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Abstract
We introduce a special kind of partial sum families, which we call equisizable partial
sum families, that can be used to obtain directed strongly regular graphs admitting a
semiregular group of automorphisms. We give a construction of an infinite family of
equisizable partial sum families depending on two parameters that produce directed
strongly regular graphs with new parameters. We also determine the automorphisms
group of the associated directed strongly regular graphs in terms of the parameters.

Keywords Directed strongly regular graphs · Groups of automorphisms · Partial sum
families

1 Introduction

Strongly regular graphs were introduced by Bose [3] in 1963 as regular graphs in
which the number of common neighbours of two vertices depends only on whether
the vertices are adjacent or not. This concept was later generalized to directed graphs
by Duval [5] in 1988. He defined a directed strongly regular graph with parameters
(v, k, μ, λ, t) [or just (v, k, μ, λ, t)-DSRG, for short], as a directed graph of order v

in which all vertices have in-valency and out-valency k, and for every two vertices u
and w, the number of paths of length 2 beginning in u and ending in w is t, λ or μ

according to whether u = w, uw is an arc or u �= w and uw is not an arc.
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Martínez and Araluze studied in [11] the necessary and sufficient conditions for
the existence of a (v, k, μ, λ, t)-DSRG admitting a semiregular group H of automor-
phisms. They proved that its existence is equivalent to the existence of an algebraic
combinatorial structure that they called partial sum family (or PSF, for short), formed
by an array of subsets (also called blocks) of an extension G of H . The symbol of
the associated directed strongly regular graph can be deduced from the blocks of the
partial sum family, and the size of the array of blocks is the number of orbits of the
action. Partial sum families were later studied in more detail in [1,2,12].

In this paper, we will present a special kind of partial sum families, which we
call equisizable partial sum families, characterized by the property that the size of the
blocks in each column is the same, except for the block in the last row of the column. In
Sect. 2, we introduce equisizable PSFs and we establish some of their basic properties.
In Sect. 3, we obtain one of the two main results of the paper: the construction of an
infinite family of equisizable partial sum families depending on two parameters. The
existence of the associated family of directed strongly regular graphs was previously
undecided in many cases. Finally, in Sect. 4 we obtain our second main result: the
description of the full automorphism groups of the infinite family of directed strongly
regular graphs that are obtained in Sect. 3.

2 Terminology and first properties

Given integers m ≥ 1 and n ≥ 2, a group of automorphisms of a digraph is
called (m, n)-semiregular if it has m orbits of length n and no other orbit, and the
action is regular on each orbit. An m-Cayley digraph Γ is a digraph admitting an
(m, n)-semiregular group H of automorphisms. Every m-Cayley digraph Γ can be
represented, following the terminology established in [10], by an m ×m array of sub-
sets of H in the following way. Let U0, . . . ,Um−1 be the m orbits of H , and for each
i let ui ∈ Ui . For each i and j , let Si, j be defined by Si, j = {h ∈ H | uiuhj ∈ A(Γ )},
where A(Γ ) denotes the arc set of Γ , and we write uv for the arc (or directed
edge) pointing from u to v. The family (Si, j ) is called the symbol of Γ relative to
(H ; u0, . . . , um−1).

A directed graphΓ without loops, of valency k and order v, as defined byDuval [5],
is called a directed strongly regular graph with parameters (v, k, μ, λ, t) (for short,
(v, k, μ, λ, t)-DSRG or simply DSRG if we do not specify the parameters) whenever
for any vertex u of Γ there are t undirected edges having u as an end vertex and for
every two different vertices u and w of Γ the number of paths of length 2 starting at
u and ending at w equals λ if uw ∈ A(Γ ) and equals μ if uw /∈ A(Γ ).

A directed strongly regular graph will also be referred to as a strongly regular
digraph.

The following relation between the parameters of a DSRG can be found in [5]:

k(k − β) = μv + γ, (1)

where β = λ − μ and γ = t − μ.
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It is proved in [5] that β2 + 4γ is a square, unless

k = t = (v − 1)/2, μ = (v − 1)/4, λ = (v − 5)/4, (2)

in which case the graph is undirected and is a conference graph, or

k = (v − 1)/2, μ = (v + 1)/4, λ = (v − 3)/4, t = 0. (3)

We define

Δ =
√

β2 + 4γ ,

which is an integer if the parameters of the digraph are not as indicated above. We will
assume in the rest of the paper that this is the case.

The following definition of partial sum family was given in [11] in a general setting,
and in a specialized form later in [1] in the way that we present here for abelian groups.
Condition (iii) of the definition represents an identity in the group ringZ[H ]where, as
usual, a subset of H is identified with the sum in Z[H ] of its elements (for definitions
and results on group rings, we refer the reader to [13]). As the considered group H is
abelian and additive notation is often used in abelian groups, we write H additively
and denote its operation by +. In order to avoid confusion, the addition in the group
ringZ[H ]will be denoted by⊕, and regarding the fact that the multiplication inZ[H ]
extends the group operation of H , this will also be denoted by +.

Definition 2.1 Let H be an abelian group of order n and letm be an integerwithm ≥ 1.
A familyS = (Si, j ), with 0 ≤ i, j < m, of subsets of H is a (m, n, k, μ, λ, t)-partial
sum family (for short, (m, n, k, μ, λ, t)-PSF, or simply PSF if we do not specify the
parameters) if it satisfies:

(i) for every i it holds that e /∈ Si,i , where e is the identity of H .
(ii) for every i it holds that

∑m−1
j=0 |Si, j | = ∑m−1

j=0 |S j,i | = k.
(iii) for every i and j the following identity holds in the group ring Z[H ]:

m−1∑
l=0

⊕ (Si,l + Sl, j ) = δi, jγ e ⊕ βSi, j ⊕ μH ,

where δi, j is the Kronecker delta, and where γ = t − μ and β = λ − μ.

In the rest of the paper, we will write Δ = √
β2 + 4γ when working with PSFs,

following the notation used for DSRGs.
In the following obvious result, which is stated with more generality for arbitrary

groups in Proposition 1.2 in [1], the connection of partial sum families with directed
strongly regular graphs admitting abelian semiregular groups of automorphisms is
presented:
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Proposition 2.2 For an abelian group H of order n, a family S = (Si, j ), 0 ≤ i, j <

m, of subsets of H is an (m, n, k, μ, λ, t)-PSF iff the digraph associated with the
symbol (Si, j ) is an (mn, k, μ, λ, t)-DSRG, which admits H as an (m, n)-semiregular
group of automorphisms.

Remark 2.3 The associated digraph mentioned in the previous proposition has vertex
set

V = {hi | h ∈ H , 0 ≤ i ≤ m − 1}

constituted by elements of the group H indexed by elements of the set {0, . . . ,m − 1}
and has arc set

A =
{
hi h

′
j | 0 ≤ i, j ≤ m − 1, h′ − h ∈ Si, j

}
.

Now the following identity for the parameters of any PSF follows immediately
from (1):

k(k − β) = μnm + γ. (4)

We will denote the cardinality of Si, j by si, j .

Proposition 2.4 IfS is a PSF on an abelian group H and χ is a non-trivial character
of H, then

m−1∑
j=0

χ(S j, j ) = m(β − Δ)/2 + iΔ

for some i = 0, . . . ,m.

Proof By applying the character χ in part (iii) of Definition 2.1, we conclude that the
matrix

Aχ = (χ(Si, j ))

satisfies A2
χ = βAχ + γ Im , and hence, its trace

∑m−1
j=0 χ(S j, j ) is the sum of m roots

of x2 − βx − γ . Since the roots of this polynomial are 1
2 (β ± Δ), the result follows

immediately. �	
The following is our main definition, in which we introduce the kind of PSFs that

we will study later.

Definition 2.5 A PSF with m ≥ 3 is equisizable if si, j = s0, j for all i ≤ m − 2 and
for all j ≤ m − 1.

