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Abstract
Using the Poisson formula for resultants, and variants of the chip-firing game on
graphs, we provide a combinatorial method for computing a class of resultants cor-
responding to the characteristic polynomials of the adjacency tensors of starlike
hypergraphs including hyperpaths and hyperstars, which are given recursively and
explicitly.
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1 Introduction

Here, a tensor (or hypermatrix) refers to a multi-array of entries in some field, which
can be viewed to be the coordinates of the classical tensor (as multilinear function)

This work was supported by National Natural Science Foundation of China (Grant Nos. 11871071,
11871073, 11771016).

B Yi-Zheng Fan
fanyz@ahu.edu.cn

Yan-Hong Bao
baoyh@ahu.edu.cn

Yi Wang
wangy@ahu.edu.cn

Ming Zhu
zhuming@ahu.edu.cn

1 School of Mathematical Sciences, Anhui University, Hefei 230601, People’s Republic of China

2 School of Electronics and Information Engineering, Anhui University, Hefei 230601,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-019-00886-7&domain=pdf
http://orcid.org/0000-0003-2664-8625


590 Journal of Algebraic Combinatorics (2020) 51:589–616

under an orthonormal basis. The eigenvalues of a tensor were introduced by Qi [17,18]
and Lim [14] independently. To find the eigenvalues of a tensor, Qi [17,18] introduced
the characteristic polynomial of a tensor, which is defined to be a resultant of a system
of homogeneous polynomials. In general, there is not an explicit polynomial formula
yet for resultants except in some very special cases; and many fundamental questions
about resultants still remain open.

To our knowledge, there are currently three tools to compute a concrete resultant.
The first one is Koszul complex, whose terms are given by the graded tensor product of
a polynomial algebra and an exterior algebra, and the differential is built fromobjective
polynomials in the resultant. The resultant is exactly equal to a certain characteristic of
the related Koszul complex, see [1,16]. The second one is the generalized trace, which
is defined by Morozov and Shakirov [15]. Using the generalized traces and the Schur
function,Cooper andDutle [5] expressed the characteristic polynomial of a hypergraph
and characterized several properties of the characteristic polynomial, including the
characteristic polynomial for a single edge. Hu et al. [12] gave an expression of the
characteristic polynomial of a tensor. Shao, Qi and Hu [19] gave a graph theoretic
formula for the generalized trace. The third tool is the Poisson formula, which may
provide an inductive computing method, see [11, Chapter 13, Theorem 1.2] or [13,
Proposition 2.7]. For example, Cooper and Dutle computed the spectrum of the “all
ones” tensors using the Poisson formula, see [6, Theorem 3]. We refer to [11, Chapter
13] and [7, Chapter 3] for an overview of calculation of resultants.

Recently, spectral hypergraph theory has been developed to explore connections
between the structure of a uniform hypergraph and the eigenvalues of some related
symmetric tensors. Cooper and Dutle [5] proposed the concept of the adjacency tensor
for a uniform hypergraph. Shao et al. [20] proved that the adjacency tensor of a
connected k-uniform hypergraph G has a symmetric H-spectrum if and only if k is
even and G is odd-0bipartite. This result gives a method to check whether a connected
even-uniform hypergraph is odd-bipartite or not. Fan et al. [9,10] use the spectral
symmetry or the eigenvariety associated with spectral radius of the adjacency tensor
to characterize the structural properties of hypergraphs.

The characteristic polynomial of a hypergraph is defined to be the characteristic
polynomial of its adjacency tensor. In this paper, wemainly aim to give a lower dimen-
sion formula to compute the characteristic polynomial of hypergraphs based on the
Poisson formula and variants of the chip-firing game, and determine the characteristic
polynomials of starlike hypergraphs including hyperstars and hyperpaths, recursively
and explicitly.

For simplicity of notation, we denote [n] = {1, 2, . . . , n} and [m, n] = {m,m +
1, . . . , n} for integers m < n.

2 Preliminaries

In this section, we recall some basic notions and useful results on resultants and
hypergraphs.
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2.1 Resultants

Let F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn) be n homogeneous polynomials over C in
variables x1, . . . , xn , where the degree of Fi is di > 0 for i ∈ [n]. An important
question is whether the system of equations

⎧
⎨

⎩

F1(x1, . . . , xn) = 0,
· · ·
Fn(x1, . . . , xn) = 0

(2.1)

admits nontrivial solutions.
Generally, each Fi can be written as

Fi =
∑

|α|=di

ci,αxα,

where α = (i1, . . . , in), |α| = i1 +· · ·+ in and xα = xi11 · · · xinn . Note that the number
of α’s with |α| = d is

(n+d−1
d

)
.

For each possible pair of indices i, α, we introduce a variable ui,α . Then, given a
polynomial P ∈ C[ui,α : |α| = di , i ∈ [n]], we let P(F1, . . . , Fn) denote the value
obtained by replacing each variable ui,α in P with the corresponding coefficient ci,α .

Theorem 2.1 [7, Chapter 3, Theorem 2.3] For fixed positive degrees d1, . . . , dn, there
exists a unique polynomial Res ∈ Z[ui,α] satisfying the following properties:

(i) If F1, . . . , Fn ∈ C[x1, . . . , xn] are homogeneous of degrees d1, . . . , dn, respec-
tively, the system (2.1) has a nontrivial solution if and only if Res(F1, . . . , Fn) =
0.

(ii) Res(xd11 , . . . , xdnn ) = 1.
(iii) Res is irreducible, even regarded as a polynomial in C[ui,α].

Res(F1, . . . , Fn) is called the resultant of F1, . . . , Fn . Resultants have important
applications in algebraic geometry, algebraic combinatorics and spectral hypergraph
theory. However, it is difficult to compute the resultant of general polynomials. Here,
we list some useful properties and calculation methods of resultants which will be
used in this paper.

Lemma 2.2 [5, Lemma 3.2] Let F1, . . . , Fn ∈ C[x1, . . . , xn] be homogeneous poly-
nomials of degree d1, . . . , dn, respectively, and let G1, · · · ,Gm ∈ C[y1, . . . , ym] be
homogeneous polynomials of degree δ1, . . . , δm, respectively. Then,

Res(F1, . . . , Fn,G1, . . . ,Gm) = Res(F1, . . . , Fn)

m∏

j=1
δ j

Res(G1, . . . ,Gm)

n∏

i=1
di

.
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Lemma 2.3 [7, Chapter 3, Theorem 3.1] For a fixed j ∈ [n] and λ ∈ C,

Res(F1, . . . , Fj−1, λFj , Fj+1, . . . , Fn) = λd1···d j−1d j+1···dnRes(F1, . . . , Fn),

where di is the degree of Fi for each i ∈ [n].
Next, we recall the Poisson formula. Given homogeneous polynomials F1, . . . , Fn ∈
C[x1, . . . , xn] of degree d1, . . . , dn , respectively, let

fi (x1, . . . , xn−1) = Fi (x1, . . . , xn−1, 1), (1 ≤ i ≤ n),

F̄i (x1, . . . , xn−1) = Fi (x1, . . . , xn−1, 0), (1 ≤ i ≤ n − 1).

Observe that F̄1, . . . , F̄n−1 are still homogeneous in C[x1, . . . , xn−1] of degree
d1, . . . , dn−1, respectively, but f1, . . . , fn are not homogeneous in general.

Lemma 2.4 [Poisson formula] Keep the above notation. If Res(F̄1, . . . , F̄n−1) �= 0,

then the quotient algebra A = C[x1, . . . , xn−1]
〈 f1, . . . , fn−1 〉 has dimension d1 · · · dn−1 as a

vector space over C, where 〈 f1, . . . , fn−1 〉 is the ideal of the polynomial algebra
C[x1, . . . , xn−1] generated by f1, . . . , fn−1, and

Res(F1, . . . , Fn) = Res(F̄1, . . . , F̄n−1)
dn det(m fn : A → A),

where m fn : A → A is the multiplication map given by fn.

Here, the above form of the Poisson formula follows from [7, Chapter 3, Theorem
3.4], which is different from the original one in [13].

