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Abstract
We estimate the number |Aλ| of elements on a nonlinear family A of monic polyno-
mials of Fq [T ] of degree r having factorization pattern λ := 1λ12λ2 . . . rλr . We show
that |Aλ| = T (λ) qr−m + O(qr−m−1/2), where T (λ) is the proportion of elements
of the symmetric group of r elements with cycle pattern λ and m is the codimension
of A. We provide explicit upper bounds for the constants underlying the O-notation
in terms of λ and A with “good” behavior. We also apply these results to analyze
the average-case complexity of the classical factorization algorithm restricted to A,
showing that it behaves as good as in the general case.
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1 Introduction

The distribution of factorization patterns on univariate polynomials over a finite fieldFq

is a classical subject of combinatorics. Letλ := 1λ12λ2 . . . rλr be a factorization pattern
for polynomials of degree r , namelyλ1, . . . , λr ∈ Z≥0 satisfyλ1+2λ2+· · ·+rλr = r .
A seminal article of Cohen [10] shows that the proportion of elements of Fq [T ] of
degree r is roughly the proportion T (λ) of permutations with cycle pattern λ in the
r th symmetric group Sr . (An element of Sr has cycle pattern λ if it has exactly λi

cycles of length i for 1 ≤ i ≤ r .)
In particular, the number of irreducible polynomials, or more generally the distri-

bution of factorization patterns, of polynomials of “given forms” has been considered
in a number of recent articles (see, e.g., [1,8,31,46]). In [11], a subset of the set of
polynomials of degree r is called uniformly distributed if the proportion of elements
with factorization pattern λ is roughly T (λ) for every λ. The main result of that paper
[11, Theorem 3] provides a criterion for a linear family of polynomials of Fq [T ] of
given degree to be uniformly distributed in the sense above. Bank et al. [1], Cesaratto
et al. [8] and Ha [31] provide explicit estimates on the number of elements with fac-
torization pattern λ on certain linear families of Fq [T ], such as the set of polynomials
with some prescribed coefficients.

In [23, Problem 2.2], the authors ask for estimates on the number of polynomials
of a given degree with a given factorization pattern lying in nonlinear families of
polynomials with coefficients parameterized by an affine variety defined over Fq .
Except for general results (see, e.g., [9,20]), very little is known on such a number.
In this article, we address this question, providing a general criterion for a nonlinear
familyA ⊂ Fq [T ] to be uniformdistributed in the sense ofCohen and explicit estimates
on the number of elements of A with a given factorization pattern.

Then, we apply our results to analyze the behavior of the classical factorization
algorithm restricted to such families A. The classical factorization algorithm (see,
e.g., [50]) is not the fastest one. Nevertheless, it is worth analyzing it, since it is
implemented in several software packages for symbolic computation, and a number
of scientific problems rely heavily on polynomial factorization over finite fields.

A precise worst-case analysis is given in [50]. On the other hand, an average-case
analysis for the set of elements of Fq [T ] of a given degree is provided in [18]. This
analysis relies on methods of analytic combinatorics which cannot be extended to deal
with the nonlinear families we are interested in this article. For this reason, we provide
an analysis of its average-case complexity when restricted to any nonlinear family A
satisfying our general criterion.

Now, we describe precisely our results. Let Fq be the algebraic closure of Fq . Let m
and r be positive integers with m < r and Ar−1, . . . , A0 indeterminates over Fq . For a
fixed k with 0 ≤ k ≤ r −1, we denoteFq [Ak] := Fq [Ar−1, . . . , Ak+1, Ak−1, . . . , A0].
LetG1, . . . , Gm ∈ Fq [Ak] and let W := {G1 = 0, . . . , Gm = 0} be the set of common
zeros inFq

r ofG1, . . . , Gm . Denoting byFq [T ]r the set ofmonic polynomials of degree
r with coefficients in Fq , we consider the following family of polynomials:
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A := {T r + ar−1T r−1 + · · · + a0 ∈ Fq [T ]r : Gi (ar−1, . . . , ak−1, ak+1, . . . , a0)

= 0 (1 ≤ i ≤ m)}. (1.1)

Consider the weight wt : Fq [Ak] → N0 defined by setting wt(A j ) := r − j for
0 ≤ j ≤ r −1, j �= k, and denote by Gwt

1 , . . . , Gwt
m the components of highest weight

of G1, . . . , Gm . Let (∂G/∂Ak) be the Jacobian matrix of G1, . . . , Gm with respect to
Ak . We shall assume that G1, . . . , Gm satisfy the following conditions:

(H1) G1, . . . , Gm form a regular sequence1 of Fq [Ak].
(H2) (∂G/∂Ak) has full rank on every point of W .
(H3) Gwt

1 , . . . , Gwt
m satisfy (H1) and (H2).

In what follows, we identify the set Fq [T ]r of monic polynomials of Fq [T ] of
degree r with Fq

r by mapping each fa0 := T r + ar−1T r−1 + · · · + a0 ∈ Fq [T ]r
to a0 := (ar−1, . . . , a0) ∈ Fq

r . For B ⊂ Fq [T ]r , the set of elements of B which
are not square-free is called the discriminant locus D(B) of B (see [21,40] for the
study of discriminant loci). For fa0 ∈ B, let Disc( fa0) := Res( fa0 , f ′

a0) denote the
discriminant of fa0 , that is, the resultant of fa0 and its derivative f ′

a0 . Since fa0 has
degree r , by basic properties of resultants we have

Disc( fa0) = Disc(F(A0, T ))|A0=a0 := Res(F(A0, T ), F ′(A0, T ), T )|A0=a0 ,

where the expression Res in the right-hand side denotes resultant with respect to T . It
follows that D(B) := {a0 ∈ B : Disc(F(A0, T ))|A0=a0 = 0}. We shall need further
to consider first subdiscriminant loci. The first subdiscriminant locus S1(B) of B ⊂
Fq [T ]r is the set of a0 ∈ D(B) for which the first subdiscriminant Subdisc( fa0) :=
Subres( fa0 , f ′

a0) vanishes, where Subres( fa0 , f ′
a0) denotes the first subresultant of

fa0 and f ′
a0 . Since fa0 has degree r , basic properties of subresultants imply

Subdisc( fa0) = Subdisc(F(A0, T ))|A0=a0

:= Subres(F(A0, T ), F ′(A0, T ), T ))|A0=a0 ,

where Subres in the right-hand side denotes first subresultant with respect to T . We
have S1(B) := {a0 ∈ D(B) : Subdisc(F(A0, T ))|A0=a0 = 0}. Our next conditions
require that the discriminant and the first subdiscriminant locus intersect well W :

(H4) D(W ) has codimension at least one in W .
(H5) (A0 · S1)(W ) := {a0 ∈ W : a0 = 0} ∪ S1(W ) has codimension at least one
in D(W ).
(H6) D(V (Gwt

1 , . . . , Gwt
m )) has codimension at least one in V (Gwt

1 , . . . , Gwt
m ) ⊂

Fq
r .

We briefly discuss hypotheses (H1)–(H6). Hypotheses (H1)–(H2) merely state that
W has the expected dimension r − m and it is smooth. These conditions are satisfied
for any sequence G1, . . . , Gm ∈ Fq [Ak] as above with general coefficients (see, e.g.,

1 This means that {G1 = 0, . . . , Gi = 0} has dimension r − i for 1 ≤ i ≤ m; see Sect. 2.2 for details.
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[2] or [51]). Hypothesis (H3) requires that G1, . . . , Gm behave properly “at infinity,”
which is also the case for general G1, . . . , Gm . Hypotheses (H4)–(H5) require that
“most” of the polynomials of A are square-free, and among those which are not,
only “few” of them have roots with high multiplicity or several multiple roots. As
we are looking for criteria for uniform distribution, namely families which behave
as the whole set Fq [T ]r , it is clear that such a behavior is to be expected. Further,
it is required that “few” polynomials in the family under consideration have 0 as a
multiple root, which is a common requirement for uniformly distributed families (see,
e.g., [11]). Finally, hypothesis (H6) requires that the discriminant locus at infinity is
not too large. We provide significant examples of families of polynomials satisfying
hypotheses (H1)–(H6), which include in particular the classical case of polynomials
with prescribed coefficients.

Our main result shows that any family A satisfying hypotheses (H1)–(H6) is uni-
formly distributed in the sense of Cohen, and provides explicit estimates on the number
|Aλ| of elements ofAwith factorization pattern λ. In fact, we have the following result
(see Theorem 4.6 for a more precise statement).

Theorem 1.1 For m < r and λ a factorization pattern, we have

∣
∣|Aλ| − T (λ) qr−m

∣
∣ ≤ qr−m−1(T (λ)

(

Dδ q
1
2 + 14D2δ2 + r2δ

) + r2δ
)

,

where δ := ∏m
i=1 wt(Gi ) and D := ∑m

i=1(wt(Gi ) − 1).

Our methodology differs significantly from that of [10,11], as we express |Aλ|
in terms of the set of common Fq -rational zeros of certain symmetric multivariate
polynomials defined over Fq . This allows us to establish several facts concerning the
geometry of the set of zeros of such polynomials over Fq . Combining these results
with estimates on the number of common Fq -rational zeros of such polynomials (see,
e.g., [3] or [6]), we obtain our main results.

Then, we consider the average-case complexity of the classical factorization algo-
rithm restricted to A. This algorithm works in four main steps. First, it performs an
“elimination of repeated factors.” Then, it computes a (partial) factorization of the
result of the first step by splitting its irreducible factors according to their degree (this
is called the distinct-degree factorization). The third step factorizes each of the factors
computed in the second step (the equal-degree factorization). Finally, the fourth step
consists of the factorization of the repeated factors left aside in the first step (fac-
torization of repeated factors). The following result summarizes our estimates on the
average-case complexity of each of these steps (see Theorems 6.2, 6.4, 6.8 and 6.9 for
more precise statements).

Theorem 1.2 Let δG := degG1 · · · degGm . Denote by E[X1], E[X2], E[X3] and
E[X4] the average cost on A of the steps of elimination of repeated factors,
distinct-degree factorization, equal-degree factorization and factorization of repeated
factors.
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For q > 15δ13/3G , assuming that fast multiplication is used, we have

E[X1] ≤ cU(r) + o(1),

E[X2] ≤ ξ (2 τ1λ(q) + τ1 + τ2 log r) M(r) (r + 1)
(

1 + o(1)
)

,

E[X3] ≤ τ M(r) log q (1 + o(1)), E[X4] ≤ τ1M(r)(1 + o(1)),

where M(r) := r log r log log r is the fast-multiplication time function, U(r) :=
M(r) log r is the gcd time function, λ(q) is the number of multiplications required
to compute qth powers using repeated squaring, ξ ∼ 0.62432945 . . . is the Golomb–
Dickman constant, and c, τ1, τ2 and τ are constants independent of q and r.

Here, the o(1) terms go to zero as q tends to infinity, for fixed r and
degG1, . . . , degGm . See Theorems 6.2, 6.4, 6.8 and 6.9 for explicit expressions of
these terms.

This result significantly strengthens the conclusions of the average-case analysis
of [18], in that it shows that such conclusions are not only applicable to the whole set
Fq [T ]r of monic polynomials of degree r , but to any family A ⊂ Fq [T ]r satisfying
hypotheses (H1)–(H6).

The paper is organized as follows. In Sect. 2, we collect the notions of algebraic
geometry we use. In Sect. 3, we obtain a lower bound on the number of elements of the
familyA under consideration. Section 4 is devoted to describe our algebraic-geometry
approach to the distribution of factorization patterns and to prove Theorem 1.1. In
Sect. 5, we exhibit examples of linear and nonlinear families of polynomials satisfying
hypotheses (H1)–(H6). Finally, in Sect. 6 we perform the average-case analysis of the
classical polynomial factorization restricted to A, showing Theorem 1.2.

2 Basic notions of algebraic geometry

In this section, we collect the basic definitions and facts of algebraic geometry that
we need in the sequel. We use standard notions and notations which can be found in,
e.g., [36,47].

Let K be any of the fields Fq or Fq . We denote by A
r the affine r -dimensional space

Fq
r and by P

r the projective r -dimensional space over Fq
r+1. Both spaces are endowed

with their respective Zariski topologies over K, for which a closed set is the zero locus
of a set of polynomials of K[X1, . . . , Xr ], or of a set of homogeneous polynomials of
K[X0, . . . , Xr ].

A subset V ⊂ P
r is a projective variety defined over K (or a projective K-

variety for short) if it is the set of common zeros in P
r of homogeneous polynomials

F1, . . . , Fm ∈ K[X0, . . . , Xr ]. Correspondingly, an affine variety of A
r defined

over K (or an affine K-variety) is the set of common zeros in A
r of polynomials

F1, . . . , Fm ∈ K[X1, . . . , Xr ].We think a projective or affineK-variety to be equipped
with the induced Zariski topology. We shall denote by {F1 = 0, . . . , Fm = 0} or
V (F1, . . . , Fm) the affine or projective K-variety consisting of the common zeros of
F1, . . . , Fm .
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In the remaining part of this section, unless otherwise stated, all results referring
to varieties in general should be understood as valid for both projective and affine
varieties.