Observe that then
sm−1, j = k − (m − 1)s0, j . (5)

In an equisizable PSF, we will denote the common value of the si, j with i ≤ m − 2
simply by s j .
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Proposition 2.6 If S is an equisizable PSF, then γ = 0.

Proof By taking the trivial character in part (iii) of Definition 2.1, we have

m−1∑
l=0

si,l sl, j = δi, jγ + βsi, j + μn.

If i < m − 1, since the PSF is equisizable we have

m−2∑
l=0

sl s j + sm−1(k − (m − 1)s j ) = γ δi, j + βs j + μn

and, factoring out s j we obtain

k(s j + sm−1) − msm−1s j = γ δi, j + βs j + μn. (6)

Since the left-hand side of the previous identity does not depend on i , by taking
i = 0, j = 0 and i = 1, j = 0 and subtracting we obtain the desired result. �	
Proposition 2.7 IfS is an equisizable PSF, then one of the following two possibilities
holds:

(i) s j = k/m for every j,
(ii) sm−1 = μn/k.

Proof Taking j = m − 1 in (6) and using that γ = 0, we obtain

ms2m−1 + (β − 2k)sm−1 + μn = 0.

Solving the equation for sm−1, we get

sm−1 =
(
2k − β ±

√
(β − 2k)2 − 4μnm

)
/(2m),

and using (4), we obtain

sm−1 = (2k − β ± β)/(2m).

If theminus sign holds, we obtain sm−1 = μn/k, as stated in part (ii) of the proposition.
Let us suppose that the plus sign holds. Substituting sm−1 in (6), we have s j =
(k2 − μnm)/(mβ), and using (4) we deduce that s j = k/m for all j , as stated in part
(i) of the proposition. �	

We will say that a PSF is of type 1 if (i) holds in the previous proposition, and that
is of type 2 otherwise.

The following theorem, which is given in Proposition 3.5 in [2] without using the
terminology of equisizable PSFs, guarantees that equisizable PSFs of type 1 always
exist:
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Theorem 2.8 For every n,m in N such that m divides n− 1, there exists a DSRG with
parameters

v = nm, k = n − 1, μ = t = (n − 1)/m, λ = (n − 1)/m − 1

admitting a semiregular group of automorphisms with m orbits associated with an
equisizable PSF of type 1.

Now we will focus our attention in the PSFs of type 2.

Lemma 2.9 Let H be a cyclic group of order n, and let A = ∑⊕
h∈H ahh be an element

of the group ring Z[H ]. If there exists a set I of r integers in arithmetic progression
with difference d such that χ(A) ∈ I for every non-trivial character χ of H, then the
following hold:
(i) There exist integers cn′ such that A = ∑⊕

n′|n cn′Un′,whereUn′ denotes the unique
subgroup of order n′ of H.

(ii) If n′ �= 1, n then cn′ has the form cn′ = dwn′
n′ with wn′ ∈ Z, and wn′ �= 0 only if

n′ divides ud, where u = l.c.m.{2, 3, . . . , r − 1}.
Proof Both statements can be derived along the line of the proof of a part of Lemma 3.5
in [4] (in fact, that part is the case when r = 3), and hence, the proof is omitted. �	

When r = 4, the lemma reduces to Lemma 5.1 in [9]; thus, our lemma is a gener-
alization of the two mentioned ones.

Proposition 2.10 Let H be a cyclic group, and letS be a (m, n, k, μ, λ, t)-PSF over
the group H. If one of the two following conditions is satisfied:
(i) n is a prime,
(ii) n is coprime to m!Δ,

then (S j, j ) j≤m−1 covers all the elements of H − {e} the same number of times.
Proof By using Proposition 2.4, we can see that the hypotheses of the previous lemma
are satisfied for A = ∑⊕ S j, j , r = m + 1 and d = Δ. Now, if n is a prime, the result
follows easily from the first part of the lemma, and if it is coprime to m!Δ, then it
follows from the second part. �	

The proposition that we have just proved shows that very often the ‘diagonal blocks’
of a PSF cover the non-trivial elements of the group the same number of times. Next we
will see that, when this is the case, we can determine the parameters (m, n, k, μ, λ, t)
for the equisizable PSFs of type 2.

Proposition 2.11 If S is an equisizable (m, n, k, μ, λ, t)-PSF of type 2 over a cyclic
group satisfying

∑m−1
j=0

⊕ S j, j = δ(H
{e}) (with the obvious interpretation for the
symbol 
) in the group ring Z[H ] for some δ ∈ N, then:

(i) k = δn, μ = t = δ2(n + 1)/m, λ = δ2(n + 1)/m − δ, or

123



Journal of Algebraic Combinatorics (2020) 51:273–296 279

(ii) k = δn − δ/2, μ = t = δ(δn − δ/2)/m, λ = δ(δn − δ/2)/m − δ/2 (only if δ is
even), or

(iii) (m, n, k, μ, λ, t) ∈ Pδ , where Pδ is a finite set which depends only on δ.

Proof Taking the trivial character in
∑m−1

j=0
⊕ S j, j = δ(H
{e}), and using (5), the

fact that the PSF is of type 2 and (4), we obtain

δ(n − 1) = 2k − μnm/k = k + β. (7)

By taking now a non-trivial character and using Proposition 2.4, we obtain −δ =
m(β − Δ)/2+ i ′Δ for some i ′ = 0, . . . ,m. We have Δ = |β|, and since −δ < 0, we
must have Δ = −β, and −δ = (m − i ′)β holds. Putting i = m − i ′, and having into
account that δ �= 0, we conclude that −δ = iβ for some i = 1 . . . ,m. If β = −δ,
it follows from (7) that the parameters have the form stated in the first case of the
proposition.

Let us assume that β �= −δ. Using (7), we get n = k+β+δ
δ

. From (4), it follows
that:

mμ = δk(k − β)

k + β + δ
.

If k − β = k + β + δ, then δ = −2β. Using (7), we get the parameters stated in the
second case of the proposition.

Therefore, we will suppose that k − β �= k + β + δ, and thus −δ = iβ for i > 2.
It follows that β < 0, and it is easy to deduce that δ > β + δ > 2β + δ > 0.

Now we will prove that no prime p > δ divides k+β + δ. Let us suppose that such
a prime p exists. Then p divides δk(k−β). Of course, p does not divide δ. It does not
divide k − β either, as it is not difficult to see that k + β + δ and k − β have different
residues modulo p. Therefore, pmust divide k. But this gives a contradiction, because
k + β + δ and k have different residues modulo p.

Therefore, there is no prime p > δ that divides k+β+δ. Thus, k+β+δ = ∏
j p

α j
j

where p j are primes such that 2 ≤ p j ≤ δ. Using that k + β + δ divides δk(k − β),
it is easy to deduce that:

α j ≤ vp j (δ) + vp j (δ + β) + vp j (δ + 2β)

where vp(z) denotes the p-adic valuation of an integer z (that is, the largest exponent
e that pe divides z if z �= 0, and ∞ for z = 0).

Thus, there is a finite number of possible values for k + β + δ. It follows that there
is a finite number of possible values for k as well. Asm must divide δk(k−β)

k+β+δ
, there is a

finite number of possible values of m for each k. To sum up, (m, n, k, μ, λ, t) ∈ Pδ ,
where Pδ is a finite set. �	

It is important to point out that given δ, the familyPδ can be completely determined
by using the divisibility conditions explained in the proof. When δ = 1, we only get
the first infinite family of the proposition.When δ = 2, we get the two infinite families
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of the proposition. When δ = 3, the second family is not possible, so we would get
the first one and P3. We finish the section by determining the parameters in P3.

First of all, we have two equations:

3(n − 1) = k + β, −3 = iβ i ∈ {1, . . . ,m}.