2.2 Hypergraphs

A hypergraph H is a pair (V , E), where V is the set of vertices and E ⊂ P(V ) is
the set of edges. A hypergraph H is called k-uniform for an integer k ≥ 2 if for each
ε ∈ E , |ε| = k. Clearly, a 2-uniform hypergraph is just a classical simple graph.

Definition 2.5 [5] Let H = (V , E) be a k-uniform hypergraph. The (normalized)
adjacency tensor A(H) = (ai1···ik )i1,··· ,ik∈V is defined by

ai1···ik =
⎧
⎨

⎩

1

(k − 1)! , if {i1, . . . , ik} ∈ E,

0, otherwise.

For convenience, we use the following notation. Let V be a finite set and m a
positive integer. For each e = (i1, . . . , im) ∈ Vm and c = (c1, . . . , cm) ∈ Nm , we
denote xce = xc1i1 · · · xcmim . We also write x1e as xe, where 1 = (1, . . . , 1) ∈ Nm . If
V = [n], c = (c1, . . . , cn) ∈ Nn , we write xc[n] as xc.

The eigenvalues of a tensor were introduced by Qi [17,18] and Lim [14] indepen-
dently. The adjacency tensor of a uniform hypergraph was introduced by Cooper and
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Dutle [5]. Here, we briefly give the definition of eigenvalues of uniform hypergraphs
based on the above.

Definition 2.6 [5,17] Let H = (V , E) be a k-uniform hypergraph and A = (ai1···ik )
be the adjacency tensor of H . For some λ ∈ C, if there exists a nonzero vector x ∈ C|V |
such that for each j ∈ V ,

∑

i2,i3,...,ik∈V
a ji2i3...ik xi2xi3 · · · xik = λxk−1

j ,

or equivalently, for each v ∈ V ,

∑

v∈ε∈E
xε\{v} = λxk−1

v ,

then λ is called an eigenvalue of H .

For each v ∈ V , define

Fv = λxk−1
v −

∑

v∈ε∈E
xε\{v}.

The polynomial

φH (λ) = Res(Fv : v ∈ V )

in the indeterminant λ is called the characteristic polynomial of H . Consequently, λ
is an eigenvalue of H if and only if φH (λ) = 0.

2.3 The dollar game on graphs

LetG = (V , E) be a simple graph. Recall that a configuration c onG means a function
c : V → N, which can be understood as a pile of c(v) tokens (chips, or dollars) at
each vertex v. A dollar game on G starts from a configuration c. At each step of the
game, a vertex v is fired, that is, dollars move from v to its adjacent vertices, one dollar
going along each edge incident to v. Fix a vertex w of G, called the bank vertex. A
vertex v other than w can be fired if and only if c(v) ≥ deg(v), where deg(v) is the
degree of the vertex v. The bank vertex w is allowed to go into debt such that w can
be fired if and only if no other firing is possible.

Suppose thatX is a non-empty finite sequence of (not necessarily distinct) vertices
of G, such that starting from a configuration c, the vertices can be fired in the order of
X . If v occurs x(v) times, we shall refer to x as the representative vector for X . The
configuration c′ after the sequence of firing X is given by

c′ = c − Lx,

where L is the Laplacian matrix of G.
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The dollar game on graphs was introduced by Biggs [2] and is a variant of the
chip-firing game. It is often described in terms of “snowfalls” and “avalanches” in
the literature. A configuration c is said to be stable if 0 ≤ c(v) < deg(v) for every
v �= w. A sequence of firing is w-legal if and only if each occurrence of a vertex
v �= w follows a configuration t with t(v) ≥ deg(v) and each occurrence ofw follows
a stable configuration. A configuration c on G is said recurrent if there is a w-legal
sequence for cwhich leads to the same configuration. A critical configuration cmeans
that c is both stable and recurrent. We refer to [2] for more details.

Lemma 2.7 [2, Theorem 6.2] If G is a connected graph, then the number of critical
configurations is equal to the number of spanning trees of G.

Example 2.8 Let Kk be a complete graph on k vertices. Then, the number of critical
configurations is kk−2.

3 Poisson formula for characteristic polynomials of hypergraphs

3.1 Poisson formula for hypergraphs

Let H = (V , E) be a k-uniform hypergraph. Recall that the characteristic polynomial
of H is defined as

φH (λ) = Res(Fv : v ∈ V ),

where

Fv = λxk−1
v −

∑

v∈ε∈E
xε\{v} ∈ C[xv : v ∈ V ].

In order to use Poisson formula for the resultant Res(Fv : v ∈ V ), we need fix a vertex
w in V . Denote by Ew the set of all edges containing the vertex w and εŵ = ε\{w}
for each ε ∈ Ew. Then, we have

fw = λ −
∑

ε∈Ew

xεŵ ,

and for all v ∈ V \{w},

fv = λxk−1
v −

∑

v∈ε∈E\Ew

xε\{v} −
∑

v∈ε∈Ew

xεŵ\{v},

F̄v = λxk−1
v −

∑

v∈ε∈E\Ew

xε\{v}, (3.1)

where fw and fv are obtained from Fw and Fv by taking xw = 1, respectively, and
F̄v is obtained from Fv by taking xw = 0.
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Deleting the vertex w in V and the edges in Ew, one can obtain a sub-hypergraph
Ĥ = (V̂ , Ê). To be precise, V̂ = V \{w} and Ê = E\Ew.

Lemma 3.1 Retain the above notation. Then,

φH (λ) = φĤ (λ)k−1 det(m fw : A → A), (3.2)

where A is the quotient algebra
C[xv : v ∈ V̂ ]
〈 fv : v ∈ V̂ 〉 and m fw is the multiplication map of

A given by fw.

Proof By Lemma 2.4, the characteristic polynomial of H is

φH (λ) = Res(F̄v : v ∈ V̂ )k−1 det(m fw : A → A).

Considering the sub-hypergraph Ĥ of H , by Eq. (3.1), we have

φĤ (λ) = Res(F̄v : v ∈ V̂ ).

The result follows. ��

By definition, the algebra A is (k − 1)r−1-dimensional as a vector space over C
where r is the number of vertices of H . In general, it is difficult to compute the
determinant det(m fw : A → A). However, we can give a description for some special
cases.

3.2 Hypergraphs with a cut vertex

Let H = (V , E)be a k-uniformconnectedhypergraph andw ∈ V .Denote Eŵ = {εŵ |
ε ∈ Ew}. Deleting the vertex w, we can get a (non-uniform) hypergraph H̃ = (Ṽ , Ẽ),
with Ṽ = V̂ = V \{w} and Ẽ = (E\Ew) ∪ Eŵ. Recall the vertex w is called
a cut vertex if H̃ is not connected; see Fig. 1. Suppose that w is a cut vertex and
H̃1 = (Ṽ1, Ẽ1), · · · , H̃n = (Ṽn, Ẽn) (n ≥ 2) are the connected components of H̃ .
For each i ∈ [n], we set Vi = Ṽi , Ei = Ẽi\Eŵ, and then obtain a sub-hypergraph
Hi = (Vi , Ei ) of H . Note that each Hi is a k-uniform hypergraph and may not be
connected.

For each i ∈ [n], we denote

Ei
w = {ε ∈ Ew | ε ∩ Vi �= ∅}.

By definition, we have

φH (λ) = Res(Fv : v ∈ V ),
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Fig. 1 A k-uniform hypergraph
H with a cut vertex w ◦

H1 Hn· · ·

w

H

E1
w En

w

where

Fw = λxk−1
w −

n∑

i=1

∑

ε∈Ei
w

xεŵ ,

and for all vi ∈ Vi , i ∈ [n],

Fvi = λxk−1
vi

−
∑

vi∈ε∈Ei

xε\{vi } −
∑

vi∈ε∈Ei
w

xε\{vi },

Therefore,

fw = λ −
n∑

i=1

∑

ε∈Ei
w

xεŵ ,

and for all vi ∈ Vi , i ∈ [n],

fvi = λxk−1
vi

−
∑

vi∈ε∈Ei

xε\{vi } −
∑

vi∈ε∈Ei
w

xεŵ\{vi },

F̄vi = λxk−1
vi

−
∑

vi∈ε∈Ei

xε\{vi }.