A K-variety V is irreducible if it cannot be expressed as a finite union of proper
K-subvarieties of V . Further, V is absolutely irreducible if it is Fq -irreducible as a Fq -
variety. Any K-variety V can be expressed as an irredundant union V = C1 ∪ · · · ∪ Cs

of irreducible (absolutely irreducible) K-varieties, unique up to reordering, called the
irreducible (absolutely irreducible) K-components of V .

For a K-variety V contained in P
r or A

r , its defining ideal I (V ) is the set of
polynomials ofK[X0, . . . , Xr ], or ofK[X1, . . . , Xr ], vanishing on V . The coordinate
ring K[V ] of V is the quotient ring K[X0, . . . , Xr ]/I (V ) or K[X1, . . . , Xr ]/I (V ).
The dimension dim V of V is the length n of a longest chain V0 � V1 � · · · � Vn of
nonempty irreducible K-varieties contained in V . We say that V has pure dimension
n if every irreducible K-component of V has dimension n. A K-variety of P

r or A
r of

pure dimension r − 1 is called a K-hypersurface. A K-hypersurface of P
r (or A

r ) can
also be described as the set of zeros of a single nonzero polynomial of K[X0, . . . , Xr ]
(or of K[X1, . . . , Xr ]).

The degree deg V of an irreducible K-variety V is the maximum of |V ∩ L|, con-
sidering all the linear spaces L of codimension dim V such that |V ∩ L| < ∞. More
generally, following [33] (see also [22]), if V = C1 ∪ · · · ∪ Cs is the decomposition of
V into irreducible K-components, we define the degree of V as

deg V :=
s

∑

i=1

deg Ci .

The degree of a K-hypersurface V is the degree of a polynomial of minimal degree
defining V . We shall use the following Bézout inequality (see [22,33,52]): if V and W
are K-varieties of the same ambient space, then

deg(V ∩ W ) ≤ deg V · deg W . (2.1)

Let V ⊂ A
r be a K-variety, I (V ) ⊂ K[X1, . . . , Xr ] its defining ideal and x a

point of V . The dimension dimx V of V at x is the maximum of the dimensions of the
irreducible K-components of V containing x . If I (V ) = (F1, . . . , Fm), the tangent
space Tx V to V at x is the kernel of the Jacobian matrix (∂ Fi/∂ X j )1≤i≤m,1≤ j≤r (x)

of F1, . . . , Fm with respect to X1, . . . , Xr at x . We have dim Tx V ≥ dimx V (see,
e.g., [47, p. 94]). The point x is regular if dim Tx V = dimx V ; otherwise, x is called
singular. The set of singular points of V is the singular locus Sing(V ) of V ; it is a
closedK-subvariety of V . A variety is called nonsingular if its singular locus is empty.
For projective varieties, the concepts of tangent space, regular and singular point can
be defined by considering an affine neighborhood of the point under consideration.

Let V and W be irreducible affine K-varieties of the same dimension and f : V →
W a regular map with f (V ) = W , where f (V ) denotes the closure of f (V ) with
respect to the Zariski topology of W . Such a map is called dominant. Then, f induces
a ring extension K[W ] ↪→ K[V ] by composition with f . We say that the dominant

123



Journal of Algebraic Combinatorics (2020) 51:103–153 109

map f is finite if this extension is integral, namely each element η ∈ K[V ] satisfies a
monic equation with coefficients in K[W ]. A dominant finite morphism is necessarily
closed. Another fact we shall use is that the preimage f −1(S) of an irreducible closed
subset S ⊂ W under a dominant finite morphism f is of pure dimension dim S (see,
e.g., [14, §4.2, Proposition]).

2.1 Rational points

LetPr (Fq) be the r -dimensional projective space overFq andA
r (Fq) the r -dimensional

Fq -vector space F
n

q . For a projective variety V ⊂ P
r or an affine variety V ⊂ A

r , we
denote by V (Fq) the set of Fq -rational points of V , namely V (Fq) := V ∩ P

r (Fq) in
the projective case and V (Fq) := V ∩ A

r (Fq) in the affine case. For an affine variety
V of dimension n and degree δ, we have the following bound (see, e.g., [3, Lemma
2.1]):

|V (Fq)| ≤ δ qn . (2.2)

On the other hand, if V is a projective variety of dimension n and degree δ, then we
have the following bound (see [25, Proposition 12.1] or [4, Proposition 3.1]; see [38]
for more precise upper bounds):

|V (Fq)| ≤ δ pn, (2.3)

where pn := qn + qn−1 + · · · + q + 1 = |Pn(Fq)|.

2.2 Complete intersections

Elements F1, . . . , Fm in K[X1, . . . , Xr ] or K[X0, . . . , Xr ] form a regular sequence
if F1 is nonzero and no Fi is zero or a zero divisor in the quotient ring
K[X1, . . . , Xr ]/(F1, . . . , Fi−1) or K[X0, . . . , Xr ]/(F1, . . . , Fi−1) for 2 ≤ i ≤ m.
In that case, the (affine or projective) K-variety V := V (F1, . . . , Fm) is called a set-
theoretic complete intersection. We remark that V is necessarily of pure dimension
r − m. Further, V is called an (ideal-theoretic) complete intersection if its ideal I (V )

over K can be generated by m polynomials. We shall frequently use the following
criterion to prove that a variety is a complete intersection (see, e.g., [15, Theorem
18.15]).

Theorem 2.1 Let F1, . . . , Fm ∈ K[X1, . . . , Xr ] be polynomials which form a regular
sequence and let V := V (F1, . . . , Fm) ⊂ A

r . Denote by (∂F/∂X) the Jacobian
matrix of F1, . . . , Fm with respect to X1, . . . , Xr . If the subvariety of V defined by the
set of common zeros of the maximal minors of (∂F/∂X) has codimension at least one in
V , then F1, . . . , Fm define a radical ideal. In particular, V is a complete intersection.

If V ⊂ P
r is a complete intersection defined over K of dimension r − m, and

F1, . . . , Fm is a system of homogeneous generators of I (V ), the degrees d1, . . . , dm

depend only on V and not on the system of generators. Arranging the di in such a way
that d1 ≥ d2 ≥ · · · ≥ dm , we call (d1, . . . , dm) the multidegree of V . In this case,
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a stronger version of (2.1) holds, called the Bézout theorem (see, e.g., [32, Theorem
18.3]):

deg V = d1 · · · dm . (2.4)

A complete intersection V is called normal if it is regular in codimension 1,
that is, the singular locus Sing(V ) of V has codimension at least 2 in V , namely
dim V − dim Sing(V ) ≥ 2. (Actually, normality is a general notion that agrees on
complete intersections with the one we define here.) A fundamental result for pro-
jective complete intersections is the Hartshorne connectedness theorem (see, e.g.,
[36, Theorem VI.4.2]): If V ⊂ P

r is a complete intersection defined over K and
W ⊂ V is any K-subvariety of codimension at least 2, then V \W is connected in the
Zariski topology of P

r over K. Applying the Hartshorne connectedness theorem with
W := Sing(V ), one deduces the following result.

Theorem 2.2 If V ⊂ P
r is a normal complete intersection, then V is absolutely

irreducible.

3 Estimates on the number of elements ofA
Let X1, . . . , Xr be indeterminates over Fq . Denote by 	1, . . . ,	r the elementary
symmetric polynomials of Fq [X1, . . . , Xr ]. Observe that f := T r + ar−1T r−1 +
· · · + a0 ∈ A if and only if there exists x ∈ A

r such that a j = (−1)r− j	r− j (x) for
0 ≤ j ≤ r − 1 and

Ri := Gi (−	1(x), . . . , (−1)r−k−1	r−k−1(x),

(−1)r−k+1	r−k+1(x), . . . , (−1)r	r (x)) = 0

for 1 ≤ i ≤ m. Thus, we associate with A the polynomials R1, . . . , Rm ∈
Fq [X1, . . . , Xr ] and the variety V ⊂ A

r defined by R1, . . . , Rm .
Our estimates on the distribution of factorization patterns in A require asymptoti-

cally tight estimates on the number of Fq -rational points of V , and for the average-case
analysis of the classical factorization algorithm restricted toAwe need asymptotically
tight lower bounds on the number of elements of A. For this purpose, we shall prove
several facts concerning the geometry of the affine varieties V and W .

Hypothesis (H1) implies thatW is a set-theoretic complete intersection of dimension
r − m. Furthermore, by (H2) it follows that the subvariety of W defined by the set of
common zeros of the maximal minors of (∂G/∂Ak) has codimension at least one in
W . Applying Theorem 2.1, we deduce the following result.

Lemma 3.1 W ⊂ A
r is a complete intersection of dimension r − m.

Consider the following surjective morphism of affine Fq -varieties:

�r : A
r → A

r

x → (−	1(x), . . . , (−1)r	r (x)). (3.1)
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It is easy to see that�r is a dominant finitemorphismwith�r (V ) = W . By hypothesis
(H1), the variety W j := V (G1, . . . , G j ) ⊂ A

r has pure dimension r − j for 1 ≤
j ≤ m. This implies that V j := (�r )−1(W j ) = V (R1, . . . , R j ) has pure dimension
r − j for 1 ≤ j ≤ m. We conclude that R1, . . . , Rm form a regular sequence of
Fq [X1, . . . , Xr ], namely we have the following result.

Lemma 3.2 V is a set-theoretic complete intersection of dimension r − m.

Next we study the singular locus of V . For this purpose, we make some remarks
concerning the Jacobian matrix of (∂�r/∂X) of �r with respect to X1, . . . , Xr .
Denote by Ar the (r × r)-Vandermonde matrix

Ar := (Xi−1
j )1≤i, j≤r .

Taking into account the following well-known identities (see, e.g., [37]):

∂	i

∂ X j
= 	i−1 − X j	i−2 + X2

j	i−3 + · · · + (−1)i−1Xi−1
j (1 ≤ i, j ≤ r),

we conclude that (∂�r/∂X) can be factored as

(
∂�r

∂X

)

:= Br · Ar :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1 0 0 . . . 0
	1 − 1 0

−	2 	1 − 1
. . .

...

...
...

...
. . . 0

(−1)r 	r−1 (−1)r−1	r−2 (−1)r−2	r−3 . . . − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· Ar .

(3.2)
Since det Br = (−1)r , we see that

det

(
∂�r

∂X

)

= (−1)r
∏

1≤i< j≤r

(X j − Xi ).

A critical point in the study of the singular locus of V is the analysis of the zero
locus of the (r − 1) × (r − 1) minors of (∂�r/∂X). For this purpose, we have the
following result.

Proposition 3.3 For k with 0 ≤ k ≤ r − 1 as in the introduction and l with 1 ≤ l ≤ r ,
denote by Mr−k,l the (r − 1) × (r − 1)-matrix obtained by deleting the row r − k and
the column l of (∂�r/∂X). Then,

det Mr−k,l = (−1)r−k−1
l · Xk
l , (3.3)

where 
l := ∏

1≤i< j≤r , i, j �=l(X j − Xi ).
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Proof According to the factorization (3.2), we have

Mr−k,l = Br−k
r · Al

r ,

where Br−k
r is the (r − 1) × r -submatrix of Br obtained by deleting its (r − k)th row

and Al
r is the r × (r − 1)-submatrix of Ar obtained by deleting its lth column. By the

Cauchy–Binet formula, it follows that

det Mr−k,l =
r

∑

j=1

det Br−k, j
r · det A j,l

r ,

where Br−k, j
r is the (r − 1) × (r − 1)-matrix obtained by removing the j th column

of Br−k
r and A j,l

r is the (r − 1) × (r − 1)-matrix obtained by removing the j th row of
Al

r .
From [16, Lemma 2.1], we deduce that

det A j,l
r = 
l · 	∗

r− j , (3.4)

where 	∗
r− j = 	r− j (X1, . . . , Xl−1, Xl+1, . . . , Xr ).

Next we obtain an explicit expression of det Br−k, j
r for 1 ≤ j ≤ r . Observe that

Br−k
r has a block structure:

Br−k
r :=

(

Br−k−1 0
∗ T ∗

k

)

, (3.5)

where Br−k−1 is the (r − k − 1) × (r − k − 1) principal submatrix of Br consisting
on its first r − k − 1 rows and columns and T ∗

k is the k × (k + 1)-matrix

T ∗
k :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

	1 − 1 0 . . . 0 0

−	2
. . .

. . .
...

...
...

. . .
. . .

. . . 0 0
...

. . .
. . . − 1 0

(−1)k+1	k . . . . . . −	2 	1 − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From (3.5), we readily deduce that

det Br−k, j
r =

⎧

⎨

⎩

0 for 1 ≤ j ≤ r − k − 1,
(−1)r−1 for j = r − k,

(−1)r−i−1 det Ti for j = r − k + i, 1 ≤ i ≤ k,

(3.6)
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where Ti is the following i × i Toeplitz–Hessenberg matrix:

Ti :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

	1 − 1 0 . . . 0

−	2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . − 1
(−1)i+1	i . . . . . . −	2 	1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By the Trudi formula (see [43, Ch. VII]; see also [42, Theorem 1]), we deduce the
following identity (see [42, Section 4]):

det Ti = Hi ,

where Hi := Hi (X1, . . . , Xr ) is the i th complete homogeneous symmetric function.
Therefore, combining (3.4) and (3.6) we conclude that

det Mr−k,l = 
l

r
∑

j=r−k

det Br−k, j
r · 	∗

r− j = 
l

k
∑

i=0

det Br−k, i+r−k
r · 	∗

k−i

= 
l

k
∑

i=0

(−1)r−i−1Hi · 	∗
k−i .