Thus, i = 1, β = −3 or i = 3, β = −1. The first solution corresponds to the first
infinite family, so we turn to the second one. Following the ideas of the proof, we
obtain

n = k + 2

3
, mμ = 3k(k + 1)

k + 2
(8)

As k + 1 and k + 2 are coprime, we have that k + 2 divides 3k. If p is a prime that
divides k + 2, it must satisfy 2 ≤ p ≤ δ = 3 so p = 2, 3. Thus, k + 2 = 2s3s

′
. Also,

k+2 divides 3k so s, s′ ≤ 1. We get k ≤ 4 and taking into account that k+2 = 2s3s
′
,

k = 1, 4. Using (8), we get:

k = 1, n = 1, μ = t = 2/m, λ = 2/m − 1

k = 4, n = 2, μ = t = 10/m, λ = 10/m − 1

However, we are going to prove below that none of these parameters gives DSRGs
satisfying

m−1∑
i=0

⊕Si,i = 3(H 
 {e}).

In particular, the first parameters do not give DSRGs as the smallest DSRG is of
order 6. The same argument shows that for the second set of parameters we must
have m ∈ {5, 10}. Let Γ be the DSRG defined by the symbol (Si, j ) having these
parameters, and let the orbits of H on the vertex set V (Γ ) of Γ be denoted by Ui ,

i ∈ Zm . Using that δ = 3 and n = 2, we may assume without of loss of generality
that S0,0 = S1,1 = S2,2 = H − {e} = {1}, and Si,i = ∅ for all i > 2.

Suppose first that m = 5. Then the parameters are k = 4, n = 2, μ = t = 2, λ =
1, and v = nm = 10. Since t = 2, the undirected edges form a spanning subgraph
of Γ isomorphic to a union of cycles. If the orbit U3 is not adjacent to U4 with an
undirected edge, then it must be adjacent with undirected edges to two of the orbits
U0, U1 and U2; without loss of generality, we may assume that these two orbits are
U0 and U1. Applying the action of H , one can see that the undirected subgraph of Γ

induced on U0 ∪ U1 ∪ U3 is a 6-cycle, and consequently, the orbits U2 and U4 must
induce a 4-cycle, which is clearly impossible as S4,4 = ∅. If, however, the orbit U3 is
adjacent toU4 with an undirected edge, then the undirected subgraph of Γ induced on
U3∪U4 is either a 4-cycle or 2K2. However, applying the action of H one can see that
none of these two cases produces a spanning undirected subgraph of Γ isomorphic to
a union of cycles.

Suppose now that m = 10. Since t = 1, the undirected edges of Γ must induce a
perfect matching of Γ . Three undirected edges lie inside the orbits Ui , i = 0, 1, 2,
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and the other edges have end vertices in different orbits of H . Applying the action of
H , one can see that between two orbits of H that are adjacent with an undirected edge
we must have 2K2, implying that there is a 1-factor spanned by seven orbits of H , a
contradiction.

The final part of our previous analysis can be summarized in the following theorem:

Theorem 2.12 There do not exist equisizable DSRGs with parameters (10, 4, 2, 1, 2)
and (20, 4, 1, 0, 1) admitting semiregular groups of automorphisms with 5 and 10
orbits, respectively, associated with equisizable PSFs of type 2.

The theorem shows that, in the first case in which Pδ is not empty, that is, when
δ = 3, there exists no PSF with the corresponding feasible parameters of tuples inP3.
For greater values of δ, the complexity ofPδ augments, and it would be an interesting
question to know whether there exist PSFs for those parameters.

3 A construction of equisizable PSFs

When δ = 1, Proposition 2.11 guarantees that the parameters of our equisizable PSF
of type 2 over a cyclic group H must be

k = n, μ = t = (n + 1)/m, λ = (n + 1)/m − 1,

and we can re-parametrize it in the following way (by calling μ = t = α):

n = k =αm − 1, μ = t = α, λ = α − 1.

Although we know the parameters, we still do not know if such a PSF exists. This
section is devoted to the construction of such an equisizable PSF whose parameters
are the ones mentioned above. First, let us denote the elements of the cyclic group
H = Zαm−1 as follows:

H = {0, 1, 2, . . . , αm − 3, αm − 2} ,

and the group operation of H is the addition modulo n = αm − 1. Let us set

y0 = y1 = z0 = z1 = 0

yl =
l−1∑
i=1

i, zl = −yl , l = 2, . . . ,m − 2.

Moreover, let us define the following subsets in H :

A = {s(m − 1) | s = 1, . . . , α − 1}
B = {sm − (s − 1) | s = 0, . . . , α − 1}
C = (−α − zm−2) + {0, 1, . . . ,m + α − 3}
D = (−zm−2) + {αm − α + s | s = 0, . . . , α − 2}
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where if λ ∈ H and E ⊂ H , then λ + E = {λ + e | e ∈ E}.
This definition is valid for any positive integer α, even when α = 1 if we understand

that A = D = ∅ in that case.
Finally, let us consider the following family of subsets of H , arranged in an m ×m

matrix:

⎛
⎜⎜⎜⎜⎜⎝

y0 + A y0 + z0 + B y0 + z1 + B . . . y0 + zm−2 + B
y1 + A y1 + z0 + B y1 + z1 + B . . . y1 + zm−2 + B

...
...

...
. . .

...

ym−2 + A ym−2 + z0 + B ym−2 + z1 + B . . . ym−2 + zm−2 + B
C z0 + D z1 + D . . . zm−2 + D

⎞
⎟⎟⎟⎟⎟⎠

.

In order to check that this is actually a PSF, we need to go through the three
conditions in Definition 2.1. The first and second conditions are easy to check just
from the definition of A, B,C and D. The next proposition makes it easier to check the
third condition. We omit the proof, which is standard and only requires the definition
of the sets A, B, C and D and the elements yi and z j .

Proposition 3.1 The m2 equations listed in the third condition of Definition 2.1 are
equivalent to the following four equations for our family:

(i) (A + A) ⊕ ∑m−3
l=0

⊕ (yl+1 + zl + A + B) ⊕ (zm−2 + B + C) = βA ⊕ μH
(ii) (A + B) ⊕ ∑m−3

l=0
⊕ (yl+1 + zl + B + B) ⊕ (zm−2 + B + D) = βB ⊕ μH

(iii) (A + C) ⊕ ∑m−3
l=0

⊕ (yl+1 + zl + A + D) ⊕ (zm−2 + C + D) = βC ⊕ μH
(iv) (B + C) ⊕ ∑m−3

l=0
⊕ (yl+1 + zl + B + D) ⊕ (zm−2 + D + D) = βD ⊕ μH

The following result proves that what we have defined is a PSF. We will only give
a sketch of the proof as it is only based on appropriate use of the definition of the sets
A, B, C and D and the elements yi and z j .

Proposition 3.2 The sets A, B, C and D satisfy the equations given in Proposition 3.1.

Proof The following identities are easy to check and come in handy during the proof.

({0, 1, . . . ,m − 3} + B) ⊕ A = H 
 (zm−2 + D) 
 {0} (9)

B = (1 + A) ⊕ {1} (10)

We will prove that the equation in case (i) of Proposition 3.1 is satisfied. We begin
by writing the equation, and we will manipulate it until we find an expression which
we know is true.

(A + A) ⊕
m−3∑
l=0

⊕ (yl+1 + zl + A + B) ⊕ (zm−2 + B + C) = βA ⊕ μH

(A + A) ⊕ ({0, 1, . . . ,m − 3} + A + B) ⊕ (zm−2 + B + C) = 
A ⊕ αH
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Now we use identity (9),

A + (A ⊕ H 
 A 
 (zm−2 + D) 
 {0}) ⊕ (zm−2 + B + C) = 
A ⊕ αH

(A + H) 
 (zm−2 + D + A) ⊕ (zm−2 + B + C) = αH

By re-arranging the terms and using the definition of C and D, we find:

(−α) + {0, . . . ,m + α − 3} + B = ({αm − α, . . . , αm − 2} + A) ⊕ H

and we deduce that

{0, . . . ,m + α − 3} + B = ({1, . . . , α − 1} + A) ⊕ H

Now we use identity (10),

{0, . . . ,m + α − 3} + B = {1, . . . , α − 1} + ([(−1) + B] 
 {0}) ⊕ H

((α − 1) + {0, . . . ,m − 2} + B) ⊕ {1, . . . , α − 1} = H

((α − 1) + (H 
 {αm − α + 1, . . . , αm − 2, 0})) ⊕ {1, . . . , α − 1} = H


 ((α − 1) + {αm − α + 1, αm − α + 2, . . . , αm − 2, 0}) ⊕ {1, . . . , α − 1} = ∅

 {1, . . . , α − 1} ⊕ {1, . . . , α − 1} = ∅

which is obviously true, and thus, A, B, C and D satisfy the first equation. The rest
are very similar and can be proved using exactly the same procedure. �	

We will denote by S(H , α,m) the PSF described above, and by Γ (H , α,m) the
corresponding directed strongly regular graph.