Let A be the quotient algebra
C[xv : v ∈ V̂ ]
〈 fv : v ∈ V̂ 〉 , and let m fw : A → A be the

multiplication map given by fw. Since V1, . . . , Vn form a partition of V̂ and for
each vi ∈ Vi , fvi ∈ C[xv : v ∈ Vi ], each monomial of A can be expressed as
xc
V̂

= xc1V1x
c2
V2

· · · xcnVn by considering fv = 0 inside A for v ∈ Vi and i ∈ [n]. So we
have A = A1 ⊗ · · · ⊗ An , where

Ai = C[xv : v ∈ Vi ]
〈 fv : v ∈ Vi 〉 , i ∈ [n].

We define and denote mi,w : Ai → Ai the linear map given by the multiplication by∑
ε∈Ei

w
xεŵ for each i ∈ [n]. Then,
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m fw = λIdA −
n∑

i=1

IdA1 ⊗ · · · ⊗ IdAi−1 ⊗ mi,w ⊗ IdAi+1 ⊗ · · · ⊗ IdAn ,

where Id denotes the identity map on certain vector space.

Assumption 1 For each i ∈ [n], there exists an ordered C-basis xαi,1 , . . . , xαi,di for
Ai such that the matrix of mi,w with respect to this basis is a lower triangular matrix
with the diagonal entry αi, ji , ji ∈ [di ], where di = (k − 1)ri and ri = |Vi |.

Under Assumption 1, {xα1, j1 · · · xαn, jn | ji ∈ [di ], i ∈ [n]} with the left lexico-
graphic order is a basis for A such that the matrix of m fw with respect to this basis is
still a lower triangular matrix with diagonal entries λ − ∑

1≤i≤n
αi, ji for ji ∈ [di ] and

i ∈ [n]. In this situation, we have

det(m fw : A → A) =
∏

1≤ ji≤di
1≤i≤n

(

λ −
n∑

i=1

αi, ji

)

. (3.3)

Corollary 3.2 Let H be a k-uniform hypergraph with a cut vertex w. Then, under
Assumption 1,

φH (λ) =
n∏

i=1

φHi (λ)(k−1)
1+ ∑

j �=i
r j ∏

1≤ ji≤di
1≤i≤n

(

λ −
n∑

i=1

αi, ji

)

.

Proof By definition, the characteristic polynomial of Hi = (Vi , Ei ) is

φHi (λ) = Res(F̄vi : vi ∈ Vi ).

By Lemma 2.2, we have

Res(F̄v : v ∈ V̂ ) =
n∏

i=1

Res(F̄vi : vi ∈ Vi )
(k−1)

∑

j �=i
|V j |

=
n∏

i=1

φHi (λ)(k−1)

∑

j �=i
r j

.

From Lemma 3.1, it follows that

φH (λ) = Res(F̄v : v ∈ V̂ )k−1 det(m fw : A → A)

=
n∏

i=1

φHi (λ)(k−1)
1+ ∑

j �=i
r j ∏

ji∈[di ]
i∈[n]

(

λ −
n∑

i=1

αi, ji

)

.

��
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Fig. 2 A hypergraph H with a
cored vertex w

3.3 Hypergraphs with a cored vertex

Let H = (V , E) be a k-uniform hypergraph. Recall that a vertex w ∈ V is called a
cored vertex if it is contained in only one edge; see Fig. 2. Deleting the cored vertex
w and the edge εw containing w, one can obtain a sub-hypergraph Ĥ = (V̂ , Ê) with
V̂ = V \{w} and Ê = E\{εw}. Then,

Fw = λxk−1
w − xεŵ ,

Fv = λxk−1
v −

∑

v∈ε∈Ê
xε\{v} −

∑

v∈εw

xεw\{v}, v �= w.

Moreover, fw = λ − xεŵ , and for all v �= w,

fv = λxk−1
v −

∑

v∈ε∈Ê
xε\{v} −

∑

v∈εw

xεŵ\{v},

F̄v = λxk−1
v −

∑

v∈ε∈Ê
xε\{v}.

Corollary 3.3 Let H be a k-hypergraph with a cored vertex w. Retain the above nota-
tion. Then,

φH (λ) = φĤ (λ)k−1 det(m fw : A → A),

where A is the quotient algebra
C[xv : v ∈ V̂ ]
〈 fv : v ∈ V̂ 〉 and m fw is the multiplication map of

A given by fw.

4 Hyperpaths

Let Pk
n be a k-uniform hyperpath with n edges or of length n, which has vertices

labeled as 0, 1, . . . , r = n(k − 1) from left to right as in Fig. 3, and edges εt =
{(k − 1)(t − 1), (k − 1)(t − 1) + 1, . . . , (k − 1)t} for t ∈ [n].

In this section, we will give a recursive formula for the characteristic polynomials
of hyperpaths. By the Poisson formula introduced in Lemma 3.1, it suffices to compute

123



Journal of Algebraic Combinatorics (2020) 51:589–616 599

0 1 k − 1 2(k − 1) n(k − 1)

e1 e2 en

Fig. 3 A k-uniform hyperpath Pk
n with n edges

the related determinant. For this, we introduce the following model of the dollar game
on hypergraphs.

4.1 The dollar game on hypergraphs and the firing graph

We now define a dollar game on a hypergraph, considered as a variant of the dollar
game on a graph. Let H = (V , E) be a k-uniform hypergraph with a specified bank
vertex w. A function c : V → N is called a configuration on H . A dollar game starts
from a configuration c. At each of step of the game, a vertex v is fired on an edge ε

containing v, that is, the vertex v decreases k − 1 dollars, and each of the vertices of
ε other than v increases 1 dollar, which yields a new configuration on H . Note that
such v will be fired on all edges containing v, one edge each step, which yields deg(v)

new configurations. A vertex v other than w can be fired if and only if c(v) ≥ k − 1.
The bank vertex w can be fired regardless of the value c(w), but only when no other
vertex can be fired. We say that a configuration c is stable if 0 ≤ c(v) < k − 1 for all
v �= w. The above setting of the dollar game on hypergraphs is different from that of
the dollar game on simple graphs in Sect. 2.3, but will be useful for our discussion.

Let “≤” be a total ordering on the set V̂ = V \{w}. Let c be a configuration on
H . The weight of c is defined and denoted to be ω(c) = ∑

v∈V̂ c(v). We define the
left anti-lexicographical order ≺ for all configurations on H . To be precise, for any
configurations c and c′, c ≺ c′ if and only if either ω(c) < ω(c′), or ω(c) = ω(c′),
c(i) = c′(i) for any 1 ≤ i ≤ t − 1 and c(t) > c′(t) for some t .

Based on the above discussion, we now define a directed graph, called a firing
graph G(c0) associated with a stable configuration c0 on the hypergraph H , which is
closely related to the dollar game on H starting from c0. Here, a vertex of G(c0) is a
configuration and a directed edge will be called an arrow.

Step 1 Initially, set V0 = {c0} and E0 = ∅.

Step 2 For each edge ε containing w, let c̄0,ε be a configuration given by

c̄0,ε(v) =
{
c0(v) + 1, ifv ∈ ε\{w},
c0(v), otherwise.

Put V1 = V0 ∪ {c̄0,ε : w ∈ ε} and E1 = {c0 αw,ε−−→ c̄0,ε : w ∈ ε}, where the arrow αw,ε

means that the configuration c̄0,ε is obtained from c0 by firing the bank vertex w on
the edge ε.

Step 3 If all of configurations in Vi\Vi−1 are stable, then we define V(G(c0)) = Vi

and E(G(c0)) = Ei . Otherwise, for each non-stable configuration c ∈ Vi\Vi−1, we
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20

0
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Fig. 4 Firing graph of P3
3 associated with c0

choose the vertex
uc := max{v ∈ V̂ | c(v) ≥ k − 1}.

For each edge ε ∈ E containing uc, we define an arrow c
αuc ,ε−−−→ c̄ε, where the

configuration c̄ε is given by

c̄ε(v) =
⎧
⎨

⎩

c(v) − (k − 1), if v = uc,
c(v) + 1, if v ∈ ε\{uc},
c(v), otherwise,

and

Vi+1 = Vi ∪ {c̄ε | uc ∈ ε ∈ E, c is not stable in Vi\Vi−1},
Ei+1 = Ei ∪ {c αuc ,ε−−−→ c̄ε | uc ∈ ε ∈ E, c is not stable in Vi\Vi−1}.