We claim that

S(k) :=
k

∑

i=0

(−1)r−i−1Hi · 	∗
k−i = (−1)r−k−1Xk

l , k = 0, . . . , r − 1. (3.7)

We prove the claim arguing by induction on k. Since H0 = 	∗
0 = 1, the case k = 0

follows immediately. Assume now that (3.7) holds for k − 1 with k > 0, namely

(−1)r−1
k−1
∑

i=0

(−1)i Hi · 	∗
k−1−i = (−1)r−k Xk−1

l . (3.8)

It is well known that (see, e.g., [12, 7.§1, Exercise 10])

k
∑

i=0

(−1)i Hi · 	k−i = 0.
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Since 	∗
k−i = 	k−i (X1, . . . , Xl−1, Xl+1, . . . , Xr ), we deduce that 	k−i = Xl ·

	∗
k−i−1 + 	∗

k−i . As a consequence, it follows that

k
∑

i=0

(−1)i Hi · 	∗
k−i = Xl

k−1
∑

i=0

(−1)i−1Hi · 	∗
k−i−1.

Combining this identity and the inductive hypothesis (3.8), we conclude that

S(k) = −Xl

k−1
∑

i=0

(−1)r−i−1Hi · 	∗
k−i−1 = −Xl (−1)r−k Xk−1

l = (−1)r−k−1Xk
l .

This concludes the proof of the proposition. ��
Denote by (∂R/∂X) := (∂ Ri/∂ X j )1≤i≤m,1≤ j≤r the Jacobianmatrix of R1, . . . , Rm

with respect to X1, . . . , Xr .

Theorem 3.4 The set of x ∈ V for which (∂R/∂X)(x) does not have full rank, has
codimension at least 2. In particular, the singular locus � of V has codimension at
least 2.

Proof By the chain rule, we have the equality

(
∂R
∂X

)

=
(

∂G
∂A

◦ �

)

·
(

∂�

∂X

)

,

where � := (−	1, . . . , (−1)r−k−1	r−k−1, (−1)r−k+1	r−k+1, . . . , (−1)r	r ). Fix
a point x := (x1, . . . , xr ) ∈ V such that (∂R/∂X)(x) does not have full rank, and let
v ∈ A

m be a nonzero element in the left kernel of (∂R/∂X)(x). We have

0 = v ·
(

∂R
∂X

)

(x) = v ·
(

∂G
∂A

)
(

�(x)
) ·

(
∂�

∂X

)

(x).

Since by hypothesis (H2) the Jacobian matrix (∂G/∂A)
(

�(x)
)

has full rank, we see
that w := v · (∂G/∂A)

(

�(x)
) ∈ A

r−1 is nonzero. As w · (∂�/∂X) (x) = 0, all the
maximal minors of (∂�/∂X) (x) must be zero. These minors are the determinants
det Mr−k,l(x), where Mr−k,l are the matrices of Proposition 3.3.

Since det Mr−k,l(x) = 0 for 1 ≤ l ≤ r , Proposition 3.3 implies

xk
i 
i (x) = xk

j 
 j (x) = 0 (1 ≤ i < j ≤ r).

It follows that x cannot have its r coordinates pairwise distinct. As a consequence,
either x has r − 1 pairwise-distinct coordinates, one of them being equal to zero, or x
has at most r − 2 pairwise-distinct coordinates. Let

g := (T − x1) . . . (T − xr ) = T r − 	1(x)T r−1 + · · · + (−1)r	r (x).
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Observe that �r (x) ∈ W . If there is a coordinate xi = 0, then the constant coefficient
of g is zero. On the other hand, if x has at most r − 2 pairwise-distinct coordinates,
then there exist i, j, l, h ∈ {1, . . . , r} with i < j, l < h and {i, j} ∩ {k, l} = ∅ such
that xi = x j and xh = xl . If xi �= xh , then g has two distinct multiple roots, while in
the case xi = xh , g has a root of multiplicity at least 4. In both cases, g and g′ have a
common factor of degree at least 2, which implies that

Disc(g) = 0, Subdisc(g) = 0,

namely g ∈ S1(W ). In either case, �r (x) ∈ (A0 · S1)(W ). According to (H4) and
(H5), (A0 · S1)(W ) has codimension at least 2 in W . Since �r is a finite morphism,
we have that (�r )−1

(

(A0 · S1)(W )
)

has codimension at least 2 in V . In particular,
the set of points x ∈ V with rank(∂R/∂X)(x) < m is contained in a subvariety of
codimension 2 of V .

Now let x be an arbitrary point of �. By Lemma 3.2, we have dim TxV > r −m. It
follows that rank(∂R/∂X)(x) < m, for otherwise we would have dim TxV ≤ r − m,
contradicting the hypothesis that x is a singular point of V . Therefore, from the first
assertion the theorem follows. ��

From Lemma 3.2 and Theorem 3.4, we obtain further consequences concerning
the polynomials Ri and the variety V . Theorem 3.4 shows in particular that the set of
points x ∈ V for which (∂R/∂X)(x) does not have full rank has codimension at least
one in V . Since R1, . . . , Rm form a regular sequence, by Theorem 2.1 we conclude
that R1, . . . , Rm define a radical ideal of Fq [X1, . . . , Xr ], and thus V is a complete
intersection. In other words, we have the following result.

Corollary 3.5 R1, . . . , Rm define a radical ideal and V is a complete intersection.

3.1 The geometry of the projective closure

Consider the embedding of A
r into the projective space P

r defined by the mapping
(x1, . . . , xr ) → (1 : x1 : . . . : xr ). The closure pcl(V ) ⊂ P

r of the image of V under
this embedding in the Zariski topology of P

r is called the projective closure of V . The
points of pcl(V ) lying in the hyperplane {X0 = 0} are called the points of pcl(V ) at
infinity.

Denote by Fh ∈ Fq [X0, . . . , Xr ] the homogenization of each F ∈ Fq [X1, . . . , Xr ],
and let (R1, . . . , Rm)h be the ideal generated by all the polynomials Fh with
F ∈ (R1, . . . , Rm). We have that (R1, . . . , Rm)h is radical because (R1, . . . , Rm)

is a radical ideal (see, e.g., [36, §I.5, Exercise 6]). It is well known that pcl(V ) is the
Fq -variety of P

r defined by (R1, . . . , Rm)h (see, e.g., [36, §I.5, Exercise 6]). Further-
more, pcl(V ) has pure dimension r −m (see, e.g., [36, Propositions I.5.17 and II.4.1])
and degree equal to deg V (see, e.g., [7, Proposition 1.11]).

Next we discuss the behavior of pcl(V ) at infinity. Consider the decomposition of
each Ri into its homogeneous components, namely

Ri = Rdi
i + Rdi −1

i + · · · + R0
i ,
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where each R j
i ∈ Fq [X1, . . . , Xr ] is homogeneous of degree j or zero, Rdi

i being
nonzero for 1 ≤ i ≤ m. The homogenization of each Ri is the polynomial

Rh
i = Rdi

i + Rdi −1
i X0 + · · · + R0

i Xdi
0 . (3.9)

It follows that Rh
i (0, X1, . . . , Xr ) = Rdi

i for 1 ≤ i ≤ m. To express each Rdi
i in terms

of the component Gwt
i of highest weight of Gi , let Ai0

0 · · · Aik−1
k−1Aik+1

k+1 · · · Air−1
r−1 be a

monomial arising with nonzero coefficient in the dense representation of Gi . Then, its
weight

wt(Ai0
0 · · · Aik−1

k−1Aik+1
k+1 · · · Air−1

r−1) =
r−1
∑

j=0
j �=k

(r − j)i j

equals the degree of the corresponding monomial 	i0
r · · ·	ik−1

r−k+1	
ik+1
r−k−1 · · ·	ir−1

1 of
Ri . We deduce the following result.

Lemma 3.6 Rdi
i = Gwt

i (−	1, . . . , (−1)r−k−1	r−k−1, (−1)r−k+1	r−k+1, . . . ,

(−1)r	r ) for 1 ≤ i ≤ m. In particular, deg Ri = wt(Gi ) for 1 ≤ i ≤ m.

Denote by (∂Rd/∂X) := (∂ Rdi
i /∂ X j )1≤i≤m,1≤ j≤r the Jacobian matrix of

Rd1
1 , . . . , Rdm

m with respect to X1, . . . , Xr . Let �∞ ⊂ P
r be the singular locus of

pcl(V ) at infinity, namely the set of singular points of pcl(V ) lying in the hyperplane
{X0 = 0}. We have the following result.

Lemma 3.7 The set of points x ∈ V (Rd1
1 , . . . , Rdm

m ) ⊂ P
r−1 for which (∂Rd/∂X)(x)

has not full rank, has codimension at least 1 in V (Rd1
1 , . . . , Rdm

m ). In particular, the
singular locus �∞ ⊂ P

r at infinity has dimension at most r − m − 2.

Proof Consider the affine variety Vaff(Rd1
1 , . . . , Rdm

m ) ⊂ A
r defined by Rd1

1 , . . . , Rdm
m .

Hypothesis (H3) asserts that Gwt
1 , . . . , Gwt

m satisfy hypotheses (H1) and (H2). There-

fore, Lemma 3.2 proves that Vaff(Rd1
1 , . . . , Rdm

m ) is a set-theoretic complete intersec-

tion of dimension r − m. Denote by �∞
aff the set of points x ∈ Vaff(Rd1

1 , . . . , Rdm
m )

as in the statement of the lemma. Arguing as in the proof of Theorem 3.4 we
conclude that any x ∈ �∞

aff cannot have its r coordinates pairwise distinct. This
implies that �r (�∞

aff) is contained in the discriminant locus D(V (Gwt
1 , . . . , Gwt

m )).
By hypothesis (H6), we have that D(V (Gwt

1 , . . . , Gwt
m )) has codimension at least 1

in V (Gwt
1 , . . . , Gwt

m ) = �r (Vaff(Rd1
1 , . . . , Rdm

m )). Since �r is a finite morphism, we

deduce that �∞
aff has codimension at least 1 in Vaff(Rd1

1 , . . . , Rdm
m ). The first assertion

of the lemma follows.
Now let x := (0 : x1 : . . . : xr ) be an arbitrary point of �∞. Since each Rh

i

vanishes identically in pcl(V ), we have Rh
i (x) = Rdi

i (x1, . . . , xr ) = 0 for 1 ≤ i ≤
m. Further, (∂Rd/∂X)(x) does not have full rank, since otherwise we would have
dim Tx(pcl(V )) ≤ r − m, which would imply that x is a nonsingular point of pcl(V ),
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contradicting thus the hypothesis on x. It follows that �∞ has codimension at least 1
in V (Rd1

1 , . . . , Rdm
m ), and thus dimension at most r − m − 2. ��

Our next result concerns the projective variety V (Rd1
1 , . . . , Rdm

m ) ⊂ P
r−1.

Lemma 3.8 V (Rd1
1 , . . . , Rdm

m ) ⊂ P
r−1 is a complete intersection of dimension r −

m − 1, degree
∏m

i=1 di and singular locus of dimension at most r − m − 2.

Proof Since Gwt
1 , . . . , Gwt

m satisfy hypothesis (H1), Lemma 3.2 shows that

V (Rd1
1 , . . . , Rdm

m ) is set-theoretic complete intersection of dimension r − m − 1.

Furthermore, Lemma 3.7 shows that the set of x ∈ V (Rd1
1 , . . . , Rdm

m ) for which

(∂Rd/∂X)(x) has not full rank, has codimension at least 1 in V (Rd1
1 , . . . , Rdm

m ).

Then, Theorem 2.1 proves that Rd1
1 , . . . , Rdm

m define a radical ideal, and therefore

V (Rd1
1 , . . . , Rdm

m ) is a complete intersection.

In particular, the singular locus of V (Rd1
1 , . . . , Rdm

m ) is the set of points x ∈ V

(Rd1
1 , . . . , Rdm

m ) for which (∂Rd/∂X)(x) has not full rank, and hence it has dimension
at most r −m −2. Finally, the Bézout theorem (2.4) proves the assertion on the degree.

��
Now we prove our main result concerning pcl(V ).

Theorem 3.9 The identity pcl(V ) = V (Rh
1 , . . . , Rh

m) holds and pcl(V ) is a normal
complete intersection of dimension r − m and degree

∏r
i=1 di .

Proof Observe that the following inclusions hold:

V (Rh
1 , . . . , Rh

m) ∩ {X0 �= 0} ⊂ V (R1, . . . , Rm),

V (Rh
1 , . . . , Rh

m) ∩ {X0 = 0} ⊂ V (Rd1
1 , . . . , Rdm

m ).