Then, we have proved the following existence result:

Theorem 3.3 For every n,m in N such that m divides n+ 1, there exists a DSRG with
parameters

v = nm, k = n, μ = t = (n + 1)/m, λ = (n + 1)/m − 1

admitting a semiregular group of automorphisms with m orbits associated with an
equisizable PSF of type 2.

The construction presented in this section originates DSRGs whose existence, in
many cases, was previously unknown. In Table 1, the parameters of 12 DSRGs that
appear as undecided in Hobart and Brouwer’s table [7] are presented. In fact, con-
sidering also the corresponding complements, 24 undecided cases of the mentioned
table are proven to exist. Also, the following six sets of parameters of DSRGs, that can
be obtained with the mentioned construction, correspond with parameters of DSRGs
constructed by Gyürki [6] using a different method:

(60, 15, 4, 3, 4), (60, 20, 7, 6, 7), (78, 26, 9, 8, 9), (96, 32, 11, 10, 11),

(105, 35, 12, 11, 12), (108, 27, 7, 6, 7)
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Table 1 Parameters of new
directed strongly regular graphs (44, 11, 3, 2, 3) (45, 9, 2, 1, 2) (51, 17, 6, 5, 6)

(66, 11, 2, 1, 2) (69, 23, 8, 7, 8) (70, 14, 3, 2, 3)

(76, 19, 5, 4, 5) (87, 29, 10, 9, 10) (91, 13, 2, 1, 2)

(92, 23, 6, 5, 6) (95, 19, 4, 3, 4) (102, 17, 3, 2, 3)

4 Automorphism groups

In this section, we will investigate some properties of the digraphs that we constructed
in Sect. 3. In particular, we will derive their automorphism groups in three theorems.

Let J (m, 2) be a digraph with vertex set

V (J (m, 2)) = {
(i, j) | i ∈ {0, . . . ,m − 1}, j ∈ {0, . . . ,m − 1} − {i}},

in which there is an arc from the vertex (i, j) to the vertex (k, 
) if and only if j = k.
Observe that each vertex in this digraph belongs to exactly one undirected edge and
that Sm ≤ Aut(J (m, 2)) since any permutation of anm-set maps disjoint 2-subsets to
disjoint 2-subsets. Moreover, Sm ≤ Aut(J (m, 2)) acts vertex-transitively, and the set
B = {{(i, j), ( j, i)} : i, j ∈ {0, . . . ,m − 1}} gives an invariant partition of the vertex
set of J (m, 2) for the full automorphism group. (Namely, all undirected edges of the
digraph connect the two vertices from the same set of this partition, where undirected
edges are pairs of parallel oppositely oriented arcs.) Furthermore, one can easily see
that the quotient digraph with respect to the partition B in which we forget about the
loops (arising from the undirected edges in J (m, 2)) and replace pairs of two parallel
oppositely oriented arcs with edges gives the Johnson graph J (m, 2). It is proved in
[14] that, if m �= 2k, then the automorphism group of J (m, k) is isomorphic to the
symmetric group Sm . Using this fact and that Sm ≤ Aut(J (m, 2)), we conclude that,
if m �= 4, then Sm ∼= Aut(J (m, 2)) = Aut(J (m, 2)). It is checked with a direct
calculation that S4 ∼= Aut(J (4, 2)).

Because of this nice relation between the defined family of digraphs and the Johnson
graphs, we will call the digraphs J (m, 2) Johnson digraphs.

The following theorem shows that a DSRG arising from the equisizable PSF we
constructed in Sect. 3, with parameters n = k = m − 1, μ = t = 1 and λ = 0 is
isomorphic to J (m, 2), implying that Johnson digraphs are in fact DSRGs.

Theorem 4.1 The directed graph Γ (Zm−1, 1,m) is vertex-transitive, and it is isomor-
phic to J (m, 2), and thus, Aut(Γ (Zm−1, 1,m)) ∼= Sm.

Proof Remember that the symbol of Γ is given by the sets

A = D = ∅, B = {1} and C = H ,

where H = Zm−1 = {0, . . . ,m − 2}, the cyclic group with m − 1 elements. Let us
consider the permutation ρ = (m − 1)(0, . . . ,m − 2) ∈ Sym({0, 1, . . . ,m − 1}). Let
X = J (m, 2). Clearly, ρ is an automorphism of the graph X acting in the obvious
way on the vertex set of X : (i, j)ρ = (iρ, jρ). When we let h ∈ H act on the vertices
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of X as (i, j)h = (i, j)ρ
h
, then the cyclic group H acts semiregularly on the digraph

X . Let U0, . . . ,Um−1 be the orbits of H on the vertex set V (X). In particular, for
k = 1, . . . ,m − 2 let Uk = OrbH ((0, k)), and let

U0 = OrbH ((m − 1, 0)) = {(m − 1, i) | i = 0, . . . ,m − 2}
Um−1 = OrbH ((0,m − 1)) = {(i,m − 1) | i = 0, . . . ,m − 2}.

Now define the vertex ui ∈ Ui as

u0 = (m − 1, 1),

ui = (yi−1, yi + 1), i = 1, . . . ,m − 2,

um−1 = (ym−2,m − 1),

where yi are the elements in H defined in the previous section, and we let zi = −yi .
Note that the above definition is correct because yi + 1− yi−1 = i holds in H for all
i = 1, . . . ,m − 2.

Let (Si, j ) be the symbol of X relative to (H ; u0, . . . , um−1). We will prove that the
element Si, j of the symbol of X coincides with the sets yi +z j−1+B = {1+yi +z j−1}
when i, j ∈ {1, . . . ,m−2}, that is, with the element in the symbol ofΓ . By definition,

Si, j = {
 | uiu
ρ


j ∈ A(X)}. Also, uρ


j = {y j−1 + 
, y j + 
 + 1}, showing that
yi + 1 = y j−1 + 
, and thus, Si, j = {yi + z j−1 + 1}.

To finish the proof, we need to show that also the sets Si,0, Si,m−1, S0, j and Sm−1, j
coincide with the elements of the symbol of Γ . Observe that for any i = 0, . . . ,m−2
there are no arcs from the vertices in Ui to the vertices in U0, and so Si,0 = ∅ in all
these cases. On the other hand, we have Sm−1,0 = H = {0, 1, . . . ,m − 2}, since from
any vertex in Um−1 there exist arcs to every vertex in U0, and since there are no arcs
from vertices inUm−1 to vertices inUj , where j = 1, . . . ,m−1, we have Sm−1, j = ∅
for every j = 1, . . . ,m − 1.