Note that c̄ε may have been in Vi . If c̄ε /∈ Vi , we say that c̄ε is obtained from c by
firing uc on ε.

Step 3 tells us the firing rule, that is, which vertexwill be fired at the next step among
all non-stable vertices other than the bank vertex. We use the maximal principle, the
non-stable vertex with the maximal order will be firstly fired. In addition, from the
construction of G(c0), we have 0 ≤ ω(c) ≤ ω(c0) + k − 1 for any c ∈ V(G(c0)),
which implies that G(c0) is a finite directed graph.

Example 4.1 Let P3
3 be the 3-uniform hyperpath with 3 edges as in Fig. 3 by taking

n = 3 and k = 3. Let 0 be the bank vertex of P3
3 , and let c0 = (∗, 1, 1, 1, 1, 0, 0).

Here, the value of the bank vertex 0 is omitted in each configuration of the dollar game
starting from c0. The firing graph G(c0) is drawn in Fig. 4, where each vertex within
a circle means that it will be fired at the next step.

Generally speaking, it is difficult to obtain the firing graphs G(c0) for all stable
configurations c0 on a general hypergraph. However, for some special classes of hyper-
graphs, e.g., hyperpaths, we can characterize the structure of G(c0).
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4.2 Firing graphs of hyperpaths

In this part, we characterize the structure of the firing graph of Pk
n in Fig. 3 associated

with the arbitrary fixed stable configuration, where the vertex 0 is the bank vertex. For
a configuration c on [0, n(k − 1)], we denote c = (c(0), c1, . . . , cn), where ci is the
restriction of c on ε̂i := εi\{(i − 1)(k − 1)}, i.e.,

ci = (c((i − 1)(k − 1) + 1), . . . , c(i(k − 1))), i ∈ [n].

Let c̃i be the restriction of c on εi , i.e.,

c̃i = (c((i − 1)(k − 1)), c((i − 1)(k − 1) + 1), . . . , c(i(k − 1))), i ∈ [n].

Then, for each i ∈ [n], c̃i can be considered as a stable configuration on the complete
graph Kk with the vertex set εi and the bank vertex (i − 1)(k − 1).

LetSk be the set of all stable configurations on the complete graph Kk , and Ck be the
set of all critical configurations on Kk . Denote by B the set of all stable configurations
on Pk

n , and for s ∈ [0, n − 1]

Bs = {(c1, . . . , cn) | c̃i ∈ Ck for i ∈ [s], c̃s+1 /∈ Ck, and c̃i ∈ Sk for i ∈ [s + 1, n]},

and Bn = {(c1, . . . , cn) | c̃i ∈ Ck, i ∈ [n]}. Note that the bank vertex in the graph
dollar game for every edge other than the first edge inherits its stability with respect
to hypergraph dollar game from the stability in the graph dollar game for the previous
edge. So, B is the disjoint union of B0, . . . ,Bn .

Lemma 4.2 Suppose that c0 is a stable configuration on Pk
n , the labeled k-uniform

hyperpath described in the opening of Sect. 4, with 0 as the bank vertex, and G(c0) is
the firing graph of Pk

n associated with c0. Then,

(i) for any t ∈ [n], if c(t(k − 1)) = k − 1, then c(v) < k − 1 for any v > t(k − 1).
(ii) for any t ∈ [n], the vertex t(k − 1) is fired at c ∈ V(G(c0)) if and only if

c(t(k − 1)) = k − 1.
(iii) for any configuration c ∈ V(G(c0)), ω(c) ≥ ω(c0), where the equality holds if

and only if the vertices 1, . . . , k−1 have been fired on ε1 exactly once along any
directed path from c0 to c.

Proof (i) Assume to the contrary, there exists a configuration c such that c(t(k−1)) =
k−1, and c(v) ≥ k−1 for some v > t(k−1). According to the construction of firing
graphs, there exists a directed path P(c0, c) from c0 to c (without repeated vertices on
the path). We also assume that c is the first occurrence of the configuration with the
above property, so that along the path P(c0, c), except c no configurations of P(c0, c)
hold the above property.

Case 1: t(k−1) is not fired before c along the path P(c0, c). Then, c(v) = c0(v) <

k − 1 for any v > t(k − 1) since such v cannot gain more dollars before t(k − 1) is
fired, a contradiction.
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Case 2: t(k − 1) is fired at some configuration say c′−1 before c along the path
P(c0, c). We may assume t(k − 1) is last fired at c′−1 before c. Consider the directed
path P(c0, c):

c0 · · · c′−1

αt(k−1),∗
c′
0

αu0,∗
c′
1

αu1,∗ · · · c′
m

αum ,∗
c .

Note that c′−1(t(k − 1)) ≥ k − 1 and c′−1(v) < k − 1 for any v > t(k − 1) by the
firing rule. If c(t(k − 1)) ≥ k, there exists a configuration c′ before c′−1 such that
c′(t(k − 1)) = k − 1 and c′(v) ≥ k − 1 for some v > t(k − 1), a contradiction to the
assumption about c. So c′−1(t(k − 1)) = k − 1, and c′

0(t(k − 1)) = 0.
From c′

0 to c, the vertex t(k − 1) obtains k − 1 dollars by firing some vertices on
εt or εt+1. If t(k − 1) obtains one dollar by firing some vertex on εt at configuration
say c′

s , then c
′
s(v) < k − 1 for any v > t(k − 1) by the firing rule. Furthermore, such

v cannot gain more dollars from c′
s to c as t(k − 1) would not be fired before c. So,

c(v) = c′
s(v) < k − 1 for any v > t(k − 1), a contradiction.

Otherwise, t(k − 1) obtains k − 1 dollars only by firing vertices on εt+1. Then,

c′
0(v) =

⎧
⎨

⎩

0, if v = t(k − 1)
c′−1(v) + 1, if v ∈ [t(k − 1) + 1, (t + 1)(k − 1)],
c′−1(v), if v ≥ (t + 1)(k − 1) + 1.

It follows that the number of configurations in {c′
i | αui ,∗ = αui ,εt+1 , i = 0, 1, . . . ,m}

is k−1 as c(t(k−1)) = k−1.Observe that for any v ∈ [t(k−1)+1, (t+1)(k−1)−1],

c′
i (v) ≤ c′

0(v) + (k − 2) = c′−1(v) + (k − 1) < 2k − 2.

It forces that each vertex in [t(k − 1) + 1, (t + 1)(k − 1) − 1] is fired exactly once
on the edge εt+1 from c′

0 and c, implying that the vertex (t + 1)(k − 1) is also fired
exactly once on εt+1.

Let u j be the vertex in [t(k−1)+1, (t+1)(k−1)] last fired on εt+1. Then, c′
j (v) <

k−1 for any v > (t+1)(k−1) by the firing rule. Also, we have c′
j+1(t(k−1)) = k−1,

c′
j+1(v) < k − 1 for any v ∈ [t(k − 1) + 1, (t + 1)(k − 1)] by the assumption on

u j , and c′
j+1(v) < k − 1 for any v > (t + 1)(k − 1) by the firing rule, which implies

that c′
j+1(v) < k − 1 for any v > t(k − 1). As t(k − 1) is last fired at c′−1, we have

c′
j+1 = c, also a contradiction.
(ii) The sufficiency of (ii) follows by the result (i) and the firing rule. For the

necessity of (i), if t(k − 1) is fired, then c(t(k − 1)) ≥ k − 1. If c(t(k − 1)) ≥ k, there
exists a configuration c′ before c such that c′(t(k − 1)) = k − 1 and c′(v) ≥ k − 1 for
some v > t(k − 1), a contradiction to (i).

(iii) By definition, we have ω(c̄0) = ω(c0) + k − 1. Observe that for any arrow

c
αu,εt−−→ c′, where u �= 0, ω(c′) = ω(c) − 1 if εt = ε1, and ω(c′) = ω(c) if εt �= ε1.

