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Abstract

We estimate the number |.Aj | of elements on a nonlinear family .4 of monic polyno-
mials of f;[T'] of degree r having factorization pattern A := 1%12%2  r* . We show
that |Ay| = T(A) ¢~ + O(q" ™" 1/?), where T ()) is the proportion of elements
of the symmetric group of r elements with cycle pattern A and m is the codimension
of A. We provide explicit upper bounds for the constants underlying the O-notation
in terms of A and A with “good” behavior. We also apply these results to analyze
the average-case complexity of the classical factorization algorithm restricted to A,
showing that it behaves as good as in the general case.
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1 Introduction

The distribution of factorization patterns on univariate polynomials over a finite field [,
is a classical subject of combinatorics. Let A := 1*12*2 .. r* be a factorization pattern
for polynomials of degree r, namely A1, ..., A, € Z>gsatisfy A +2Xo+- - -+7rA, = 7.
A seminal article of Cohen [10] shows that the proportion of elements of F,[T] of
degree r is roughly the proportion 7 (A) of permutations with cycle pattern A in the
rth symmetric group S,. (An element of S, has cycle pattern A if it has exactly A;
cycles of lengthi for1 <i <r.)

In particular, the number of irreducible polynomials, or more generally the distri-
bution of factorization patterns, of polynomials of “given forms” has been considered
in a number of recent articles (see, e.g., [1,8,31,46]). In [11], a subset of the set of
polynomials of degree r is called uniformly distributed if the proportion of elements
with factorization pattern A is roughly 7 (1) for every A. The main result of that paper
[11, Theorem 3] provides a criterion for a linear family of polynomials of I,[7] of
given degree to be uniformly distributed in the sense above. Bank et al. [1], Cesaratto
et al. [8] and Ha [31] provide explicit estimates on the number of elements with fac-
torization pattern A on certain linear families of I, [7'], such as the set of polynomials
with some prescribed coefficients.

In [23, Problem 2.2], the authors ask for estimates on the number of polynomials
of a given degree with a given factorization pattern lying in nonlinear families of
polynomials with coefficients parameterized by an affine variety defined over ;.
Except for general results (see, e.g., [9,20]), very little is known on such a number.
In this article, we address this question, providing a general criterion for a nonlinear
family A C F,[T] tobe uniform distributed in the sense of Cohen and explicit estimates
on the number of elements of A with a given factorization pattern.

Then, we apply our results to analyze the behavior of the classical factorization
algorithm restricted to such families .A. The classical factorization algorithm (see,
e.g., [50]) is not the fastest one. Nevertheless, it is worth analyzing it, since it is
implemented in several software packages for symbolic computation, and a number
of scientific problems rely heavily on polynomial factorization over finite fields.

A precise worst-case analysis is given in [50]. On the other hand, an average-case
analysis for the set of elements of If,[T'] of a given degree is provided in [18]. This
analysis relies on methods of analytic combinatorics which cannot be extended to deal
with the nonlinear families we are interested in this article. For this reason, we provide
an analysis of its average-case complexity when restricted to any nonlinear family A
satisfying our general criterion.

Now, we describe precisely our results. Let IE_}I be the algebraic closure of ;. Let m
and r be positive integers withm < r and A,_1, ..., Ap indeterminates over IE_},. Fora
fixedk withO < k <r—1,wedenote [, [A;] :=[A,—1, ..., Aky1, Ak—1, ..., Aol
LetGy, ..., Gy € Fj[Ai]andlet W := {G; =0, ..., G, = 0} be the set of common
zeros in Ef of G, ..., Gy Denoting by I, [ T'],- the set of monic polynomials of degree
r with coefficients in If;, we consider the following family of polynomials:
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A= {T" +a, T "+ +ay e BT : Gi(ar_1, ..., a1, i1, .., a0)
=0(1<i<m) (1.1)

Consider the weight wt : [;[A;] — N defined by setting wt(A;) := r — j for
0<j<r—1,j#k,anddenote by GY', ..., G"! the components of highest weight
of Gy, ..., Gy.Let (0G/0Ay) be the Jacobian matrix of G, ..., G,, with respect to
Aj. We shall assume that Gy, ..., G, satisfy the following conditions:

(Hy) Gy, ..., G, form a regular sequence1 of If;[Ag].
(H2) (0G /3 Ay) has full rank on every point of W.
(H3) G}, ..., G\ satisfy (Hi) and (Hp).

In what follows, we identify the set E[T ] of monic polynomials of E[[T] of
degree r with E’ by mapping each fy, = T" + ar TV 4+ +ap € E[T]r
to ap := (a,_1,...,a9) € E[. For B C E,[T]r, the set of elements of B which
are not square-free is called the discriminant locus D(B) of B (see [21,40] for the
study of discriminant loci). For fg, € B, let Disc(fgz,) := Res(fq,, féo) denote the
discriminant of fj, that is, the resultant of f,, and its derivative f, . Since fq, has
degree r, by basic properties of resultants we have

Disc( fay) = Disc(F (Ao, T))|ag=ay := Res(F (Ao, T), F'(Ao, T), T)| ap=aq>

where the expression Res in the right-hand side denotes resultant with respect to 7'. It
follows that D(B) := {ag € B : Disc(F (Ao, T))|Ag=a, = 0}. We shall need further
to consider first subdiscriminant loci. The first subdiscriminant locus S;(B) of B C
E[T], is the set of ag € D(B) for which the first subdiscriminant Subdisc( fy,) =
Subres( fg, féo) vanishes, where Subres( fg,,, féo) denotes the first subresultant of
fao and f, o- Since fq, has degree r, basic properties of subresultants imply

Subdisc( fq,) = Subdisc(F (Ao, T))|ag=a
:= Subres(F (Ao, T), F'(Ao, T), T))| Ap=ay-

where Subres in the right-hand side denotes first subresultant with respect to 7. We
have S1(B) := {ap € D(B) : Subdisc(F (Ao, T))|ag=a; = 0}. Our next conditions
require that the discriminant and the first subdiscriminant locus intersect well W:

(Hg) D(W) has codimension at least one in W.
(Hs) (Ag - S)(W) :={ag € W : ap = 0} U S| (W) has codimension at least one
in D(W).
(He) D(V (G}, ..., GY) has codimension at least one in V(GY*, ..., G C
We briefly discuss hypotheses (H;)—(He). Hypotheses (H;)—(H>) merely state that
W has the expected dimension » — m and it is smooth. These conditions are satisfied
for any sequence G1, ..., G, € [;[Ag] as above with general coefficients (see, e.g.,

! This means that {G1=0,..., G; = 0} has dimension r — i for I <i < m; see Sect. 2.2 for details.
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[2] or [51]). Hypothesis (H3) requires that G, ..., G, behave properly “at infinity,”
which is also the case for general Gy, ..., G,,. Hypotheses (H4)—(Hs) require that
“most” of the polynomials of A are square-free, and among those which are not,
only “few” of them have roots with high multiplicity or several multiple roots. As
we are looking for criteria for uniform distribution, namely families which behave
as the whole set I, [T'],, it is clear that such a behavior is to be expected. Further,
it is required that “few” polynomials in the family under consideration have 0 as a
multiple root, which is a common requirement for uniformly distributed families (see,
e.g., [11]). Finally, hypothesis (Hg) requires that the discriminant locus at infinity is
not too large. We provide significant examples of families of polynomials satisfying
hypotheses (Hj)—(Hg), which include in particular the classical case of polynomials
with prescribed coefficients.

Our main result shows that any family A satisfying hypotheses (H;)—(Hg) is uni-
formly distributed in the sense of Cohen, and provides explicit estimates on the number
| Ay | of elements of .4 with factorization pattern A. In fact, we have the following result
(see Theorem 4.6 for a more precise statement).

Theorem 1.1 For m < r and X\ a factorization pattern, we have
1A = T g "] < " (TA)(DS g7 + 14D%82 + r28) + r25),

where § 1= [[/L, wt(G;) and D := Y7 | (Wwt(G;) — 1).

Our methodology differs significantly from that of [10,11], as we express |.Aj |
in terms of the set of common I, -rational zeros of certain symmetric multivariate
polynomials defined over [;. This allows us to establish several facts concerning the
geometry of the set of zeros of such polynomials over Fq Combining these results
with estimates on the number of common F,-rational zeros of such polynomials (see,
e.g., [3] or [6]), we obtain our main results.

Then, we consider the average-case complexity of the classical factorization algo-
rithm restricted to A. This algorithm works in four main steps. First, it performs an
“elimination of repeated factors.” Then, it computes a (partial) factorization of the
result of the first step by splitting its irreducible factors according to their degree (this
is called the distinct-degree factorization). The third step factorizes each of the factors
computed in the second step (the equal-degree factorization). Finally, the fourth step
consists of the factorization of the repeated factors left aside in the first step (fac-
torization of repeated factors). The following result summarizes our estimates on the
average-case complexity of each of these steps (see Theorems 6.2, 6.4, 6.8 and 6.9 for
more precise statements).

Theorem 1.2 Let §g := deg Gy ---deg G,,. Denote by E[X|], E[X;], E[X3] and
E[X4] the average cost on A of the steps of elimination of repeated factors,
distinct-degree factorization, equal-degree factorization and factorization of repeated
factors.

@ Springer



Journal of Algebraic Combinatorics (2020) 51:103-153 107

For g > 155163/ 3, assuming that fast multiplication is used, we have

E[X] = cU(r) +o(D),
E[X] <& Qui(g) + 11+ n2logr) M(r) (r + D(1 + o(1)),
E[X3] =t M(r)logg (1 +o(1)), E[X4] < M(r)(1+o(1)),

where M(r) := rlogrloglogr is the fast-multiplication time function, U(r) :=
M (r)logr is the gcd time function, A(q) is the number of multiplications required
to compute qth powers using repeated squaring, & ~ 0.62432945 . . . is the Golomb—
Dickman constant, and c, t1, T2 and T are constants independent of ¢ and r.

Here, the o(1) terms go to zero as ¢ tends to infinity, for fixed r and
deg G1, ...,deg G,,. See Theorems 6.2, 6.4, 6.8 and 6.9 for explicit expressions of
these terms.

This result significantly strengthens the conclusions of the average-case analysis
of [18], in that it shows that such conclusions are not only applicable to the whole set
I, [T1, of monic polynomials of degree r, but to any family A C F,[T], satisfying
hypotheses (H;)—(He).

The paper is organized as follows. In Sect. 2, we collect the notions of algebraic
geometry we use. In Sect. 3, we obtain a lower bound on the number of elements of the
family .4 under consideration. Section 4 is devoted to describe our algebraic-geometry
approach to the distribution of factorization patterns and to prove Theorem 1.1. In
Sect. 5, we exhibit examples of linear and nonlinear families of polynomials satisfying
hypotheses (Hj)—(Hg). Finally, in Sect. 6 we perform the average-case analysis of the
classical polynomial factorization restricted to .4, showing Theorem 1.2.

2 Basic notions of algebraic geometry

In this section, we collect the basic definitions and facts of algebraic geometry that
we need in the sequel. We use standard notions and notations which can be found in,
e.g., [36,47].

Let K be any of the fields [, or E We denote by A" the affine r-dimensional space
E] and by P" the projective r-dimensional space over E’“. Both spaces are endowed
with their respective Zariski topologies over K, for which a closed set is the zero locus
of a set of polynomials of K[ X, ..., X,], or of a set of homogeneous polynomials of
KXo, ..., X/].

A subset V. C P is a projective variety defined over K (or a projective K-
variety for short) if it is the set of common zeros in " of homogeneous polynomials
Fi,...,Fy € K[Xy,...,X,]. Correspondingly, an affine variety of A" defined
over K (or an affine K-variety) is the set of common zeros in A" of polynomials
Fi, ..., Fy € K[X1, ..., X,]. We think a projective or affine K-variety to be equipped
with the induced Zariski topology. We shall denote by {F} = 0,..., F,, = 0} or
V(Fy, ..., Fy) the affine or projective K-variety consisting of the common zeros of
Fi,..., Fy.
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In the remaining part of this section, unless otherwise stated, all results referring
to varieties in general should be understood as valid for both projective and affine
varieties.

A K-variety V is irreducible if it cannot be expressed as a finite union of proper
K-subvarieties of V. Further, V is absolutely irreducible if it is IE_ZI-irreducible asa E-
variety. Any K-variety V can be expressed as an irredundant union V = C; U- - - UCq
of irreducible (absolutely irreducible) K-varieties, unique up to reordering, called the
irreducible (absolutely irreducible) K-components of V.

For a K-variety V contained in P" or A’, its defining ideal 1(V) is the set of
polynomials of K[ Xy, ..., X,],orof K[ X1, ..., X,], vanishing on V. The coordinate
ring K[V] of V is the quotient ring K[Xo, ..., X,1/1(V) or K[X1, ..., X,]/I(V).
The dimension dim V of V is the length n of a longest chain Vo & Vi & --- &V, of
nonempty irreducible K-varieties contained in V. We say that V has pure dimension
n if every irreducible K-component of V has dimension n. A K-variety of P" or A" of
pure dimension r — 1 is called a K-hypersurface. A K-hypersurface of P” (or A”) can
also be described as the set of zeros of a single nonzero polynomial of K[ X, ..., X;]
(or of K[ X1y, ..., X, ]).

