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Abstract
We introduce the monoid of the admissible KF polynomials. These polynomials are
invariant under uniform translation of partitions. Moreover, each Kostka–Foulkes
polynomial turns out to be a linear combination of admissible KF polynomials with
coefficients −1 or 1. Elementary manipulations of triangular matrices provide identi-
ties on Kostka–Foulkes polynomials which are not obvious a priori.
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1 Introduction

The Kostka–Foulkes polynomials are the transition coefficients Kλμ(q) in the expan-
sion of the Schur functions sλ in terms of the (classical) Hall-Littlewood symmetric
functions Pμ(q), that is:

sλ =
∑

μ≤λ

Kλμ(q) Pμ(q).

The sum is extended to all the (integer) partitionsμ = (μ1, μ2, . . .) that are dominated
by the given partition λ = (λ1, λ2, . . .), that is to those μ satisfying

μ1 + · · · + μi ≤ λ1 + · · · + λi for all i .
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When q = 1, Kλμ(q) reduces to the Kostka number Kλμ which counts the semi-
standard Young tableaux of shape λ and content μ [10]. It is known since the
seventies [9] that Kλμ(q) is a polynomial with non-negative integer coefficients and
that the coefficient of qk in Kλμ(q) counts the semi-standard Young tableaux of shape
λ, content μ and charge k. The combinatorics of this subject is very rich and intrigu-
ing [5,7,11]. Here, we introduce a subset of Kostka–Foulkes polynomials closed under
multiplication for which the computation benefits of nice combinatorial properties.

We consider the following set of pairs of partitions,

P = {
(λ, μ)

∣∣ 0 ≤ (λ1 + · · · + λi ) − (μ1 + · · · + μi ) ≤ λi − λi+1 for all i
}
,

and we name admissible pair each (λ, μ) ∈ P. The main subject of this paper is set
K of all admissible KF polynomials Kλμ(q), that is

K := {
Kλμ(q)

∣∣ (λ, μ) ∈ P}.

The set K turns out to be a sub-monoid [see identity (24)] of the Liskova semi-
group introduced in [7]. These polynomials are invariant under uniform translation
of partitions (Corollary 3.3). Each Kostka–Foulkes polynomial turns out to be a
linear combination of admissible KF polynomials with coefficients in {−1, 1} (Corol-
lary 3.5).A simple combinatorial descriptionof admissibleKFpolynomials is achieved
bymeans of class polynomials [identity (17)] arising from a q-analogue of the Kostant
partition function. Basic identities on class polynomials are obtained via elementary
manipulations of triangular matrices. Class polynomials enumerate certain triangular
matrices by trace [identity (31)], and satisfy a recursive formula [identity (35)]. When
such identities are interpreted in terms of (admissible) Kostka–Foulkes polynomials
the resulting scenario turns out to be not obvious a priori. For instance, we state a
reducibility criterion for Kostka–Foulkes polynomials [Corollary (25)]. Moreover, we
recover Kostka–Foulkes polynomials satisfying

Kλμ(q) = q(n+1
2 )[n]q ! and Kλμ = q(1 + q)n−1,

where [n]q ! is theq-factorial. Finally,we obtain the explicit expression of theminimum
integer k such that qk occurs in the admissible K F polynomial Kλμ(q) [identity (37)]
which in general is not an easy task.

2 Preliminary notions

Throughout this paper, by an integer partition of length at most n we mean a vector
λ = (λ1, λ2, . . . , λn) ∈ Z

n satisfying λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Given α ∈ Z
n , we

set α̃i := α1 + α2 + · · · + αi for 1 ≤ i ≤ n, then α̃ := (α̃1, α̃2, . . . , α̃n). Let

Pn := {
α ∈ Z

n
∣∣ α̃n = 0

}
and P+

n := {
α ∈ Pn

∣∣ α̃ ∈ N
n},
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and define the dominance ordering on Z
n by

α ≤ β if and only if β − α ∈ P+
n .

For each α ∈ P+
n we define the raising operator Rα : Zn → Z

n by

Rα(β) := β + α.