Lemma 3.8 proves that V (Rd1
1 , . . . , Rdm

m ) ⊂ P
r−1 is a complete intersection of dimen-

sion r − m − 1 and singular locus of codimension at least 1. On the other hand,
Lemma 3.2 and Theorem 3.4 show that V (R1, . . . , Rm) ⊂ A

r is of pure dimension
r − m and its singular locus has codimension at least 2. We conclude that the same
holds with V (Rh

1 , . . . , Rh
m) ⊂ P

r . Since it is defined by m polynomials, it is a set-
theoretic complete intersection. Further, by Theorem 3.4 and Lemma 3.7 the set of
points x ∈ V (Rh

1 , . . . , Rh
m) for which (∂Rh/∂X)(x) has not full rank, has codimen-

sion at least 2 in V (Rh
1 , . . . , Rh

m). Then, Theorem 2.1 proves that Rh
1 , . . . , Rh

m define
a radical ideal and therefore V (Rh

1 , . . . , Rh
m) is a normal complete intersection. By

Theorem 2.2, it follows that V (Rh
1 , . . . , Rh

m) is absolutely irreducible.
It is clear that pcl(V ) ⊂ V (Rh

1 , . . . , Rh
m). Being both of pure dimension r − m and

V (Rh
1 , . . . , Rh

m) absolutely irreducible, the identity of the statement of the theorem
follows. Finally, since Rh

1 , . . . , Rh
m define a radical ideal, the Bézout theorem (2.4)

proves the assertion on the degree. ��
We end the section with the following result, which allows us to control the number

of Fq -rational points of pcl(V ) at infinity.
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Remark 3.10 V∞ := pcl(V ) ∩ {X0 = 0} ⊂ P
r−1 has dimension r − m − 1. Indeed,

recall that pcl(V ) has pure dimension r − m. Hence, each irreducible component of
pcl(V )∩{X0 = 0}has dimension at least r−m−1. From (3.9),we deduce that pcl(V )∩
{X0 = 0} ⊂ V (Rd1

1 , . . . , Rdm
m ). By Lemma 3.8, we have that V (Rd1

1 , . . . , Rdm
m ) has

dimension r −m −1. It follows that pcl(V )∩{X0 = 0} has also dimension r −m −1.

3.2 Estimates on the number of Fq-rational points ofW

The results on V allow us to estimate the number of Fq -rational points of W . We start
with the following result.

Corollary 3.11 W ⊂ A
r is absolutely irreducible.

Proof By Theorems 3.9 and 2.2, we have that pcl(V ) is absolutely irreducible. As a
consequence, V is absolutely irreducible. Since �r (V ) = W , the assertion follows. ��

As |A| = |W (Fq)|, we obtain estimates on the number of elements ofA. Combining
Corollary 3.11 with [3, Theorem 7.1], for q > δG := deg(G1) . . . deg(Gm) we have
the following estimate:

∣
∣|A| − qr−m

∣
∣ ≤ (δG − 1)(δG − 2)qr−m−1/2 + 5δ13/3G qr−m−1.

On the other hand, according to [3, Corollary 7.2], if q > 15δ13/3G , then

∣
∣|A| − qr−m

∣
∣ ≤ (δG − 1)(δG − 2)qr−m−1/2 + 7δ2Gqr−m−1.

We easily deduce the following result.

Theorem 3.12 For q > 15δ13/3G , we have

|A| ≥ qr−m
(

1 − 3δ13/6G

q1/2

)

and |A|−1 ≤ qm−r
(

1 + 15δ13/6G

q1/2

)

.

Further,

|A| ≥ 1

2
qr−m .

4 The distribution of factorization patterns inA
Let λ1, . . . , λr be nonnegative integers such that λ1 +2λ2 +· · ·+rλr = r . Denote by
Pλ the set of f ∈ Fq [T ]r with factorization pattern λ := 1λ12λ2 . . . rλr , namely having
exactly λi monic irreducible factors over Fq of degree i (counted with multiplicity)
for 1 ≤ i ≤ r . Further, for S ⊂ Fq [T ]r we denote Sλ := S ∩ Pλ. In this section,
we estimate the number |Aλ| of elements of A with factorization pattern λ, where
A ⊂ Fq [T ]r is the family of (1.1).
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4.1 Factorization patterns and roots

Following the approach of [8], we show that the set Aλ can be expressed in terms of
certain symmetric polynomials.

Let f ∈ Fq [T ]r and m ∈ Fq [T ] a monic irreducible factor of f of degree i . Then,
m is the minimal polynomial of a root α of f with Fq(α) = Fqi . Denote by Gi the
Galois group Gal(Fqi , Fq) of Fqi over Fq . We may express m in the following way:

m =
∏

σ∈Gi

(T − σ(α)).

Hence, each irreducible factor m of f is uniquely determined by a root α of f (and
its orbit under the action of the Galois group of Fq over Fq ), and this root belongs
to a field extension of Fq of degree degm. Now, for f ∈ Pλ, there are λ1 roots of
f in Fq , say α1, . . . , αλ1 (counted with multiplicity), which are associated with the
irreducible factors of f in Fq [T ] of degree 1; we may choose λ2 roots of f in Fq2\Fq

(counted with multiplicity), say αλ1+1, . . . , αλ1+λ2 , which are associated with the λ2
irreducible factors of f of degree 2, and so on. From now on, we assume that a choice
of λ1 + · · · + λr roots α1, . . . , αλ1+···+λr of f in Fq is made in such a way that each
monic irreducible factor of f in Fq [T ] is associated with one and only one of these
roots.

Our aim is to express the factorization of f into irreducible factors in Fq [T ] in terms
of the coordinates of the chosen λ1 + · · · + λr roots of f with respect to certain bases
of the corresponding extensions Fq ↪→ Fqi as Fq -vector spaces. To this end, we express
the root associated with each irreducible factor of f of degree i in a normal basis �i

of the field extension Fq ↪→ Fqi .
Let θi ∈ Fqi be a normal element and�i the normal basis of the extensionFq ↪→ Fqi

generated by θi , i.e.,

�i =
{

θi , . . . , θ
qi−1

i

}

.

The Galois group Gi is cyclic and the Frobenius map σi : Fqi → Fqi , σi (x) := xq is a
generator of Gi . Thus, the coordinates in the basis �i of all the elements in the orbit
of a root αk ∈ Fqi of an irreducible factor of f of degree i are the cyclic permutations
of the coordinates of αk in the basis �i .

The vector that gathers the coordinates of all the roots α1, . . . , αλ1+···+λr we choose
to represent the irreducible factors of f in the normal bases �1, . . . , �r is an element
of F

r
q , which is denoted by x := (x1, . . . , xr ). Set

�i, j :=
i−1
∑

k=1

kλk + ( j − 1) i (4.1)

for 1 ≤ j ≤ λi and 1 ≤ i ≤ r . Observe that the vector of coordinates of a root
αλ1+···+λi−1+ j ∈ Fqi is the sub-array (x�i, j +1, . . . , x�i, j +i ) of x. With these notations,
the λi irreducible factors of f of degree i are the polynomials
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mi, j =
∏

σ∈Gi

(

T − (

x�i, j +1σ(θi ) + · · · + x�i, j +iσ(θ
qi−1

i )
))

(4.2)

for 1 ≤ j ≤ λi . In particular,

f =
r

∏

i=1

λi∏

j=1

mi, j . (4.3)

Let X1, . . . , Xr be indeterminates over Fq , set X := (X1, . . . , Xr ) and consider
the polynomial M ∈ Fq [X, T ] defined as

M :=
r

∏

i=1

λi∏

j=1

Mi, j , Mi, j :=
∏

σ∈Gi

(

T − (

X�i, j +1σ(θi ) + · · · + X�i, j +iσ(θ
qi−1

i )
))

,

(4.4)
where the �i, j are defined as in (4.1). Our previous arguments show that f ∈ Fq [T ]r
has factorization pattern λ if and only if there exists x ∈ F

r
q with f = M(x, T ).

To discuss how many elements x ∈ F
r
q yield an arbitrary polynomial f =

M(x, T ) ∈ Pλ, we introduce the notion of an array of type λ. For �i, j (1 ≤ i ≤
r , 1 ≤ j ≤ λi ) as in (4.1), we say that x := (x1, . . . , xr ) ∈ F

r
q is of type λ if and only

if each sub-array xi, j := (x�i, j +1, . . . , x�i, j +i ) is a cycle of length i . The following
result relates the set Pλ with the set of elements of F

r
q of type λ (see [8, Lemma 2.2]).

Lemma 4.1 For any x := (x1, . . . , xr ) ∈ F
r
q , the polynomial f := M(x, T ) has

factorization pattern λ if and only if x is of type λ. Furthermore, for each square-
free polynomial f ∈ Pλ there are w(λ) := ∏r

i=1 iλi λi ! different x ∈ F
r
q with f =

M(x, T ).

Consider the polynomial M of (4.4) as an element of Fq [X][T ]. We shall express
the coefficients of M by means of the vector of linear forms Y := (Y1, . . . , Yr ), with
Yi ∈ Fq [X] defined in the following way for 1 ≤ i ≤ r :

(Y�i, j +1, . . . , Y�i, j +i )
t := Ai · (X�i, j +1, . . . , X�i, j +i )

t (1 ≤ j ≤ λi , 1 ≤ i ≤ r),

(4.5)
where Ai ∈ F

i×i
qi is the matrix

Ai :=
(

σ(θ
qh

i )
)

σ∈Gi , 0≤h≤i−1
.

According to (4.4), we may express the polynomial M as

M =
r

∏

i=1

λi∏

j=1

i
∏

s=1

(T − Y�i, j +s) =
r

∏

i=1

(T − Yi ) = T r +
r

∑

i=1

(−1)i (	i (Y)) T r−i ,

where 	1(Y), . . . ,	r (Y) are the elementary symmetric polynomials of Fq [Y ]. By
(4.4), we see that M belongs to Fq [X, T ], which in particular implies that 	i (Y)
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belongs to Fq [X] for 1 ≤ i ≤ r . Combining these arguments with Lemma 4.1 we
obtain the following result.

Lemma 4.2 A polynomial f := T r +ar−1T r−1+· · ·+a0 ∈ Fq [T ]r has factorization
pattern λ if and only if there exists x ∈ F

r
q of type λ such that

ai = (−1)r−i 	r−i (Y(x)) (0 ≤ i ≤ r − 1). (4.6)

In particular, for f square-free, there are w(λ) elements x for which (4.6) holds.

Recall that the familyA of (1.1) is defined by polynomials G1, . . . , Gm in Fq [Ak],
for a fixed k with 0 ≤ k ≤ r − 1. As a consequence, we may express the condition
that an element ofA has factorization pattern λ in terms of the elementary symmetric
polynomials 	1, . . . , 	r−k−1,	r−k+1, . . . ,	r of Fq [Y ].
Corollary 4.3 A polynomial f := T r + ar−1T r−1 + · · · + a0 ∈ Fq [T ]r belongs to Aλ

if and only if there exists x ∈ F
r
q of type λ satisfying (4.6) such that

G j
( − 	1, . . . , (−1)r−k−1	r−k−1, (−1)r−k+1	r−k+1, . . . , (−1)r	r

)

(Y(x)) = 0

(1 ≤ j ≤ m), (4.7)

where G1, . . . , Gm are the polynomials defining the family A. In particular, if f :=
M(x, T ) ∈ Aλ is square-free, then there are w(λ) elements x for which (4.7) holds.

4.2 The number of polynomials inA�

Given a factorization pattern λ, in this section we estimate the number of elements
of Aλ. For this purpose, in Corollary 4.3 we associate with Aλ the polynomials
R1, . . . , Rm ∈ Fq [X] defined as follows:

R j := G j
(−	1, . . . , (−1)r−k−1	r−k−1, (−1)r−k+1	r−k+1, . . . , (−1)r	r

)

(Y(x)).

(4.8)
Let V := V (R1, . . . , Rm) ⊂ A

r be the variety defined by R1, . . . , Rm . Since
G1, . . . , Gm satisfy hypotheses (H1)–(H6), by Lemma 3.2, Corollary 3.5, Theorem3.9
and Remark 3.10 we obtain the following result.

Theorem 4.4 Let m, r be positive integers with m < r .

(1) V ⊂ A
r is a complete intersection of dimension r − m.

(2) pcl(V ) ⊂ P
r is a normal complete intersection of dimension r − m and degree

∏m
i=1 di , where di := deg(Ri ) = wt(Gi ) for 1 ≤ i ≤ m.

(3) V∞ := pcl(V ) ∩ {Y0 = 0} ⊂ P
r−1 has dimension r − m − 1.

Nowwe estimate the number of Fq -rational points of V . According to Theorem 4.4,
pcl(V ) ⊂ P

r is a normal complete intersection defined overFq , of dimension r −m and
multidegree d := (d1, . . . , dm). Therefore, [6, Corollary 8.4] implies the following
estimate (see [4,25,26,41] for further explicit estimates):

∣
∣|pcl(V )(Fq)| − pr−m

∣
∣ ≤ (δ(D − 2) + 2)qr−m− 1

2 + 14D2δ2qr−m−1,
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where pr−m := qr−m + · · · + q + 1 = |Pr−m(Fq)|, δ := d1 · · · dm and D :=
∑m

i=1(di − 1).
On the other hand, the Bézout inequality (2.1) implies deg V∞ ≤ δ. Then, by

Theorem 4.4 and (2.3) we have

∣
∣V∞(Fq)

∣
∣ ≤ δ pr−m−1.