The degree deg V of an irreducible K-variety V is the maximum of |V N L|, con-
sidering all the linear spaces L of codimension dim V such that |V N L| < co. More
generally, following [33] (see also [22]),if V = C; U - - U(; is the decomposition of
V into irreducible K-components, we define the degree of V as

N
degV := ZdegCi.

i=1

The degree of a K-hypersurface V is the degree of a polynomial of minimal degree
defining V. We shall use the following Bézout inequality (see [22,33,52]): if V and W
are K-varieties of the same ambient space, then

deg(VNW) <degV -degW. 2.1

Let V C A" be a K-variety, I(V) C K[Xy, ..., X,] its defining ideal and x a
point of V. The dimension dim, V of V at x is the maximum of the dimensions of the
irreducible K-components of V containing x. If I(V) = (Fy, ..., Fy), the tangent
space T,V to V at x is the kernel of the Jacobian matrix (0F; /90X j)1<i<m,1<j<r(X)
of Fi, ..., Fy with respect to Xy, ..., X, at x. We have dim 7,V > dim, V (see,
e.g., [47, p. 94]). The point x is regular if dim 7,V = dim, V; otherwise, x is called
singular. The set of singular points of V is the singular locus Sing(V) of V;itis a
closed K-subvariety of V. A variety is called nonsingular if its singular locus is empty.
For projective varieties, the concepts of tangent space, regular and singular point can
be defined by considering an affine neighborhood of the point under consideration.

Let V and W be irreducible affine K-varieties of the same dimensionand f : V —
W a regular map with f(V) = W, where f(V) denotes the closure of f(V) with
respect to the Zariski topology of W. Such a map is called dominant. Then, f induces
a ring extension K[W] <« K[V] by composition with f. We say that the dominant
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map f is finite if this extension is integral, namely each element € K[V ] satisfies a
monic equation with coefficients in K[W]. A dominant finite morphism is necessarily
closed. Another fact we shall use is that the preimage f~'(S) of an irreducible closed
subset S C W under a dominant finite morphism f is of pure dimension dim S (see,
e.g., [14, §4.2, Proposition]).

2.1 Rational points

Let P" (I, ) be the r-dimensional projective space over If;, and A" (If, ) the r-dimensional
[ -vector space E'. For a projective variety V' C [P or an affine variety V C A", we
denote by V (If;) the set of F;-rational points of V, namely V (I,) := V NP"([) in
the projective case and V (F,) := V N A"(I,) in the affine case. For an affine variety
V of dimension n and degree &, we have the following bound (see, e.g., [3, Lemma
2.1)):

[V(E)| <dq". (2.2)

On the other hand, if V is a projective variety of dimension n and degree §, then we
have the following bound (see [25, Proposition 12.1] or [4, Proposition 3.1]; see [38]
for more precise upper bounds):

[V(E)| <8 pa, (2.3)
where p, :=¢" +¢" '+ +q+1=[P"(E)|

2.2 Complete intersections

Elements Fi, ..., F, in K[ X1, ..., X;] or K[Xo, ..., X;] form a regular sequence
if F; is nonzero and no F; is zero or a zero divisor in the quotient ring
K(Xy,..., X/ 1/(F1, ..., Fi—1) or K[Xo, ..., X, 1/(F1,..., Fi_1) for 2 < i < m.
In that case, the (affine or projective) K-variety V := V (Fy, ..., Fy,) is called a set-
theoretic complete intersection. We remark that V is necessarily of pure dimension
r — m. Further, V is called an (ideal-theoretic) complete intersection if its ideal I (V)
over K can be generated by m polynomials. We shall frequently use the following
criterion to prove that a variety is a complete intersection (see, e.g., [15, Theorem
18.15]).

Theorem 2.1 Let Fy, ..., Fy, € K[X4, ..., X,] be polynomials which form a regular
sequence and let V .= V(Fy,..., Fy,) C A". Denote by (0F /dX) the Jacobian
matrix of F1, ..., Fy, with respectto X1, . .., X,. If the subvariety of V defined by the
set of common zeros of the maximal minors of (0 F /9 X) has codimension at least one in
V, then Fy, ..., F, define a radical ideal. In particular, V is a complete intersection.

If V. C P’ is a complete intersection defined over K of dimension » — m, and
F1, ..., Fy is a system of homogeneous generators of 7(V), the degrees dy, ..., d,
depend only on V and not on the system of generators. Arranging the d; in such a way
thatdy > d» > --- > d,,, we call (dy, ..., dy) the multidegree of V. In this case,
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a stronger version of (2.1) holds, called the Bézout theorem (see, e.g., [32, Theorem
18.3]):
degV =dj---dy. 2.4)

A complete intersection V is called normal if it is regular in codimension I,
that is, the singular locus Sing(V) of V has codimension at least 2 in V, namely
dim V — dim Sing(V) > 2. (Actually, normality is a general notion that agrees on
complete intersections with the one we define here.) A fundamental result for pro-
jective complete intersections is the Hartshorne connectedness theorem (see, e.g.,
[36, Theorem VI.4.2]): If V. C P” is a complete intersection defined over K and
W C V is any K-subvariety of codimension at least 2, then V\ W is connected in the
Zariski topology of P" over K. Applying the Hartshorne connectedness theorem with
W := Sing(V), one deduces the following result.

Theorem2.2 If V. C P is a normal complete intersection, then V is absolutely
irreducible.

3 Estimates on the number of elements of A

Let Xy, ..., X, be indeterminates over E. Denote by Iy, ..., I1, the elementary
symmetric polynomials of I, [Xi, ..., X,]. Observe that f := T" + ar T +
---4+ag € Aif and only if there exists x € A" such that a; = (—1)""/I1,_;(x) for
0<j<r—1land

Rii=Gi(—T1(x), ..., (=) 0,41 (x),
(=D L, g (), - (1D T (x) = 0

for 1 < i < m. Thus, we associate with 4 the polynomials Ry,..., R, €
E,[X1, ..., X,] and the variety V C A" defined by Ry, ..., Ry.

Our estimates on the distribution of factorization patterns in A require asymptoti-
cally tight estimates on the number of [f; -rational points of V, and for the average-case
analysis of the classical factorization algorithm restricted to .4 we need asymptotically
tight lower bounds on the number of elements of .A. For this purpose, we shall prove
several facts concerning the geometry of the affine varieties V and W.

Hypothesis (H;) implies that W is a set-theoretic complete intersection of dimension
r — m. Furthermore, by (H,) it follows that the subvariety of W defined by the set of
common zeros of the maximal minors of (G /dAy) has codimension at least one in
W. Applying Theorem 2.1, we deduce the following result.

Lemma3.1 W C A" is a complete intersection of dimension r — m.

Consider the following surjective morphism of affine [F,-varieties:

m:A" - A"
x = (=I(x),..., (=D (x)). 3.1
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Itis easy tosee that I" is a dominant finite morphism with IT" (V) = W. By hypothesis
(Hy), the variety W/ := V(Gi,...,G;) C A" has pure dimension r — j for 1 <

Jj < m. This implies that Vi.=m") "YW =V(R,,..., R;) has pure dimension
r —jforl < j < m. We conclude that Ry, ..., R, form a regular sequence of
F,[X1, ..., X,], namely we have the following result.

Lemma 3.2 V is a set-theoretic complete intersection of dimension r — m.

Next we study the singular locus of V. For this purpose, we make some remarks
concerning the Jacobian matrix of (dI1"/0X) of II" with respect to X1, ..., X,.
Denote by A, the (r x r)-Vandermonde matrix

Ay = (Xj-_l)lfi,jfr-
Taking into account the following well-known identities (see, e.g., [37]):

aIl;

2 i—1yi—1 .
a_XjZHifl_Xjni72+XjHi73+"‘+(_1)l X7 (=i j=r),

we conclude that (91" /3 X) can be factored as

—1 0 0
I; -1 0
omr
(3X>_Br Ay = _HZ 1_[1 -1 Ay
(D' (=D, (=2, L 1

(3.2)
Since det B, = (—1)", we see that

Ehi1 ,
det(ax ) = (=1) ]_[ (Xj — X;).

I<i<j<r

A critical point in the study of the singular locus of V is the analysis of the zero
locus of the (r — 1) x (r — 1) minors of (dI1" /3 X). For this purpose, we have the
following result.

Proposition 3.3 Fork with0 < k < r — 1 as in the introduction and l with 1 <1 <,

denote by My,_i ; the (r — 1) x (r — 1)-matrix obtained by deleting the row r — k and
the column | of (011" /0 X). Then,

det M, i = (=) *71A; - XK, (3.3)

where A; := Hl§i<j§r, iz (X — Xi).
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Proof According to the factorization (3.2), we have
M1 =B/ 7" A,

where B/ —k is the (r — 1) x r-submatrix of B, obtained by deleting its (r — k)th row
and Alr is the r x (r — 1)-submatrix of A, obtained by deleting its /th column. By the
Cauchy—Binet formula, it follows that

,
det M,y = Zdet B 7RI det AT,
=1

where B,/ is the (r — 1) x (r — 1)-matrix obtained by removing the jth column
of B/~ —k and A] is the (r — 1) x (r — 1)-matrix obtained by removing the jth row of

Al
From [16, Lemma 2.1], we deduce that

det Al = A, T, (3.4)

where H:,j =I,—; (X1, ..., Xi—1, Xig1, .., X))

Next we obtain an explicit expression of det By k. for 1 < j < r. Observe that
B! ~* has a block structure:

r—k . [ Brx—1 0
Bk = <* T/{) (3.5)

where B,_j_j isthe (r —k — 1) x (r — k — 1) principal submatrix of B, consisting
on its first 7 — k — 1 rows and columns and 7;* is the k x (k + 1)-matrix

mn -1 0 ... 0 0
m, ) .

= 0 o
: . —1 0
(=D, ... ... =T, I -1

From (3.5), we readily deduce that

. forl<j<r—k—1,
det By = § (—1) ! for j =r — k, (3.6)
(=1~ det T; forj=r—k+i, 1 <i <k,
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where 7; is the following i x i Toeplitz—Hessenberg matrix:

I, -1 0 ... 0
—T1, :

T = : 0
: . .o =1

(=Dt L. L. =TI IO

By the Trudi formula (see [43, Ch. VII]; see also [42, Theorem 1]), we deduce the
following identity (see [42, Section 4]):

det7; = H;,

where H; := H;(Xq, ..., X;) is the ith complete homogeneous symmetric function.
Therefore, combining (3.4) and (3.6) we conclude that

r k
detM,_jy=Ar Y det Bl I = A Y det LRk g
j=r—k i=0

k
= A Z(—l)’_i_lH,- .
i=0

We claim that
k .
Sk) = Z(—l)”l’lHi T, = =DRIXE k=0,...,r—1. (37)

i=0

We prove the claim arguing by induction on k. Since Hy = IIj = 1, the case k = 0
follows immediately. Assume now that (3.7) holds for k — 1 with £ > 0, namely

k—1
DI DT = (- R (3.8)
i=0

It is well known that (see, e.g., [12, 7.§1, Exercise 10])

k
Y (D'H; - i = 0.

i=0
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Since IT}_, = My (X1,..., X;—1, X341, ..., X;), we deduce that TTy_; = X; -
I _,_, + I} _,. As a consequence, it follows that
k ‘ k-1 _
DD H T =X ) - T T
i=0 i=0

Combining this identity and the inductive hypothesis (3.8), we conclude that

k—1
Sy ==Xy (=D H; T = =X (DX = ()X
i=0
This concludes the proof of the proposition. O
Denoteby (0R/0X) := (0R;/0Xj)1<i<m,1<j<r theJacobianmatrixof Ry, ..., Ry,
with respect to X1, ..., X,.

Theorem 3.4 The set of x € V for which (dR/3X)(x) does not have full rank, has
codimension at least 2. In particular, the singular locus ¥ of V has codimension at
least 2.

Proof By the chain rule, we have the equality

R G oIl
—|=(—om} -|—],
X 9A X
where Il := (=TI, ..., (=) %0, _y, (=) %, 441, ..., (=1)'I1,). Fix

apoint x := (x1,...,x,) € V such that (d R/9X)(x) does not have full rank, and let
v € A be a nonzero element in the left kernel of (3 R/3X)(x). We have

oR 0G oIl
0=v- (3_X) x)=v- <B_A> (M(x)) - <3_X> (x).

Since by hypothesis (H,) the Jacobian matrix (3G /dA)(II(x)) has full rank, we see
that w := v - (0G/dA) (TI(x)) € A"~ is nonzero. As w - (0I1/3X) (x) = 0, all the
maximal minors of (dI1/0X) (x) must be zero. These minors are the determinants
det M, _x ;(x), where M,_y ; are the matrices of Proposition 3.3.

Since det M, ;(x) = 0 for 1 <[ < r, Proposition 3.3 implies

A =xfAj) =0 U<i<j<r).
It follows that x cannot have its r coordinates pairwise distinct. As a consequence,
either x has » — 1 pairwise-distinct coordinates, one of them being equal to zero, or x
has at most r — 2 pairwise-distinct coordinates. Let

gi=T—=x)...(T—x) =T =T "+ 4+ (=)', (x).
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Observe that IT" (x) € W. If there is a coordinate x; = 0, then the constant coefficient
of g is zero. On the other hand, if x has at most » — 2 pairwise-distinct coordinates,
then there existi, j,I,h € {l,...,r}withi < j,l < hand {i, j} N {k, I} = @ such
that x; = x; and x;, = x;. If x; # x;, then g has two distinct multiple roots, while in
the case x; = xj, g has a root of multiplicity at least 4. In both cases, g and g’ have a
common factor of degree at least 2, which implies that

Disc(g) = 0, Subdisc(g) =0,

namely g € S;(W). In either case, I" (x) € (Ag - S1)(W). According to (Hg) and
(Hs), (Ag - S1)(W) has codimension at least 2 in W. Since IT” is a finite morphism,
we have that (IT")~!((Ag - S1)(W)) has codimension at least 2 in V. In particular,
the set of points x € V with rank(dR/9X)(x) < m is contained in a subvariety of
codimension 2 of V.