Therefore, we need only show that no vertex is fired on ε1 more than one time in any
directed path starting from c0. Let

123



Journal of Algebraic Combinatorics (2020) 51:589–616 603

c0
α0,ε1 c̄0 = c1

αu1,∗ · · · c�

αu�,ε1 · · · ct
αut ,ε1 · · ·

be such a walk in G(c0). If there exists a vertex in [k − 1] be fired more than one
time on ε1, we may assume that ut is the first occurrence of the vertex satisfying
αut ,ε1 = αu�,ε1 for some � < t . If 1 ≤ u� = ut ≤ k − 2, by our assumption, we have

ct (ut ) ≤ c̄0(ut ) − (k − 1) + (k − 2) = c0(ut ) < k − 1,

since there are at most k − 2 vertices different from ut in ε1\{0}, each fired at most
once, a contradiction.

If u� = ut = k − 1, we have c�(v) < k − 1 for any v > k − 1 by the firing rule,
ui ∈ [k − 2] for each i ∈ [� + 1, t − 1] and each of them is fired only one time by our
assumption on ut . By the part (i), we have c�(k − 1) = k − 1. Therefore,

ct (k − 1) ≤ c�(k − 1) − (k − 1) + (k − 2) = k − 2.

This is also a contradiction. ��
Lemma 4.3 Let Pk

1 be the k-uniform hyperpath on vertices 0, 1, . . . , k − 1 with a
single edge ε. Let c0 be a stable configuration on Pk

1 with 0 as the bank vertex. Then,
c0 is a critical configuration if and only if the firing graph G(c0) is a directed cycle of
length k, and c0 is a non-critical configuration if and only if G(c0) is a directed path
of length less than k.

Proof By the firing rule, as Pk
1 contains only one edge ε, each firing is on the edge ε so

that every vertex (configuration) of G(c0) has out-degree 1. So we have a sequence of
finite configurations: c0c̄0c1 · · · cm , starting from c0 and ending at cm . Note ω(c̄0) =
ω(c0) + k − 1, and for any c

αu,εt−−→ c′, where u �= 0, ω(c′) = ω(c) − 1. So, starting
from c̄0, the weight of configurations in the sequence is strictly decreasing.

If cm = c0, or equivalently c0 is critical, then G(c0) is a directly cycle. As ω(cm) =
ω(c0), by Lemma 4.2(iii), each vertex of ε is fired exactly once, implying that G(c0)
is a directed cycle of length k. Otherwise, c0 is non-critical, and G(c0) is a directed
path. We assert that not all of vertices in ε is fired; otherwise, by the proof of Lemma
4.2(iii), no vertex in ε is fired more than once so that each of them is fired exactly
once. In this case, we would get cm = c0, a contradiction. So G(c0) is a directed path
of length less than k. ��
Remark 4.4 In Lemma 4.3, the dollar game on the hypergraph Pk

1 (a single edge ε) is
equivalent to considering the standard dollar game on a complete (simple) graph Kk

on vertices 0, 1, . . . , k − 1 with 0 as the bank vertex. For the dollar game on simple
graphs, the order of the firing can be arbitrary. However, here for dollar game on Kk ,
the firing order obeys the maximal principle; see Sect. 4.1.

Next, we describe the structure of the firing graph of Pk
n associated with any stable

configuration.
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c0 c1 c2 cs G′

Fig. 5 Firing graph of Pk
n associated with c0 ∈ Bs

Fig. 6 Directed cycle obtained
by firing the vertices in ε1

c0 c1

αk−1,e2

αk−1,e1

Proposition 4.5 Let Pk
n be the k-uniform hyperpath as in Fig. 3. Then, for a given

stable configuration c0 ∈ Bs on Pk
n with 0 as the bank vertex, where s ∈ [n], the firing

graph G(c0) of Pk
n associated with c0 has the structure as in Fig. 5, where G′ is the

subgraph induced by the configurations obtained by first firing the vertex s(k − 1) on
the edge εs+1, each directed cycle in G(c0)\G′ has length k, such that

(i) G′ is not empty if and only if s < n;
(ii) if s < n, there are no arrows from G′ to G(c0)\G′;
(iii) if s < n, c0 ≺ c′ for any c′ ∈ G′.

Proof (i) Let c0 ∈ Bs be a fixed stable configuration on Pk
n , where s ∈ [n]. Recall

that c̃i0 is a stable configuration on Kk for each i ∈ [n], where c̃i0 is defined at the
beginning of this section. By definition, c0 ∈ Bs means that c̃i0 ∈ Ck for 1 ≤ i ≤ s and
c̃s+1
0 ∈ Sk\Ck . By Remark 4.4, to fire the vertices of εi on the edge εi , it is equivalent
to consider the dollar game on Kk on vertices of εi with the bank vertex (i −1)(k−1),
as only when (i − 1)(k − 1) is firstly fired, the other vertices of εi can gain more
dollars. By Lemma 4.3, as c̃10 is a critical configuration, we get a directed cycle of
length k by firing the vertices 0, 1, . . . , k − 1 on ε1 and k − 1 also ε2, where c1 is the
configuration such that k − 1 is a non-stable vertex with the maximal order in c1 ; see
Fig. 6.

Similarly, since c̃20, . . . , c̃
s
0 are critical stable configurations, each εi yields a directed

cycle of length k by firing the vertices of εi on εi , i ∈ [s]. Hence, we get s directed
cycles, which implies that G′ is not empty if and only if s < n.

(ii) Denote

V ′ = {c′ ∈ G(c0) | c′ is obtained from cs by first firing s(k − 1) on εs+1},

and ω′(c) =
n(k−1)∑

v=s(k−1)+1
c(v) for any c ∈ G(c0). We claim that ω′(c′) > ω′(c) for any

c′ ∈ V ′ and c ∈ V(G(c0))\V ′.
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In fact, we choose a configuration c′
m ∈ V ′ such that ω′(c′

m) = min{ω′(c′) | c′ ∈
V ′}, and a directed path P(cs, c′

m) from cs to c′
m as follows:

P(cs, c′
m) : cs

αs(k−1),εs+1
c′
1

αu′
1,∗ · · · c′

m−1

αu′
m−1,∗

c′
m .

We may also assume that ω′(c′
i ) > ω′(c′

m) for any i ∈ [m − 1]. By the firing rule,
we have αu′

m−1,∗ �= αu′
m−1,ε j

for any j ∈ [s]; otherwise ω′(c′
m−1) = ω′(c′

m). So there

exists some configurations among c′
1, . . . , c

′
m−1 fired on some edge εt for t ≥ s + 1.

If there exists αu′
i ,∗ = αs(k−1),εs+1 for some i ∈ [m − 1], letting u′

i be the last one
for the vertex s(k − 1) fired on εs+1, then it suffices to consider the restriction of the
configurations on [s(k − 1), n(k − 1)], which is equivalent to considering the firing
graph of Pk

n−s associated with the configuration (c′
i (s(k − 1)), . . . , c′

i (n(k − 1))) with
s(k − 1) as the bank vertex, where Pk

n−s is the sub-hypergraph of P
k
n consisting of the

edges εs+1, · · · , εn . By Lemma 4.2 (iii), we have ω′(c′
m) ≥ ω′(c′

i ), a contradiction.
So, from c′

1 to c
′
m , s(k − 1) is no longer fired on εs+1.

By the above discussion, in order to compute the ω′(c′
m), it suffices to consider the

firing graph of Pk
n−s associated with the configuration (cs(s(k−1)), . . . , cs(n(k−1)))

with s(k−1) as the bank vertex. Note that cs(v) = c0(v) = ĉ(v) for any v > s(k−1)
and any ĉ in the front s directed cycles of G(c0). By Lemma 4.2 (iii) again, we have

ω′(c′
m) > ω′(cs) = ω′(c0) = ω′(ĉ),

since c̃s+1
0 = (c0(s(k − 1)), . . . , c0((s + 1)(k − 1))) is a non-critical. So the claim

follows, and the subgraph G′ induced by V ′ contains no configurations in the front s
directed cycles of G(c0).

(iii) We will prove the assertion by induction on s. If s = 0, then Lemma 4.2(iii),
ω(c′) > ω(c0) for any c′ in G′ as c̃10 is not critical, implying c0 ≺ c′. If s ≥ 1, also
by Lemma 4.2 (iii), we have ω(c′) ≥ ω(c0), and ω(c′) = ω(c0) if and only if the
vertices 1, . . . , k − 1 have been fired on ε1 exactly once along any directed path from
c0 to c′. So it suffices to consider the case of ω(c′) = ω(c0).