It follows that

∣
∣|V (Fq)| − qr−m

∣
∣ = ∣

∣|pcl(V )(Fq)| − |V∞(Fq)| − pr−m + pr−m−1
∣
∣

≤ ∣
∣|pcl(V )(Fq)| − pr−m

∣
∣ + ∣

∣V∞(Fq)
∣
∣ + 2qr−m−1

≤ (

(δ(D − 2) + 2)q
1
2 + 14D2δ2 + 2δ + 2

)

qr−m−1. (4.9)

Let V = be the subvariety of V defined as

V = :=
⋃

1≤i≤r
1≤ j1< j2≤λi , 1≤k1<k2≤i

V ∩ {Y�i, j1+k1 = Y�i, j2+k2},

where Y�i, j +k are the linear forms of (4.5). Let V �=(Fq) := V (Fq)\V =(Fq). We claim
that V ∩ {Y�i, j1+k1 = Y�i, j2+k2} has dimension at most r − m − 1 for every 1 ≤ i ≤ r ,
1 ≤ j1 < j2 ≤ λi and 1 ≤ k1 < k2 ≤ i . Indeed, let x ∈ V ∩ {Y�i, j1+k1 = Y�i, j2+k2}
for i, j1, j2, k1, k2 as above. By (4.4), we conclude that M(x, T ) is not square-free,
and therefore 	r (Y(x)) ∈ D(W ). Since G1, . . . , Gm satisfy (H4), it follows that
dimD(W ) ≤ r − m − 1, and the fact that 	r is a finite morphism implies that
dim((	r )−1(D(W ))) ≤ r − m − 1. This proves our claim.

The claim implies dim V = ≤ r − m − 1. By the Bézout inequality (2.1), we have

deg V = ≤ deg V
r

∑

i=1

i2λ2i
4

≤ r2

4
δ.

As a consequence, by (2.2) we see that

|V =(Fq)| ≤ deg V = qr−m−1 ≤ r2δ

4
qr−m−1. (4.10)

Finally, combining (4.9) and (4.10) we obtain the following result.

Theorem 4.5 For m < r , we have

∣
∣|V �=(Fq)| − qr−m

∣
∣ ≤ qr−m−1

(

(δ(D − 2) + 2)q
1
2 + 14D2δ2 + 2δ + 2 + r2δ/4

)

,

where δ := ∏m
i=1 wt(Gi ) and D := ∑m

i=1(wt(Gi ) − 1).
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Proof By (4.10), |V =(Fq)| ≤ r2δ qr−m−1/4. Then, from (4.9) we deduce that

∣
∣|V �=(Fq)| − qr−m

∣
∣ ≤ ∣

∣|V (Fq)| − qr−m
∣
∣ + ∣

∣V =(Fq)
∣
∣

≤ (

(δ(D − 2) + 2)q
1
2 + 14D2δ2 + 2δ + 2

)

qr−m−1

+ r2δ

4
qr−m−1.

This shows the statement of the theorem. ��
Next we use Corollary 4.3 to relate |V (Fq)| to the quantity |Aλ|. More precisely,

let x := (xi, j : 1 ≤ i ≤ r , 1 ≤ j ≤ λi ) ∈ F
r
q be an Fq -rational zero of R1, . . . , Rm

of type λ. Then, x is associated with f ∈ Aλ having Y�i, j +k(xi, j ) as an Fqi -root for
1 ≤ i ≤ r , 1 ≤ j ≤ λi and 1 ≤ k ≤ i , where Y�i, j +k is the linear form of (4.5).

Let Asq
λ := { f ∈ Aλ : f is square-free} and Ansq

λ := Aλ\Asq
λ . Corollary 4.3

shows that any element f ∈ Asq
λ is associated with w(λ) := ∏r

i=1 iλi λi ! common
Fq -rational zeros of R1, . . . , Rm of type λ. Observe that x ∈ F

r
q is of type λ if and

only if Y�i, j +k1(x) �= Y�i, j +k2(x) for 1 ≤ i ≤ r , 1 ≤ j ≤ λi and 1 ≤ k1 < k2 ≤
i . Furthermore, an x ∈ F

r
q of type λ is associated with f ∈ Asq

λ if and only if
Y�i, j1+k1(x) �= Y�i, j2+k2(x) for 1 ≤ i ≤ r , 1 ≤ j1 < j2 ≤ λi and 1 ≤ k1 < k2 ≤ i . It

follows that |Asq
λ | = T (λ)

∣
∣V �=(Fq)

∣
∣, where T (λ) := 1/w(λ). This implies

∣
∣|Asq

λ | − T (λ) qr−m
∣
∣ = T (λ)

∣
∣|V �=(Fq)| − qr−m

∣
∣.

From Theorem 4.5, we deduce that

∣
∣|Asq

λ | − T (λ) qr−m
∣
∣ ≤ T (λ)qr−m−1((δ(D − 2) + 2)q

1
2 + 14D2δ2

+ 2δ + 2 + r2δ/4
)

≤ T (λ)qr−m−1((δ(D − 2) + 2)q
1
2 + 14D2δ2 + r2δ

)

.

Now we are able to estimate |Aλ|. We have

∣
∣|Aλ| − T (λ) qr−m

∣
∣ = ∣

∣|Asq
λ | + |Ansq

λ | − T (λ)qr−m
∣
∣

≤ T (λ)qr−m−1((δ(D − 2) + 2)q
1
2 + 14D2δ2 + r2δ

)

+ |Ansq
λ |. (4.11)

It remains to bound |Ansq
λ |. To this end, we observe that f ∈ A is not square-free

if and only if its discriminant is equal to zero, namely it belongs to the discriminant
locusD(W ). By hypothesis (H4), the discriminant locusD(W ) has dimension at most
r − m − 1. Further, by the Bézout inequality (2.1) we have

degD(W ) ≤ deg W · deg{a0 ∈ A
r : Disc(F(A0, T ))|A0=a0 = 0}

≤ δG r(r − 1) ≤ δ r2.
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Then, (2.2) implies

|Ansq
λ | ≤ |Ansq | ≤ δG r(r − 1) qr−m−1 ≤ δ r2qr−m−1. (4.12)

Hence, combining (4.11) and (4.12) we conclude that

∣
∣|Aλ| − T (λ) qr−m

∣
∣ ≤ qr−m−1

(

T (λ)
(

(δ(D − 2) + 2)q
1
2 +14D2δ2 + r2δ

) + r2δ
)

.

In other words, we have the following result.

Theorem 4.6 For m < r , we have that

∣
∣|Asq

λ | − T (λ) qr−m
∣
∣ ≤ T (λ)qr−m−1((δ(D − 2) + 2)q

1
2 + 14D2δ2 + r2δ

)

,
∣
∣|Aλ| − T (λ) qr−m

∣
∣ ≤ qr−m−1

(

T (λ)
(

(δ(D − 2)+2)q
1
2 + 14D2δ2+r2δ

)+r2δ
)

,

where δ := ∏m
i=1 wt(Gi ) and D := ∑m

i=1(wt(Gi ) − 1).

As we show in Sect. 5.1, Theorem 4.6 extends [8, Theorem 4.2]. More precisely,
Theorem 4.6 holds for families defined by linearly independent linear polynomials
G1, . . . , Gm ∈ Fq [Ar−1, . . . , A2] with char(Fq) not dividing r(r − 1), and linearly
independent linear polynomials G1, . . . , Gm ∈ Fq [Ar−1, . . . , A3] with char(Fq) > 2.
The latter is precisely [8, Theorem 4.2].

5 Examples of linear and nonlinear families

In this section, we exhibit examples of linear and nonlinear families of polynomials
satisfying hypotheses (H1)–(H6). Therefore, the estimate of Theorem 4.6 is valid for
these families.

5.1 The linear families of [8]

Suppose that char(Fq) > 3. Let r , m, n be positive integers with 2 ≤ n ≤ r − m and
L1, . . . , Lm ∈ Fq [Ar−1, . . . , An] linear forms which are linearly independent. In [8]
the distribution of factorization patterns of the following linear family is considered:

A :=
{

T r + ar−1T r−1 + · · · + a0 ∈ Fq [T ] : L j (ar−1, . . . , an) = 0 (1 ≤ j ≤ m)
}

.

(5.1)
Assume without loss of generality that the Jacobian matrix (∂Li/∂ A j )1≤i≤m, n≤ j≤r−1
is lower triangular in row echelon form and denote by 1 ≤ i1 < · · · < im ≤ r − n the
positions corresponding to the pivots. We have the following result.

Lemma 5.1 If either n = 2 and char(Fq) does not divide r(r − 1) or n ≥ 3, then
L1, . . . , Lm satisfy hypotheses (H1)–(H6).
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Proof It is clear that hypotheses (H1)–(H2) hold. Further, since the component of
highest weight of Lk is of the form Lwt

k = bk,r−ik Ar−ik for 1 ≤ k ≤ m, we conclude
that (H3) holds.

Now we analyze the validity of (H4). Denote W := V (L1, . . . , Lm) ⊂ A
r . It is

clear that

Fq [W ] := Fq [Ar−1, . . . , A0]/(L1, . . . , Lm) � Fq [Ak : k ∈ J ]

is a domain, where J := {r − 1, . . . , 0}\{r − i1, . . . , r − im}. Therefore, it suffices to
prove that the coordinate class R defined by Disc(F(A0, T )) in Fq [W ] is a nonzero
polynomial in Fq [Ak : k ∈ J ], where F(A0, T ) := T r + Ar−1T r−1 + · · · + A0
and A0 := (Ar−1, . . . , A0). If char(Fq) does not divide r(r − 1), then the nonzero
monomial rr Ar−1

0 occurs in the dense representation of R. On the other hand, if
char(Fq) divides r , then the nonzero monomial Ar

1 occurs in the dense representation
ofR. Finally, if char(Fq) divides r − 1, then we have the nonzero monomial Ar−1

0 in
the dense representation ofR.

Next we show that (H5) is fulfilled. For this purpose, we first prove that
A0, L1, . . . , Lm , Disc(F(A0, T )) form a regular sequence of Fq [Ar−1, . . . , A0]. We
observe that

Fq [Ar−1, . . . , A0]/(A0, L1, . . . , Lm) � Fq [Ak : k ∈ J1]

is a domain, whereJ1 := J \{0}. Hence, considering the classR1 of Disc(F(A0, T ))

as an element of Fq [Ak : k ∈ J1], it is enough to prove that it is nonzero. Indeed, if
char(Fq) does not divide r(r − 1), then the monomial (−1)r−1(r − 1)r−1Ar

1 occurs in
the dense representationR1, while for char(Fq) dividing r , the monomial Ar

1 appears
inR1. Finally, for n ≥ 3 and char(Fq) dividing r − 1, we have the nonzero monomial
(−1)r+1A2

1Ar−1
2 in the dense representation of R1.

Finally, we prove that L1, . . . , Lm,Disc(F(A0, T )),Subdisc(F(A0, T )) form a
regular sequence inFq [Ar−1, . . . , A0]. Recall thatFq [Ar−1, . . . , A0]/(L1, . . . , Lm) �
Fq [Ak : k ∈ J ] is a domain. Therefore, we may consider the classes R and S1 of
Disc(F(A0, T )) and Subdisc(F(A0, T ))modulo (L1, . . . , Lm) as elements ofFq [Ak :
k ∈ J ]. We have already shown that R is nonzero. On the other hand, if char(Fq)

does not divide r(r − 1), then the nonzero monomial r(r − 1)r−2Ar−2
1 occurs in the

dense representation of S1, while for char(Fq) dividing r(r − 1), we have the nonzero
monomial 2(−1)r (r −2)r−2Ar−1

2 in the dense representation of S1. We conclude that
S1 is nonzero.

Further, [40, Theorem A.3] or [45, Theorem 3.1.7] shows that R is an irreducible
element of Fq [Ak : k ∈ J ] and hence B := Fq [Ak : k ∈ J ]/(R) is a domain.
Thus, it suffices to see that the class of S1 in B is nonzero. If not, then S1 would
be a nonzero multiple of R in Fq [Ak : k ∈ J ], which is not possible because
max{degA1

R, degA2
R} = r and max{degA1

S1, degA2
S1} = r − 1.

Finally, we prove that (H6) holds. The components of highest weight of L1, . . . , Lm

being of the form Lwt
k = bk,r−ik Ar−ik for k = 1, . . . , m, arguing as before we readily

conclude that (H6) holds. ��
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From Lemma 5.1, it follows that the family A of (5.1) satisfies the hypotheses of
Theorem 4.6. Therefore, applying Theorem 4.6 we obtain the following result.

Theorem 5.2 Suppose that char(Fq) > 3. Let A be the family of (5.1) and λ a factor-
ization pattern. If either char(Fq) does not divide r(r −1) and Lk ∈ Fq [Ar−1, . . . , A2]
for 1 ≤ k ≤ m, or Lk ∈ Fq [Ar−1, . . . , An] for 1 ≤ k ≤ m and 3 ≤ n ≤ r − m, then

∣
∣|Asq

λ | − T (λ) qr−m
∣
∣ ≤ T (λ)qr−m−1((δ(D − 2) + 2)q

1
2 + 14D2δ2 + r2δ

)

,
∣
∣|Aλ| − T (λ) qr−m

∣
∣ ≤ qr−m−1

(

T (λ)
(

(δ(D − 2) + 2)q
1
2 + 14D2δ2+r2δ

)+r2δ
)

,

where δ := ∏m
j=1 i j and D := ∑m

j=1(i j − 1).