Now let x be an arbitrary point of . By Lemma 3.2, we havedim 7,V > r —m. It
follows that rank (0 R /90 X)(x) < m, for otherwise we would have dim 7y V < r —m,
contradicting the hypothesis that x is a singular point of V. Therefore, from the first
assertion the theorem follows. O

From Lemma 3.2 and Theorem 3.4, we obtain further consequences concerning
the polynomials R; and the variety V. Theorem 3.4 shows in particular that the set of
points x € V for which (0 R/dX)(x) does not have full rank has codimension at least
one in V. Since Ry, ..., R, form a regular sequence, by Theorem 2.1 we conclude
that Ry, ..., Ry, define a radical ideal of [, [X1, ..., X,], and thus V is a complete
intersection. In other words, we have the following result.

Corollary 3.5 Ry, ..., Ry, define a radical ideal and V is a complete intersection.

3.1 The geometry of the projective closure

Consider the embedding of A" into the projective space P” defined by the mapping
(x1,...,x) = (L:x1:...:x.). The closure pcl(V) C P" of the image of V under
this embedding in the Zariski topology of P" is called the projective closure of V. The
points of pcl(V) lying in the hyperplane {Xo = 0} are called the points of pcl(V) at
infinity.

Denote by Fh e E,[Xo, ..., X,] the homogenization of each F € F,[ X1, ..., X, ],
and let (Ry,...,R,)" be the ideal generated by all the polynomials F” with
F € (Ry,...,R;). We have that (R, ..., Rm)h is radical because (R, ..., Ry)
is a radical ideal (see, e.g., [36, §1.5, Exercise 6]). It is well known that pcl(V) is the
[, -variety of P" defined by (Ry, ..., Rm)h (see, e.g., [36, §L.5, Exercise 6]). Further-
more, pcl(V) has pure dimension » — m (see, e.g., [36, Propositions .5.17 and I1.4.1])
and degree equal to deg V (see, e.g., [7, Proposition 1.11]).

Next we discuss the behavior of pcl(V) at infinity. Consider the decomposition of
each R; into its homogeneous components, namely

1

Ri=RY"+R" ... 4R,
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where each Rij € F,[Xi,..., X,] is homogeneous of degree j or zero, Ridi being
nonzero for 1 < i < m. The homogenization of each R; is the polynomial

RF = R + R Xo+ -+ ROX{. (3.9)

It follows that Rf’ O0,X,...,. X, = R;i" for 1 <i < m. To express each Rfli in terms
of the component G!* of highest weight of G;, let Ag --- A/ Z|Af{--- A" bea
monomial arising with nonzero coefficient in the dense representation of G;. Then, its
weight

r—1
WEAD - AFTT AR - A = = i
=0
J#k
equals the degree of the corresponding monomial mo... Hi"_‘,‘( +1 Hi"j,i_ E l'Iil"l of
R;. We deduce the following result.

Lemma 3.6 Rf"' = GY(-Ty,..., (=) 'y, (=D, g, .
(=D)"'I1,) for 1 <i < m. In particular, deg R; = wt(G;) for 1 <i < m.

Denote by (3R?/0X) := (8R?"/8Xj)15,~5m,15j§, the Jacobian matrix of
R‘f‘, e, Rf,’;m with respect to X1, ..., X,. Let X°° C P’ be the singular locus of
pcl(V) at infinity, namely the set of singular points of pcl(V') lying in the hyperplane
{Xo = 0}. We have the following result.

Lemma 3.7 The set of points x € V(R™, ..., Ri") C P! for which (9R? /3 X)(x)
has not full rank, has codimension at least 1 in V(Rfl, cey Rf,l,'"). In particular, the

singular locus £°° C P" at infinity has dimension at most r —m — 2.

Proof Consider the affine variety Ve (RY .., R,‘f{”) C A’ defined by Ri]‘, e Rff,’”.
Hypothesis (H3) asserts that G‘l’"t, ey G"m"t satisfy hypotheses (H;) and (H;). There-
fore, Lemma 3.2 proves that Vmcf(Rld1 Y Rf,l{") is a set-theoretic complete intersec-
tion of dimension r — m. Denote by X7 the set of points x € Vaff(Rllil, e, R,‘f{”)
as in the statement of the lemma. Arguing as in the proof of Theorem 3.4 we
conclude that any x € X2 cannot have its r coordinates pairwise distinct. This
implies that I"(X3;) is contained in the discriminant locus D(V(G‘l"’t, co, GUY).
By hypothesis (Hg), we have that D(V (GY*, ..., G')) has codimension at least 1
in V(GY, ..., GY = I (Vo (RY, ..., R&™)). Since TI” is a finite morphism, we
deduce that E;"lif has codimension at least 1 in Vaff(R‘li‘, ey Rﬁl,{" ). The first assertion
of the lemma follows.

Now let x := (0 : x; : ... : x;) be an arbitrary point of X°°. Since each Rf’
vanishes identically in pcl(V), we have th(x) = Rl.d’ (x1,...,x)=0forl1 <i <
m. Further, (9 R? /3X)(x) does not have full rank, since otherwise we would have
dim 7y (pcl(V)) < r —m, which would imply that x is a nonsingular point of pcl(V),
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contradicting thus the hypothesis on x. It follows that 3 has codimension at least 1

in V(Rfl, el Rf,l{"), and thus dimension at most r — m — 2. O

Our next result concerns the projective variety V(R’lj1 ey Rz{") cPp1L

Lemma 3.8 V(Rfl, e, Rf,l,”‘) cP-lisa complete intersection of dimension r —
m — 1, degree [/L, d; and singular locus of dimension at most r —m — 2.

Proof Since GY*,...,GW' satisfy hypothesis (H;), Lemma 3.2 shows that
V(R‘lil, ...,Rﬁf{”) is set-theoretic complete intersection of dimension r — m — 1.
Furthermore, Lemma 3.7 shows that the set of x € V(R‘li‘, e Ril,{") for which
(BRd/BX)(x) has not full rank, has codimension at least 1 in V(Rf', e R,‘f{").
Then, Theorem 2.1 proves that Rill, el Rg{" define a radical ideal, and therefore
V(R‘f‘, R Rf,l”’) is a complete intersection.

In particular, the singular locus of V(R’l‘!l, R Rff{”) is the set of points x € V

(Ril1 R Rff,’”) for which (a Rd/aX) (x) has not full rank, and hence it has dimension
at most » —m — 2. Finally, the Bézout theorem (2.4) proves the assertion on the degree.
O

Now we prove our main result concerning pcl(V).

Theorem 3.9 The identity pcl(V) = V(R", ..., R") holds and pcl(V') is a normal
complete intersection of dimension r — m and degree [];_, d;.

Proof Observe that the following inclusions hold:

VR, ...,RE)YN{Xo # 0} C V(RL, ..., Ru),
V(R ... REYN (Xo =0} C V(R]',.... Rdm).

Lemma 3.8 proves that V(R?l1 s Rff,’”) cPr-lisa complete intersection of dimen-
sion r — m — 1 and singular locus of codimension at least 1. On the other hand,
Lemma 3.2 and Theorem 3.4 show that V(Ry, ..., R;;) C A’ is of pure dimension
r — m and its singular locus has codimension at least 2. We conclude that the same
holds with V(R", ..., R,',;) C P". Since it is defined by m polynomials, it is a set-
theoretic complete intersection. Further, by Theorem 3.4 and Lemma 3.7 the set of
points x € V(Rh, ey Rﬁl) for which (8Rh/8X)(x) has not full rank, has codimen-

sion at least 2 in V(Rh, e, Rf,’1). Then, Theorem 2.1 proves that R ..., Rf,’l define
a radical ideal and therefore V(Rh, el Rf?’l) is a normal complete intersection. By
Theorem 2.2, it follows that V(Rh, e, R,’ﬁl) is absolutely irreducible.

It is clear that pcl(V) C V(Rh, ey R,hn). Being both of pure dimension r — m and
V(RE, ..., R,ﬁg) absolutely irreducible, the identity of the statement of the theorem
follows. Finally, since R{’, e, R,’; define a radical ideal, the Bézout theorem (2.4)
proves the assertion on the degree. O

We end the section with the following result, which allows us to control the number
of [f;-rational points of pcl(V) at infinity.
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Remark 3.10 V., := pcl(V) N {Xo = 0} € P"~! has dimension » — m — 1. Indeed,
recall that pcl(V') has pure dimension r — m. Hence, each irreducible component of
pcl(V)N{ Xy = 0} has dimension atleast r —m — 1. From (3.9), we deduce that pcl(V)N
{Xo =0} C V(Rfl, A R,‘,ﬂ’"). By Lemma 3.8, we have that V(R‘lil, R R,‘f{") has
dimension r —m — 1. It follows that pcl(V) N { X = 0} has also dimension r —m — 1.

3.2 Estimates on the number of [;-rational points of W

The results on V allow us to estimate the number of If; -rational points of W. We start
with the following result.

Corollary3.11 W C A’ is absolutely irreducible.

Proof By Theorems 3.9 and 2.2, we have that pcl(V) is absolutely irreducible. As a
consequence, V is absolutely irreducible. Since IT" (V) = W, the assertion follows. O

As|A| = |W(IE,)|, we obtain estimates on the number of elements of .A. Combining
Corollary 3.11 with [3, Theorem 7.1], for g > 8 := deg(G1) ...deg(G,,) we have
the following estimate:

LAl —¢" | < (66 — D6 — 2g" "2 458, ¢" .

On the other hand, according to [3, Corollary 7.2], if ¢ > IS(SIGS/ 3, then

||A| - qr—m| < (¢ — (6g — Z)qr—m—l/Z + 76éqr—m—1.

We easily deduce the following result.

Theorem 3.12 Forq > 1582/3, we have

r—m 1G3/6 —1 m—r 15(SIGS/6
Al > ¢ I_W and |Al7" <¢q 1+w-

Further,

1
Al > —¢g" ™.
| |_2q

4 The distribution of factorization patternsin .4

Let A1, ..., A be nonnegative integers such that A; +2A, + - - - +rX, = r. Denote by
Py the setof f € [, [T'], with factorization pattern A := 1M2%2 | phr namely having
exactly A; monic irreducible factors over If; of degree i (counted with multiplicity)
for 1 < i < r. Further, for S C F,[T], we denote Sy := S N Py. In this section,
we estimate the number |Aj | of elements of A with factorization pattern A, where
A C E,[T], is the family of (1.1).
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4.1 Factorization patterns and roots

Following the approach of [8], we show that the set .4, can be expressed in terms of
certain symmetric polynomials.

Let f € [T], and m € [;[T] a monic irreducible factor of f of degree i. Then,
m is the minimal polynomial of a root & of f with [, («) = ;. Denote by G; the
Galois group Gal([;, ;) of I over ;. We may express m in the following way:

m=[] @ -o@).

O'GG,'

Hence, each irreducible factor m of f is uniquely determined by a root « of f (and
its orbit under the action of the Galois group of E over [f;), and this root belongs
to a field extension of [, of degree degm. Now, for f € P, there are A roots of
fin F,, say ap, ..., o, (counted with multiplicity), which are associated with the
irreducible factors of f in I, [T] of degree 1; we may choose A> roots of f in F»\E,
(counted with multiplicity), say o 41, ..., 0, +x,, Which are associated with the A,
irreducible factors of f of degree 2, and so on. From now on, we assume that a choice
of A\ + -+ A, roots ay, ..., &y 4...q2, Of fin E, is made in such a way that each
monic irreducible factor of f in F,[7] is associated with one and only one of these
roots.

Our aim is to express the factorization of f into irreducible factors in I, [7'] in terms
of the coordinates of the chosen A + - - - + A, roots of f with respect to certain bases
of the corresponding extensions I, < I,; as If;-vector spaces. To this end, we express
the root associated with each irreducible factor of f of degree i in a normal basis ®;
of the field extension [, — Eli.

Letd; € Ef be anormal element and ®; the normal basis of the extension I, — E/
generated by 6;, i.e.,

i—1
o ={o....00 |

The Galois group G; is cyclic and the Frobenius map o : Fqi — IFq,-, oi(x):=x%isa
generator of G;. Thus, the coordinates in the basis ®; of all the elements in the orbit
of aroot oy € i of an irreducible factor of f of degree i are the cyclic permutations
of the coordinates of « in the basis ©;.

The vector that gathers the coordinates of all the roots «q, . . ., @y, 4...42, We choose
to represent the irreducible factors of f in the normal bases ®1, ..., ®, is an element
ofIFq’, which is denoted by x := (x1, ..., x). Set

i—1
G :=Zkkk+(j—1)i 4.1
k=1

for1 < j < Xjand 1 < i < r. Observe that the vector of coordinates of a root
Oyt hio 1+ € ]Fq,- is the sub-array (xg,iﬁ_l, o xgi1j+,') of x. With these notations,
the A; irreducible factors of f of degree i are the polynomials
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mi j = l_[ (T — (xg 11000 + - +xt’i,./+i0(elgiil))> *2)

O'GGI'

for 1 < j < X;. In particular,

rooA;
F=[111mi;- (4.3)

i=1j=1

Let X, ..., X, be indeterminates over E, set X := (Xy,..., X,) and consider
the polynomial M € ;[ X, T defined as

r )n,'

M = l—[ l—[ M, M;;:= 1_[ <T - (Xgivj_:,.l(f(@i) +---+ X@iv_/.:,_id(@iql l))),
i=1j=1 oeG;
4.4)
where the ¢; ; are defined as in (4.1). Our previous arguments show that f € I§,[T],
has factorization pattern A if and only if there exists x € FJ with f = M (x, T).