We are left with the sets Si,m−1, i = 0, . . . ,m − 2 and S0, j , j = 1, . . . ,m − 1.
An argument similar to the one used in the general case works nicely here as well.
We need to prove that Si,m−1 coincides with yi + zm−2 + B = {1+ yi + zm−2}. This
follows because Si,m−1 contains 
 exactly when there is an arc from ui to uρ


m−1 =
(ym−2+
,m−1). As ui has second coordinate yi+1, it follows that 
 = 1+yi+zm−2.
Finally, we need to prove that S0, j coincides with z j−1 + B = {1+ z j−1}. Now, S0, j
contains 
 exactly when there is an arc from u0 = (m − 1, 1) to uρ


j , and as the latter
vertex has first coordinate y j−1 + 
, it follows that 
 = 1 + z j−1, which completes
the proof. �	

We set further notation for the DSRG graph Γ arising from our PSF (Si, j ). The
cyclic group H acts on the vertices of Γ as an (m, n)-semiregular group of automor-
phisms where n = |H |. Let Ui be the orbits of H , and ui be a fixed vertex in Ui for
all i = 0, . . . ,m − 1. We write the vertices in Ui as ui,h = uhi where h runs over
the group H . (Note that the element ui,h was denoted by hi in Remark 2.3. We use
this notation now to facilitate readability in the next proofs.) Consequently, we have

123



286 Journal of Algebraic Combinatorics (2020) 51:273–296

uki,h = ui,h+k for all i = 0, . . . ,m − 1 and h, k ∈ H . The digraph Γ has symbol
(Si, j ) relative to (H ; u0, . . . , um−1). Note that this yields

Γ (ui,h) = {
u j,x | j = 0, . . . ,m − 1, x ∈ Si, j + h

}
, (11)

where Γ (ui,h) denotes the set of out-neighbours of ui,h . For a subgroup G ≤ Aut(Γ )

and a vertex v ∈ V (Γ ), we denote by Gv the stabilizer of v in G. In the following
two theorems, D2α−1 denotes the dihedral group with cardinality 4α − 2, and Cαm−1
denotes the cyclic group with cardinality αm − 1.

Theorem 4.2 Let Γ = Γ (Z2α−1, α, 2). If α > 1, then Aut(Γ ) ∼= D2α−1.

Proof In this case, n = 2α − 1 and S = S0,0 = {1, 2, . . . , α − 1} ⊆ H = Zn ,
S1,1 = −S, T = S0,1 = {1, . . . , α} = S ∪ {α} and S1,0 = −T . For the sake of
simplicity, we write V = U0, W = U1, and also vi = u0,i and wi = u1,i . We
claim that G = Aut(Γ ) ∼= Dn . The group G preserves undirected edges. But the
graph induced by the undirected edges is a connected bipartite graph with bipartition
{V ,W }, and we deduce that {V ,W } is a block system for G. Now we can see that the
group G contains a subgroup isomorphic to the dihedral group Dn . To prove it, we
can check that the permutation τ given by the rules:

vτ
i = w−i , wτ

i = u−i

is an automorphism of Γ and that τ and H generate a dihedral group with cardinality
2n. Now, to finish the proof of the theorem it suffices to prove that for each v ∈ V (Γ )

the stabilizer Gv is trivial. Since Γ is vertex-transitive, it suffices to show this for
v = v0. The subgraph induced by V is a tournament. There are two kinds of triangles:
directed triangles, where each vertex has one incoming and one outgoing arc, and
transitive triangles (one vertex has two incoming arcs, one vertex has two outgoing
arc, and one vertex has one outgoing arc and one incoming arc).

Let us count the number of directed triangles containing particular vertices (arcs). It
can be seen that the arc v0v1 is on just one directed triangle v0v1vα . Similarly, the arc
vn−1v0 is on just one directed triangle, namely the triangle vn−1v0vα−1. Next, the arc
v0v2 is on two directed triangles v0v2vα and v0v2vα+1. (Similarly, the arc vn−2v0 is
on two directed triangles.) Continuing this way, we can see that the arcs v0vi (vn−iv0),
i ∈ {1, . . . , α − 1}, are contained in i directed triangles. Consequently, Gv fixes the
sets {vi , vn−i }, for i ∈ {1, . . . , α − 1}. But an automorphism interchanging some vi
and vn−i would reverse the orientation of the arcs vn−iv0 and v0vi . Hence, we must
have Gv = 1. �	
Theorem 4.3 Let Γ = Γ (Zαm−1, α,m). If α > 1 and m > 2, thenAut(Γ ) ∼= Cαm−1.

We will prove the theorem in the end of the section following five preparatory
lemmas. For the rest of the section, we set a = m − 1. Note that n = αa + α − 1.

Lemma 4.4 With the notation as above, let α > 1, a > 1 and p ∈ H. Then

(i) B = B + p if and only if p = 0.
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(ii) A = A + p if and only if p = 0.
(iii) if also α > 2, then |A ∩ A + p| = |A| − 1 if and only if p = a or p = n − a.

Proof (i) Suppose B = B + p, and let b ∈ B. Then b + up ∈ B for all u ∈ Z
+, and

hence B is a union of P-cosets, where P = 〈p〉. Then |P| divides both |B| = α

and |H | = αa + α − 1, hence |P| = 1 and p = 0.
(ii) The set A is given as A = {a, . . . , (α − 1)a}. Since n = αa + α − 1, αa �= 0 in

H , and it follows that αa is not in A. Suppose that A = A+ p. Then a + p ∈ A,
and sa = a + p for some s ∈ {1, . . . , α − 1}, and hence, αa = s′a + p with
s′ ∈ {2, . . . , α}. If p �= 0, then s′ �= α and αa ∈ A + p = A, a contradiction.
Thus, p = 0, and (ii) follows.

(iii) Suppose that p /∈ {0, a, n − a}. We have to show that in this case |A∩ A+ p| <

|A| − 1. Let a + p ∈ A. Since p �= 0 and p �= a, we get both αa and (α + 1)a
are in A + p. As these elements are not in A, we are done. Let a + p /∈ A. If
2a + p ∈ A, then since p �= n − a, we find (2a + p) − a ∈ A, contradicting
that p + a /∈ A. Thus, a + p, 2a + p /∈ A, and so |A ∩ A + p| < |A| − 1. This
completes the proof of the lemma. �	

Lemma 4.5 With the notation as above, let α > 1, a > 1 and let v ∈ Γ (u0). Then

|Γ (u0) ∩ Γ (v)| ≤ n − a − 1,

and equality holds if and only if v = u0,a or v = uα−1,(α−1)a+1+zα−2 (the latter case
occurs only if α ≤ a).

Proof Let s = (α − 1)a + 1 + zα−2. Observe that s ∈ B + y0 + zα−2, and hence
uα−1,s ∈ Γ (u0). Also, we let f (v) = |Γ (u0) ∩ Γ (v)|. We compute next f (u0,a) and
f (uα−1,s). Using (11), we find the expressions

f (u0,a) = |A ∩ A + a| +
a−1∑
j=0

|B + z j ∩ B + z j + a|,

f (uα−1,s) = |A ∩ A + yα−1 + s| +
a−1∑
j=0

|B + z j ∩ B + yα−1 + z j + s|

= |A ∩ A − a| +
a−1∑
j=0

|B + z j ∩ B + z j − a|.

We find |A ∩ A ± a| = |A| − 1 = α − 2. This can be verified easily for α = 2,
and it follows by Lemma 4.4(iii) for α > 2. Next, |B + z j ∩ B + z j + a| = |(A ∪
{0}) ∩ (A ∪ {αa})| = α − 1 because αa �= 0 in H . Also, |B + z j ∩ B + z j − a| =
|(A ∪ {0}) ∩ (A\{(α − 1)a} ∪ {0, n − a})| = α − 1, again because αa �= 0 in H . We
conclude that f (u0,a) = f (uα−1,s) = α − 2 + a(α − 1) = n − a − 1.

Now, suppose that v ∈ Γ (u0) such that v �= u0,a and v �= uα−1,s . We are going to
show that f (v) < n − a − 1.

Case 1 v ∈ U0. In this case α > 2 and v = u0,ra for some 2 ≤ r ≤ α − 1. Then f (v)

satisfies
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f (v) = |A ∩ A + ra| +
a−1∑
j=0

|B + z j ∩ B + z j + ra|.

By Lemma 4.4, |A∩ A+ra| < α −2. Now, suppose that |B+ z j ∩ B+ z j +ra| = α.
Thus by Lemma 4.4(i), ra = 0 in H , a contradiction. We conclude that |B + z j ∩
B + z j + ra| ≤ α − 1 for all j, and hence, f (v) < n − a − 1.