Suppose that P(c0, c′) is a directed path from c0 to c′ as follows:

P(c0, c′) : c0
α0,ε1 c̄0 = c1

αu1,∗ · · · cs
αs(k−1),εs+1· · · ct

αut ,∗ c′ .

As ω(c′) = ω(c0), we have a unique σ(v) ∈ [t] such that αuσ(v),∗ = αv,ε1 for each
v ∈ [k − 1] by Lemma 4.2 (iii). It follows that

c′(v) = c0(v) for v ∈ [k − 2]. (4.1)

By the construction of G(c0), there exist 1 ≤ i1 < j1 ≤ t such that αui1 ,∗ = αk−1,ε2
and αu j1 ,∗ = αk−1,ε1 . We also have

c0(v) = ci1(v), c j1(v) = c′(v), for any v > k − 1. (4.2)
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If there exists an �1 such that i1 < �1 < j1 and 1 ≤ u�1 ≤ k − 2, then by Lemma
4.2 (ii),

ci1(k − 1) = c0(k − 1) + 1 + m1 = k − 1,

c j1(k − 1) = c�1(k − 1) + m2 = k − 1,

where m1 (respectively, m2) is the number of vertices of [k − 2] fired on ε1 from c1
to ci1−1 (respectively, from c�1 to c j1−1). By the firing rule, c�1(k − 1) < k − 1. So,
after c j1 , only the vertices of [k − 2], k − 1− (m1 +m2 + 1) vertices in total, can be
fired (certainly on ε1). We have

c′(k − 1) = k − 1 − (m1 + m2 + 1)

= c0(k − 1) − ((k − 1) − cu�1
(k − 1)) < c0(k − 1),

which implies that c0 ≺ c′.
Otherwise, we consider the dollar game on Pk

n−1, where P
k
n−1 is the sub-hypergraph

of Pk
n consisting of the edge ε2, . . . , εn with k − 1 as the bank vertex. The game starts

from ĉi1 and produces a sequence of configurations: ĉi1 , ĉi1+1, . . . , ĉ j1 , where ĉp is
a restriction of cp on the vertices of Pk

n−1 for p ∈ [i1, j1]. By the firing rule, as no
vertices are fired on ε1, for p ∈ [i1, j1], ω(cp)’s are constant, and cp(v)’s are constant

for each v ∈ [k−2]. Let ω̂(ĉp) = ∑n(k−1)
v=k cp(v). As ci1(k−1) = c j1(k−1) = k−1,

we have ω̂(ĉi1) = ω̂(ĉ j1), which implies that each vertex on ε2 rather than k − 1 will
be fired exactly once by Lemma 4.2 (iii). So

c′(k − 1) = c0(k − 1). (4.3)

By induction, we have ĉi1 ≺ ĉ j1 , and there exists a vertex u > k − 1 such that
ĉi1(v) = ĉ j1(v) for k − 1 ≤ v ≤ u and ĉi1(u) > ĉ j1(u). So, combining Eqs. (4.1),
(4.3) and (4.2), we have c0(v) = c′(v) for 1 ≤ v ≤ u and c0(u) > c′(u), implying
c0 ≺ c′. ��

4.3 Formulas from firing graph

Our goal is to compute the determinant of the multiplication map by fw of A =
C[xv : v ∈ V̂ ]
〈 fv : v ∈ V̂ 〉 associated with the hyperpath Pk

n as in Fig. 3, where w is taken to be

the vertex 0. We focus on the firing graph G(c0) of the structure shown in Fig. 5. If
a configuration c in G(c0) refers to a homogeneous polynomial xc = ∏

c∈V̂
xc(v)
v by

ignoring the bank vertex, then we have

m f0(x
c0) = λxc0 − xε̂1xc0 = λxc0 − xc̄0 .
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If there is a non-stable vertex v in a configuration c with maximal order, then v will
be fired on each edge containing v, which yields configurations c′ and arcs (c, c′). As
fv = 0 inside A, xk−1

v = 1
λ
(
∑

v∈ε∈E\Ew
xε\{v} + ∑

v∈ε∈Ew
xeŵ\{v}). So we have

xc =
∑

(c,c′)∈E(G(c0))

1

λ
xc

′

for any c �= c0. Intuitively, a firing of the bank vertex means a multiplication of f0,
and a firing of other vertex v means a substitution of xk−1

v by using fv = 0.
In view of this, we consider the weighted directed graph, still denoted by G(c0),

by assigning the weight 1 on the arrow α0,ε1 and the weight 1
λ
on the others. In order

to obtain more explicit formulas, we need simplify the weighted firing graph G(c0).
Observe that the directed graph G(c0) may contain non-stable configurations. Next,
wewill erase all non-stable configurations bymodifying the weight until all of vertices
are stable configurations.

Define a function gi (x) in indeterminant λ recursively:

g−1(x) = 0, g0(x) = 1, g1(x) = g(x) = 1

1 − x
λk

, gi (x) = gi−1(g(x)) for i ≥ 2.

(4.4)

Lemma 4.6 Let c0 be a configuration in Bs , 0 ≤ s ≤ n. Then, we have

xc̄0 = gs−1(1)

λk−1 xc0 +
∑

c′∈S(G′)
hc′(λ)xc

′
.

where c̄0(v) =
{
c0(v) + 1, 1 ≤ v ≤ k − 1,

c0(v), k ≤ v ≤ n(k − 1)
, gi (x) is defined as in (4.4), hc′(λ)

is a function in λ for each c′, and S(G′) is the set of all stable configurations in G′
defined in Proposition 4.5.

Proof Clearly, for s = 0,

xc̄0 =
∑

c′∈S(G′)
hc′(λ)xc

′ = gs−1(1)

λk−1 xc0 +
∑

c′∈S(G′)
hc′(λ)xc

′
,

and for s = 1,

xc̄0 = 1

λk−1 x
c0 +

∑

c′∈S(G′)
hc′(λ)xc

′
.

For s ≥ 2, from the subgraph of G(c0) in Fig. 7, we get

xcs−1 = 1

λ
xc̄s−1 + 1

λk
xcs−1 + 1

λls
xc

′
1 ,
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Fig. 7 Weighted sth direct cycle
by firing the vertices in εs

cs−1

cs

cs

c′
1

1
λ

1
λ

1
λ

1
λ

1
λ

1
λ

1
λ

cs−1

1
λ

Fig. 8 Modified weighted
(s − 1)th direct cycle by erasing
the sth directed cycle

cs−2

cs−1

cs−1

c′
1

g(1)
λ

g(1)
λls

1
λ

1
λ

1
λ

1
λ

1
λ

cs−2

1
λ

where ls is the length of the directed path from cs−1 to c′
1. It follows that

xcs−1 = g(1)
1

λ
xc̄s−1 + g(1)

1

λls
xc

′
1 .

Therefore, we can erase the sth directed cycle by adding an arrow (cs−1, c′
1) with

weight
g(1)

λls
and replacing the weight of (cs−1, c̄s−1) by

g(1)

λ
; see Fig. 8.

Let l j be the length of the directed path from c j−1 to c j for 2 ≤ j ≤ s − 1. From
this modified weighted subgraph, we immediately get

xcs−2 = 1

λ
xc̄s−2 + g(1)

1

λk
xcs−2 + g(1)

1

λls−1+ls
xc

′
1 ,

and

xcs−2 = g2(1)
1

λ
xc̄s−2 + g2(1)g(1)

1

λls−1+ls
xc

′
1 .

Assume that xcs−i = gi (1)
1

λ
xc̄s−i + gi (1) · · · g2(1)g(1)

λls−i+1+ls−i+2···+ls
xc

′
1 for i ≥ 1. Then, from

the modified weighted subgraph (Fig. 9), we have

xcs−(i+1) = 1

λ
xc̄s−(i+1) + gi (1)

1

λk
xcs−(i+1) + gi (1) · · · g2(1)g(1)

λls−i+ls−i+1+···+ls
xc

′
1 ,
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Fig. 9 Modified weighted
(s − i)th direct cycle by erasing
the (s − i + 1)th, . . ., sth
directed cycles

cs−(i+1)

cs−i

cs−i

c′
1

gi(1)
λ

gi(1) g2(1)g(1)

λls−i+1+ +ls−1+ls

1
λ

1
λ

1
λ

1
λ

1
λ

cs−(i+1)

1
λ

and hence

xcs−(i+1) = gi+1(1)
1

λ
xc̄s−(i+1) + gi+1(1) · · · g2(1)g(1)

λls−i+ls−i+1+···+ls
xc

′
1 .