5.2 A linear family from [23]

In [23], there are experimental results on the number of irreducible polynomials on
certain families over Fq . Further, the distribution of factorization patterns on general
families of polynomials of Fq [T ] of a given degree is stated as an open problem. In
particular, the family of polynomials we now discuss is considered.

Suppose that char(Fq) > 3. For positive integers s and r with 3 ≤ s ≤ r − 2, let

A := {T r + g(T )T + 1 : g ∈ Fq [T ] and deg g ≤ s − 1}. (5.2)

Observe thatA is isomorphic to the set of Fq -rational points of the affine Fq -subvariety
of A

r defined by the polynomials

G1 := A0 − 1, G2 := As+1, . . . , Gr−s := Ar−1.

We show that hypotheses (H1)–(H6) are fulfilled. It is easy to see that (H1) and
(H2) hold, since G1, . . . , Gr−s are linearly independent polynomials of degree 1.
Furthermore, taking into account that

Gwt
1 = A0, Gwt

2 = As+1, . . . , Gwt
r−s = Ar−1,

we immediately conclude that hypothesis (H3) holds.
Now, we analyze the validity of hypotheses (H4) and (H5). Let W ⊂ A

r be the
Fq -variety defined by the polynomials G1, . . . , Gr−s , and denote by D(W ) ⊂ A

r

and S1(W ) ⊂ A
r the discriminant locus and the first subdiscriminant locus of W ,

respectively.
We first prove that D(W ) has codimension one in W . It is clear that G1, . . . , Gr−s

form a regular sequence of Fq [Ar−1, . . . , A0]. Observe that

Fq [W ] = Fq [Ar−1, . . . , A0]/(G1, . . . , Gr−s) � Fq [As, . . . , A1]

is a domain. As a consequence, we may consider the coordinate functionR defined by
Disc(F(A0, T )) as an element of Fq [As, . . . , A1], where A0 := (Ar−1, . . . , A0) and
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F(A0, T ) := T r + Ar−1T r−1 +· · ·+ A0. We observe thatR �= 0 in Fq [As, . . . , A1],
because F(A0, T ) is not a separable polynomial, and therefore it is not a zero divisor
of Fq [W ]. It follows that D(W ) has codimension one in W , namely hypothesis (H4)

holds.
Next we show that (A0 · S1)(W ) has codimension at least one in D(W ). Since

G1 := A0 − 1 vanishes on W , the coordinate function of Fq [W ] defined by A0 is a
unit, which proves that (A0 · S1)(W ) = S1(W ).

In what follows, we shall use the following elementary property.

Lemma 5.3 Let F1, . . . , Fm ∈ Fq [A0, . . . , Ar−1]. If F1, . . . , Fm form a regu-
lar sequence in Fq(A0, . . . , Ai )[Ai+1, . . . , Ar−1], then F1, . . . , Fm form a regular
sequence in Fq [A0, . . . , Ar−1].

We shall also use the following property of regular sequences.

Lemma 5.4 Let F1, . . . , Fm ∈ Fq [A0, . . . , Ar−1]. For an assignment of positive
integer weights wt to the variables A0, . . . , Ar−1, denote by Fwt

1 , . . . , Fwt
m the com-

ponents of highest weight of F1, . . . , Fm. If Fwt
1 , . . . , Fwt

m form a regular sequence in
Fq [A0, . . . , Ar−1], then F1, . . . , Fm form a regular sequence in Fq [A0, . . . , Ar−1].
Proof Let Vj := V (F1, . . . , Fj ) ⊂ A

r for 1 ≤ j ≤ m. It is enough to see that Vj has
codimension j for 1 ≤ j ≤ m. By hypothesis, Vwt

j := V (Fwt
1 , . . . , Fwt

j ) ⊂ A
r has

pure dimension r − j . Therefore, there exist 1 ≤ k1 < · · · < kr− j ≤ m such that the
variety V := V (Fwt

1 , . . . , Fwt
j , Ak1 , . . . , Akr− j ) ⊂ A

r has dimension zero. Consider
the following morphism of affine Fq -varieties:

φ : A
r → A

r

(a0, . . . , ar−1) → (awt(0)
0 , awt(1)

1 , . . . , awt(r−1)
r−1 ),

wherewt(0), . . . ,wt(r −1) are the weights assigned to A0, . . . , Ar−1, respectively. It
is clear that φ is a finite, dominant morphism. Observe that if F ∈ Fq [A0, . . . , Ar−1]
is weighted homogeneous, then φ(F) is homogeneous.

We have that φ(V ) ⊂ A
r is a zero-dimensional affine cone. Since φ(V ) is defined

by the homogeneous polynomials Fwt
i (Awt(0)

0 , . . . , Awt(r−1)
r−1 ), 1 ≤ i ≤ j , and Awt(ki )

ki
,

1 ≤ i ≤ r − j , it must be φ(V ) = {0}. Therefore, by, e.g., [44, Proposition 18], the
affine variety defined by the polynomials

F1(Awt(0)
0 , . . . , Awt(r−1)

r−1 ), . . . , Fj (Awt(0)
0 , . . . , Awt(r−1)

r−1 ), Awt(k1)
k1

, . . . , A
wt(kr− j )

kr− j

has dimension zero. Taking into account that φ is a finite morphism, we conclude that
the variety V̂ j ⊂ A

r defined by F1, . . . , Fj , Ak1 , . . . , Akr− j has also dimension zero.
Finally, observe that the dimension of Vj is at least r − j . On the other hand,

0 = dim V̂ j ≥ dim Vj − (r − j). This finishes the proof of the lemma. ��
We have that G2, . . . , Gr−s form a regular sequence in Fq [Ar−1, . . . , A0].

Observe that Fq [Ar−1, . . . , A0]/(G2, . . . , Gr−s) � Fq [As, . . . , A0]. Therefore, to
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conclude that (H5) holds it suffices to prove that G1, S1 and R form a regu-
lar sequence in Fq [As, . . . , A0], where G1, R and S1 are the coordinate func-
tions of Fq [Ar−1, . . . , A0]/(G2, . . . , Gr−s) defined by G1, Disc(F(A0, T )) and
Subdisc(F(A0, T )), respectively.

Lemma 5.5 G1, S1 and R form a regular sequence in Fq [As, . . . , A0].
Proof We consider R,S1,G1 as elements of Fq(As, . . . , Ai+1)[Ai , . . . , A0] for an
appropriate i ∈ {2, 3} and define a weight wti by setting

wti (A0) := r , wti (A1) := r − 1, . . . ,wti (Ai ) := r − i .

Denote by Gwti
1 , Rwti and Swti

1 the components of highest weight of G1, R and S1,
respectively. We have the following claim.

Claim Gwti
1 ,Swti

1 andRwti form a regular sequence inFq(As, . . . , Ai+1)[Ai , . . . , A0].
Proof of Claim Observe that

Fq(As, . . . , Ai+1)[Ai , . . . , A0]/(Gwti
1 ) � Fq(As, . . . , Ai+1)[Ai , . . . , A1]

is a domain. As a consequence, it suffices to prove that the coordinate functions defined
by Swti

1 andRwti in this quotient ring form a regular sequence. With a slight abuse of
notation, we shall also denote them by Swti

1 and Rwti .
The proof will be split into four parts, according to whether char(Fq) divides r ,

r − 1, r − 2 or does not divide r(r − 1)(r − 2).

First case char(Fq) divides r . For i := 2 we have that, in Fq(As, . . . , A3)[A2, A1],

Rwt2 = Ar
1 + (−1)r+12r−2Ar−1

2 A2
1 and Swt2

1 = (2A2)
r−1. (5.3)

Observe that Swt2
1 is a nonzero polynomial of Fq(As, . . . , A3)[A2, A1], and

Fq(As, . . . , A3)[A2, A1]/(Swt2
1 ) � Fq(As, . . . , A3)[A1].

It follows that Rwt2 is not a zero divisor in Fq(As, . . . , A3)[A2, A1]/(Swt2
1 ), which

completes the proof of the claim in this case.

Second case char(Fq) divides r − 1. For i := 3, we prove that Swt3
1 and Rwt3 form a

regular sequence inFq(As, . . . , A4)[A3, A2, A1]. Let F := T r +A3T 3+A2T 2+A1T .
It is easy to see that Rwt3 = Disc(F) and Swt3

1 = Subdisc(F). Observe that F ′ =
T r−1 + 3A3T 3 + 2A2T 2 + A1. By [24, Lemma 7.1], we deduce that

Rwt3 = (−1)r(r−1)Res(F ′, G) and Swt3
1 = (−1)(r−1)(r−2)Subdisc(F ′, G),

where G := −2A3T 3 − A2T 2 is the remainder of the division of F by F ′. Therefore,
by the Poisson formula it follows that

Rwt3 = (−1)r+1A2
1Ar−1

2 + 2r−1A2
1A2

2Ar−2
3 − 2r−3A3

1Ar−1
3 .
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On the other hand, by, e.g., [13, Theorem 2.5], we conclude that

Swt3
1 = 2Ar−1

2 + (−1)r2r−2A2
2Ar−2

3 + 2A1Ar−3
2 A3 + 3(−1)r+12r−2A1Ar−1

3

= 2
(

Ar−1
2 + A1Ar−3

2 A3
) + (−2)r−2(A2

2Ar−2
3 − 3A1Ar−1

3

)

.

In the second line, we express Swt3
1 as the sum of two homogeneous polynomials of

degrees r −1 and r without common factors. Then, [27, Lemma 3.15] proves that Swt3
1

is an irreducible polynomial in Fq(As, . . . , A4)[A3, A2, A1]. Next suppose thatRwt3

is a zero divisor in Fq(As, . . . , A4)[A3, A2, A1]/(Swt3
1 ). Since Swt3

1 is irreducible,
we have that Rwt3 ∈ (Swt3

1 ), which is easily shown to be not possible by a direct
calculation.

Third case char(Fq) divides r − 2. For i := 3, we show that Swt3
1 and Rwt3

form a regular sequence in Fq(As, . . . , A4)[A3, A2, A1]. As in the previous case, if
F := T r + A3T 3 + A2T 2 + A1T , then Rwt3 = Disc(F) and Swt3

1 := Subdisc(F).
Since F ′ = 2T r−1 + 3A3T 3 + 2A2T 2 + A1, from [24, Lemma 7.1] it follows that

Rwt3 = (−1)r(r−1)2r−3Res(F ′, G) and Swt3
1 = (−1)(r−1)(r−2)2r−3Subdisc(F ′, G),

where G := − 1
2 A3T 3 + 1

2 A1T is the remainder the division of F by F ′. By the
Poisson formula, we obtain

Rwt3 =
{

4A3
1Ar−1

3 − Ar
1 − 2A2A1

r+2
2 A3

r−2
2 − A2

1A2
2Ar−2

3 for r even,

4A3
1Ar−1

3 + Ar
1 + 4A

r+3
2

1 A3
r−1
2 − A2

1A2
2Ar−2

3 for r odd.

In the same vein, by, e.g., [13, Theorem 2.5], we have that

Swt3
1 =

{

4A2(A1A3)
r−2
2 + 2A2

2Ar−2
3 + 2Ar−2

1 − 6A1Ar−2
3 for r even,

7(A1A3)
r−1
2 − 2A2

2Ar−2
3 + 2Ar−2

1 + 6A1Ar−1
3 for r odd.

We observe that Swt3
1 is an irreducible polynomial in Fq(As, . . . , A4)[A3, A2, A1]. To

prove this, it suffices to apply the Eisenstein criterion, considering Swt3
1 as an element

of the polynomial ring Fq((As, . . . , A4)[A3, A1])[A2] and the prime (A1). Next, sup-
pose thatRwt3 is a zero divisor in Fq(As, . . . , A4)[A3, A2, A1]/(Swt3

1 ). Since Swt3
1 is

irreducible, we have that Rwt3 ∈ (Swt3
1 ), which can be shown to be not possible by a

direct calculation.

Fourth case char(Fq)does not divide r(r−1)(r−2). For i := 2,we prove thatSwt2
1 and

Rwt2 forma regular sequence inFq(As, . . . , A3)[A2, A1].Arguing as before,weobtain

123



130 Journal of Algebraic Combinatorics (2020) 51:103–153

Rwt2 = (1 − r)r−1Ar
1 − (r − 2)r−1A2

1Ar−1
2 ,

Swt2
1 = r(r − 1)r−2Ar−2

1 + 2(2 − r)r−2Ar−1
2 .