To discuss how many elements x € [ yield an arbitrary polynomial f =
M(x,T) € P, we introduce the notion of an array of type A. For ¢; ; (1 < i <
r, 1 <j <Aj)asin(4.1), we say that x := (x1,...,x,) € EI’ is of type A if and only
if each sub-array x; j := (x¢; 41, ..., X¢ ;+i) is a cycle of length i. The following
result relates the set P, with the set of elements of IFq’ of type A (see [8, Lemma 2.2]).

Lemma4.1 For any x = (x1,...,X;) € JFq’, the polynomial f = M(x,T) has
factorization pattern A if and only if x is of type A. Furthermore, for each square-
free polynomial f € Py there are w(X) = [[i_, i*);! different x € E; with f =
Mx,T).

Consider the polynomial M of (4.4) as an element of If;[X][T']. We shall express
the co_efﬁcients of M by means of the vector of linear forms Y := (Y1, ..., Y,), with
Y; € F,[X] defined in the following way for 1 <i < r:

(Yﬁi,]‘-‘rlvn-,Yﬁi_/‘-‘rl‘)t = Ai : (X@,'.j-i-ls '-~sXZ,'.j+l')t (1 = .] = )W'» 1 = i = r)s

. 4.5)
where A; € IB;,.X’ is the matrix
h
A= ( o ) .
' o) 0eGy, 0<h<i—1
According to (4.4), we may express the polynomial M as
rooAo i r r
M=T]TIT]T Yo, =]]T =Y =T+ (=D (L)1,
i=1 j=1s=I i=1 i=1
where IT;(Y), ..., I1,(Y) are the elementary symmetric polynomials of I, [Y]. By

(4.4), we see that M belongs to [, [X, T], which in particular implies that IT;(Y)
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belongs to I, [X] for 1 < i < r. Combining these arguments with Lemma 4.1 we
obtain the following result.

Lemma 4.2 A polynomial f :=T" +a, T" "' +---4ag € E,[T1, has factorization
pattern A if and only if there exists x € I of type A such that

ai= (1", ;(¥Y(x)) 0<i<r-—1). (4.6)
In particular, for [ square-free, there are w(L) elements x for which (4.6) holds.

Recall that the family A of (1.1) is defined by polynomials G, ..., G, in IE_ZI [Ax],
for a fixed k with 0 < k < r — 1. As a consequence, we may express the condition
that an element of .A has factorization pattern A in terms of the elementary symmetric
polynomials ITy, ..., [T, 41, I, —g41, ..., IT, of [ [Y].

Corollary 4.3 A polynomial f :=T" +a,_\T" ' +---+ag € E,[T1, belongs to Ay
if and only if there exists x € Iqu of type A satisfying (4.6) such that

Gi(— Ty, oo (1) g, (D) g, - (DT (Y (x) = 0
(1<j<m, @7

where Gy, ..., Gy, are the polynomials defining the family A. In particular, if f =
M(x,T) € A, is square-free, then there are w(A) elements x for which (4.7) holds.

4.2 The number of polynomials in A,

Given a factorization pattern A, in this section we estimate the number of elements
of A, . For this purpose, in Corollary 4.3 we associate with 4, the polynomials
Ry, ..., Ry € E;[X] defined as follows:

Rj:=G (=T, ., (=1 ey, (D) g, (DT ) (Y ().

4.8)
Let V := V(Ry,...,Ry) C A" be the variety defined by Rj,..., R,. Since
G1, ..., Gy, satisfy hypotheses (H1)—(Hg), by Lemma 3.2, Corollary 3.5, Theorem 3.9
and Remark 3.10 we obtain the following result.

Theorem 4.4 Let m, r be positive integers withm < r.

(1) V C A" is a complete intersection of dimension r — m.

(2) pcl(V) C P is a normal complete intersection of dimension r — m and degree
[T'L, di, where d; == deg(R;) = wt(G;) for 1 <i <m.

(3) Vuo :=pcl(V) N {Yy =0} C P'~! has dimension r —m — 1.

Now we estimate the number of [f; -rational points of V. According to Theorem 4.4,
pcl(V) C IP" is anormal complete intersection defined over If;, of dimension r —m and
multidegree d := (dy, ..., dy). Therefore, [6, Corollary 8.4] implies the following
estimate (see [4,25,26,41] for further explicit estimates):

1Pl (V) B — prom| < (5(D —2) +2)¢" "2 + 14D%6%¢" ",
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where pp—yy = ¢ "+~ 4+qg+1 = |PPT"E)|, S ;= dy---dyp and D =
q

Y di = 1).
On the other hand, the Bézout inequality (2.1) implies deg Vo, < 4. Then, by
Theorem 4.4 and (2.3) we have

i Voo () | < 8pr-m—1-
It follows that

[IVE)I —q" | = |Ipcl(V)E)| — Voo E)| = prem + Pr—m—1]
< [Ipcl(VYED| = prem]| + | Voo B))| + 24"
1 202 r—m—1
< ((B(D —2)+2)q2 +14D*5° + 25+ 2)q .49

Let V= be the subvariety of V defined as

V: = U V N {YZj,.jl+kl = Yei,j2+k2}’

1<i<r
I<ji<ja=Ai, 1<ki<ka<i

where Yy, ;1 are the linear forms of (4.5). Let V#(Ej) = VE)\V=(E,). We claim

that V-N{Yy, ; +k; = Ye; ;,+k, } has dimension at most r —m — 1 forevery 1 <i <r,

l<ji<jp=<handl <k <ky <i lIndeed letx € VN {Yy  +x = Yo ;,+k)

for i, j1, j2, k1, k2 as above. By (4.4), we conclude that M (x, T) is not square-free,

and therefore IT" (Y (x)) € D(W). Since Gy, ..., G, satisfy (Hy), it follows that

dimD(W) < r —m — 1, and the fact that I1” is a finite morphism implies that
dim((IT")~1(D(W))) < r —m — 1. This proves our claim.

The claim implies dim V= < r —m — 1. By the Bézout inequality (2.1), we have

_ 2 2

degV §degVZ 7 < 1

i=1

8.

As a consequence, by (2.2) we see that

2
é
[V=(E,)| < degV~ g < rT g~ (4.10)

Finally, combining (4.9) and (4.10) we obtain the following result.

Theorem 4.5 Form < r, we have
IVEE)| - q" "] < q" ! ((5(1) —2)4+2)g? +14D%2 + 25 +2 + r25/4),
where 8 := [[/L, wt(G;) and D := Y7 | (Wt(G;) — 1).
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Proof By (4.10), |V=(E,)| < 28 q"~"~1/4. Then, from (4.9) we deduce that

IVEED — g™ ™| < IVEDI—¢" ™|+ |V= (&)

= ((5(D -2)+ Z)Q% + 14D?s? +28 + 2)qr7m71
}’25 r—m—1
+ 4 .

This shows the statement of the theorem. O

Next we use Corollary 4.3 to relate |V (If;)| to the quantity |.A;|. More precisely,
letx :=(x;j:1<i<r,1<j=<X)e IFq’ be an [F,-rational zero of Ry, ..., Ry
of type A. Then, x is associated with f € Ay having Yy, ; 4+« (x; ;) as an [ i-root for
l<i<r,1<j=<Aandl <k <i, whereYy, i is the linear form of (4.5).

Let A‘;q = {f € Ay : f issquare-free} and Azsq = Ax\Aiq. Corollary 4.3
shows that any element [ € Aiq is associated with w(A) := ]—[f=l i*%;! common
[, -rational zeros of Ry, ..., Ry of type A. Observe that x € IF; is of type A if and
only if Ygi'jJrk,(x) #* Ye,-,j+k2(x) forl <i<r,1 <j<Xtandl <k| <k <
i. Furthermore, an x € [ of type X is associated with f € .Aiq if and only if
Yo itk () # Yy o) forl =i <r, 1< ji<jpp=Xtandl <k <k <i.lt
follows that | A}/| = 7 (A)|V# ()|, where T (1) := 1/w(A). This implies

A =T Mg ™" =TM|IVFEI—q" .
From Theorem 4.5, we deduce that

AT = TX) g ™| < TG ((5(D —2) +2)q7 + 14D*s>
+ 28 +2+r%5/4)
< TG ™" ((6(D = 2) +2)q? + 14D + r25).

Now we are able to estimate |4, |. We have

A =T Q)" | = (LA + 147 = T 00"
< Tg" " (B(D —2) +2)g* + 14D*5> 4 r%9)
AT @i

It remains to bound IAZW |. To this end, we observe that f € A is not square-free

if and only if its discriminant is equal to zero, namely it belongs to the discriminant
locus D(W). By hypothesis (Hs), the discriminant locus D(W) has dimension at most
r — m — 1. Further, by the Bézout inequality (2.1) we have

deg D(W) < deg W - deg{ag € A" : Disc(F (Ao, T))Ag=a, = 0}
<dgr(r—1) <8r
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Then, (2.2) implies
AL < A < S r(r— 1) g ™" < 812" “-12)

Hence, combining (4.11) and (4.12) we conclude that
A = T g ™| < g" ! (T(x)((a(D —2) +2)g2 +14D%82 + r28) + r23>.

In other words, we have the following result.

Theorem 4.6 For m < r, we have that

A7) = T g" ™| = TQ)q" ™"~ ((6(D = 2) +2)g + 14D + %),
A = T g "] < g ! (T(x)((a(D —2)+2)q? + 14D252+r28)+r28),

where § := [[/L, wt(G;) and D := Y7 | (Wwt(G;) — 1).

As we show in Sect. 5.1, Theorem 4.6 extends [8, Theorem 4.2]. More precisely,
Theorem 4.6 holds for families defined by linearly independent linear polynomials
Gi,...,Gy € [A, 1, ..., A2] with char(F;) not dividing r(r — 1), and linearly
independent linear polynomials Gy, ..., G, € F;[A,_1, ..., A3] with char(F,) > 2.
The latter is precisely [8, Theorem 4.2].

5 Examples of linear and nonlinear families
In this section, we exhibit examples of linear and nonlinear families of polynomials

satisfying hypotheses (H{)—(Hg). Therefore, the estimate of Theorem 4.6 is valid for
these families.

5.1 The linear families of [8]
Suppose that char(If;) > 3. Let r, m, n be positive integers with 2 < n <r —m and

Ly,....Ly € E[A,—1, ..., A,] linear forms which are linearly independent. In [8]
the distribution of factorization patterns of the following linear family is considered:

A= {T’JraHT"1 +--+ao € KIT]: Lj(ar—1,...,a,) =0 (1 Sjsm)]

5.1
Assume without loss of generality that the Jacobian matrix (0L; /0 A j)1<i<m,n<j<r—1
is lower triangular in row echelon form and denote by 1 <i; < --- < i, <r —n the

positions corresponding to the pivots. We have the following result.

Lemma 5.1 If either n = 2 and char(l;) does not divide r(r — 1) or n > 3, then
Ly, ..., Ly satisfy hypotheses (Hy)—(Hg).
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Proof 1t is clear that hypotheses (H;)—(H2) hold. Further, since the component of
highest weight of Ly is of the form L} = by ,_;, A,_;, for I <k < m, we conclude
that (H3) holds.

Now we analyze the validity of (Hs4). Denote W := V(Ly, ..., L,) C A". Itis
clear that

W1 :=FlA—1, ..., Aol/(L1, ..., Ly) =~ E[Ar : k € J]

is a domain, where 7 :={r — 1, ..., 0}\{r — i1, ..., r —i,}. Therefore, it suffices to
prove that the coordinate class R defined by Disc(F (Ao, 7)) in IE_‘q [W] is a nonzero
polynomial in E,[Ak k€ J|, where F(Ag, T) :=T" + AT V44 A
and Ay := (A,_1, ..., Ap). If char(I;) does not divide r(r — 1), then the nonzero
monomial r” Ag_l occurs in the dense representation of R. On the other hand, if
char(If;) divides r, then the nonzero monomial A’ occurs in the dense representation
of R. Finally, if char (If;) divides r — 1, then we have the nonzero monomial Ag_l in
the dense representation of R.

Next we show that (Hs) is fulfilled. For this purpose, we first prove that
Ao, L1, ..., Ly, Disc(F(Ap, T)) form a regular sequence ofEI[Ar,l, ..., Apl. We
observe that

Fy[Ar-1, ..., Aol/(Ao, L .o L) = FylAy 1k € 1]

is a domain, where 71 := J\{0}. Hence, considering the class R of Disc(F (Ao, T))
as an element of E[Ak 1k € J1], it is enough to prove that it is nonzero. Indeed, if
char(If; ) does not divide r (r — 1), then the monomial (=)t — 1)”1A§ occurs in
the dense representation R, while for char () dividing r, the monomial A} appears
in Ry. Finally, for n > 3 and char(If;) dividing » — 1, we have the nonzero monomial
(- +1A%Ag_l in the dense representation of R .

Finally, we prove that Ly, ..., L,,, Disc(F (Ao, T)), Subdisc(F (Ao, T)) form a
regularsequenceinE[Ar_l, e, Ao].RecallthatE,[A,_l, e Aol/(Lyy ooy L)
E,[Ak : k € J]is a domain. Therefore, we may consider the classes R and S| of
Disc(F(Ag, T)) and Subdisc(F (Ao, T)) modulo (L1, ..., L,,) aselements oqu[Ak :
k € J]. We have already shown that R is nonzero. On the other hand, if char(I,)
does not divide r(r — 1), then the nonzero monomial r(r — l)r’2A§_2 occurs in the
dense representation of &y, while for char(F,) dividing r (r — 1), we have the nonzero
monomial 2(—1)" (r —2)” _ZAE_I in the dense representation of Sj. We conclude that
S is nonzero.