Taking i = s − 2, we get

xc1 = gs−1(1)
1

λ
xc̄1 + gs−1(1) · · · g2(1)g(1)

λl2+l3+···+ls
xc

′
1 .

It follows that

xc̄0 = gs−1(1)

λk−1 xc0 +
s−1∏

i=1

gi (1)
1

λ
∑s

j=1 l j
xc

′
1 ,

where l1 is the length of the directed path from c̄0 to c1. By Proposition 4.5 (i), we
know that there is not an arrow from G′ to G and therefore xc

′
1 = ∑

c′∈S(G′) h̄c′(λ)xc
′

for some function h̄c′(λ) in λ. It follows that

xc̄0 = gs−1(1)

λk−1 xc0 +
∑

c′∈S(G′)
hc′(λ)xc

′
,

where hc′(λ) = ∏s−1
i=1 g

i (1)
1

λ
∑s

j=1 l j
h̄c′(λ). ��

4.4 The characteristic polynomial of a hyperpath

We will give a recursive formula of the characteristic polynomial of hyperpaths.
Observe the number of stable configurations on Kk is (k − 1)k−1, and the number of
critical configurations on Kk is kk−2 by Example 2.8. So Bs contains exactly μn,k(s)
elements, which is defined as follows:

μn,k(s) =
{
ks(k−2)((k − 1)k−1 − kk−2)(k − 1)(n−s−1)(k−1), s ∈ [0, n − 1],
kn(k−2), s = n.

(4.5)
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Theorem 4.7 Let φP
n,k(λ) be the characteristic polynomial of the hyperpath Pk

n , where
n ≥ 2. Then,

φP
n,k(λ) = λ(k−2)(k−1)n(k−1)

n∏

s=0

(

λ − gs−1(1)

λk−1

)μn,k (s)

φP
n−1,k(λ)(k−1)k−1

where gi (x) is defined in (4.4) and μn,k(s) is defined in (4.5).

Proof By definition, the characteristic polynomial of Pk
n is

φP
n,k(λ) = Res(F0, F1, . . . , Fr ),

where

Fi (x0, x1, . . . , xr ) = λxk−1
i −

∑

i∈ε∈E
xε\{i}

is a homogeneous polynomial in variables x0, x1, . . . , xr of degree k − 1 for i =
0, 1, . . . , r = n(k − 1). Clearly,

fi (x1, . . . , xr ) =

⎧
⎪⎪⎨

⎪⎪⎩

λ − x1 · · · xk−1, if i = 0,
λxk−1

i − x1 · · · xi−1xi+1 · · · xk−1, if i ∈ [k − 2],
λxk−1

k−1 − x1 · · · xk−2 − xk · · · x2(k−1), if i = k − 1,
Fi (x0, x1, . . . , xr ), otherwise,

and

F̄i (x1, . . . , xr ) =
⎧
⎨

⎩

λxk−1
i , if i ∈ [k − 2],

λxk−1
k−1 − xk · · · x2(k−1), if i = k − 1,

Fi (x0, x1, . . . , xr ), otherwise.

By Lemmas 2.2 and 2.3, we have

φP
n,k(λ) = Res(F̄1, . . . , F̄r )

k−1 det(m f0)

= Res(λxk−1
1 , . . . , λxk−1

k−2 , F̄k−1, . . . , F̄r )
k−1 det(m f0)

=
(
Res(λxk−1

1 , . . . , λxk−1
k−2)

(k−1)(n−1)(k−1)+1
Res(F̄k−1, . . . , F̄r )

(k−1)k−2
)k−1

× det(m f0)

= λ(k−2)(k−1)n(k−1)
φP
n−1,k(λ)(k−1)k−1

det(m f0),

where m f0 is the multiplication map of the quotient algebra

A = C[x1, . . . , xr ]/〈 f1, . . . , fr 〉

given by m f0(x
i1
1 · · · xirr ) = λxi11 · · · xirr − xi1+1

1 · · · xik−1+1
k−1 xikk · · · xirr .
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Wechoose aC-basisB = {xc|c : [r ] → [k−2]} for A, where xc = xc(1)1 · · · xc(r)r . In
fact, for any xc ∈ B, c̃ = (c̃(0), c(1), . . . , c(r)) can be viewed as a stable configuration
on Pk

n , where 0 is the bank vertex whose value can be omitted. We denote by B the
set of all stable configurations on Pk

n . Clearly, there is a one-to-one correspondence
betweenB andB by ignoring the bank vertex, and the left anti-lexicographical ordering
on B gives a total ordering on B. To be precise, xi11 · · · xirr ≺ x j1

1 · · · x jr
r if and only

if
r∑

t=1
it <

r∑

t=1
jt , or

r∑

t=1
it =

r∑

t=1
jt , is = js for 1 ≤ s ≤ t − 1 and it > jt for some

t ∈ [r ].
Retaining the notation in Sect. 4.2, we observe that B is exactly the disjoint union

of B0,B1, . . . ,Bn . For each s ∈ [n], the number of configurations in Bs is exactly
μn,k(s). Let c0 be a configuration in Bs . By Lemma 4.6, we know

m f0(x
c0) = xc̄0 =

(

λ − gs−1(1)

λk−1

)

xc0 −
∑

c′∈S(G′)
hc′(λ)xc

′
,

where G′, S(G′) and hc′(λ) are defined in Proposition 4.5 or Lemma 4.6. On the other
hand, by Proposition 4.5 (ii), we have c0 ≺ c′ for any c′ in G′. It follows that the
matrix of m f0 associated with the ordered basis B is a lower triangle matrix with
gs−1(1)
λk−1 appearing on the diagonal exactly μn,k(s) times for s ∈ [0, n]. So

det(m f0) =
n∏

s=0

(

λ − gs−1(1)

λk−1

)μn,k (s)

,

and

φP
n,k(λ) = λ(k−2)(k−1)n(k−1)

n∏

s=0

(

λ − gs−1(1)

λk−1

)μn,k (s)

φP
n−1,k(λ)(k−1)k−1

.

��
Example 4.8 By Theorem 4.7, we can deduce the characteristic polynomial of Pk

n
inductively from an edge. The following are the characteristic polynomials φP

n,k(λ) of

Pk
n for some specified n and k.

φP
1,3(λ) = λ3(λ3 − 1)3 of degree 12;

φP
2,3(λ) = λ35(λ3 − 1)6(λ3 − 2)9 of degree 80;

φP
3,3(λ) = λ151(λ3 − 1)27(λ3 − 2)18(λ6 − 3λ3 + 1)27 of degree 448;

φP
4,3(λ) = λ891(λ3 − 1)201(λ3 − 2)81(λ3 − 3)81(λ6 − 3λ3 + 1)54 of degree 2304;

φP
1,4(λ) = λ44(t4 − 1)16 of degree 108;

φP
2,4(λ) = λ2671(λ4 − 1)352(λ4 − 2)256 of degree 5103;

φP
3,4(λ) = λ95774(λ4 − 1)11440(λ4 − 2)5632(λ8 − 3λ4 + 1)4096 of degree 196830.
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Fig. 10 Starlike hypergraph
Skn1,n2,...,nm

w

Pk
n1

Pk
n2

Pk
nm

5 Starlike hypergraphs

In this section, we will deal with a class of k-uniform hypergraphs, called starlike
hypergraph and denoted by Skn1,...,nm , which is obtained from m hyperpaths of length
n1, . . . , nm by sharing a common vertex w, where m ≥ 1 and ni ≥ 1 for i ∈ [m]; see
Fig. 10. When m = 1, it is a hyperpath Pk

n1 . When ni = 1 for each i ∈ [m], it is called
a hyperstar with m edges and denoted by Skm .