Hence, we set Ri j := Rei−e j , for 1 ≤ i < j ≤ n, to denote the raising operator associ-
atedwith the difference ei −e j of vectors chosen from the standard basis e1, e2, . . . , en
of Zn [10]. The Kostant partition function P : P+

n → N associates each α ∈ P+
n with

the number P(α) of ways α can be written as a linear combination with non-negative
integer coefficients of the differences ei − e j [3]. Equivalently, P(α) counts the num-
ber of ways Rα can be written as a product of the maps Ri j . An interesting q-analogue
P(α, q) of P(α) is obtained by setting

∑

α∈P+
n

P(α, q) Rα :=
∏

1≤i< j≤n

(1 − q Ri j )
−1. (1)

We have P(α) = P(α, 1), and the coefficient of qk in P(α, q) counts the number
of ways Rα can be written as a product of k maps Ri j , counting repetitions. The
power series (1) provides a rather simple definition of theKostka–Foulkes polynomials
Kλμ(q). In detail, let Rα map the Schur function sλ to Rα(sλ) := sλ+α , and define the
transformed Hall-Littlewood symmetric function Hμ(q) [4] (denoted Q′

μ(q) in [10])
by

Hμ(q) :=
∏

1≤i< j≤n

(1 − q Ri j )
−1 sμ. (2)

Recently, (2) has been generalized in [2] via the chip-firing gameproviding an analogue
of the transformed Hall-Littlewood symmetric functions for any connected simple
graph. The Kostka–Foulkes polynomial Kλμ(q) turns out to be the coefficient of sλ in
the expansion of Hμ(q):

Hμ(q) =
∑

λ≥μ

Kλμ(q)sλ. (3)

In order to apply (2), some care is needed. First, we formally expand the right-hand
side via (1) to obtain

Hμ(q) =
∑

α∈P+
n

P(α, q) sμ+α =
∑

β≥μ

P(β − μ, q) sβ. (4)

Second, we have to take into account that for all β ≥ μ, it is either sβ = 0 or
sβ = ε(w) sλ for a unique permutationw of sign ε(w) in the symmetric groupSn , and a
unique partition λ ≥ μ. More precisely, the triple (β,w, λ) satisfiesw(λ+ρ)−ρ = β,
where ρ := (n − 1, n − 2, . . . , 0). Hence, by combining with (3) and (4), we recover
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the following expansion of Kλμ(q) which is a special case of a more general formula
conjectured by Lusztig [8] and stated by Kato [6]:

Kλμ(q) =
∑

w∈Sn

ε(w)P(w(λ + ρ) − (μ + ρ), q), (5)

where P(α, q) := 0 is assumed whenever α /∈ P+
n . In the following section we

will give an explicit characterization of those pairs (λ, μ) of partitions satisfying
w(λ+ρ)−(μ+ρ) ∈ P+

n only ifw = e (the identity permutation). The corresponding
Kostka–Foulkes polynomials Kλμ(q) satisfy

Kλμ(q) = P(λ − μ, q) (6)

and further properties of interest in their own right.

3 Admissible KF polynomials

Given two partitions λ,μ of length at most n, we set

Sn(λ, μ) := {w ∈ Sn | w(λ + ρ) − (μ + ρ) ∈ P+
n },

and define

Pn := {
(λ, μ)

∣∣Sn(λ, μ) = {e}} and P :=
⋃

n≥1

Pn .

We name admissible pair any pair (λ, μ) ∈ P. Note that, if (λ, μ) is an admissible
pair, then e(λ + ρ) − (μ + ρ) = λ − μ ∈ P+

n , hence μ ≤ λ. This means that the
following subset of Kostka–Foulkes polynomials is non-empty:

K := {
Kλμ(q)

∣∣ (λ, μ) ∈ P}. (7)

Henceforth, we call the polynomials in K admissible KF polynomials. The following
theorem provides an explicit description of admissible pairs.