Further, [40, Theorem A.3] or [45, Theorem 3.1.7] shows that R is an irreducible
element of E,[Ak : k € J] and hence B := E[Ak k€ J1/(R) is a domain.
Thus, it suffices to see that the class of Sy in B is nonzero. If not, then S; would
be a nonzero multiple of R in E][Ak : k € J], which is not possible because
max{deg,, R, deg,, R} = r and max{deg,, Si,degy, S1} =r — 1.

Finally, we prove that (Hg) holds. The components of highest weightof Ly, ..., L,
being of the form L,‘Q’t = by r—iyAr—i, fork =1, ..., m, arguing as before we readily
conclude that (Hg) holds. O
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From Lemma 5.1, it follows that the family A of (5.1) satisfies the hypotheses of
Theorem 4.6. Therefore, applying Theorem 4.6 we obtain the following result.

Theorem 5.2 Suppose that char (If;) > 3. Let A be the family of (5.1) and A a factor-
ization pattern. If either char(If)) does not divide r (r — 1) and Ly € F;[A,_1, ..., A3]
Jorl1 <k <m,or Ly e E[A,_1,...,Aylfor]l <k <mand3 <n <r —m, then

A = T g™ | < TA)g" " ((5(D = 2) + 2)g* + 14D?8% + r25),
A =T g | < g ! (T(x)((a(D —2)+2)qt + 14D282+r28)+r25),

where § 1= ]_[;(lzl ijand D := Z’]n:l(i./ = D.

5.2 Alinear family from [23]

In [23], there are experimental results on the number of irreducible polynomials on
certain families over If;. Further, the distribution of factorization patterns on general
families of polynomials of F,[T'] of a given degree is stated as an open problem. In
particular, the family of polynomials we now discuss is considered.

Suppose that char (I;) > 3. For positive integers s and r with3 < s <r — 2, let

A={T"+g(M)T+1: geF[T]and degg <s — 1}. 5.2)

Observe that A is isomorphic to the set of If; -rational points of the affine I, -subvariety
of A" defined by the polynomials

Gy:=Ap—1, Gr:=As41,...,Gr—s = Ar1.

We show that hypotheses (H;)—(Hg) are fulfilled. It is easy to see that (H;) and
(H2) hold, since Gy, ..., G,_; are linearly independent polynomials of degree 1.
Furthermore, taking into account that

wt wt wt
G] =AO5 Gz =AS+]7~"9G;«_S=AI‘—15

we immediately conclude that hypothesis (H3) holds.

Now, we analyze the validity of hypotheses (Hs) and (Hs). Let W C A" be the
[, -variety defined by the polynomials G, ..., G,_,, and denote by D(W) C A"
and S1(W) C A’ the discriminant locus and the first subdiscriminant locus of W,
respectively.

We first prove that D(W) has codimension one in W. It is clear that Gy, ..., G,_g
form a regular sequence of I, [A,_1, ..., Ag]. Observe that

B Wl =FlA—1,..., Al/(G1,....Gr—) = FlA;, ..., Al]

is a domain. As a consequence, we may consider the coordinate function R defined by
Disc(F (Ao, T)) as an element of [, [Ay, ..., Aq], where Ag := (A,_1,..., Ap) and
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F(Ao, T) =T + A, T" "'+ + Ag. We observe that R # 0in T [Ay, ..., A1],
because F(Ag, T) is not a separable polynomial, and therefore it is not a zero divisor
of IP_}I[W]. It follows that D(W) has codimension one in W, namely hypothesis (Hz)
holds.

Next we show that (Ag - S1)(W) has codimension at least one in D(W). Since
G := Ag — 1 vanishes on W, the coordinate function of E,[W] defined by Ap is a
unit, which proves that (Ag - S1)(W) = S1(W).

In what follows, we shall use the following elementary property.

Lemma5.3 Let Fi,...,F, € IF_;][A(), LA If Fy, ... Fy form a regu-
lar sequence in E(Ao, e ADMA41, .-  Art), then Fy, ..., Fy form a regular
sequence in E[Ao, LA

We shall also use the following property of regular sequences.

Lemma5.4 Let Fy,...,F, € IE_‘q[Ao, ..., Ar_1]. For an assignment of positive
integer weights wt to the variables Ao, ..., Ar—1, denote by FWt Frff the com-
ponents of highest weight of Fy, ..., Fy,. IfFIWt, <o, Ft form a regular sequence in

EI[AO, coos A1), then Fy, ..., Fy, form a regular sequence in EI[AO, LA

Proof Let Vi=V(F,...,F;) CA"for1 < j < m.Itis enough to see that V; has
codimension j for 1 < j < m. By hypothesis, VJ‘."’t = V(FM", ..., F}Nt) C A’ has
pure dimension » — j. Therefore, there exist 1 < k; < --- < k,_; < m such that the
variety V := V(F', ..., F/‘f"t, Akys -5 Ag,_;) C A7 has dimension zero. Consider
the following morphism of affine [, -varieties:

¢ A" — A
(o, - ay1) > (awt(O) wt(l) o Wt(r 1))
where wt(0), ..., wt(r — 1) are the weights assigned to Ao, . . ., Ar:1, respectively. It
is clear that ¢ is a finite, dominant morphism. Observe thatif ' € F,[Ao, ..., A,_1]

is weighted homogeneous, then ¢ (F') is homogeneous.

We have that ¢(V) C A" is a zero-dimensional affine cone. Since ¢(V) is defined
by the homogeneous polynomials F. Wt(AWt(O) ceey AWt(r 1)) 1 <i<j,and AWt(k’
1 <i<r—j,itmustbe ¢(V) = {0}. Therefore, by, e.g., [44, Proposition 18] the
affine variety defined by the polynomials

Fi( AWt(O) wt(r 1)) Fj( Awt(O) Wt(r 1)) Awt(kl) AWtke—j)

ey kr—j

has dimension zero. Taking into account that ¢ is a finite morphism, we conclude that
the variety V; C A" defined by Fi, ..., Fj, A, ..., Ak,,j has also dimension zero.
Finally, observe that the dimension of V; is at least » — j. On the other hand,

0 = dim ‘71- > dim V; — (r — j). This finishes the proof of the lemma. O

We have that G», ..., G,_; form a regular sequence in E,[Ar,l, ..., Aol
Observe that F;[A,_1, ..., Aol/(G2, ..., G,r—s) = K[As, ..., Aol. Therefore, to
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conclude that (Hs) holds it suffices to prove that G;, S and R form a regu-
lar sequence in E[AS, ..., Agl, where G;, R and S; are the coordinate func-
tions of E[Ar,l, ..., Aol/(Ga, ..., Gy—s) defined by G, Disc(F(Ag,T)) and
Subdisc(F (Ag, T)), respectively.

Lemma5.5 G|, S| and R form a regular sequence in E][As, ..., Apl
Proof We consider R, S1, Gi as elements of IE_}I(AS, o Ak DA, ..., Ap] for an
appropriate i € {2, 3} and define a weight wt; by setting

wt; (Ag) :=r, wtj(A) ==r—1,...,wt;(A;) :=r —1i.

wt;

Denote by G, RWG and S;Nt" the components of highest weight of G;, R and Sy,
respectively. We have the following claim.

Claim Q\th" , S}Nti and R"% form aregular sequence inE(AS, oL A DIAG L Aol

Proof of Claim Observe that
B (Ags ooy A DIAL o, Aol/(GY) =~ Fy(Ay, ., Ay DI A -, A

is adomain. As a consequence, it suffices to prove that the coordinate functions defined
by S;Nt" and R™Y in this quotient ring form a regular sequence. With a slight abuse of

notation, we shall also denote them by S;Nt" and RV,
The proof will be split into four parts, according to whether char(I;) divides r,
r —1,r — 2 or does not divide r(r — 1)(r — 2).

First case char(Ify) divides r. For i := 2 we have that, in E(AS, ..., A3)[An, A1,
RVe = A 4+ (=1)T12772457 A2 and 87 = (24,7 (5.3)
Observe that S}Ntz is a nonzero polynomial ofIE_},(AS, ..., A3)[Az, Aq], and
Fy(As, ..., A3[A2, A11/(S)"™) = (Ay, ..., A[AL]

It follows that R"® is not a zero divisor in E(As, ..., A3)[A>, Al]/(SiNtz), which
completes the proof of the claim in this case.

Second case char(If;) divides r — 1. For i := 3, we prove that S}Nt3 and RW® form a
regular sequence in E, (Ay, ..., A4)[A3, Az, Al Let F := T"+ AT+ Ay T2+ A T.
It is easy to see that R"® = Disc(F) and 8‘{“3 = Subdisc(F). Observe that F/ =
T"~' +3A3T3 +2A,T? + A;. By [24, Lemma 7.1], we deduce that

RS = (—1)’""DRes(F/, G) and 8" = (=) V=D subdisc(F', G),

where G := —2A3 T3 — A,T? is the remainder of the division of F by F’. Therefore,
by the Poisson formula it follows that

RWt3 — (_l)r-‘f-lA%A;*l + ZF—IA%A%Agfz _ 2r—3A:ngfl-
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On the other hand, by, e.g., [13, Theorem 2.5], we conclude that

S)'® =24 4 (1) 22 AZATE F 24 AT Ay 4+ 3(— 1) T2 2 A, 4!
=2(A "+ ATATTPAR) + (=2 2(A3ALTE - 34,457,

In the second line, we express S }Nt3 as the sum of two homogeneous polynomials of
degrees r — 1 and r without common factors. Then, [27, Lemma 3.15] proves that S \1NT3
is an irreducible polynomial in IE_;] (Ag, ..., A1)[A3, Az, A1]. Next suppose that RWG
is a zero divisor in IET‘q(AS, .., Ag[A3, As, Al]/(S‘l’Vt3). Since S}'m is irreducible,
we have that RS ¢ (S}Nt3), which is easily shown to be not possible by a direct
calculation.

Third case char(If;) divides » — 2. For i := 3, we show that S}m and RWH
form a regular sequence in E(AS, ..., A1)[A3, Ay, A1]. As in the previous case, if
Fi=T"+ A3T3 + AyT? + AT, then RYS = Disc(F) and S| := Subdisc(F).
Since F/ = 2T"~! +3A3T3 +2A,T? + Ay, from [24, Lemma 7.1] it follows that

RYS = (=1)""D2 P Res(F, G) and S = (=)D Subdise(F', G),

where G = —%A3T3 + %AlT is the remainder the division of F by F’. By the
Poisson formula, we obtain

- 42 =2 _
RWE 447 A; - Al — 2A2r+Aal T A7 — A}A3AL 2 for r even,
AAIALTN 4 AT 44AT AT — A2AZAT for 7 odd.,

In the same vein, by, e.g., [13, Theorem 2.5], we have that

SV _ 4A2(A1A3) T + 2A5AT 2 424772 —6A1AY? forr even,
! T(A1A3)'T — 2424572 424772 4 641451 forr odd.

We observe that S‘th3 is an irreducible polynomial in Fq (Ag, ..., Ap[A3, Ay, A1]. To
prove this, it suffices to apply the Eisenstein criterion, considering 8‘{“3 as an element
of the polynomial ring E((As, ..., Ag)[A3, A1])[A2] and the prime (A}). Next, sup-
pose that R™Y is a zero divisor in [y (Ay, . . ., Ag)[A3, A2, A11/(S)'™). Since S} is
irreducible, we have that R"S ¢ (S ;Nt3), which can be shown to be not possible by a
direct calculation.

Fourth case char(I;) does not divide r (r—1) (r —2). Fori := 2, we prove thatS ‘thz and
RWE form aregular sequence inFq (As, ..., A3)[A2, A1]. Arguing as before, we obtain
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RY2 = (1—r)'A} — (r —2)r ' ATAL,

S =r(r— DA 422 - ) 2AL
By the Stepanov criterion (see, e.g., [39, Lemma 6.54]), we deduce that S}Ntz is
an irreducible polynomial in IE_}I(AS, ..., A3)[A2, A1]. Suppose that R"! is a zero
divisor in E(As, ..., A3)[A>, Al]/(S‘thz). Since S}NQ is irreducible, we have that
RWe ¢ (S ;Ntz), which can be seen not to be the case by a direct calculation. Therefore,

we deduce that S‘l’Vtz and RY® form a regular sequence in IE_}, (Ag, ..., A3)[A2, A1].O

By the claim and Lemma 5.4, it follows that G1, S and R form a regular sequence
in E(AS, o AirDIAG, ..., Apl, and Lemma 5.3 implies that G, S; and R form a
regular sequence in E [Ag, ..., Aol m|

By Lemma 5.5, we conclude that hypothesis (Hs) holds. Finally, we prove
that hypothesis (Hg) holds. The components of higher weight of the polynomials
Gi,...,Gr_gare G = Agyj_ for2 < i < r —sand G} = Ap. With the same
arguments as above, we see that D(W™') has codimension at least one in W"!, where
WwWt = V(G‘f’t, L, GW).

Since the family (5.2) satisfies hypotheses (H;)—(Hg), from Theorem 4.6 we deduce
the following result.

Theorem 5.6 Let A be the family (5.2) and A a factorization pattern. We have

1A =T g*| < TG ((6(D —2) + 2)g? + 14D28% + 125),
Al - TN g < g (T(X)((S(D —2)+2)q? + 14D%6% + 125) + r28),

where Ay is the set of elements of A with factorization pattern A, Aiq is the
set of square-free elements of Ay, 8§ == r - —s — D0land D := r — 1 +
r—s—2)r—s—1)/2

Proof We apply Theorem 4.6 with m := r — s to the polynomials

Ri:= (=D, =1, Ry:=(=1)"""",_y_y,..., Ry := —T1j.