By the Stepanov criterion (see, e.g., [39, Lemma 6.54]), we deduce that Swt2
1 is

an irreducible polynomial in Fq(As, . . . , A3)[A2, A1]. Suppose that Rwt is a zero
divisor in Fq(As, . . . , A3)[A2, A1]/(Swt2

1 ). Since Swt2
1 is irreducible, we have that

Rwt2 ∈ (Swt2
1 ), which can be seen not to be the case by a direct calculation. Therefore,

we deduce that Swt2
1 andRwt2 form a regular sequence in Fq(As, . . . , A3)[A2, A1]. ��

By the claim and Lemma 5.4, it follows that G1, S1 andR form a regular sequence
in Fq(As, . . . , Ai+1)[Ai , . . . , A0], and Lemma 5.3 implies that G1, S1 and R form a
regular sequence in Fq [As, . . . , A0]. ��

By Lemma 5.5, we conclude that hypothesis (H5) holds. Finally, we prove
that hypothesis (H6) holds. The components of higher weight of the polynomials
G1, . . . , Gr−s are Gwt

i = As+i−1 for 2 ≤ i ≤ r − s and Gwt
1 = A0. With the same

arguments as above, we see thatD(Wwt) has codimension at least one in Wwt, where
Wwt := V (Gwt

1 , . . . , Gwt
r−s).

Since the family (5.2) satisfies hypotheses (H1)–(H6), fromTheorem 4.6 we deduce
the following result.

Theorem 5.6 Let A be the family (5.2) and λ a factorization pattern. We have

∣
∣|Asq

λ | − T (λ) qs
∣
∣ ≤ T (λ)qs−1((δ(D − 2) + 2)q

1
2 + 14D2δ2 + r2δ

)

,
∣
∣|Aλ| − T (λ) qs

∣
∣ ≤ qs−1

(

T (λ)
(

(δ(D − 2) + 2)q
1
2 + 14D2δ2 + r2δ

) + r2δ
)

,

where Aλ is the set of elements of A with factorization pattern λ, Asq
λ is the

set of square-free elements of Aλ, δ := r · (r − s − 1)! and D := r − 1 +
(r − s − 2)(r − s − 1)/2.

Proof We apply Theorem 4.6 with m := r − s to the polynomials

R1 := (−1)r	r − 1, R2 := (−1)r−s−1	r−s−1, . . . , Rr−s := −	1.

Therefore, we have

δ :=
r−s
∏

i=1

deg Ri = r · (r − s − 1)! and

D :=
r−s
∑

i=1

(deg Ri − 1) = r − 1 + (r − s − 2)(r − s − 1)

2
.

This finishes the proof. ��
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5.3 A nonlinear family

Let r , t1, . . . , tr be positive integers with r even. Suppose that char(Fq) > 3 does not
divide (r −1)(r +1)

(

(r −1)r−1 + rr
)

. Consider the polynomial G ∈ Fq [A1, . . . , Ar ]
defined in the following way:

G :=
∑

t1+2t2+···+r tr =r

(−1)
(t1,...,tr ) (t1 + · · · + tr )!
t1! . . . tr ! At1

r . . . Atr
1 ,

where 
(t1, t2, . . . , tr ) := r − ∑r
i=1 ti . The polynomial G arises as the determinant

of the n × n generic Toeplitz–Hessenberg matrix, namely

G = det

⎛

⎜
⎜
⎜
⎜
⎝

Ar 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
A1 . . . . . . Ar 1

⎞

⎟
⎟
⎟
⎟
⎠

.

This is the well-known Trudi formula (see [43, Ch. VII]; see also [42, Theorem 1]).
We also remark that the polynomial Hr := G(	r , . . . ,	1) is critical in the study of
deep holes of the standard Reed–Solomon codes (see [5, Proposition 2.2]).

We consider the following family of polynomials:

AN := {T r+1 + ar T r + · · · + a0 : G(ar , . . . , a1) = 0}. (5.4)

Observe that AN may be seen as the set of Fq -rational points of the Fq -variety W :=
V (G) ⊂ A

r+1. Letwt be the weight defined bywt(Ai ) := r + 1− i for i = 0, . . . , r .
We shall prove that this family of polynomials satisfies hypotheses (H1)–(H6).

It is clear that (H1) holds, because G is nonzero. Further, since G is a monic element
of Fq [Ar , . . . , A2][A1] of degree 1 in A1, we have that

∇G(a0) =
(

∂G

∂ Ar
(a0), . . . ,

∂G

∂ A2
(a0), 1

)

�= 0

for any a0 ∈ W . We deduce that hypothesis (H2) holds.
Next we consider hypothesis (H3). Given an arbitrary nonzero monomial

mg := (−1)
(t1,...,tr )(
(t1 + · · · + tr )!

t1! . . . tr ! At1
r . . . Atr

1

arising in the dense representation of G, it is easy to see that wt(mG) = r . It follows
that G is weighted homogeneous of weighted degree r . Then, Gwt = G, which readily
implies that hypothesis (H3) holds.

Now we analyze the validity of hypothesis (H4), namely that the discriminant
locus D(W ) ⊂ A

r+1 of W has codimension at least 1 in W . For this purpose, it
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suffices to show that {G,R} form a regular sequence in Fq [Ar , . . . , A0], whereR :=
Disc(F(A0, T )), F(A0, T ) := T r+1 + Ar T r + · · · + A0 and A0 := (Ar , . . . , A0).

We consider G andR as elements of the polynomial ring Fq(Ar , . . . , A2)[A1, A0]
and define a weight wt1 on Fq(Ar , . . . , A2)[A1, A0] by setting

wt1(A1) := r , wt1(A0) := r + 1.

We claim that Gwt1 ,Rwt1 form a regular sequence in Fq(Ar , , . . . , A2)[A1, A0].
Observe that Gwt1 = A1. Further, since Fq(Ar , . . . , A2)[A1, A0]/(Gwt1) �
Fq(Ar , . . . , A2)[A0] is a domain, to prove the claim it suffices to show that Rwt1

is nonzero modulo (A1). A direct calculation shows that Rwt1 = (r + 1)r+1Ar+1
0

modulo (A1), which proves the claim. As a consequence of the claim and Lemma 5.4,
we deduce that G and R form a regular sequence in Fq(Ar , . . . , A2)[A1, A0], and
Lemma 5.3 implies that G andR form a regular sequence in Fq [Ar , . . . , A0]. In other
words, hypothesis (H4) is satisfied.

Next we show that hypothesis (H5) holds. To this end, wemake the following claim.

Claim A0,R and G form a regular sequence of Fq [Ar , . . . , A0].
Proof Since Fq [Ar , . . . , A0]/(A0) � Fq [Ar , . . . , A1] and G ∈ Fq [Ar , . . . , A1], we
show that R modulo (A0), and G, form a regular sequence in Fq [Ar , . . . , A1]. We
consider G and R modulo (A0) as elements of Fq(Ar−1, . . . , A2)[Ar , A1], with the
weightwtr defined bywtr (Ar ) := 1 andwtr (A1) := r . We claim that Gwtr andRwtr

form a regular sequence in Fq(Ar−1, . . . , A2)[Ar , A1]. First, we observe that

Gwtr = A1 + Ar
r ,

and the Stepanov criterion (see, e.g., [39, Lemma 6.54]) proves that Gwtr is an irre-
ducible polynomial of Fq(Ar−1, . . . , A2)[Ar , A1]. Thus, it is enough to prove that
Rwtr is a nonzero polynomial of Fq(Ar−1, . . . , A2)[Ar , A1]/(Gwtr ). We have

Rwtr = −(r − 1)r−1Ar
r Ar

1 + rr Ar+1
1

≡ −(

(r − 1)r−1 + rr )Ar+r2
r modulo Gwtr .

Weconclude thatGwtr andRwtr forma regular sequence inFq(Ar−1, . . . , A2)[Ar , A1].
Combining Lemmas 5.4 and 5.3 as before, we deduce thatRmodulo (A0) and G form
a regular sequence in Fq [Ar , . . . , A1], which implies that A0,R and G form a regular
sequence of Fq [Ar , . . . , A0]. ��
We also need the following claim.

Claim G,R and S1 form a regular sequence of Fq [Ar , . . . , A0].
Proof Consider G, R and S1 as elements of Fq(Ar , . . . , A3)[A2, A1, A0], and the
weightwt2 defined bywt2(A2) := r − 1,wt2(A1) := r ,wt2(A0) := r + 1. We claim
that Gwt2 , Swt2

1 and Rwt2 form a regular sequence in Fq(Ar , . . . , A3)[A2, A1, A0].
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Since Gwt2 = A1, we have that Fq(Ar , . . . , A3)[A2, A1, A0]/(Gwt2) � Fq(Ar , . . . ,

A3)[A2, A0] is a domain. Therefore, it suffices to prove that Swt2
1 modulo (A1) and

Rwt2 modulo (A1) form a regular sequence in Fq(Ar , . . . , A3)[A2, A0]. Observe that

Swt2
1 modulo (A1) = −2(r − 1)r−1Ar

2.

Further, we have Rwt2 modulo (A1, A2) = (r + 1)r+1Ar
0. As a consequence, Gwt2 ,

Swt2
1 and Rwt2 form a regular sequence in Fq(Ar , . . . , A3)[A2, A1, A0]. From Lem-

mas 5.4 and 5.3, it follows thatG,S1 andR form a regular sequence inFq [Ar , . . . , A0].
��

From the first claim, we conclude that D(W ) ∩ {A0 = 0} has codimension two
in W , while the second claim shows that S1(W ) has codimension two in W . As a
consequence, D(W ) ∩ (A0 · S1)(W ) has codimension two in W , that is, hypothesis
(H5) is satisfied.

Finally, since Gwt = G, we readily deduce that hypothesis (H6) holds.
As a consequence of the fact that the family (5.4) satisfies hypotheses (H1)–(H6),

we obtain the following result.

Theorem 5.7 Let AN be the family (5.4) and λ a factorization pattern. We have

∣
∣|Asq

N ,λ
| − T (λ) qr

∣
∣ ≤ T (λ)qr−1(r2q

1
2 + 14r4

)

,

∣
∣|AN ,λ| − T (λ) qr

∣
∣ ≤ qr−1(T (λ)(r2q

1
2 + 14r4) + r3

)

,

where AN ,λ is the set of elements of AN with factorization pattern λ and Asq
N ,λ

is the
set of square-free elements of AN ,λ.

Proof This is a simple consequence of Theorem 4.6 with m := 1 and the polynomial

R1 := G(−	1,	2, . . . , (−1)r	r ).

As previously remarked, the weighted degree of G is r , which implies that deg R1 = r .
Therefore, we have

δ := deg R1 = r and D := deg R1 − 1 = r − 1.

As a consequence, Theorem 4.6 implies

∣
∣|Asq

N ,λ
| − T (λ) qr

∣
∣ ≤ T (λ)qr−1((r(r − 3) + 2)q

1
2 + 14(r − 1)2r2 + r3

)

,

∣
∣|AN ,λ| − T (λ) qr

∣
∣ ≤ qr−1

(

T (λ)
(

(r(r − 3) + 2)q
1
2 + 14(r − 1)2r2 + r3

) + r3
)

.

This immediately implies the statement of the theorem. ��
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6 Average-case analysis of polynomial factorization overA
In this section, we analyze the average-case complexity of the classical factorization
algorithm applied to any family A as in (1.1) satisfying hypotheses (H1)–(H6).

Given f ∈ Fq [T ], the classical factorization algorithm finds the complete factor-
ization f = f e1

1 . . . f en
n , where f1, . . . , fn are pairwise-distinct monic irreducible

polynomials in Fq [T ] and e1, . . . , en are strictly positive integers. The algorithm con-
tains three main routines:

• elimination of repeated factors (ERF) replaces a polynomial by a square-free one
that contains all the irreducible factors of the original one with exponent 1;

• distinct-degree factorization (DDF) splits a square-free polynomial into a product
of polynomials whose irreducible factors have all the same degree;

• equal-degree factorization (EDF) splits completely a polynomial whose irre-
ducible factors have all the same degree.

More precisely, the algorithm works as follows:

Classical factorization algorithm

Input: a monic polynomial f ∈ Fq [T ] of degree r > 0.
Output: the complete factorization of f in Fq [T ].

factor procedure ( f ∈ Fq [T ])
a f := ERF( f ) [a f is square-free]
b f := DDF(a f ) [b f is a partial factorization into distinct degrees]
F := 1
For k from 1 to s (s ≤ r ) do

F := F · EDF(b f [k], k) [refines the distinct-degree factorization for
polynomials of degree k]

end do
c := factor( f /a f )

Return F · c.

In [18], the authors analyze the average-case complexity of the classical factoriza-
tion algorithmapplied to all themonic polynomials of degree r ofFq [T ]. Unfortunately,
the results of this analysis cannot be directly applied to the family A, because there
is a small probability that a random monic polynomial of degree r of Fq [T ] belongs
to A. For this reason, we shall perform an analysis of the behavior of this algorithm
applied to elements ofA, using the results on the distribution of factorization patterns
of Sect. 4.

