent
to consider the dollar game on K} on vertices of ¢; with the bank vertex (i —1)(k —1),
as only when (i — 1)(k — 1) is firstly fired, the other vertices of ¢; can gain more
dollars. By Lemma 4.3, as E(l) is a critical configuration, we get a directed cycle of
length k by firing the vertices 0, 1, ...,k — 1 on g; and k — 1 also &>, where ¢; is the
configuration such that k — 1 is a non-stable vertex with the maximal order in ¢; ; see
Fig. 6.

Similarly, since Eg, ..., € arecritical stable configurations, each ¢; yields a directed
cycle of length k by firing the vertices of ¢; on ¢;, i € [s]. Hence, we get s directed
cycles, which implies that G’ is not empty if and only if s < 7.

(ii) Denote

= {¢’ € G(cp) | ¢ is obtained from ¢, by first firing s(k — 1) on &1},
n(k—1)
and o’(¢) = > e(v) for any ¢ € G(cp). We claim that o' (¢) > '(c) for any

v=s(k—1)+1
¢ €V andc € V(G(co)\V.
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In fact, we choose a configuration ¢, € V' such that &'(c),,) = min{o/(¢/) | ¢/ €
V'}, and a directed path P (c;, ¢},) from ¢, to ¢, as follows:

Us(k—1),e
/ s+1
P(cg,¢c,) 0 ¢ ) c

We may also assume that »’(c;) > «'(c;,) for any i € [m — 1]. By the firing rule,
wehavea, ., #a, . forany j € [s]; otherwise o'(¢c),_,) = @'(c},). So there
exists some configurations among ¢/, ..., ¢, _, fired on some edge ¢; fort > s + 1.

If there exists Oyl 5 = Os(k—1).6511 for some i € [m — 1], letting u; be the last one
for the vertex s(k — 1) fired on &1, then it suffices to consider the restriction of the
configurations on [s(k — 1), n(k — 1)], which is equivalent to considering the firing
graph of P,f_s associated with the configuration (¢;(s(k — 1)), ..., ¢;(n(k — 1))) with
s(k — 1) as the bank vertex, where P,f_s is the sub-hypergraph of P,f consisting of the
edges €511, , &,. By Lemma 4.2 (iii), we have '(c;,) > '(c}), a contradiction.
So, from ¢] to ¢}, s(k — 1) is no longer fired on & 1.

By the above discussion, in order to compute the ' (c;n), it suffices to consider the
firing graph of P,f_‘Y associated with the configuration (¢s(s(k—1)), ..., cs(n(k—1)))
with s (k — 1) as the bank vertex. Note that ¢;(v) = ¢g(v) = €(v) forany v > s(k — 1)
and any ¢ in the front s directed cycles of G(cp). By Lemma 4.2 (iii) again, we have

o' (e,) > '(cy) = o' (eo) = &' (®),

since E‘B‘H = (co(s(k — 1)),...,¢co((s + 1)(k — 1))) is a non-critical. So the claim
follows, and the subgraph G’ induced by V' contains no configurations in the front s
directed cycles of G(cp).

(iii) We will prove the assertion by induction on s. If s = 0, then Lemma 4.2(iii),
w(¢) > w(cy) for any ¢’ in G’ as E(l) is not critical, implying ¢g < ¢’. If s > 1, also
by Lemma 4.2 (iii), we have w(¢’) > w(cp), and w(c’) = w(cp) if and only if the
vertices 1, ..., k — 1 have been fired on ¢1 exactly once along any directed path from
¢ to ¢’. So it suffices to consider the case of w(¢') = w(cp).

Suppose that P (cg, ¢’) is a directed path from ¢ to ¢’ as follows:

Oy % s (k—1).6541 Oy %

aO,El _
P(cp,€): cg—>= ¢y =c¢ Cy . ¢ c .