Therefore, we have

r—s
8::1_[degRi =r-(r—s—1)!and

i=1

r—s
r—s—2)r—s—1)
D::Z(degR,-—1)=r—1+ 5 .
i=1
This finishes the proof. O
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5.3 A nonlinear family

Letr, 1, ..., t be positive integers with r even. Suppose that char(If;) > 3 does not
divide (r — 1)(r + 1)((r — l)r*1 +r’). Consider the polynomial G € F;[A1, ..., A/]
defined in the following way:

... !
. NA@Lty) (t + +1,)! f ty
G := Z (=1 e Al Al
t+2t+-+rt,=r
where A(t,tp, ..., t) :=1r — Zle t;. The polynomial G arises as the determinant

of the n x n generic Toeplitz—Hessenberg matrix, namely

A 1 0 ... 0
G = det

: . .0

Ay ... ... A1

This is the well-known Trudi formula (see [43, Ch. VII]; see also [42, Theorem 1]).
We also remark that the polynomial H, := G(I1,, ..., I1}) is critical in the study of
deep holes of the standard Reed—Solomon codes (see [5, Proposition 2.2]).

We consider the following family of polynomials:

Av ={T"" +a,T" +---4ay:Glar,...,a)) =0}. (5.4)

Observe that A5 may be seen as the set of I, -rational points of the F,-variety W :=
V(G) C A™*!. Let wt be the weight defined by wt(A;) :=r+1—ifori =0,...,r.
We shall prove that this family of polynomials satisfies hypotheses (H;)—(Hg).

Itis clear that (H;) holds, because G is nonzero. Further, since G is a monic element
of ;[Ay, ..., A2][A1] of degree 1 in Ay, we have that

G
0A,

0G
VG(ap) = ( (@o), ..., a_Az(aO)’ 1) #0

for any ap € W. We deduce that hypothesis (H») holds.
Next we consider hypothesis (H3). Given an arbitrary nonzero monomial

(ti 4 +1)!

my = (DA (o A LAY

arising in the dense representation of G, it is easy to see that wt(mg) = r. It follows
that G is weighted homogeneous of weighted degree r. Then, GV = G, which readily
implies that hypothesis (H3) holds.

Now we analyze the validity of hypothesis (H4), namely that the discriminant
locus D(W) C A"t of W has codimension at least 1 in W. For this purpose, it
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suffices to show that {G, R} form a regular sequence in E [A,, ..., Ag], where R :=
Disc(F (Ao, T)), F(Ag, T) :==T" ' + A, T" +--- 4+ Agand Ag := (A,, ..., Ag).

We consider G and R as elements of the polynomial ring E (A, ..., A2)[A1, Ap]
and define a weight wt; on E(Ar, ..., A2)[A1, Ao] by setting

wti(Ay) :==r, wti(Ag) :=r + 1.

We claim that GV, R"! form a regular sequence in F,(A,,, ..., A2)[A1, Aol.
Observe that G™' = A;. Further, since F,(A,,..., A2)[A1, Agl/(G"!) =~
EI(Ar, ..., A2)[Ap] is a domain, to prove the claim it suffices to show that RV
is nonzero modulo (A1). A direct calculation shows that R = (r + 1)’ +1 A7
modulo (A1), which proves the claim. As a consequence of the claim and Lemma 5.4,
we deduce that G and R form a regular sequence in EI(Ar, ..., A2)[Aq, Ap], and
Lemma 5.3 implies that G and R form a regular sequence in E] [Ay, ..., Ag]. In other

words, hypothesis (Hy) is satisfied.
Next we show that hypothesis (Hs) holds. To this end, we make the following claim.

Claim Ap, R and G form a regular sequence ofIF_;I[Ar, ..., Apl.

Proof Since E,[A,, ..., Aol/(A0) = F[A,,..., A1l and G € F[A,,..., Aj], we
show that R modulo (Ap), and G, form a regular sequence in [;[A,, ..., A;]. We
consider G and R modulo (Ag) as elements of E(Ar,l, ..., A2)[A,, A1], with the

weight wt, defined by wt, (A,) := 1 and wt,(A) := r. We claim that G and R""
form a regular sequence in I, (A, 1, ..., A2)[A;, A1]. First, we observe that

GWtr :A1 +A;’

and the Stepanov criterii)n (see, e.g., [39, Lemma 6.54]) proves that GWY is an irre-
ducible polynomial of I, (A,_1, ..., A2)[A,, A1]. Thus, it is enough to prove that
RWY is a nonzero polynomial ofE(Ar_l, .. AD[A,, A1]/(GWY). We have
thr =—(r— l)r_lA:A'i +rVAI1‘+1
=—(r — D+ rr)AT'r2 modulo G .
We conclude that GV and RVY form aregular sequence inEI(A,, ..., AD[A,, ALl

Combining Lemmas 5_.4 and 5.3 as before, we deduce that R modulo (Ag) and G form
aregular sequence in I, [A,, ..., A], which implies that Ag, R and G form a regular

sequence ofE[A,, ..., Aol O
We also need the following claim.

Claim G, R and S; form a regular sequence ofE [Ar, ..., Aol

Proof Consider G, R and S; as elements of IE_},(A,, ..., A3)[A2, Ay, Apl, and the
weight wty defined by wty (Ap) :=r — 1, wta(A) =71, wtz(Ao) =r+ 1. We claim
that G2, S}' and R"® form a regular sequence in T, (A,, ..., A3)[A2, A1, Agl.
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Since GV = Ay, we have that F;(A,, ..., A3)[A2, A1, Aol/(GV®2) ~ T, (A,, ...,
A3)[A»2, Ao] is a domain. Therefore, it suffices to prove that S‘thz modulo (A1) and
RWY% modulo (A;) form aregular sequence in IE_;I(Ar, ..., A3)[A3, Ag]. Observe that

S} modulo (A1) = —2(r — 1)" AL,

Further, we have R modulo (A1, A2) = (r 4+ 1)’ "1 Al As a consequence, G"®,

S} and R"® form a regular sequence in |, (A,, ..., A3)[A2, A1, Ag]. From Lem-
mas 5.4 and 5.3, it follows that G, S| and R form a regular sequence inE] [Ay, ..., Aol
m}

From the first claim, we conclude that D(W) N {Ag = 0} has codimension two
in W, while the second claim shows that S;(W) has codimension two in W. As a
consequence, D(W) N (Ag - S1)(W) has codimension two in W, that is, hypothesis
(Hs) is satisfied.

Finally, since G = G, we readily deduce that hypothesis (Hg) holds.

As a consequence of the fact that the family (5.4) satisfies hypotheses (H;)—(He),
we obtain the following result.

Theorem 5.7 Let Ay be the family (5.4) and A a factorization pattern. We have

||A}$,l| - T(A’) qr| < T(X)qr_l(rzq% + 14’,4)’
A Al = TOg'| =g (TM)02g +14r%) +17),

where Aps 5 is the set of elements of Ans with factorization pattern A and .Aj\q/ ) Is the
set of square-free elements of Anf .

Proof This is a simple consequence of Theorem 4.6 with m := 1 and the polynomial
Ry = G(—II1, Iy, ..., (=D'IT,).

As previously remarked, the weighted degree of G is r, which implies thatdeg Ry = r.
Therefore, we have

§:=degRy=rand D :=degRy —1=r —1.
As a consequence, Theorem 4.6 implies

A, | = TM) | < TMg" ™ ((r(r = 3) +2)g2 + 14(- — D2 +73),
[ANAl =T g | <q"! (T(x)((r(r —3)4+2)q7 + 140 — )22 + ) + r3).

This immediately implies the statement of the theorem. O
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6 Average-case analysis of polynomial factorization over . A

In this section, we analyze the average-case complexity of the classical factorization
algorithm applied to any family A as in (1.1) satisfying hypotheses (H;)—(He).
Given f € F,[T], the classical factorization algorithm finds the complete factor-
ization f = f Lo f9r where f1, ..., fu are pairwise-distinct monic irreducible
polynomials in [f;[T] and ey, . . ., e, are strictly positive integers. The algorithm con-

tains three main routines:

e elimination of repeated factors (ERF) replaces a polynomial by a square-free one
that contains all the irreducible factors of the original one with exponent 1;

e distinct-degree factorization (DDF) splits a square-free polynomial into a product
of polynomials whose irreducible factors have all the same degree;

e equal-degree factorization (EDF) splits completely a polynomial whose irre-
ducible factors have all the same degree.

More precisely, the algorithm works as follows:

Classical factorization algorithm

Input: a monic polynomial f € I§[T] of degree r > 0.
Output: the complete factorization of f in [, [T'].

factor procedure (f < IF,[T])

ay = ERF(f) [ay is square-free]
by :=DDF(ay) [by is a partial factorization into distinct degrees]
F =1
For k from 1tos (s <r)do
F := F - EDF(by[k], k) [refines the distinct-degree factorization for
polynomials of degree k]
end do
¢ := factor(f/ay)
Return F - c.

In [18], the authors analyze the average-case complexity of the classical factoriza-
tion algorithm applied to all the monic polynomials of degree r of I, [T']. Unfortunately,
the results of this analysis cannot be directly applied to the family A4, because there
is a small probability that a random monic polynomial of degree r of If;[7'] belongs
to \A. For this reason, we shall perform an analysis of the behavior of this algorithm
applied to elements of .4, using the results on the distribution of factorization patterns
of Sect. 4.

Considering the uniform probability on A, let X : A — N be the random variable
that counts the number X'(f) of arithmetic operations in [f; performed by the classical
factorization algorithm to obtain the complete factorization in I;[T] of any f € A.
We may describe this algorithm as consisting of four stages, and thus the random
variable X may be decomposed as the sum of the random variables that count the
cost of each step of the algorithm. More precisely, we consider the random variable
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X1 : A — N that counts the number of arithmetic operations in I, performed in the
EREF step, namely
X1(f) := Cost(ERF(f)). (6.1)

Further, we introduce a random variable X> : A — N that counts the number of
arithmetic operations in [f; performed during the DDF step, namely

X2(f) := Cost(DDF(ay)), (6.2)

where ay := ERF(f) denotes the square-free polynomial obtained after performing
the ERF step on input f. Denote by

b;:=DDF(as) = (bs(1),...,bs(s))

the vector of polynomials obtained by applying the DDF step to the monic square-free
polynomial ay := ERF(f), where s is the degree of the largest irreducible factor of
ay. Each by (k) consists of the product of all the monic irreducible polynomials in
[, [T] of degree k that divide f. With this notation, let A3 : A — N be the random
varlable that counts the number of arithmetic operations in I, of the EDF step, namely

A3(f) = Z A3k (f), Au(f):=Cost(EDF(bs(k))) (1 =<k=<s).  (6.3)

Finally, we introduce a random variable Xy : A — N that counts the number of oper-
ations in [, performed by the classical factorization algorithm applied to f/ERF(f).
Our aim is to study the expected value of the random variable X', namely

E[X] :—WZ X = AlZZ X (f). (6.4)

k=1 feA

We denote by M (r) a multiplication time, so that the product of two polynomials of
degree at most r of If; [T'] can be computed with at most Ty M (r) arithmetic operations
in ;. Using fast arithmetic, we can take M (r) := r logr loglogr (see, e.g., [50]). For
71 suitably chosen, a division with remainder of two polynomials of degree at most
r can also be computed with at most 7y M (r) arithmetic operations in [,. Further, the
cost of computing the greatest common divisor of two polynomials in If, [T'] of degree
at most 7 is at most 72 U (r) arithmetic operations in If;, where U(r) := M (r)logr
(see, e.g., [50]). Here, 71 and 1, are system- and implementation-dependent constants.

6.1 Elimination of repeated factors

We consider in detail the step of elimination of repeated factors (ERF). Let

f= =TT T A

pl‘t 1’6,
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be the factorization of f € A into monic irreducible polynomials in F,[7'], where
fi, ..., fn are pairwise distinct, ey, . .., e, € Nand p := char(Ify). Itis clear that f is
square-free if and only if ged(f, f) = 1 (see, e.g., [50, Corollary 14.25]). Assume that
[ isnotsquare-free. Hence, u := ged(f, f') # 1.1tfollowsthatv := f/u = Hﬂffi fi
is the square-free part of the product [ | ple; ffi (see, e.g., [49, Theorem 20.4]). Since

each ¢; < r :=deg f, we deduce that gcd(u, v") = HME fl . Therefore,

gcd(u V") l_[f&

plei

is the part of f which is a power of p. These are the foundations of the following
procedure.

ERF algorithm

Input: f € ;[T ] monic of degree r > 0.
Output: the square-free part of f, that is, the product of all distinct irreducible
factors of f in F,[T].

procedure ERF (f: polynomial)

Compute u := ged(f, ')

Compute v := -~ [square-free part of [ ple; ff’l
Compute w := gcd(”Tv,) [part of f which is a power of p]
Return v - ERF(w!/P).

According to [50, Exercise 14.27], for f* € I [T] of degree at most r, the number of
arithmetic operations in If;, performed by the ERF algorithm to obtain the square-free
part of f is O(M(r)logr + rlog(g/p)). In this section, we analyze the average-
case complexity of the ERF algorithm restricted to elements of the family .4. More
precisely, we analyze the expected value E[X]] of the random variable X defined in
(6.1), namely

E[X)] = A Y X, (6.5)
it

Let A% be the set of f € A that are square-free and A™Y = A\ A*Y. The
probability that a random polynomial of A is square-free is

| A% | A"

P[A] = =1
W=7 Al

According to (4.12), we have |A™9| < r(r — 1)8gq"~"!. On the other hand,
from Theorem 3.12 it follows that if ¢ > 15813/3 then |A| > lq’ " where
G = (Gy,...,Gy) are the polynomials deﬁnmg the family A and 6g =
deg G| - - -deg G,,. As a consequence,
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pLa) =1 - 2%ed T 2%
- qr—m q

In other words, we have the following result.