Theorem 3.1 Let λ,μ be partitions of length at most n. The pair (λ, μ) is admissible
if and only if we have

0 ≤ λ̃i − μ̃i ≤ λi − λi+1 for 1 ≤ i ≤ n − 1. (8)

In order to prove Theorem 3.1, we need some basic facts concerning permutations. As
it is well known, the symmetric group Sn is generated by the adjacent transpositions
s1, s2, . . . , sn−1, defined by si := (i, i + 1) for 1 ≤ i ≤ n − 1. A decomposition of
w ∈ Sn is an expressionw = si1si2 · · · sid ofw as a product of adjacent transpositions.
The decompositions of w of minimal length are said reduced and the number �(w)
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of adjacent transpositions involved is said to be the length of w. If inv(w) denote the
number of inversions on w, then we have inv(w) = �(w) for all w ∈ Sn [1]. Now,
consider any w ∈ Sn and observe that

inv(wsi ) = inv(w) + 1 if and only if w(i) < w(i + 1). (9)

Lemma 3.2 Let w, si ∈ Sn satisfy �(wsi ) = �(w) + 1. If w /∈ S(λ, μ) then wsi /∈
S(λ, μ).

Proof Set α := wsi (λ + ρ), β := w(λ + ρ), γ := μ + ρ. We have

α̃ = β̃ − (λw(i) − λw(i+1) − w(i) + w(i + 1))ei . (10)

Since λ is a partition, and being inv(wsi ) = inv(w) + 1, by (9) we have

w(i + 1) − w(i) > 0 and λw(i) − λw(i+1) ≥ 0,

then α̃i − γ̃i < β̃i − γ̃i , and finally

α̃ j − γ̃ j ≤ β̃ j − γ̃ j for 1 ≤ j ≤ n.

Whit this established, ifw /∈ S(λ, μ) then there is j such that α̃ j − γ̃ j ≤ β̃ j − γ̃ j < 0,
and this says wsi /∈ S(λ, μ). ��
We now have all the necessary tools to prove Theorem 3.1.

Proof of Theorem 3.1 Let (λ, μ) be an admissible pair. As e ∈ S(λ, μ), we have
λ − μ ∈ P+

n , that is 0 ≤ λ̃i − μ̃i for 1 ≤ i ≤ n (λ̃n − μ̃n = 0). Moreover, since
si /∈ S(λ, μ) for 1 ≤ i ≤ n − 1, we deduce

si (λ + ρ) − (μ + ρ) /∈ P+
n for 1 ≤ i ≤ n − 1, (11)

hence
λ̃i − (λi − λi+1) + ρ̃i − 1 − μ̃i − ρ̃i < 0 for 1 ≤ i ≤ n − 1, (12)

that is

λ̃i − μ̃i ≤ λi − λi+1 for 1 ≤ i ≤ n.

and (8) is obtained. Conversely, assume that λ andμ satisfies (8). From 0 ≤ λ̃i −μ̃i for
1 ≤ i ≤ n it follows that λ − μ ∈ P+

n and then e ∈ S(λ, μ). Now, let w 	= e, choose
any reduced decomposition w = si1si2 · · · sik of w, then set w j := si1si2 · · · si j for
1 ≤ j ≤ k. From (8)we get (12), then (11), and finally si /∈ S(λ, μ) for 1 ≤ i ≤ n−1.
In particular, this means w1 /∈ S(λ, μ). Moreover, since si1si2 · · · si j is reduced, we
have inv(w j si j+1) = inv(w j ) + 1 for 1 ≤ j ≤ k. By means of Lemma 3.2 we have
w j /∈ S(λ, μ) for 1 ≤ j ≤ k, so that w = wk /∈ S(λ, μ). ��
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Theorem3.1 and identity (5) provide afirst nice property of admissibleKostka–Foulkes
polynomials.

Corollary 3.3 Let Kλμ(q) ∈ K and let α ∈ Z
n be such that both λ + α and μ + α are

partitions. We have

Kλμ(q) = Kλ+α μ+α(q).

Proof Set β := λ + α and γ := μ + α and observe that β̃i − γ̃i = λ̃i − μ̃i for
1 ≤ i ≤ n. This means Kλ+α μ+α(q) ∈ K and (6) provides

Kλ+α μ+α(q) = P(λ − μ, q) = Kλμ(q).

��
The following theorem states that any polynomial P(α, q) actually is an admissible
KF polynomial, so that (1) can be seen as a generating function of the admissible KF
polynomials.

Theorem 3.4 For all α ∈ P+
n there exists (λ, μ) ∈ Pn such that λ − μ = α.