As w(¢) = w(cp), we have a unique o (v) € [¢] such that Qg = Oy g for each
v € [k — 1] by Lemma 4.2 (iii). It follows that

¢’ (v) = ¢p(v) forv € [k — 2]. 4.1

By the construction of G(cp), there exist 1 < i; < j; <t such that Oy 5 = k=1,
and Oy jy e = k-1, - We also have

co(v) = ¢, (v), ¢j,(v) =¢(v), forany v > k — 1. 4.2)
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If there exists an £1 such that iy < £; < jj and 1 < uy, <k — 2, then by Lemma
4.2 (ii),

k=1 =cok—1)+1+m =k—1,
ciik—1)=co k=) +my=k—1,

where m (respectively, m») is the number of vertices of [k — 2] fired on & from ¢
to ¢;,—1 (respectively, from ¢, to ¢j,_1). By the firing rule, ¢, (k — 1) < k — 1. So,
after ¢;,, only the vertices of [k — 2], k — 1 — (m + m2 + 1) vertices in total, can be
fired (certainly on €1). We have

k=1 =k—1—(m;+my+1)
=cotk — 1) — ((k = 1) — ¢y, (k= 1)) < eolk — 1),

which implies that ¢y < ¢’.

Otherwise, we consider the dollar game on Prll‘_1 , where P,]l‘_1 is the sub-hypergraph
of P,f consisting of the edge ¢, . .., &, with kK — 1 as the bank vertex. The game starts
from ¢;; and produces a sequence of configurations: ¢;,, €, +1, ..., ¢, where ¢, is
a restriction of ¢, on the vertices of Pf_l for p € [i1, j1]. By the firing rule, as no
vertices are fired on &1, for p € [i1, ji], w(cp)’s are constant, and ¢, (v)’s are constant
foreachv € [k—2]. Let&(@&,) = X" %V e,p(v). Ase (k—1) = ¢j,(k—1) = k—1,
we have &(¢;;) = ®(€,), which implies that each vertex on &5 rather than k — 1 will
be fired exactly once by Lemma 4.2 (iii). So

dk—1) =cotk — 1). 4.3)

By induction, we have ¢;; < ¢;,, and there exists a vertex # > k — 1 such that
¢, (v) = ¢;(v) fork —1 < v < wuand ¢ (u) > ¢ (u). So, combining Egs. (4.1),
(4.3) and (4.2), we have ¢y(v) = ¢/(v) for 1 < v < u and ¢o(u) > ¢'(u), implying
¢y < ¢ O

4.3 Formulas from firing graph

Our goal is to compute the determinant of the multiplication map by f,, of A =

Clxy:veV

—( Efv 5 >] associated with the hyperpath P,’l‘ as in Fig. 3, where w is taken to be
v iU E

the vertex 0. We focus on the firing graph G(cg) of the structure shown in Fig. 5. If

a configuration ¢ in G(cp) refers to a homogeneous polynomial x¢ = ] x,f(") by

(VS V
ignoring the bank vertex, then we have

m g, (X0) = Ax0 — x71x0 = Ax0 — x9.
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If there is a non-stable vertex v in a configuration ¢ with maximal order, then v will
be fired on each edge containing v, which yields configurations ¢’ and arcs (c, ¢’). As

fo=0inside A, x§ ™! = (X coep s, ¥e\) T Loeeer, Xeq\(v))- SO we have

(c,¢)e&(G(eo))

for any ¢ # cp. Intuitively, a firing of the bank vertex means a multiplication of fj,
and a firing of other vertex v means a substitution of x{j’l by using f, = 0.

In view of this, we consider the weighted directed graph, still denoted by G(cp),
by assigning the weight 1 on the arrow o ¢, and the weight % on the others. In order
to obtain more explicit formulas, we need simplify the weighted firing graph G(cp).
Observe that the directed graph G(cp) may contain non-stable configurations. Next,
we will erase all non-stable configurations by modifying the weight until all of vertices
are stable configurations.