Lemma6.1 Forg > 15§ 13/3 , the probability that a random polynomial of A is square-

ree is P[A*1] > 1 — 2r28(; In particular, i > max{15§; 13/3 ,4r28¢), then
q. q
P[Asq] > 1/2

To estimate E[X]], we decompose the family A4 into the sets A*? and A™9. We
have

1
E[X]=— Y X+ Do) =857+ 5
1Al 2, Al

First, we obtain an upper bound for S;?. On input f € A%, the ERF algorithm
performs the first three steps. Since u := ged(f, f') = 1 and ged(u, v") = 1, its cost
is dominated by the cost of calculating u, which is at most 7, I/ (r) arithmetic operations
in [f;, and the cost of calculating v", which is at most 7| ¢/ (r) arithmetic operations in
;. We conclude that if f € A*Y, then X (f) < (11 + 72) U(r). Therefore,

A
Al

57 := Y X)) =@+ UC) (6.6)

IAI e

On the other hand, if f € A™9, then [50, Exercise 14.27] shows that the number of
arithmetic operations in If, which performs the ERF algorithm on input f is bounded
by X1(f) < ci(U(r) + rlog (%)), where ¢ is a constant independent of ¢ and
p := char(;). Hence, we have

oy L ( )|A"W|
T fe;wxl(f)q] U(r)—l—rlog(p) R 6.7)

Combining (6.6) and (6.7) we conclude that

A% A" g 1AM
E[X 1 z
[¥1] = (5 + ) U)o e ) e +errlog (7)o
A"
<C2L{(r)+c1rlog(p> Al

13/3

where ¢ := max{r| + 12, c1}. Hence, if ¢ > 156", then Lemma 6.1 implies

1
ELX] < c2U(r) + 2 ¢1 7386 log (1) -
p’q

We obtain the following result.
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Theorem 6.2 Let g > 158163/3. The average cost E[X] of the ERF algorithm applied

to elements of A is bounded as E[X|] < c;U(r) + c¢3log (%)(SG rq—z, where ¢y and c3
are constants independent of r and q.

We may paraphrase this result as saying that the average cost of the ERF algorithm
applied to elements of A is asymptotically of order I/(r), which corresponds to the
cost of calculating the greatest common divisor u := ged(f, f”). This generalizes the
results of [18, Section 2].

6.2 Distinct-degree factorization

Now we analyze the distinct-degree factorization (DDF) step. Recall that, given a
square-free polynomial a ¢ := ERF( f), the DDFroutine outputs alist (b(1), ..., b(s)),
where b(k) is the product of all the irreducible factors of degree k of the complete
factorization of ay over ;. The output (b(1), ..., b(s)) is called the distinct-degree
factorization of ay.

The DDF procedure is based on the following property (see, e.g., [39, Theo-
rem 3.20]): for k > 1, the polynomial T - T € I§,[T] is the product of all
monic irreducible polynomials in I,[7] whose degree divides k. It follows that
g1 = gcd(T? — T, f) is the product of all the irreducible factors of f of degree
1. Then, for 1 < k < r, the polynomial g; := gcd(T‘fk —T, f/gk—1) is the product of
all the irreducible factors of f of degree k. This proves the correctness of the following
procedure.

DDF Algorithm

Input: a monic square-free polynomial a € If,[T] of degree r > 0.
Output: the distinct-degree factorization (b(1), ..., b(s)) of a in I§;[TT].
Letg:=a, h:=T

While g # 1 do

Compute 2 := h? mod g
Compute b(k) ;== ged(h — T, g)

Compute g := % [a without the irreducible factors of degree at most k]
k:=k+1

End while

Return b.

In [50, Theorem 14.4], it is shown that this algorithm performs O(s M (r) log(rq))
arithmetic operations in If;, where s is the maximum degree of the irreducible factors
of the input polynomial a. In this section, we analyze the average-case complexity
of the DDF routine restricted to polynomials of the family .A. More precisely, we
consider the expected value E[A%] of the random variable X, of (6.2), namely

1
ElX) = > 0.
feA
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We decompose as before the set of inputs .4 into the disjoint subsets .A%? (elements
of A which are square-free) and A"*? := A\ A*?. Hence, we have

1 1
ElX) =% > B+ > . (6.8)
fedsa feAnsa

First, we obtain an upper bound for the first sum S;q in the right-hand side of (6.8).
We express .A*? as a disjoint union as follows:

p

sq __ sq

A=A,
i=1

where .Affq is the set of elements of A%Y for which the maximum degree of the irre-
ducible factors is i. Moreover, for 1 <i < r, we can express each .Af.q as the disjoint
union

sq sq
= A
reP;

where P; is the setof A := (A1, ...,4;,0,...,0) € Z{suchthat Ay +---+i}; =71

and A; > 0, and A}’ is the set of elements of A;? with factorization pattern A.

Therefore,
1 r
$39 = o YT mn. (6.9)
i=1 XePi feA?

Fixiwithl <i <r,letA € P;and f € Aiq. To determine the cost X, (f), we
observe that the procedure performs i iterations of the main loop. Fix I with 1 <[ <
and consider the /th iteration of the DDF algorithm. The number of products modulo
g needed to compute 29 mod g is denoted by A(g). Using repeated squaring, and
denoting by v(g) the number of ones in the binary representation of ¢, the number of
products required to compute #Y mod g is

Mg) = llogq] +v(g) — 1.

Thus, the first step in the /th iteration of the DDF algorithm requires at most
271 A(g)M (r;) arithmetic operations in F,, where r; := degg (note that ri = r
and r; < r for any /). Then, the computation b(k) := gcd(h — T, g) requires at most
T2 M (r;) log r; arithmetic operations in ;. Finally, the division g /b (k) requires at most
71 M (7;) arithmetic operations in If;. As a consequence, we see that

X(f) <) QTirg) + T2 logr + 1) M(r).
=1
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Observe that if a < b, then M (a) < M (D) (see, e.g., [50, §14.8])). It follows that
X(f)<icr g, crg:=M({) (2 T1A(g) + 11 + 12 log r). (6.10)

Thus, we obtain

557 sc’q > z—Tj;l DMEN]
AeP; AeP;

i=1 GAW i=1

We have the following result.

Lemma 6.3 Forq > 158163/3, the sum S;q is bounded in the following way:

1565 M
O <c,q(1+ 1/2 )(1+7’)§(r+1):cr,qg(r+1)(1+o(1)), (6.11)

where M, := D8q? + 14 D?6% + 128, § := [T, wt(G)), D := Y "L, (wt(G;) — 1)
and & ~ 0.62432945 . .. is the Golomb—Dickman constant.
Proof According to Theorem 4.6, we have
M
A <q"™" T(x)<1 + 7)

where 7 (1) is the probability of the set of permutations with cycle pattern A in the
symmetric group S, of r elements. Hence,

5! =T ’m<1 + %) i Y T, 6.12)
g

i=1 AeP;

Now we analyze the sum E, := »[_;i ) ,cp T(1). Observe that the sum
ZAGP,- T (1) expresses the probability of the set of permutations whose longest cycle
has length i. It follows that E, is the largest expected length between cycles of a
random permutation in S,. In [28], it is shown that

r—l—l =¢

where £ is the Golomb-Dickman constant (see, e.g., [35]). Combining this upper
bound, Theorem 3.12 and (6.12), we readily deduce the statement of the lemma. 0O

Next we obtain an upper bound for the second sum Sgsq of (6.8), namely

ns 1
8§ = o Z X (f).
feAnsq

@ Springer



Journal of Algebraic Combinatorics (2020) 51:103-153 141

Given f € A™9, we bound X, (f) := Cost(DDF(ay)), where a; := ERF(f) is the
output square-free polynomial of the ERF procedure applied to f. By (6.10), we have

X2(f) =eng - Sas

where cy 4 ;= M(N) (2 T1A(g) + 11 + 12 log N), N :=deg(ay) and s, is the highest
degree of the irreducible factors of ay. Since f € A", we have N < r — 1 and
sqa < r — 2. Moreover, it is easy to see that these bounds are optimal. Therefore we
obtain

X(f) =cro14 (r=2).

Combining this bound, Theorem 3.12 and (4.12), we deduce thatif ¢ > 158 };3/ 3, then

13/6 2 r—m—1
nsq |Ansq| 158G r ch
S <14 (r=2) Al Scr-1q(r=2) 1+ q'? gr—m
13/6 3
156 28
G G
S e "% (6.13)
r—1l,q ( g1/2 ) q

From the upper bounds of Lemma 6.3 and (6.13), we conclude that

1 1
ElX] =% > B+ > )
feAs feArsa
13/6 13/6

156 M 156 r38
G r G G
= Cra (1 q'/? > (1 q >E(r D e (1 q'? ) q

Since ¢ 4 = M(j) (2 T1A(g) + 11 + T2 log j), we have ¢, 1 4 < ¢, 4. As a conse-
quence, we obtain the following result.

Theorem 6.4 Forg > 1582;3/3, the average cost E[X>] of the DDF algorithm restricted

to A is bounded by

M, + r28(;)

E[X] <&EQuir(@)+ 1 +12logr)M(r) (r + 1) (l + 7

15813/6
X (1 + ql%)
=§QuMg) + 11+ 2logr)M(r) (r + D)(1 + o(1)),

where M, == D8q? + 14 D26% + 25, § := [/, wt(G,), D == Y7, (wt(G;) — 1)
and & ~ 0.62432945 . .. is the Golomb—Dickman constant.
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In [18, Theorem 5], the authors prove that the average cost of the DDF algo-
rithm applied to a random polynomial f € [F,[T] of degree at most r is of order
0.26689 (2 71 A(g) + 1) r3. We prove that, assuming that fast arithmetic is used, the
average cost of this algorithm restricted to A is of order £ (2 71 A(q)+ 711+ 12 logr) (r+
1) M (r) arithmetic operations in [ .

The DDF algorithm does not completely factor any polynomial f € .4 having
distinct irreducible factors of the same degree. More precisely, the classical factoriza-
tion algorithm ends in this step if the input polynomial f has a factorization pattern
A € {0, 1}". We conclude this section with a result on the probability that the DDF
algorithm outputs the complete factorization of the input polynomial of A.

In [19], it is shown that most factorizations are completed after the application of
the DDF procedure. More precisely, it is proved that, when r is fixed and ¢ tends to
infinity, the probability that the DDF algorithm produces a complete factorization of
a random polynomial of degree at most r in If,[T'] is of order of e™7” ~ 0.5614 ..,
where y ~ 0.57721 ... is the Euler constant (see [18, Theorem 6]). We generalize
this result to the family A.

Theorem 6.5 The probability that the DDF algorithm completes the factorization of a
random polynomial of A is bounded from above by (e_V +e7V/r+ O(log r/r2)) (1 +
0(1)), where y is Euler’s constant.

Proof Let A; be set of elements of A whose irreducible factors have all distinct
degrees. The probability that the DDF algorithm outputs the complete factorization
of a random polynomial f € A coincides with the probability that a random f € A
belongs to A;. We may express .A; as the following disjoint union:

A= A
AP,

where P, is the set of all vectors A := (Aq, ..., A,) € {0, 1} suchthat A +---+r A, =
r and A 3 is the set of elements of .4; having factorization pattern A. Hence,

1
PlAI]= )" PlAiA] = a > ALl (6.14)
AP, rEP,

Observe that if f € Ay, then f is square-free. By Theorem 4.6, for m < r we have
M
lAial <¢""T®) (1 + —r)
q

where M, := D8q2+14 D25%+r28,8 := [/, wt(G;) and D := 37 (wt(G)—1).

Theorem 3.12 shows that if ¢ > 158", then

1565/¢ M,
PLAIl < ( 1+ —F (1 + —) > T
4 q reP,
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We observe that ZXGP, T (L) expresses the probability that a random permutation of
S, has a decomposition into cycles of pairwise different lengths. By [30, (4.57)] (see
also [17, Proposition 1]), it follows that

I
2 T<x>=e-y+e—+0<°“’;r)-
r r

AEP;

We deduce that

13/6 —
158 M, v 1
P[A] < <1+—§2 )<1+—’)(e—y+—e +0(Og2r)).
q q r r

This finishes the proof of the theorem. O

6.3 Equal-degree factorization

After the first two steps of the classical factorization algorithm, the general problem
of factorization is reduced to factorizing a collection of square-free polynomials b(k),
whose irreducible factors have all the same degree k. The procedure for equal-degree
factorization (EDF) receives as input a vector by := DDF(ays) = (by(1), ..., bs(s)),
where each b ¢ (k) is the product of the irreducible factors of degree k of the square-
free part ay := ERF(f) of f. Its output is the irreducible factorization by(k) =
bg(k,1)...bg(k,I) of each by(k) in F,[T]. The probabilistic algorithm presented
here is based on the Cantor—Zassenhaus algorithm [53], and works for char([f;) odd.

EDF algorithm

Input: a monic square-free polynomial ¢ € I,[T] whose irreducible factors in
E,[T] have all degree k.
Output: the complete factorization of c.

procedure EDF(c: square-free polynomial , k: integer)

If deg ¢ = k, then return ¢

End if

Choose arandom & € I, [T] of degree degc — 1.
Compute g := R =D/2 _ 1 mod ¢

Compute d := ged(g, ¢)

Return EDF(d, k) - EDF(c/d, k).