Proof Given α ∈ P+
n , define λ ∈ Z

n recursively by

λi := λi+1 + max{α̃i , αi − αi+1} for 1 ≤ i ≤ n (λn+1 := 0),

then set μ := λ − α. Since

λi − λi+1 = max{α̃i , αi − αi+1} ≥ α̃i ≥ 0 for 1 ≤ i ≤ n,

λ is a partition. Analogously, as we have

μi − μi+1 = max{α̃i , αi − αi+1} − (αi − αi+1) ≥ 0 for 1 ≤ i ≤ n,

we deduce that μ is a partition. Finally, we have

0 ≤ α̃i = λ̃i − μ̃i ≤ λi − λi+1 for 1 ≤ i ≤ n − 1,

and (λ, μ) is an admissible pair by virtue of Theorem 3.1. ��
Theorem 3.4 combined with identity (5) says us that each Kostka–Foulkes polynomial
is a signed sum of the admissible KF polynomials.

Corollary 3.5 There exist maps fλμ : P → {−1, 0, 1} satisfying

Kλμ(q) =
∑

(α,β)∈P
fλμ(α, β)Kαβ(q). (13)
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Proof Let λ,μ ∈ Z
n be partitions such thatμ ≤ λ. For eachw ∈ S(λ, μ) let (αw, βw)

denote any admissible pair satisfying αw − βw = w(λ + ρ) − (μ + ρ), then define

fλμ(α, β) =
{

ε(w), if (α, β) = (αw, βw);
0, otherwise.

Hence, (13) comes from (5). ��

4 Counting triangular matrices by sum and class

The identification of the polynomials P(α, q) with the admissible KF polynomials
leads to a combinatorial description ofK in terms of enumeration of triangularmatrices
of non-negative integers.With this goal, we letTn denote the set of all lower triangular
matrices of non-negative integers and we display each element of Tn as a staircase
tableau: we write

T =
1
0 0
2 0 3
1 2 1 4

instead of T =
⎡

⎢⎣
1 0 0 0
0 0 0 0
2 0 3 0
1 2 1 4

⎤

⎥⎦. (14)

Now, for all T = (ti j ) in Tn we set

sum(T ) :=
∑

1≤ j≤i≤n

ti j , (15)

and call sum(T ) the sum of T . Furthermore, we define

classk(T ) :=
∑

1≤ j≤k≤i≤n

ti j , for 1 ≤ k ≤ n, (16)

and call (class1(T ), class2(T ), . . . , classn(T )) the class of T .

Example 4.1 The sum of the tableau T in (14) is sum(T ) = 14. Its class (4, 5, 9, 8) is
obtained by summing up all the entries in each of the following rectangles:

1
0 0
2 0 3
1 2 1 4

1
0 0
2 0 3
1 2 1 4

1
0 0
2 0 3
1 2 1 4

1
0 0
2 0 3
1 2 1 4

.

Given c ∈ N
n , we let Tc denote the set of all tableaux of class c, and write Tc,k to

denote the set of all tableaux of class c and of sum k. Therefore, we define the c-class
polynomial Pc(q) by

Pc(q) :=
∑

T∈Tc

qsum(T ) =
∑

k≥0

∣∣Tc,k
∣∣ qk . (17)
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The following proposition is at root of our combinatorial description.

Proposition 4.1 If α ∈ P+
n+1 and c ∈ N

n satisfy α̃ = (c1, c2, . . . , cn, 0), then we have

P(α, q) = Pc(q). (18)

Proof By virtue of (1), for all α ∈ P+
n+1 we have

P(α, q) =
∑

A∈SUTα

q
∑

ai j , (19)

where A = (ai j ) ranges over the set SUTα of all strictly upper triangular (n + 1) ×
(n + 1) matrices of non-negative integers satisfying

α =
∑

1≤i< j≤n+1

ai j (ei − e j ).