Case 2 v ∈ Ui , 1 ≤ i ≤ a − 1. Then v = ui,ra+1+zi−1 for some 0 ≤ r ≤ α − 1, and
by (11),

f (v) = |A ∩ A + yi + ra + 1 + zi−1|+
a−1∑
j=0

|B + z j ∩ B + yi + z j + ra+1+zi−1|.

Let t = yi + ra + 1 + zi−1. Then t = ra + i < αa < n, and thus, t �= 0 in H .
Suppose that α > 2. Then by Lemma 4.4(i), |B + z j ∩ B + z j + t | < α. Thus, we

are done with this case if we prove that |A∩ A+ t | < α−2. By Lemma 4.4(iii), this is
equivalent to show that t �= a and t �= n−a. It is easy to see that t �= a. Now, t = n−a
if and only if ra + i = n − a = (α − 1)a + α − 1. Notice that the positive integer
t is written uniquely as the sum t = t1a + t2 with t1 ≥ 0 and t2 ∈ {0, . . . , a − 1}.
Since α ≤ a, this yields r = i = α − 1, and so v = uα−1,(α−1)a+1+zα−2 = uα−1,s, a
contradiction.

Now, suppose that α = 2. Since t �= 0 in H , |A∩ A+ t | = 0. Also, |B + z j ∩ B +
z j + t | = |{0, a} ∩ {t, a + t}|, where t = ra + i, r ∈ {0, 1} and i ∈ {1, . . . , a − 1}.
It follows that t �= a. Also, since v �= uα−1,s, we find that i �= 1 or r �= 1, and so
t = ra + i �= a + 1 = n − a. We conclude that |B + z j ∩ B + z j + t | = 0, and so
f (v) = 0. This completes the proof of Case 2.

Case 3 v ∈ Ua . Then v = ua,ra+1+za−1 for some 0 ≤ r ≤ α − 1, and by (11),

f (v) = |A ∩ C + ra + 1 + za−1| +
a−1∑
j=0

|B + z j ∩ D + z j + ra + 1 + za−1|.

Then |B + z j ∩ D+ z j + ra + 1+ za−1| = |A∪ {0} ∩ {0, . . . , α − 2}+ (r +α)a|.
Suppose that α > 2 and that the latter cardinality is equal to α − 1. Since α > 2,
we find that A ∪ {0} contains two elements whose difference is 1 in H . Thus, there
exists 1 ≤ p ≤ α − 1 such that pa = ±1 in H . Therefore, as positive integers,
pa ≡ ±1 (mod n), and since pa < n, we get pa = 1 or pa = n − 1. On the other
hand, 1 < a ≤ pa < αa = n − α + 1 ≤ n − 2, a contradiction. We conclude that
|B + z j ∩ D + z j + ra + 1 + za−1| ≤ α − 2 for all j, and from this it follows that
f (v) < n − a − 1.
Now, suppose that α = 2. In this case, |B + z j ∩ D + z j + ra + 1 + za−1| =

|{0, a} ∩ {(r + 2)a}| with r = 0 or r = 1. Since n = 2a + 1, it follows that
|{0, a}∩ {(r +2)a}| = 0, and f (v) ≤ |A∩C + ra+1+ za−1| ≤ 1 < a = n−a−1.
This completes the proof of Case 3. �	
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Lemma 4.6 With the notation as above, every automorphism in Gu0 fixes the vertex
u0,pa for all p ≥ 0.

Proof Let γ ∈ Gu0 . By Lemma 4.5, γ maps u0,a to itself or to uα−1,s,where s = (α−
1)a+1+ zα−2. A straightforward check shows that u0 is an out-neighbour of uα−1,s,

while it is not an out-neighbour of u0,a . This with the previous observation gives that
γ fixes u0,a, and thus Gu0 ≤ Gu0,a . On the other hand, Gu0,a = Gua0

= Ga
u0 , where

the latter group is the conjugate of Gu0 by a. (Here a is regarded as an automorphism
of Γ .) Thus for any p ≥ 0, Gpa

u0 = Gu0 , which implies (pa)γ (−pa) ∈ Gu0 , hence
(u0,pa)γ = u0,pa . �	

In the proof of Theorem 4.3, we will also use some spectral properties of Γ . Let
C
V (Γ ) be the vector space of complex row vectors of length |V (Γ )| = mn, whose

coordinates are labelled by the vertices in V (Γ ). Given a vector v = (v1, . . . , vm) ∈
C
m and a character χ ∈ Irr(H), the tensor product v⊗χ is the vector inCV (Γ ) whose

entry, labelled by ui,h, is equal to viχ(h). Here and in what follows Irr(H) denotes
the set of all irreducible characters of H , and χ0 will denote the trivial character.

Let M be an adjacency matrix of Γ whose rows and columns are labelled with
V (Γ ) in accordance with the labelling of the vectors in C

V (Γ ). It was shown in
Proposition 3.1 in [8] that the spectrum of Γ is equal to the union of all spectra of
the matrices Aχ (counting multiplicities), where Aχ = (χ(Si, j )), χ ∈ Irr(H) and
Aχ is the matrix obtained from Aχ after taking the complex conjugate of all entries.
Furthermore, it was shown in Proposition 3.2 in [8] that, if θ is an eigenvalue of Aχ

with eigenvector v, then v ⊗ χ is an eigenvector of M corresponding to θ (regarded
as an eigenvalue of Γ ).

Lemma 4.7 With the notation as above, letα > 1. ThenΓ has three eigenvalues: n,−1
and 0, and the corresponding multiplicities are 1, n and mn − n − 1, respectively.
Furthermore, the eigenspace corresponding to the eigenvalue −1 is spanned by the
following vectors: (a,−1, . . . ,−1) ⊗ χ0, and (χ(−A), χ(−B − z0), . . . , χ(−B −
za−1)) ⊗ χ, χ ∈ Irr(H)\{χ0}.
Proof We define the following vectors in C

m :

v1 = (1, . . . , 1),

v2 = (a,−1, . . . ,−1),

vχ = (χ(A), χ(B + z0), . . . , χ(B + za−1)), χ ∈ Irr(H)\{χ0}.

The spectrum of Γ is equal to the union of all spectra of Aχ , χ ∈ Irr(H), where

Aχ =

⎛
⎜⎜⎜⎜⎜⎝

χ(A) χ(B + z0) . . . χ(B + za−1)

χ(y1)χ(A) χ(y1)χ(B + z0) . . . χ(y1)χ(B + za−1)
...

...
...

...

χ(ya−1)χ(A) χ(ya−1)χ(B + z0) . . . χ(ya−1)χ(B + za−1)

χ(C) χ(D + z0) . . . χ(D + za−1)

⎞
⎟⎟⎟⎟⎟⎠

.
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Let χ = χ0 be the trivial character. Simple computations give v1Aχ0 = nv1 and
v2Aχ = −v2. The matrix Aχ has rank 2, and we conclude that Aχ0 = Aχ0 has
eigenvalues n, −1 and 0, and the corresponding multiplicities are 1, 1 and m − 2.

Now, suppose that χ �= χ0. We have shown in the proof of Proposition 3.2 that

(A + H) 
 (za−1 + D + A) ⊕ (za−1 + B + C) = αH

holds in the group ring Z[H ]. Apply χ to both sides of this equation, this yields
χ(D)χ(A) = χ(B)χ(C). Notice that χ(B) �= 0. Indeed, χ(B) = χ(1)

∑α−1
i=0 ξ i ,

where ξ = χ(a) is an nth complex root of unity. Clearly, χ(B) �= 0 if ξ = 1. Suppose
that ξ �= 1. Then χ(B) = 0 if and only if ξα = 1. On the other hand, gcd(n, α) = 1
(recall that n = αa + α − 1), and this shows that ξα �= 1, and hence, χ(B) �= 0. It
follows that the first row of Aχ is vχ , vχ is a nonzero vector, and each other row is
a multiple of vχ . Thus, Aχ has rank 1 and 0 is an eigenvalue of Aχ with multiplicity
m − 1. Furthermore, we compute

vχ Aχ =
⎛
⎝χ(A) +

a−1∑
j=1

χ(B + y j + z j−1) + χ(D + za−1)

⎞
⎠ vχ

= χ
(
A ⊕ {0, 1, . . . , a − 2} + B ⊕ za−1 + D)vχ = χ(H 
 {0})vχ = −vχ .