Theorem 5.1 Let Skn1,...,nm be the k-uniform starlike hypergraph with exactly t hyper-
paths having length 1, where 0 ≤ t ≤ m. Then, the characteristic polynomial
φSH
n1,...,nm ;k(λ) of Skn1,...,nm is

λ(m(k−2)+t)(k−1)

m∑

j=1
r j ∏

i∈[m]
ni>1

φP
ni−1,k(λ)(k−1)

k−1+ ∑

j �=i
r j

×
∏

si∈[0,ni ]
1≤i≤m

(

λ −
m∑

i=1

gsi−1(1)

λk−1

)
m∏

i=1
μni ,k (si )

,

where ri = ni (k − 1) for i ∈ [m], φP
n,k(λ) denotes the characteristic polynomial of

Pk
n , g

s(x) and μn,k(s) are defined in (4.4) and (4.5), respectively.

Proof For each i ∈ [m], let εi be the edge of Pk
ni containing w, and ε̂i = εi\{w}. Let

Hi be sub-hyperpath of Pk
ni by deleting the vertexw and the edge εi for i ∈ [m], which

is a hyperpath Pk
ni−1 together with k − 2 isolated vertices if ni > 1 or ri (= k − 1)

isolated vertices otherwise. If ni > 1, by Lemmas 2.2 and 2.3, we get

φHi (λ) = λ(k−2)(k−1)ri−1
φP
ni−1,k(λ)(k−1)k−2; (5.1)
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otherwise,

φHi (λ) = λ(k−1)(k−1)ri−1
. (5.2)

So, combining (5.1) and (5.2), we have

m∏

i=1

φ
(k−1)

1+ ∑

j �=i
r j

Hi
= λ(m(k−2)+t)(k−1)

m∑

j=1
r j ∏

i∈[m]
ni>1

φP
ni−1,k(λ)(k−1)

k−1+ ∑

j �=i
r j

. (5.3)

Let V be the vertex set of Skn1,...,nm , and let Vi be the vertex set of Pk
ni for i ∈ [m].

Note that w is a cut vertex of Skn1,...,nm and recall the discussion in Sect. 3.2. The

quotient algebra A = C[xv : v ∈ V \{w}]
〈 fv : v ∈ V \{w} 〉 holds

A = A1 ⊗ · · · ⊗ Am,

where Ai = C[xv : v ∈ Vi\{w}]
〈 fv : v ∈ Vi\{w} 〉 for i ∈ [m], and

fv = λxk−1
v −

∑

v∈ε∈E(Pk
ni

)

xε\{v} −
∑

v∈̂εi

x̂εi\{v}, v ∈ Vi\{w}, i ∈ [m].

Let

fw = λ −
m∑

i=1

x̂εi

and m fw : A → A be the linear map given by multiplication by fw. Then,

m fw = λIdA −
m∑

i=1

IdA1 ⊗ · · · ⊗ IdAi−1 ⊗ mi,w ⊗ IdAi+1 ⊗ · · · ⊗ IdAm ,

where mi,w : Ai → Ai is the linear map given by multiplication by x̂εi for i ∈ [m].
Fix an i ∈ [m]. Let B = {xc|c : Vi\{w} → [k − 2]} be a basis of Ai , where

xc = ∏
v∈Vi\{w} x

c(v)
v , and let B be the set of stable configuration of Pk

ni with w as
the bank vertex. As discussed in Theorem 4.7, there is a one-to-one correspondence
between B and B by ignoring the bank vertex. We also have a left anti-lexicographical
ordering ≺ on B arising from the order of B. Retaining the notation in Sect. 4.2, B
is the disjoint union of B0,B1, . . . ,Bni , and the number of configurations in Bs is
μni ,k(s) for each s ∈ [0, ni ].
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For each c0 ∈ Bs , by Lemma 4.6,

mi,w(xc0) = xc̄0 = gs−1(1)

λk−1 xc0 +
∑

c′∈S(G′)
hc′(λ)xc

′
,

where G′, S(G′) and hc′(λ) are defined in Proposition 4.5 or Lemma 4.6. Note that
c0 ≺ c′ for any c′ ∈ G′. So the matrix of mi,w associated with the basis B under the

above order is a lower triangle matrix with gs−1(1)
λk−1 appearing on the diagonal exactly

μni ,k(s) times for s ∈ [0, ni ].
By the above discussion,

det(m fw) =
∏

si∈[0,ni ]
1≤i≤m

(

λ −
m∑

i=1

gsi−1(1)

λk−1

)
m∏

i=1
μni ,k (si )

. (5.4)

The result follows by Corollary 3.2 and the equalities (5.3) and (5.4). ��
Taking ni = 1 for i ∈ [m] in Theorem 5.1, we get the characteristic polynomial of

hyperstar Skm .

Corollary 5.2 Let φS
n,k be the characteristic polynomial of the k-uniform hyperstar Skm

with m edges. Then,

φS
m,k(λ) = λr(k−1)r

m∏

p=0

(
λ − p

λk−1

)(mp)k
(k−2)p

(
(k−1)k−1−kk−2

)n−p

where r = m(k − 1).

Corollary 5.3 [5, Theorem 4.3] Let E be the k-uniform hypergraph with k vertices and
a single edge. Then,

φE (λ) = λk(k−1)k−1−kk−1
(λk − 1)k

k−2
.

Corollary 5.4 Let Sk2 be a k-uniform hyperstar with two edges or hyperpath with two
edges. Then,

φSk2
(λ) = λμk (λk − 1)2k

k−2
(
(k−1)k−1−kk−2

)

(λk − 2)k
2(k−2)

,

where μk = (2k − 1)(k − 1)2(k−1) − 2kk−1(k − 1)k−1 + k2k−3.
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Corollary 5.5 The characteristic polynomial of the starlike hypergraph Sk1,1,2 is

φSH
1,1,2;k(λ) = λ(4k−3)(k−1)4(k−1)−(kk−1+3kk−2)(k−1)3(k−1)+3k2(k−2)(k−1)2(k−1)−k3(k−2)(k−1)k−1

· (λk − 1)k
k−2(k−1)3(k−1)

·
(

λ − 1

λk−1

)kk−2(3(k−1)k−1−kk−2)((k−1)k−1−kk−2)2

·
(

λ − 2

λk−1

)k2(k−2)(3(k−1)k−1−2kk−2)((k−1)k−1−kk−2)

·
(

λ − 3

λk−1

)k3(k−2)((k−1)k−1−kk−2)

·
(

λ − λ

λk − 1

)k2(k−2)((k−1)k−1−kk−2)2

·
(

λ − 1

λk−1 − λ

λk − 1

)2k3(k−2)((k−1)k−1−kk−2)

·
(

λ − 2

λk−1 − λ

λk − 1

)k4(k−2)

.

In particular, the characteristic polynomial φSH
1,1,2;3(λ) of S31,1,2 is

λ980(λ3 − 1)75(λ3 − 2)54(λ3 − 3)27(λ4 − 2λ)9(λ6 − 3λ3 + 1)54(λ6 − 4λ3 + 2)81

of degree 2294.

6 Conclusion

We give an explicit and recursive formula for the characteristic polynomial of the
adjacency tensor of a starlike hypergraph, which is a resultant of a system of poly-
nomials related to the structure of the hypergraph. Variants of the chip-firing game
on simple graphs such as dollar game on simple graphs or hypergraphs are applied to
analyze these resultants. As such, we provide a combinatorial method for computing
resultants, which will have potential use for commutative algebra, algebraic geometry
and physical fields.

We note that there are many numerical methods and algorithms for computing
partial (real or extreme) eigenvalues of a general (symmetric) tensor; see e.g., Chang
et al. [3], Chen et al. [4], Cui et al. [8] and the references therein. We also note the
starlike hypergraph is a power hypergraphGk , which is obtained from a starlike simple
graph G by adding k − 2 vertices to each of its edges. Zhou et al. [21] proved that if

λ is a nonzero eigenvalue of G or any subgraph of G, then λ
2
k is an eigenvalue of Gk .

In fact, the nonzero eigenvalues of Gk are exactly those eigenvalues arising from G
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in the above way. Our method allows for calculating these same eigenvalues, with the
added benefit of determining the algebraic multiplicity of each eigenvalue.
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