Define a function gi (x) in indeterminant A recursively:

g'(x) =g (gx)) fori > 2.
“4.4)

g0 =0 =1¢"x) =gx) = —,
1—sx

Lemma 4.6 Let ¢ be a configuration in Bs, 0 < s < n. Then, we have

s—1
z 1 /
XC() — g)\‘k_(l )XCO + § hc’()\-)xc X
eS(G)

c+1, T<sv=<k-1,
co(v), k<v<nk-1)
is a function in A for each ¢/, and S(G') is the set of all stable configurations in G’
defined in Proposition 4.5.

where ¢o(v) = { , g1 (x) is defined as in (4.4), he (1)

Proof Clearly, for s = 0,

. Y Sy ¢ )) /
x0= Y he(x® = o X+ > hex®,
Ces@) ¢eS@)

and fors =1,
€

1 /
X" = ﬁxc" + Z hc/()\)Xc .

» eS(G)

For s > 2, from the subgraph of G(cp) in Fig. 7, we get

1 ; (I
ch—l — _Xcs—l + _Xcs—l + _xcl7
A 1k Als
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=

Fig.7 Weighted sth direct cycle
’
1

by firing the vertices in &g c
o —> - -
1 1 1
A A A
Cs

Cs—1
1
1

X/ L
A

Cs—1

Fig.8 Modified weighted

(s — 1)th direct cycle by erasing .
the sth directed cycle d
1 1 g(1)
A A Als
C

where [ is the length of the directed path from ¢;_ to c’l. It follows that
XS = g(1) x5 4 g() xS
A AT

Therefore, we can erase the sth directed cycle by adding an arrow (¢;—_1, c’l) with
1 1

weight % and replacing the weight of (¢;_1, ¢;—1) by #; see Fig. 8.

Let /; be the length of the directed path from ¢;_j to¢; for2 < j < s — 1. From

this modified weighted subgraph, we immediately get

c/
’

I ; 1
Cs—2 __ G2 Cs—2
X2 = )\x + g(l)kkx + g(l))JkH_ls X

and

¢

1. 1
X672 = g2 x%2 4 g2 (g (1) i

il e Mgt g
Co—i — —xCs—i Y
Assume that X%~ = g’(l))\x + YA ——— 1 for i > 1. Then, from
the modified weighted subgraph (Fig. 9), we have

. 1. ol e gD g2 (gl
Cs—(i+1) — _xCs—(@i+1) i S g ) c
X+ = AX +g (l)kkx 4 FY A S b ot

’
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Fig.9 Modified weighted
(s — i)th direct cycle by erasing

the (s — i 4 1)th, ..., sth °
directed cycles 1/ \ / (1)--g2(1)g(1)
Als— z+1+ g _1+ls

(i+1)

Y\ /

s—(z+1) e <—— Cs—;

and hence

g - g2 (g <&
)\‘lv iHs— i1t A+

XG4 — giJrl(l)lXéxf(i‘Fl) +
A
Taking i = s — 2, we get

fﬂ)gmw)
kl2+13+ A+l

1 -
xCl — s—1 1 —x%
g )x
It follows that

s—1 s—1
1 )
@ = e [T
i=1

1 ¢
= X1,
MK A=l
where [ is the length of the directed path from ¢y to ¢;. By Proposition 4.5 (1), we
know that there is not an arrow from G’ to G and therefore x¢ = Zc 'eS(G) h (A)x

for some function A (1) in A. It follows that

6 ¢ :
eS(G)

where he (1) = [[Z] &' (1) —=——he (1) O

Zi 1l
4.4 The characteristic polynomial of a hyperpath

We will give a recursive formula of the characteristic polynomial of hyperpaths.
Observe the number of stable configurations on Ky is (k — D¥=1, and the number of
critical configurations on K} is k¥~2 by Example 2.8. So By contains exactly 1, (s)
elements, which is defined as follows:

ks(k72)((k _ l)kfl _ kkiz)(k _ l)(n,S,])(k,])’ = [0, n— l],

Mn k() = {kn(k_z) 4.5)