The EDF algorithm is based on the principle we now briefly explain. Assume that

the irreducible factorization of the input polynomial ¢ is ¢ = fi ... f}, with each f;
of degree k. The Chinese remainder Theorem implies that

G[T1/(c) = LGIT1/(f1) x - x B [T]/(f))-
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Under this isomorphism, a random h € [[T]/(c) is associated with a j-tuple
(h1,...,hj), where each h; is a random element of I, [T]/(f;). Since each f; is
irreducible, the quotient ring I, [7']/(f;) is a finite field, isomorphic to I «. The mul-
tiplicative group IE:I*k being cyclic, there are the same number (g% — 1)/2 of squares
and non-squares (see, e.g., [50, Lemma 14.7]). Recall that m € IFq’Z is a square if only

k— . . .
if m@ —=D/2 — 1. Therefore, testing whether h\ D% = 1 discriminates the squares

in IB:]*,(. Thus, if g := R =D/2 _ 1 mod ¢, then ged(g, c) is the product of all the f;
with i a square in I§,[T']/( f;). From the probabilistic standpoint, a random element
h; of ,[T]/(f;) has probability o := 1/2 — 1/(2¢%) of being a square and the dual
probability B := 1/2 + 1/(2¢*) of being a non-square.

Then, the EDF algorithm is applied recursively to the polynomials d = ged(g, c)
and c/d. In this way, all the irreducible factors of ¢ := b(k) are extracted successively.

Following [18, Section 5], in this section we analyze the average-case complexity
of the EDF algorithm applied to the family .4, namely we consider the expected value
E[A3] of the random variable A3 of (6.3):

1
EXs] = > 06

feA
We decompose A3 as in (6.3) in the form
[r/21
B(f) = Z X3 (f), A3k (f):=Cost(EDF(bs(k))) (1 <k < [r/2]),
k=1

where b ¢ (k) is the kth coordinate of by := DDF(ay) = (bs(1),...,br(s)). Hence,
we have

[r/2] [r/2]
E[X;] = — A DoY) = ZE[X3I<]
Al k=1 feA

Fix k with 1 <k < [r/2] and write E[X3 «] as follows:

1 A ns
El%ul = o 3 XSk(f)‘f" v Yo () =Sk + Sy
feds feAms

We first bound S;qk. For this purpose, we express A*? as the disjoint union

Lr/k]
A = U A
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where Aj.qk is the set of all the elements f € .A%Y having j irreducible factors of

degree k. Hence,
Lr/k]

Sy = Z Z 3k (f)- (6.15)
IAI =
J= JeAT,

We first bound the cost A3 i (f) of the EDF algorithm applied to any f € .Aj.(fk.

Lemma 6.6 Forany f € .qu , we have
i(j—1) k
k() = T (0 M) + B UC)

where g == )\(qkT_l) = [log(4— _l)J +v(H— N and 73 1= max{ty, ©2}.

Proof If j = 0 or j = 1, then the EDF procedure does not perform any computation,
and the result trivially follows. Therefore, we may assume that j > 2.
The cost of a recursive call to the EDF procedure for f € Aj-?k is determined by the

cost of computing R@ =172 mod f» where h is a random element of F,[T']/(f), a
greatest common divisor of f with a polynomial of degree at most jk and a division of
two polynomials of degree at most jk. Observe that ux multiplications modulo f are
required to compute h@" =D/2 mod f using binary exponentiation. We conclude that
pa“=D/2 mod f can be computed with at most 2 71 g M (jk) arithmetic operations
in If;, while the remaining greatest common divisor and division are computed with
at most 12 U(jk) and t; M (jk) arithmetic operations in If;. In other words, we have

M(r) U " M(r))(jk)z

211 MK + T UGK) + T M(jk)f(‘flﬂk T T

flM(r)

arithmetic operations in ;. Applying [18, Lemma 4] with 7 := and 7 =

”u(r) , we see that

X p(f) < (](] — 1) +J Z Z (’7)0:’”_1,3’(1 —(1- am—lﬁz)j—l))

m=0 [=0
X (kT + T) k2.

Using the inequality 1 — (1 — u)j_1 <(j—Duforj>2and0 <u < 1, we obtain

ZZ()mlﬁl(l_(l_ mlIB)jl <(]_1)Z ()2(m h g2l

m=0 m=0 [=0
<(j-1 ZWZ oy =]
= 20B
m=0
This easily implies the lemma. O
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As a consequence of Lemma 6.6, we have

Lr/k] WG =) kA
= Z o< o ukM(r)+r3u(r))
—~ ~, -~ op r IAI
Jj= fe.A j=
(6.16)

In the next result, we obtain an explicit upper bound for S;qk.

13/3

Lemma 6.7 Forq > 158,;'", we have

13/6
1 M) | U 156 M,
Sﬁ?k§@<r1uk PR . )(1+ a7 )\ )

where wi and t3 are as in Lemma 6.6 and M, is defined as in Theorem 6.4.

Proof According to (6.16), we estimate the probability P[.A ) thatarandom f € A
is square-free and has j irreducible factors of degree k. In [34] it is shown that if ¢
is sufficiently large, then the probability that a random f € If,[T'] of degree at most r

has j distinct irreducible factors of degree k tends to e~ /% k];,/

We decompose the set A‘;qk into the disjoint union

Jk_ U Ajl’

AEP,J *

whereP,j’k is the set of all r-tuples A := (A1, ..., ;) € ZQO withA | +---4+7rA, =r
and A; = j. Hence, we have B

PIAY] = — A > A
repi*

From Theorem 4.6, we deduce that
) M,
A <q" ™" T(k)(l + 7)

From Theorem 3.12, it follows that, for ¢ > 15813/ 3

15813/6
e 2 =1+ 5) () £

x7>f" rePlk
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The sum of the right-hand side expresses the probability that a random permutation
in S, has exactly j cycles of length k. In [48], it is shown that

1 Lr/k—j]
YT = ] Z (=i — ,kl.
XeP,f’k

We observe that the sum of all probabilities is 1, that is,

Lr/k] Lr/k—Jl

1 i
Z jlkJ Z (_)l'k’_

As a consequence, by (6.16) we deduce that

Lr/kJ N 13/6
5q JjG—=D M@r)  UF)N,, 158
S3k = ; o5 (TIMk o tu )k 1+—q1/2

Lr /k=J]
M, (1)
(H_) j1kJ 2 ik
i=0
1 M(r) U\ (, 1584/
_ﬂ + 173 kr + 1/2
Lr/kJ | Lr/kz—jJ 1)
j—2)!k/—2 i
1

M(r) Ur) 1585 M,
—,3< T4 kr>(l+ 7)1+ )

This shows the lemma. O

Next we obtain an upper bound for

Syl = | A| > Aa(h). 6.17)
feAnsq

Let f € A"9andbs := DDF(ay) = (by(1), ..., bs(s)). Assume thatdeg(b s (k)) =
my. We have the following bound (see, e.g., [50, Theorem 14.11]):

m
X3 (f) < ¢ (klogq + logmy) M (my) log <7">
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where c is a constant independent of k and g. Taking into account the estimate of
| A4 of (4.12) and Theorem 3.12, we conclude that if ¢ > 158;;"°, then

mp

nsq 2)‘25G
S3,1< < c(klogqg + logmi)M (my) log 7l et

q

(6.18)

Now we are able to bound the cost of the EDF procedure.

Theorem 6.8 Forq > 156 g/ 3, the average cost E[X3] of the EDF algorithm restricted

to A is bounded as
13/6 )
156 M, r<é
tM(r)logq((l—i——lc/;2 ><1+—r)+ G)
q q q

=tU(r)logq (1 + o(1)),

E[X3]

IA

where t is a constant independent of q and r, and M, is defined as in Theorem 6.4.

Proof Recall that E[A3] = S;f]k + ngkq. From Lemma 6.7 and (6.18), we have

13/6 [r/2]
156 M, 1 M(r) Ur)
S < (1+—q1‘;2 )(1+_r) 3> aﬂ‘(”“"_kr +no ),

q k=1
[r/2]
2¢r%8g my
S;Skq = Z (klogq + logmy)M (my) log <7>
k=1

We first estimate the sum

[r/2]
1 M(r) Ur)
Sy = E — + .
! af (Tluk kr B kr )

k=1

Recall that 1 == log(L50)] + v(L5l) — 1, o := 172 — 1/(2¢%) and B := 1/2 +
1/(2¢%). It is easy to see that

2
1 _ 4
af ~ g —1

16
S?a MksZklogq'
As a consequence,

[r/2]
64ty M 2110 323U 1
S < 1 (r)[r/2] gq+ 3U(Tr) Z_
3 r 3 ro— k

64ty 32t3 H([r/27)logr
+ )
3 3 r

< M(r)IOgcJ<
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where H([r/2]) is the [r/2]th harmonic number. Since H(N) < 1+ 1In N (see, e.g.,
[29, §6.3]), we deduce that if » > 2, then H([r/2])logr/r < 1. We conclude that

641’1 321’3
We now estimate the sum
[r/2] my
Sy = Z (klogq + logmy) M (my) log (—)
k=1 k
We have the following inequalities:
[r/2] [r/2] mg [r/2]
log (5%
> kM tog (1) < M) Y my gék ) o m) Y = ),
k=1 k=1 k k=1
[r/2] my [r/2] [r/2]
> M) log(my) log (Z5) = M(r) Y log(me) < M(r) Y my < rM(r).
k=1 k=1 k=1
Hence, we deduce that
S» <2rM(r)loggqg. (6.20)

From (6.19) and (6.20), we obtain the following upper bound for E[A3]:

13/6 X
156 M 64t 32t 4cr’s
E[X3]SM(r)logq<<1+%><1+_f>< Ly 3)+ G).
q q 3 3 q

Defining t := max{M% + 3234, 4 c}, the statement of the theorem follows. O

We remark that, for fields of even characteristic, a similar analysis can be carried
out, yielding a bound for E[A3] as in Theorem 6.8 (compare with [18, Section 5.4]).

In [18, Theorem 9], using the classical multiplication of polynomials, it is shown
that the EDF algorithm requires on average O(r2 log ) arithmetic operations in [, on
the set of elements of I, [T'] of degree at most . Theorem 6.8 proves that, using fast
multiplication, the EDF algorithm performs on average r log g arithmetic operations
inIf; on A, up to logarithmic terms and terms which tend to zero as ¢ tends to infinity
(for fixed §g and r).

Our analysis improves the worst-case analysis of [50, Theorem 14.11], where it is
proved that the EDF algorithm applied to a polynomial of degree at most r having
j irreducible factors of degree k requires O((klogg + logr)M(r) log j) arithmetic
operations in [, that is, O™ (k r log ¢) arithmetic operations in IF;.
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6.4 Average-case analysis of the classical algorithm

Now we are able to conclude the analysis of the average cost of the factorization
algorithm applied to elements of .A. For this purpose, it remains to analyze the behavior
of the classical factorization algorithm when the first three steps fail to find the complete
factorization of the input polynomial, namely the expected value E[X4] of the random
variable Xy which counts the number of arithmetic operations in [f; that the algorithm
performs to factorize f/ERF(f), when f runs over all elements of .4. We can rewrite
E[X,] as follows:

1 S ns
ElX) = ¢ XAj 4(f)+m Do) =85+ 5
sq feAnsq

We estimate the first sum S4q If f € A%, then f/ERF(f) = 1 and the algorithm
does not perform any further operation. Hence, the cost of this step is that of dividing
two polynomials of degree at most r, namely 71 M (r) arithmetic operations in ;.
Thus,

S = > X(f) = TM@). 6.21)
|A| H

Now we estimate the second sum S"sq For this purpose, we decompose the set
A™4 into the disjoint union of the set A 2 of elements having all the irreducible
factors of multiplicity at most 2, and AZY := AWNAZT I f € AZ) then f is

of the form f = [[; fi []; sz, and we have F/ERE(f) = []; fj. Consequently,
in this case only the first three steps of the algorithm are executed, and the worst-
case analysis of the classical algorithm of [50, Theorem 14.14] shows that X4(f) <
c3r M(r)log(rq), where c3 is a constant independent of ¢ and . On the other hand,
if f e .A>2 , then the four steps of the algorithm are executed. Observe that the last
step is executed as many times as the highest multiplicity arising in the irreducible
factors of f/ERF(f). Thus, the worst-case analysis of [50, Theorem 14.14] implies
that X4(f) < car?M(r) log(rq), where c4 is a constant independent of ¢ and r. It
follows that

nsq mq
SZW <c3rM(r)log(rq)—— A | +cq rzM(r) log(rq) (6.22)
|A| IAI
Since .A":‘Zq is a subset of A™Y, from (4.12) we have that
AZI | < r(r = Dégq" "' < r?sgq" " (6.23)
On the other hand, if f € ALY, then deg(ged(f, f)) > 2. We deduce that
Res(f, f') = Subres(f, f/) = 0. Hence, A’fzq is a subset of S1(W), where W C A’

is the affine variety defined by G, ..., G,, and S;(W) is the first subdiscriminant
locus of W. We deduce that
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JAZY | <r(r = D*(r = D8gq" "% < r8gq’ "2 (6.24)

Further, if ¢ > 158163/3, then Theorem 3.12 implies | A| > %qr_m. Replacing (6.23),

(6.24) in (6.22), we obtain

38 63
S 2 26M() loglrg) % + 2 M) logr) —F. (625)
q q

Combining (6.21) and (6.25), we obtain the following result.

Theorem 6.9 Let g > 158533 The average cost E[Xy] of the fourth step of the
G

classical factorization algorithm on A is bounded in the following way:

cr®M(r)log(rq) =M@ + o(1))

E[X] <uM((r) +

where c is a constant independent of q and r.

Theorem 6.9 shows that the average cost of the last step of the classical factorization
algorithm applied to elements of A is 7y M (r)(1 + o(1)) arithmetic operations in [,
which asymptotically coincides with the cost of dividing two polynomials of degree
at most r.
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