On the other hand, from

∑

1≤i< j≤n+1

ai j (ei − e j ) = α =
n+1∑

i=1

αi ei =
n∑

k=1

α̃k (ek − ek+1),

we obtain
α̃k =

∑

1≤i≤k< j≤n+1

ai j , for 1 ≤ k ≤ n. (20)

By comparing (20) and (16), one easily sees that SUTα bijectively corresponds to Tc
via the map (ai j ) 
→ (ti j ) defined by ti j := a j i+1. Finally, the polynomials (17) and
(19) agree, provided that α̃ = (c1, c2, . . . , cn, 0). ��
Basic identities on class polynomials follow from (17) via elementary manipulations
of triangular matrices. On the other hand, once such identities are written in terms
of (admissible) KF polynomials they provide results not obvious a priori. Let us give
some preliminary examples. For all T = (ti j ) ∈ Tn , let T ′ denote the tableau obtained
by reflecting T along its SW-NE diagonal, that is

T ′ := (tn− j+1 n−i+1).

So, for T in (14) we obtain

T ′ =
4
1 3
2 0 0
1 2 0 1

.

The map T 
→ T ′ is bijective from Tn to itself; hence, it immediately provides the
following result.
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Proposition 4.2 For all c = (c1, c2, . . . , cn) ∈ N
n we have

Pc(q) = Pc′(q), (21)

where c′ := (cn, cn−1, . . . , c1). Equivalently, if (λ, μ), (η, ν) ∈ P satisfy η̃ − ν̃ =
(λ̃ − μ̃)′, then we have

Kλμ(q) = Kην(q). (22)

Proof Identity (21) comes obviously from T 
→ T ′, while identity (22) comes from
identity (21) via Theorem 3.4. ��
For all S ∈ Tn and T ∈ Tm , let S ⊕ T denote the tableau in Tn+m+1 obtained by
putting S and T on the top and on the right, respectively, of a (n + 1) × (m + 1)
rectangular tableau whose entries all are equal to zero. Formally, if S = (si j ) and
T = (ti j ) then we set S ⊕ T = (ui j ) where

ui j :=

⎧
⎪⎨

⎪⎩

si j , for 1 ≤ i, j ≤ n,

0, for n + 1 ≤ i ≤ n + m + 1 and 1 ≤ j ≤ n + 1,

ti−n−1, j−n−1, for n + 2 ≤ i ≤ n + m + 1 and n + 2 ≤ j ≤ n + m + 1.

For instance, we have

2
1 0
2 0 8

⊕ 3
2 6

=

2
1 0
2 0 8
0 0 0 0
0 0 0 0 3
0 0 0 0 2 6

.

The map (S, T ) 
→ S ⊕ T is bijective from Tn ×Tm to the subset Tn,m of Tn+m+1 of
all tableaux T satisfying classn+1(T ) = 0. As a consequence, we obtain the following
multiplication rule for class polynomials.

Proposition 4.3 For all a = (a1, a2, . . . , an) ∈ N
n and b = (b1, b2, . . . , bm) ∈ N

m,
we have

Pa(q)Pb(q) = Pa0b(q), (23)

where

a0b := (a1, a2, . . . , an, 0, b1, b2, . . . , bm).

Equivalently, for all (λ, μ), (η, ν) ∈ P there exists (σ, τ ) ∈ P such that

Kλμ(q)Kην(q) = Kστ (q). (24)

Proof Identity (23) comes via the bijection (T , S) 
→ T ⊕S, while identity (24) comes
from identity(23) via identities (18) and (6) and Theorem 3.4. ��
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Identity (24) has a couple of particularly nice direct consequences.

Corollary 4.4 Let (λ, μ) ∈ P satisfy λ̃ − μ̃ = a0b for suitable vectors a and b. Then,
we have

Kλμ(q) = Kην(q) Kστ (q), (25)

for suitable (η, ν), (σ, τ ) ∈ P such that (λ, μ) = (μ ∪ σ, ν ∪ τ).

Proof Let

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bm),

λ = (λ1, λ2, . . . , λn+m+1), μ = (μ1, μ2, . . . , μn+m+1).

If λ̃ − μ̃ = a0b then we set

η := (λ1, λ2, . . . , λn), ν := (μ1, μ2, . . . , μn),

σ := (λn+1, λn+2, . . . , λn+m+1), τ := (μn+1, μn+2, . . . , μn+m+1)

to obtain λ = η ∪ σ , μ = ν ∪ τ , η̃ − ν̃ = a and σ̃ − τ̃ = b. Finally, we apply (6),
(18) and (23) to recover

Kλμ(q) = Pa0b(q) = Pa(q)Pb(q) = Kην(q)Kστ (q).