§ =n.
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Theorem 4.7 Let ¢£ «(A) be the characteristic polynomial of the hyperpath P,lf, where
n > 2. Then,

ey T gs_l(l) Hon k (5) k=1
B (1) = 2k-DE=D) 1—[ (A _ _) oF | L0)*D

k—1
s=0 A

where gi(x) is defined in (4.4) and [, i (s) is defined in (4.5).
Proof By definition, the characteristic polynomial of P,f is

$nx () =Res(Fo, Fi, ..., Fy),
where

Fi(x0, X1, ..., X)) = )»xl{‘_l _ Z e\

icecE

is a homogeneous polynomial in variables xg, x1, ..., x, of degree k — 1 fori =
0,1,...,r =n(k — 1). Clearly,

A— X1 Xk—1, ifi =0,
k—1 o
AX; T — X X1 Xia ] Xk—1, ifi € [k —2],
filxt, ... x) = b1 i e
AXp | — X Xg—2 — Xt X2(k—1)» ifi=k—1,
Fi(xp, x1, ..., %), otherwise,
and
)\' k—1 i
B X, ifi € [k —2],
Fi(xi,....x) = AT) = x ;g ifi =k =1,
Fi(xo, x1,...,x), otherwise.

By Lemmas 2.2 and 2.3, we have

$p () = Res(Fy, ... F)*" det(m p,)

=Res(w| !, Axf L Fiety ..., F)Y T det(mgy)

1) (k— _ _ o\ k—1
= (Res(rad ™!, T OV Res (e, L B $D)
x det(m f,)

— _1)ynk=1) _1\k—1
— k=21 ¢:—1,k()“)(k 1) det(m f,),
where m g, is the multiplication map of the quotient algebra

A=Clxt,....x1/{fi...., fr)
. , , . . , o .
given by mf (x}' - + - x") = Axy' o x —xil+1--~x,lf_ll+ xbex)
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We choose a C-basis B = {x%|c : [r] — [k—2]} for A, where x¢ = xf(l) x0T
fact, forany x¢ € B, ¢ = (¢(0), ¢(1), ..., ¢(r)) can be viewed as a stable configuration
on P¥, where 0 is the bank vertex whose value can be omitted. We denote by 3 the
set of all stable configurations on P,f. Clearly, there is a one-to-one correspondence
between B and 3 by ignoring the bank vertex, and the left anti-lexicographical ordering
on 3 gives a total ordering on B. To be precise, x}' ---x;” < x{'---x/" if and only

r r r r
it Y i < Y ji,or Y iy = j,ig=jsforl <s <t—1andi, > j for some

t=1 t=1 t=1 t=1

t elr].
Retaining the notation in Sect. 4.2, we observe that B is exactly the disjoint union
of By, By, ..., By,. For each s € [n], the number of configurations in B is exactly

Un.x(s). Let ¢o be a configuration in ;. By Lemma 4.6, we know

(x0) =x% = 0] N > he(x®
mg (x70) =x0 = T X c()x",
eS(G)

where G', S(G’) and h (1) are defined in Proposition 4.5 or Lemma 4.6. On the other
hand, by Proposition 4.5 (ii), we have ¢y < ¢’ for any ¢’ in G'. It follows that the
matrix of m 7, associated with the ordered basis B is a lower triangle matrix with

Fa())
kk—l

appearing on the diagonal exactly u, x(s) times for s € [0, n]. So

n s—1 Mn,k(s)
g M
det(m ) = [ | (’“ - W) :

s=0
and

n

s—1 Mok (8)
o) (k—1yn=1) g vkl
Oy 0) = 267260 ﬂ(k——xk_l ARRTCO L
s=0

O

Example 4.8 By Theorem 4.7, we can deduce the characteristic polynomial of P,f
inductively from an edge. The following are the characteristic polynomials qbf (&) of