The equality preceding the last one follows from (9). To sum up, Aχ has eigenvalues
−1 and 0, and the corresponding multiplicities are 1 and m − 1. Thus, Aχ has the
same spectrum, and the first statement of the lemma follows.

Notice that the vector vχ = (χ(−A), χ(−B − z0), . . . , χ(−B − za−1)) becomes
an eigenvector of Aχ with corresponding eigenvalue −1. Also, we have shown above
that v2 is an eigenvector of Aχ0 with corresponding eigenvalue −1. In view of these
and the paragraph before the lemma, we find that each vector given in the lemma is
an eigenvector of M with corresponding eigenvalue −1. Therefore, we are done if
these vectors are also independent. This follows from the well-known fact that the
characters in Irr(H) form a basis of the vector space of all complex-valued functions
on H , and χ(B) �= 0 whenever χ �= χ0. �	

Given a subspaceV ofCV (Γ ), letV⊥ denote its orthogonal complementwith respect
to the inner product 〈v,u〉 = v uT , that is,V⊥ = {u ∈ C

V (Γ ): v uT = 0 for all v ∈ V}.
For γ ∈ Aut(Γ ), the permutation matrix Pγ is the mn × mn matrix whose rows and
columns are labelled by the vertices of Γ in accordance with the labelling of the
vectors in CV (Γ ), and for u and v ∈ V (Γ ),

(Pγ )u,v =
{
1 if uγ = v

0 otherwise.

Let v ∈ C
V (Γ ) and v′ = vPγ . If vu and v′

u denote the entry of v and v
′, respectively,

labelled by the vertex u ∈ V (Γ ), then it holds v′
u = v

uγ−1 . It is well known that each
eigenspace V of M is Aut(Γ )-invariant, that is, for every v ∈ V and γ ∈ Aut(Γ ),
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vPγ ∈ V. Note that the orthogonal complement V⊥ is also Aut(Γ )-invariant. Indeed,

if v ∈ V and u ∈ V⊥, then v (uPγ )T = v Pγ
T
uT = v(Pγ )−1uT = (vPγ −1)uT = 0.

Lemma 4.8 With the notation as above, let α > 1 and V be the eigenspace of M
corresponding to the eigenvalue 0. Then V⊥ is spanned by the following vectors:
(0, . . . , 0, 1) ⊗ χ0, (1, . . . , 1) ⊗ χ0, and v(χ) ⊗ χ, where χ ∈ Irr(H)\{χ0} and
v(χ) = (v(χ)1, v(χ)2, . . . , v(χ)m) satisfies v(χ)1 = 1.

Proof For χ ∈ Irr(H), let V(χ) denote the eigenspace of Aχ corresponding to the
eigenvalue 0. We find next a basis of V(χ) for all χ .

It is not hard to find that V(χ0) is spanned by the m − 2 vectors

(1,−1, 0, . . . , 0), . . . , (1, 0, . . . ,−1, 0). (12)

Now, suppose that χ ∈ Irr(H) such that χ �= χ0. Define

u =
{

(0, . . . , 0, 1) if χ(D) = 0(
1, 0, . . . , 0,−χ(B)/χ(D)

)
if χ(D) �= 0.

It is not hard to verify that V(χ) is spanned by u and the m − 2 vectors

(1,−χ(y1), 0, . . . , 0), . . . , (1, 0, . . . ,−χ(ya−1), 0). (13)

Then, for χ ∈ Irr(H)\{χ0}, define

v(χ) =
{(

1, χ(y1), . . . , χ(ya−1), 0
)

if χ(D) = 0(
1, χ(y1), . . . , χ(ya−1), χ(D)/χ(B)

)
if χ(D) �= 0.

Wefinish the proof by showing thatV⊥ is spanned by (0, . . . , 0, 1)⊗χ0, (1, . . . , 1)
⊗ χ0 and the n − 1 vectors v(χ) ⊗ χ . First, it can be shown, using the orthogonality
of characters, that each of the latter vectors is orthogonal to the vectors obtained
from u and from any vector in (12) and (13) in the way described in the paragraph
before Lemma 4.7. This implies that our vectors belong to V⊥. Second, these are
also independent, which can be verified using the independence of characters. Finally,
dim(V) = mn − n − 1, and hence dim(V⊥) = mn − dim(V) = n + 1; all these yield
the lemma. �	

Everything is prepared to settle Theorem 4.3.

Proof of Theorem 4.3 Let γ ∈ G = Aut(Γ ), Pγ be the permutation matrix defined by
γ, and letUγ

i denote the image of the H -orbitUi under γ for i ∈ {0, . . . , a}. Clearly,
H ≤ G. We derive the equality G = H through a series of five claims.

Claim 1 Uγ
0 = U0 whenever γ fixes u0.
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Let V be the eigenspace of M corresponding to the eigenvalue −1. By Lemma 4.7,
the vector v = (a,−1, . . . ,−1) ⊗ χ0 is in V, and thus vPγ ∈ V, and so

vPγ = cχ0v+
∑

χ∈Irr(H)\{χ0}
cχ

(
(χ(−A), χ(−B−z0), . . . , χ(−B−za−1))⊗χ

)
(14)

holds with unique constants cχ . For a subset X ⊆ H , let 1X denote the characteristic
vector of X . Divide vPγ into m blocks, each of length n, in the way described in the
paragraph after Lemma 4.6 and regarded as a complex-valued function on H . We can
write vPγ = (m1T0 − 1H , . . . ,m1Ta − 1H ) with suitable subsets Ti ⊆ H . Notice that
Claim 1 is equivalent to saying that T0 = H and Ti = ∅ whenever i > 0.

Now, (14) splits into m linear combinations

m1T0 − 1H = (acχ0)χ0 +
∑

χ∈Irr(H)\{χ0}
(cχχ(−A))χ (15)

m1Ti − 1H = −cχ0χ0 +
∑

χ∈Irr(H)\{χ0}
(cχχ(−B − zi−1))χ, i = 1, . . . , a. (16)

It is well known that in the vector space of all complex-valued functions on H
the characters in Irr(H) form an orthonormal basis with respect to the inner product
[ f , g] = 1

n

∑
h∈H f (h)g(h). Now, by (15) and (16), respectively,

m

n
|T0| − 1 = [χ0,m1T0 − 1H ] = acχ0

m

n
|Ti | − 1 = [χ0,m1Ti − 1H ] = −cχ0 .

These show that |Ti | = |T1| for all i > 0. Let t0 = |T0| and t1 = |T1|. It is easily
seen that t0 + at1 = n. Let χ ∈ Irr(H) such that χ �= χ0. Then by (15) and (16) with
i = 1, respectively,

m

n
χ(−T0) = [χ,m1T0 − 1H ] = cχχ(−A) (17)

m

n
χ(−T1) = [χ,m1T1 − 1H ] = cχχ(−B). (18)

Recall that χ(Ti ) is defined to be 0 when Ti = ∅. Notice that, up to now, we did not
use the assumption that γ fixes u0, and thus, all above equalities hold when replacing
γ with any automorphism in G. These will be used later in the proof of Claim 2. Let
〈a〉 be the subgroup of H generated by the element a, let x ∈ 〈a〉 and v = u0,x . Since
u0 is fixed by γ, vγ = v, see Lemma 4.6. Therefore, (vPγ )v = v

vγ−1 = vv = a. This
gives 〈a〉 ⊆ T0. Assume to the contrary that t1 = |T1| > 0.

Now, as both T0 and T1 are non-empty sets, it follows from (17) and (18) that
χ(T0 + B) = χ(T1 + A) holds in the group ring Z[H ] for every non-trivial character
χ . This implies that

T0 + B = (T1 + A) ⊕ qH
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for some integer q. Apply the trivial character χ0 to both sides, this gives αt0 =
(α − 1)t1 + qn. Now, using also that n = αa + α − 1 = t0 + at1, we deduce that
q = α − t1.