��
Theorem 4.5 The set K of all admissible KF polynomials is a monoid with respect to
multiplication.

Proof Kλλ(q) = P0(q) = 1 ∈ K and, by virtue of (24), K is closed under multiplica-
tion. ��

We close this section with an application to the q-factorial. Let (a, b) ∈ N
2 and

assume a ≤ b. Consider the following generic tableau in T2:

T = y
x z .

Once that x is chosen such that 0 ≤ x ≤ a, in order to obtain T ∈ T(a,b) we set
y = a − x and z = b − x . This provides

Pab(q) =
∑

0≤x≤a

qa+b−x = qb(1 + q + · · · + qa) = qb [a + 1]q ,

where [n]q := 1 + q + · · · + qn−1 is the n-th q-integer. In the case b ≤ a, by means
of (21) we recover

Pab(q) = P(b,a)(q) = qa [b + 1]q ,
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and this explicitly determines all the class polynomials indexed in N2:

Pab(q) = qmax{a,b} [min{a, b} + 1]q .

Note that, for each positive integer i , thanks to (18) and (6), we obtain

K3i 2i−1 2i 2i i−1(q) = Pi i−1(q) = qi [i]q .

Set i := (i − 1, i) and n! := 1020 · · · 0n = (0, 1, 0, 1, 2, . . . , 0, n − 1, n), then apply
(23) to obtain

Pn!(q) =
n∏

i=1

Pi (q) =
n∏

i=1

qi [i]q = q(n+1
2 )[n]q !

= q(n+1
2 )

(1 − q)n
(1 − q)(1 − q2) · · · (1 − qn),

where [n]q ! := [1]q [2]q · · · [n]q is the q-factorial. On the other hand, thanks to The-
orem 3.4, we known there exists (λ, μ) ∈ P such that λ̃ − μ̃ = n!0, and then

Kλμ(q) = q(n+1
2 )[n]q !. (26)

It is well known that the coefficient of qk in [n]q ! equals the number of permutations
π ∈ Sn with exactly i(π) = k inversions [12]. Hence, one may look for a bijection
T 
→ π(T ) from Tn! to Sn satisfying sum(T ) = i(π(T )) + (n+1

2

)
. Such a bijection

is obtained as follows. First, note that each tableau

y
x z ∈ T(i−1,i)

is uniquely determined by the value taken by y: choose y such that 0 ≤ y ≤ i − 1,
then set x = i − 1 − y and z = i − x (that is x + z = i). Hence, the tableaux
T1 ⊕ T2 ⊕ · · · ⊕ Tn in Tn! bijectively correspond to the vectors (y1, y2, . . . , yn) of
integers such that 0 ≤ yi ≤ i − 1. On the other hand, such vectors exactly are the
inversion tables of the permutations inSn [12]. Finally, given T = T1⊕T2⊕· · ·⊕Tn ,
let π(T ) denote the unique permutation ofSn with inversion table (y1, y2, . . . , yn) to
obtain

sum(T ) =
n∑

i=1

(yi + xi + zi ) =
n∑

i=1

yi +
n∑

i=1

i = i(π(T )) +
(
n + 1

2

)
.

5 A recursive formula for the class polynomials

In the previous section, we have shown that every identity on class polynomials can
be interpreted in terms of Kostka–Foulkes polynomials. Henceforth, we adopt the
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notation Pc(q) that we believe more effective. Given T = (ti j ) ∈ Tn , set Tn := T
and, for 1 ≤ i ≤ n − 1, let Tn−i ∈ Tn−i denote the tableau obtained from Tn−i+1 by
removing its bottom row. Therefore, set

ch,k(T ) := classk(Th) =
∑

1≤ j≤k≤i≤h

ti j , for 1 ≤ k ≤ h ≤ n. (27)

The triangular matrix C(T ) = (ch,k(T )) ∈ Tn will be named the class tableau of T .
For instance, starting from T in (14) we obtain

T4 =
1
0 0
2 0 3
1 2 1 4

T3 =
1
0 0
2 0 3

T2 = 1
0 0

T1 = 1 ,

then

class(T4) = (4, 5, 9, 8), class(T3) = (3, 2, 5), class(T2) = (1, 0),

class(T1) = (1),

and finally

C(T ) =
1
1 0
3 2 5
4 5 9 8

. (28)