PF for some specified n and k.
4553()») =233 — 1)3 of degree 12;
¢330 =213 = 1O —2)? of degree 80;
$5 30 = AT = DT (3 —2)1808 — 343 4 1)?7 of degree 448;
¢Fy (0 = 28103 — D263 — 281 (0% — 3)81(A° — 343 + 1) of degree 2304;
¢1}T4()&) = 2% (* — 1)1 of degree 108;
¢7 40 = 12T — 1)32 (A% — 2)2 of degree 5103;
¢, = A95TAGA — IHOGE —2)3632(38 — 334 4 1)0% of degree 196830.
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Fig. 10 Starlike hypergraph

5 Starlike hypergraphs

In this section, we will deal with a class of k-uniform hypergraphs, called starlike
hypergraph and denoted by S 1...n,» Which is obtained from m hyperpaths of length
ni, ..., Ny by sharing a common vertex w, where m > 1 and n; > 1 fori € [m]; see
Fig. 10. When m = 1, itis a hyperpath P,’fl. When n; = 1foreachi € [m], itis called

a hyperstar with m edges and denoted by Sf;.

Theorem 5.1 Let S,’fl

ool k) of Sk s
% rj k— H—Zr
i= J#i
)\_(m(k 2)+t)(k—1) l_ld)n, ()\')(k 1)
ie[m]
ni>1
1 l_[ Hon; K (si)
g (1) \i=t
T (-nsA)T
si€[0,n;]
1<i<m

where ri = njk — 1) fori € [m], ¢” «(A) denotes the characteristic polynomial of
n, g’ (x) and u, i (s) are defined in (4.4) and (4.5), respectively.

Proof For eachi € [m], let &; be the edge of P,fl_ containing w, and ¢; = &;\{w}. Let
H; be sub- hyperpath of Pk by deleting the vertex w and the edge ¢; fori € [m], which

is a hyperpath P, _1 together with k — 2 isolated vertices if n; > 1 or ri(= k — 1)
isolated vertices 0therw1se If n; > 1, by Lemmas 2.2 and 2.3, we get

¢HI- ()\.) — )\'(k—z)(k—l)h*ld)npi_lk()\')(k—l)k*Z; (5'1)
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otherwise,
¢H,(A) = AG=DG=DT (5.2)

So, combining (5.1) and (5.2), we have

m

m I+§.rj erf k71+er
k—1) i# _ _yj=1" _ J#i
[Ten " 7 =a0@0®D Tl gl ® D7 653
i=1 ie[m]
ni>1

Note that w is a cut vertex of S,’jl _____ n,, and recall the discussion in Sect. 3.2. The

quotient algebra A = Clry ;v € VA{w)] holds
(fo:veV\{w})

A=A1Q - -QA,,

Clxy : V;
where A; = Ly v € Vi\{w}] fori € [m], and

(fo:veVi\fw})

fo=oxf T = YT xapy = D xep v € Vilwhi € [m].

veecE(PY) VEE;

Let

m
fw=Xx— ngi
i=1

andmy, : A — A be the linear map given by multiplication by f,. Then,

m
mg, = )"IdA - ZIdAI Q- ® IdAi—l ® mi w ® IdA,'+1 R R IdAm’
i=1

where m; ., : A; — A, is the linear map given by multiplication by xg; fori € [m].