As a Z[H ]-element, T0 + B is expressed as the formal sum T0 + B = ∑
x∈H a�

x x
with suitable nonnegative integers a�

x . Then we find a
�
αa+1 = |T0 ∩ −B + αa + 1| =

|B| = α because −B + αa + 1 ⊆ 〈a〉 ⊆ T0. Let us compute a�
αa+1 using the equality

T0 + B = (T1 + A) ⊕ qH . From this, we find a�
αa+1 = |T1 ∩ −A + αa + 1| + q.

Suppose that T1 ∩ −A + αa + 1 contains some element j, and let w = u1, j . As
−A + αa + 1 ⊂ B, j ∈ B, and thus w ∈ Γ (u0). Since, by Lemma 4.6, Γ (u0) ∩U0

is fixed by γ , it follows that wγ −1
/∈ U0, and thus, (vPγ )w = v

wγ−1 = −1. This gives
j /∈ T1, which, however, contradicts that j was chosen from T1 ∩ −A + αa + 1. We
conclude that T1 ∩ −A + αa + 1 = ∅, and a�

αa+1 = q. On the other hand, we have
already shown that a�

αa+1 = α, and so finally get t1 = α − q = 0, a contradiction.

Claim 2 Uγ
0 = U0.

Assume to the contrary that Uγ
0 �= U0. We show first that U γ

0 ∩ U0 = ∅. Now,
suppose that this does not hold, or equivalently, there exist u0, j and u0, j ′ in U0 such
that uγ

0, j = u0, j ′ . Let γ ′ = jγ (− j ′), here we regard j and j ′ as automorphisms of

Γ . It follows that γ ′ fixes u0, and thus by Claim 1, U γ ′
0 = U0. On the other hand,

Uγ ′
0 = U γ (− j ′)

0 = (U γ
0 )− j ′, hence U γ

0 = U j ′
0 = U0, a contradiction. Notice that,

since γ was chosen arbitrarily from G,

U γ ′
0 = U0 or U

γ ′
0 ∩U0 = ∅ (19)

holds for all γ ′ ∈ G. (In other words U0 is a block of imprimitivity for G.) Now, let
us repeat the argument for γ and vPγ given above, where v = (a,−1, . . . ,−1)⊗ χ0.
Notice that, t0 + at1 = n. Here we use that a > 1 to get t1 < n and thus that T1 �= H ,

where vPγ = (m1T0 − 1H , . . . ,m1Tl − 1H ). Since U γ
0 ∩ U0 = ∅, it follows that

T0 = ∅ and T1 �= ∅. In particular, χ(T0) = 0 for every non-trivial character χ, and
thus cχχ(A) = 0 holds in (17). Using this and (18), we deduce that χ(T1 + A) = 0
holds for any χ �= χ0. This gives that T1 + A = qH for some positive integer q. Since
n = t0 + at1 = at1, it follows that t1 = n/a.

By definition, x ∈ T1 if and only if (vPγ )u1,x = l. On the other hand, (vPγ )u1,x

is equal to the coordinate of v labelled by the vertex (u1,x )γ
−1

, which is equal to a
exactly when u1,x ∈ U γ

0 . We find that T1 = {x ∈ H | u1,x ∈ U γ
0 }. Fix some a ∈ T1

and let K = T1 − a. Choose arbitrary x ∈ T1, and let us consider h = x − a acting
as an automorphism of Γ . Then u1,x ∈ U γ h

0 ∩ U γ
0 , and hence, by (19), U γ h

0 = U γ
0 .

Therefore, u1,y+h = uh1,y ∈ U γ
0 for every y ∈ T1, and thus T1 + x −a = T1 +h = T1

follows. Since the latter equality holds for all x ∈ T1, we further get K + K = K .
By this and that 0 ∈ K , it follows that K is a subgroup of H , and so T1 is equal to
the coset K + a. The order |K | = |T1| = t1 = n/a, showing that K is the unique
subgroup of H of order n/a, and therefore, K = 〈a〉. This together with the facts
T1 + A = qH and A ⊆ 〈a〉 imply in turn that T1 ∩ 〈a〉 �= ∅, T1 = 〈a〉, and finally
T1 = H , which is a contradiction.
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Claim 3 U γ
a = Ua .

Let W be the eigenspace of M corresponding to the eigenvalue 0. Let w =
(0, . . . , 0, 1) ⊗ χ0 and w′ = (1, . . . , 1) ⊗ χ0. By Lemma 4.8, both w and w′ are
inW⊥, and thus, wPγ ∈ W⊥, and

wPγ = cw + cχ0w
′ +

∑
χ∈Irr(H)\{χ0}

cχ

(
v(χ) ⊗ χ

)
(20)

holds with unique constants c and cχ , χ ∈ Irr(H), and the vectors v(χ) ⊗ χ are
as described in Lemma 4.8. As before, wPγ = (1R0 , . . . , 1Ra ) holds with suitable
subsets Ri ⊆ H . Since v(χ)1 = 1 for each non-trivial character χ, we obtain from
(20) that 1R0 = ∑

χ∈Irr(H) cχχ . On the other hand, by Claim 2, R0 = ∅ and so 1R0 is
the zero vector. Therefore, cχ = 0 for each χ ∈ Irr(H), and in (20) we findwPγ = w,

and Claim 3 follows.

Claim 4 If γ fixes every vertex in Ua, then γ is the identity mapping.

Let ui, j be any vertex with i �= a, and write uγ

i, j = ui ′, j ′ . We have to show that
i = i ′ and j = j ′. Clearly, ui, j and ui ′, j ′ have the same out-neighbours inUa . This is
equivalent to the equality B+ yi + za−1 + j = B+ yi ′ + za−1 + j ′. By Lemma 4.4(i),
yi + j = yi ′ + j ′. If i = 0, then by Claim 2, i ′ = 0, and we get j = j ′. We have
shown that γ fixes every vertex in U0.

Now, suppose that i �= 0. By the previous paragraph, ui, j and ui ′, j ′ must have the
same in-neighbours inU0. Equivalently,−B− y0 − zi−1+ j = −B− y0 − zi ′−1+ j ′,
and thus−zi−1+ j = −zi ′−1+ j ′. This together with yi + j = yi ′ + j ′ in turn implies
that i − 1 = yi + zi−1 = yi ′ + zi ′−1 = i ′ − 1, i = i ′, and j = j ′. This completes the
proof of Claim 4.

Claim 5 G = H .

In view of Claims 3 and 4, G admits a faithful action on Ul . This implies that G
is isomorphic to a subgroup of Aut(Γ ′), where Γ ′ is the subdigraph of Γ induced by
the set Ua . We let F = Aut(Γ ′), and for sake of simplicity write vi for the vertex
ua,i = uia for i ∈ H . The group H induces a regular subgroup of F, and hence, we
are done if we show that F = H . It follows that vi has out-neighbours:

Γ ′(vi ) = {vx | x ∈ D + za−1 + i} .

If α = 2, then D + za−1 = {−1}. Thus, Γ ′ is a directed n-cycle, and this shows
that F = H . Now suppose that α > 2. Let Fvi be the stabilizer of the vertex vi
in F . Let us consider the intersection Γ ′(v0) ∩ Γ ′(vi ). We find |Γ ′(v0) ∩ Γ ′(vi )| =
|D+za−1∩D+za−1+i |. Using n = αa+α−1, we find D+za−1 = −{1, . . . , α−1}.
It is not hard to show that |Γ ′(v0) ∩ Γ ′(vi )| ≤ α − 2 for all vi ∈ Γ (v0), and equality
holds if and only if i = −1. Because of this, every automorphism in Fv0 must fix also
v−1. This shows that Fv0 ≤ Fv−1 . It can be proved, repeating the argument in the proof
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of Lemma 4.6, that this implies that Fv0 = Fvi for all vertex vi , and so Fv0 = 1, and
we finally get F = H . This completes the proof of the theorem. �	
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