Starting from (27) one recovers the explicit expression of the entries of each tableau
T in terms of the entries of the associated class tableau: we have

ti j = (
ci j (T ) − ci, j−1(T )

) − (
ci−1, j (T ) − ci−1, j−1(T )

)
(29)

for 1 ≤ i ≤ j ≤ n, where ci j (T ) := 0 if i = 0 or j = 0. Identities (27) and (29) say
that the map T 
→ C(T ) is bijective from Tn to the subset CTn ⊂ Tn of all tableaux
C = (ci j ) satisfying

ci j − ci, j−1 ≥ ci−1, j − ci−1, j−1, (30)

where as above we assume ci j := 0 if i = 0 or j = 0. Henceforth, we will name class
tableau any of such tableaux. Moreover, given c ∈ N

n , we name c-class tableau any
class tableau C = (ci j ) such that c = (cn,1, cn,2, . . . , cn,n), that is any class tableau
whose bottom row agrees with a. Hence, we let CTc denote the set of all c-class
tableaux or, equivalently, the image of Tc under the map T 
→ C(T ). Recalling that
Tn is the set of all lower triangular n × n matrices of non-negative integers, for all
T ∈ Tn we set

trace T = t1,1 + t2,2 + · · · + tn,n .

The expansion of the class polynomial Pc(q) in terms of c-class tableaux follows.
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Theorem 5.1 For all c ∈ N
n we have

Pc(q) =
∑

C∈CTc

q traceC . (31)

Proof Given T ∈ Tn , from (27) we have

ck,k(T ) = tk,1 + tk,2 + · · · + tk,k,

for 1 ≤ k ≤ n, and then
traceC(T ) = sum(T ). (32)

Now, (31) follows from (17) and (32) via the map T 
→ C(T ). ��

Thanks to (31) we are able to determine the degree of any class polynomial.

Corollary 5.2 For all c = (c1, c2, . . . , cn) ∈ N
n the class polynomial Pc(q) is monic

of degree

deg Pc(q) = c1 + c2 + · · · + cn .

Proof From (27), it easily seen that class tableaux have non-decreasing column (from
top to bottom). This means that there exists a unique c-class tableau of maximal trace,
such a tableau being

C =

⎛

⎜⎜⎜⎝

c1
c1 c2
...

...

c1 c2 . . . cn

⎞

⎟⎟⎟⎠ . (33)

��

A further application of (31) is a recursive formula for the class polynomials. To
recover such a formula, for all c = (c1, c2, . . . , cn) ∈ N

n , write b ≺ c to mean
b = (b1, b2, . . . , bn−1) ∈ N

n−1 and

c j − c j−1 ≥ b j − b j−1, (34)

for 1 ≤ j ≤ n (assume bn = c0 = b0 = 0). By comparing (30) and (34), one
sees that C ∈ Tn is a c-class tableau if and only if its rows c1, c2, . . . , cn satisfy
c1 ≺ c2 ≺ . . . ≺ cn . For example, the class tableau (28) can be identified with the
sequence

(1) ≺ (1, 0) ≺ (3, 2, 5) ≺ (4, 5, 9, 8).
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Proposition 5.3 For all c ∈ N
n we have

Pc(q) = qcn
∑

b≺c

Pb(q). (35)

Proof From (31) we have

Pc(q) =
∑

c1≺c2≺...≺cn=a

qc1,1+c2,2+···+cn,n

= qcn
∑

b≺c

( ∑

c1≺c2≺...≺cn−1=b

qc1,1+c2,2+···+cn−1,n−1

)

= qcn
∑

b≺c

Pb(q).

��
By virtue of the recursive rule (35), we are able to recover the minimum power of q
occurring in any class polynomial.

Proposition 5.4 The minimum integer k such that qk occurs in Pc(q) is

a(c) :=
n∑

i=1

max{0, ci − ci+1} =
∑

1≤i≤n
ci≥ci+1

(ci − ci+1), (36)

where we assume cn+1 = 0 and c = (c1, c2, . . . , cn).