Fix ani € [m]. Let B = {x%|c : V;\{w} — [k — 2]} be a basis of A;, where
X = [Lyevi\(w) x¢™_ and let B be the set of stable configuration of P,fi with w as
the bank vertex. As discussed in Theorem 4.7, there is a one-to-one correspondence
between B and B by ignoring the bank vertex. We also have a left anti-lexicographical
ordering < on B arising from the order of 55. Retaining the notation in Sect. 4.2, 5
is the disjoint union of By, By, ..., B,,, and the number of configurations in B; is
Ma; k(s) for each s € [0, n;].
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For each ¢y € B;, by Lemma 4.6,

_ s—1 1 ,
o) =30 = £ T e
eS(G)

where G’, S(G’) and he (M) are defined in Proposition 4.5 or Lemma 4.6. Note that
¢y < ¢ forany ¢’ € G'. So the matrix of m; w associated with the basis B under the

above order is a lower triangle matrix with g ( )

Mn; k(s) times for s € [0, n;].
By the above discussion,

appearing on the diagonal exactly

m

m gsl_l(l) ﬂun k(i)

det(my,) = ]_[ ( Z = ) ) (5.4)

si€[0,n]
1<i<m

The result follows by Corollary 3.2 and the equalities (5.3) and (5.4). O

Taking n; = 1 for i € [m] in Theorem 5.1, we get the characteristic polynomial of
hyperstar S,ljl.

Corollary 5.2 Let ¢,f i be the characteristic polynomial of the k-uniform hyperstar S,]jl
with m edges. Then,

m my 1 (k—2)p k_l)k—l_kk—Z)”—l’
S k—1)" P (p)k ((
on a0 =T (3= )

p=0

wherer = m(k — 1).

Corollary 5.3 [5, Theorem 4.3] Let E be the k-uniform hypergraph with k vertices and
a single edge. Then,

(1) = ARA=DTIHT Gl ke,

Corollary 5.4 Let Slz‘ be a k-uniform hyperstar with two edges or hyperpath with two
edges. Then,

Gt (1) = Ak (k)2 (=D T KT2) oyt

where i = 2k — 1) (k — 1)2K=D — k=1 (k — 1)k=1 4 g 2k=3,
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Corollary 5.5 The characteristic polynomial of the starlike hypergraph S]f, 1218

¢i911{2 k()\) _ )\’(4’(—3)(]{—1)4(/{_1)—(1{/{_1+3kk_2)(k—1)3(k_1)+3k2(k_2)(k—l)z(k_])—k3<k—2)(k—1)k_l
) ()\’k . 1)kk72(k71)3(k71)
1 )kk2(3(k1)klkk2)((k1)klkk2)2

Y
>k2(k2) (3(](—1)](71 _zkk72)((k_1)k71 _kk72)

)\‘ >k2(k2)((kl)klkk2)2

M= jk

2 A
B Gy iy

In particular, the characteristic polynomial qbflil 5.3(A) of Sf 1218

( 3 >k3(k—2)((k_1)k—l_kk—2)

1 )\' >2k3(k2)((k_l)kl_kk2)

KAk=2)

29003 Z 503 — )03 = 32704 — 20°8 = 313 + NP — ax3 £ 2)8

of degree 2294.

6 Conclusion

We give an explicit and recursive formula for the characteristic polynomial of the
adjacency tensor of a starlike hypergraph, which is a resultant of a system of poly-
nomials related to the structure of the hypergraph. Variants of the chip-firing game
on simple graphs such as dollar game on simple graphs or hypergraphs are applied to
analyze these resultants. As such, we provide a combinatorial method for computing
resultants, which will have potential use for commutative algebra, algebraic geometry
and physical fields.

We note that there are many numerical methods and algorithms for computing
partial (real or extreme) eigenvalues of a general (symmetric) tensor; see e.g., Chang
et al. [3], Chen et al. [4], Cui et al. [8] and the references therein. We also note the
starlike hypergraph is a power hypergraph G¥, which is obtained from a starlike simple
graph G by adding k — 2 vertices to each of its edges. Zhou et al. [21] proved that if

2
A is a nonzero eigenvalue of G or any subgraph of G, then AT is an eigenvalue of GX.
In fact, the nonzero eigenvalues of G* are exactly those eigenvalues arising from G
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in the above way. Our method allows for calculating these same eigenvalues, with the
added benefit of determining the algebraic multiplicity of each eigenvalue.
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