Proof Let ã(c) denote the minimum integer k such that qk occurs in Pc(q). We use
induction on n ≥ 1 to prove that ã(c) = a(c) for all c ∈ N

n . If n = 1 and c = (c), then
we have Pc(q) = qc and ã(c) = c = a(c). Now, let n ≥ 2 and assume ã(b) = a(b)
for all b ∈ N

n−1. By means of (35) we have

ã(c) = cn + min{a(b) | b ≺ c}.

From (34), if b ≺ c then we have bi − bi+1 ≥ ci − ci+1 for 1 ≤ i ≤ n − 1, hence

a(b) =
n−1∑

i=1

max{0, bi − bi+1} ≥
n−1∑

i=1

max{0, ci − ci+1} = a(c) − cn .

Now, set c�
n := 0 and consider the integral vector c� = (c�

1, c
�
2, . . . , c

�
n−1) defined

recursively by

c�
n−i := max{0, cn−i − cn−i+1 + c�

n−i+1},
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for 1 ≤ i ≤ n − 1. We have

c�
i =

{
0, if ci − ci+1 + c�

i+1 < 0;
ci − ci+1 + c�

i+1, if ci − ci+1 + c�
i+1 ≥ 0;

then c�
i − c�

i+1 ≥ ci − ci+1 for 1 ≤ i ≤ n − 1, which says that c� ≺ c. Moreover, we
also have c�

i − c�
i+1 = ci − ci+1 if ci − ci+1 ≥ 0, and c�

i − c�
i+1 ≤ 0 if ci − ci+1 < 0,

which gives

a(c�) =
∑

1≤i≤n−1
c�
i ≥c�

i+1

(c�
i − c�

i+1) =
∑

1≤i≤n−1
ci≥ci+1

(ci − ci+1) = a(c) − cn .

Finally, we conclude that a(c�) = min{a(b) | b ≺ c}, then we have

ã(c) = cn + min{a(b) | b ≺ c} = cn + a(c�) = a(c).

��
Remark 5.1 For all Kλμ(q) ∈ K, via (6), (18) and (36) we obtain the following explicit
formula for the minimum integer k such that qk occurs in Kλμ(q):

a(λ, μ) := a(λ̃ − μ̃) =
n∑

i=1

max
{
0, (λ̃i − λ̃i+1) − (μ̃i − μ̃i+1)}. (37)

In closing, we give the explicit formula for the class polynomial P1n (q), where 1n :=
(1, 1, . . . , 1) ∈ N

n . Note that b ≺ 1n is possible if and only if b = 1i0n−1−i , this
expression denoting a vector whose first i entries are equal to 1 and the remaining
(n − 1 − i) entries are equal to 0. As we have P1i0n−1−i (q) = P1i (q), by means of
(35), for n ≥ 2 we can write

P1n(q) = q
∑

0≤i≤n−1

P1i (q)

= q
∑

0≤i≤n−2

P1i (q) + qP1n−1(q)

= P1n−1(q) + qP1n−1(q)

= (1 + q)P1n−1(q),

and thus
P1n(q) = (1 + q)n−1q. (38)

Again, observe that (38) states the existence of an admissible KF polynomial Kλμ(q)

satisfying
Kλμ(q) = (1 + q)n−1q. (39)
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Consequence of (38) is that the number
∣∣T1n+1,k+1

∣∣ of tableaux of class 1n+1 and
sum k + 1 equals the binomial coefficient

(n
k

)
. This suggests to look for a bijection

T 
→ I (T ) mapping each tableaux T in T1n+1 to a subset I (T ) of {1, 2, . . . , n}, such
that sum(T ) = |I (T )| + 1. To get the desired bijection, if I = {i1, i2, . . . , ik} ⊆
{1, 2, . . . , n} and if i1 < i2 < . . . < ik , define T (I ) = (ti j ) ∈ T1n+1 by ti1,1 =
ti2,i1+1 = · · · = tik ,ik−1+1 = tn+1,ik+1 = 1 (ti j = 0 otherwise). The map I 
→ T (I ) is
bijective and satisfies sum(T (I )) = |I |+ 1. Finally, let T 
→ I (T ) denote the inverse
of I 
→ T (I ) and obtain sum(T ) = |I (T )| + 1, as desired.
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