Considering the uniform probability on A, let X : A → N be the random variable
that counts the numberX ( f ) of arithmetic operations in Fq performed by the classical
factorization algorithm to obtain the complete factorization in Fq [T ] of any f ∈ A.
We may describe this algorithm as consisting of four stages, and thus the random
variable X may be decomposed as the sum of the random variables that count the
cost of each step of the algorithm. More precisely, we consider the random variable
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X1 : A → N that counts the number of arithmetic operations in Fq performed in the
ERF step, namely

X1( f ) := Cost(ERF( f )). (6.1)

Further, we introduce a random variable X2 : A → N that counts the number of
arithmetic operations in Fq performed during the DDF step, namely

X2( f ) := Cost(DDF(a f )), (6.2)

where a f := ERF( f ) denotes the square-free polynomial obtained after performing
the ERF step on input f . Denote by

b f := DDF(a f ) = (b f (1), . . . , b f (s))

the vector of polynomials obtained by applying the DDF step to the monic square-free
polynomial a f := ERF( f ), where s is the degree of the largest irreducible factor of
a f . Each b f (k) consists of the product of all the monic irreducible polynomials in
Fq [T ] of degree k that divide f . With this notation, let X3 : A → N be the random
variable that counts the number of arithmetic operations in Fq of the EDF step, namely

X3( f ) :=
s

∑

k=1

X3,k( f ), X3,k( f ):=Cost(EDF(b f (k))) (1 ≤ k ≤ s). (6.3)

Finally, we introduce a random variable X4 : A → N that counts the number of oper-
ations in Fq performed by the classical factorization algorithm applied to f /ERF( f ).
Our aim is to study the expected value of the random variable X , namely

E[X ] := 1

|A|
∑

f ∈A
X ( f ) = 1

|A|
4

∑

k=1

∑

f ∈A
Xk( f ). (6.4)

We denote by M(r) a multiplication time, so that the product of two polynomials of
degree at most r of Fq [T ] can be computed with at most τ1M(r) arithmetic operations
in Fq . Using fast arithmetic, we can take M(r) := r log r log log r (see, e.g., [50]). For
τ1 suitably chosen, a division with remainder of two polynomials of degree at most
r can also be computed with at most τ1M(r) arithmetic operations in Fq . Further, the
cost of computing the greatest common divisor of two polynomials in Fq [T ] of degree
at most r is at most τ2 U(r) arithmetic operations in Fq , where U(r) := M(r) log r
(see, e.g., [50]). Here, τ1 and τ2 are system- and implementation-dependent constants.

6.1 Elimination of repeated factors

We consider in detail the step of elimination of repeated factors (ERF). Let

f = f e1
1 · · · f en

n =
∏

p|ei

f ei
i

∏

p�ei

f ei
i
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be the factorization of f ∈ A into monic irreducible polynomials in Fq [T ], where
f1, . . . , fn are pairwise distinct, e1, . . . , en ∈ N and p := char(Fq). It is clear that f is
square-free if and only if gcd( f , f ′) = 1 (see, e.g., [50, Corollary 14.25]). Assume that
f is not square-free.Hence,u := gcd( f , f ′) �= 1. It follows that v := f /u = ∏

p�ei
fi

is the square-free part of the product
∏

p�ei
f ei
i (see, e.g., [49, Theorem 20.4]). Since

each ei ≤ r := deg f , we deduce that gcd(u, vr ) = ∏

p�ei
f ei −1
i . Therefore,

w := u

gcd(u, vr )
=

∏

p|ei

f ei
i

is the part of f which is a power of p. These are the foundations of the following
procedure.

ERF algorithm

Input: f ∈ Fq [T ] monic of degree r > 0.
Output: the square-free part of f , that is, the product of all distinct irreducible
factors of f in Fq [T ].

procedure ERF (f: polynomial)

Compute u := gcd( f , f ′)
Compute v := f

u [square-free part of
∏

p�ei
f ei
i ]

Compute w := u
gcd(u,vr )

[part of f which is a power of p]

Return v · ERF(w1/p).

According to [50, Exercise 14.27], for f ∈ Fq [T ] of degree at most r , the number of
arithmetic operations in Fq performed by the ERF algorithm to obtain the square-free
part of f is O(M(r) log r + r log(q/p)). In this section, we analyze the average-
case complexity of the ERF algorithm restricted to elements of the family A. More
precisely, we analyze the expected value E[X1] of the random variable X1 defined in
(6.1), namely

E[X1] := 1

|A|
∑

f ∈A
X1( f ). (6.5)

Let Asq be the set of f ∈ A that are square-free and Ansq := A\Asq . The
probability that a random polynomial of A is square-free is

P[Asq ] = |Asq |
|A| = 1 − |Ansq |

|A| .

According to (4.12), we have |Ansq | ≤ r(r − 1)δGqr−m−1. On the other hand,
from Theorem 3.12 it follows that if q > 15δ13/3G , then |A| ≥ 1

2qr−m , where
G := (G1, . . . , Gm) are the polynomials defining the family A and δG :=
degG1 · · · degGm . As a consequence,
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P[Asq ] ≥ 1 − 2 r2δG qr−m−1

qr−m
= 1 − 2 r2δG

q
.

In other words, we have the following result.

Lemma 6.1 For q > 15δ13/3G , the probability that a random polynomial ofA is square-

free is P[Asq ] ≥ 1 − 2 r2δG/q. In particular, if q > max{15δ13/3G , 4 r2δG}, then
P[Asq ] > 1/2.

To estimate E[X1], we decompose the family A into the sets Asq and Ansq . We
have

E[X1] = 1

|A|
∑

f ∈Asq

X1( f ) + 1

|A|
∑

f ∈Ansq

X1( f ) =: Ssq
1 + Snsq

1 .

First, we obtain an upper bound for Ssq
1 . On input f ∈ Asq , the ERF algorithm

performs the first three steps. Since u := gcd( f , f ′) = 1 and gcd(u, vr ) = 1, its cost
is dominated by the cost of calculating u, which is atmost τ2 U(r) arithmetic operations
in Fq , and the cost of calculating vr , which is at most τ1 U(r) arithmetic operations in
Fq . We conclude that if f ∈ Asq , then X1( f ) ≤ (τ1 + τ2)U(r). Therefore,

Ssq
1 := 1

|A|
∑

f ∈Asq

X1( f ) ≤ (τ1 + τ2)U(r)
|Asq |
|A| . (6.6)

On the other hand, if f ∈ Ansq , then [50, Exercise 14.27] shows that the number of
arithmetic operations in Fq which performs the ERF algorithm on input f is bounded
by X1( f ) ≤ c1

(

U(r) + r log
( q

p

))

, where c1 is a constant independent of q and
p := char(Fq). Hence, we have

Snsq
1 := 1

|A|
∑

f ∈Ansq

X1( f ) ≤ c1

(

U(r) + r log
( q

p

)) |Ansq |
|A| . (6.7)

Combining (6.6) and (6.7) we conclude that

E[X1] ≤ (τ1 + τ2)U(r)
|Asq |
|A| + c1 U(r)

|Ansq |
|A| + c1 r log

( q

p

) |Ansq |
|A|

≤ c2 U(r) + c1 r log
( q

p

) |Ansq |
|A| ,

where c2 := max{τ1 + τ2, c1}. Hence, if q > 15δ13/3G , then Lemma 6.1 implies

E[X1] ≤ c2 U(r) + 2 c1 r3δG log
( q

p

) 1

q
.

We obtain the following result.
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Theorem 6.2 Let q > 15δ13/3G . The average cost E[X1] of the ERF algorithm applied

to elements of A is bounded as E[X1] ≤ c2 U(r) + c3 log
( q

p

)

δG
r3
q , where c2 and c3

are constants independent of r and q.

Wemay paraphrase this result as saying that the average cost of the ERF algorithm
applied to elements of A is asymptotically of order U(r), which corresponds to the
cost of calculating the greatest common divisor u := gcd( f , f ′). This generalizes the
results of [18, Section 2].

6.2 Distinct-degree factorization

Now we analyze the distinct-degree factorization (DDF) step. Recall that, given a
square-free polynomiala f := ERF( f ), theDDFroutine outputs a list (b(1), . . . , b(s)),
where b(k) is the product of all the irreducible factors of degree k of the complete
factorization of a f over Fq . The output (b(1), . . . , b(s)) is called the distinct-degree
factorization of a f .

The DDF procedure is based on the following property (see, e.g., [39, Theo-
rem 3.20]): for k ≥ 1, the polynomial T qk − T ∈ Fq [T ] is the product of all
monic irreducible polynomials in Fq [T ] whose degree divides k. It follows that
g1 := gcd(T q − T , f ) is the product of all the irreducible factors of f of degree
1. Then, for 1 ≤ k ≤ r , the polynomial gk := gcd(T qk − T , f /gk−1) is the product of
all the irreducible factors of f of degree k. This proves the correctness of the following
procedure.

DDF Algorithm

Input: a monic square-free polynomial a ∈ Fq [T ] of degree r > 0.
Output: the distinct-degree factorization (b(1), . . . , b(s)) of a in Fq [T ].
Let g := a, h := T
While g �= 1 do

Compute h := hq mod g
Compute b(k) := gcd(h − T , g)

Compute g := g
b(k)

[a without the irreducible factors of degree at most k]
k := k + 1

End while
Return b.

In [50, Theorem 14.4], it is shown that this algorithm performs O(s M(r) log(rq))

arithmetic operations in Fq , where s is the maximum degree of the irreducible factors
of the input polynomial a. In this section, we analyze the average-case complexity
of the DDF routine restricted to polynomials of the family A. More precisely, we
consider the expected value E[X2] of the random variable X2 of (6.2), namely

E[X2] := 1

|A|
∑

f ∈A
X2( f ).
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We decompose as before the set of inputs A into the disjoint subsets Asq (elements
of A which are square-free) and Ansq := A\Asq . Hence, we have

E[X2] = 1

|A|
∑

f ∈Asq

X2( f ) + 1

|A|
∑

f ∈Ansq

X2( f ). (6.8)

First, we obtain an upper bound for the first sum Ssq
2 in the right-hand side of (6.8).

We express Asq as a disjoint union as follows:

Asq =
r

⋃

i=1

Asq
i ,

where Asq
i is the set of elements of Asq for which the maximum degree of the irre-

ducible factors is i . Moreover, for 1 ≤ i ≤ r , we can express each Asq
i as the disjoint

union

Asq
i =

⋃

λ∈Pi

Asq
λ ,

where Pi is the set of λ := (λ1, . . . , λi , 0, . . . , 0) ∈ Z
r≥0 such that λ1 +· · ·+ i λi = r

and λi > 0, and Asq
λ is the set of elements of Asq

i with factorization pattern λ.
Therefore,

Ssq
2 = 1

|A|
r

∑

i=1

∑

λ∈Pi

∑

f ∈Asq
λ

X2( f ). (6.9)

Fix i with 1 ≤ i ≤ r , let λ ∈ Pi and f ∈ Asq
λ . To determine the cost X2( f ), we

observe that the procedure performs i iterations of the main loop. Fix l with 1 ≤ l ≤ i
and consider the lth iteration of the DDF algorithm. The number of products modulo
g needed to compute hq mod g is denoted by λ(q). Using repeated squaring, and
denoting by ν(q) the number of ones in the binary representation of q, the number of
products required to compute hq mod g is

λ(q) := �log q� + ν(q) − 1.

Thus, the first step in the lth iteration of the DDF algorithm requires at most
2 τ1 λ(q)M(rl) arithmetic operations in Fq , where rl := deg g (note that r1 = r
and rl ≤ r for any l). Then, the computation b(k) := gcd(h − T , g) requires at most
τ2M(rl) log rl arithmetic operations inFq . Finally, the division g/b(k) requires at most
τ1M(rl) arithmetic operations in Fq . As a consequence, we see that

X2( f ) ≤
i

∑

l=1

(2 τ1λ(q) + τ2 log rl + τ1) M(rl).
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Observe that if a ≤ b, then M(a) ≤ M(b) (see, e.g., [50, §14.8])). It follows that

X2( f ) ≤ i cr ,q , cr ,q := M(r)
(

2 τ1λ(q) + τ1 + τ2 log r
)

. (6.10)

Thus, we obtain

Ssq
2 ≤ cr ,q

|A|
r

∑

i=1

∑

λ∈Pi

∑

f ∈Asq
λ

i = cr ,q

|A|
r

∑

i=1

i
∑

λ∈Pi

|Asq
λ |.

We have the following result.

Lemma 6.3 For q > 15δ13/3G , the sum Ssq
2 is bounded in the following way:

Ssq
2 ≤ cr ,q

(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)

ξ(r + 1) = cr ,q ξ(r + 1)
(

1 + o(1)
)

, (6.11)

where Mr := Dδq
1
2 + 14 D2δ2 + r2δ, δ := ∏m

i=1 wt(Gi ), D := ∑m
i=1(wt(Gi ) − 1)

and ξ ∼ 0.62432945 . . . is the Golomb–Dickman constant.

Proof According to Theorem 4.6, we have

|Asq
λ | ≤ qr−m T (λ)

(

1 + Mr

q

)

,

where T (λ) is the probability of the set of permutations with cycle pattern λ in the
symmetric group Sr of r elements. Hence,

Ssq
2 ≤ cr ,q

|A| qr−m
(

1 + Mr

q

) r
∑

i=1

i
∑

λ∈Pi

T (λ). (6.12)

Now we analyze the sum Er := ∑r
i=1 i

∑

λ∈Pi
T (λ). Observe that the sum

∑

λ∈Pi
T (λ) expresses the probability of the set of permutations whose longest cycle

has length i . It follows that Er is the largest expected length between cycles of a
random permutation in Sr . In [28], it is shown that

Er

r + 1
≤ ξ,

where ξ is the Golomb–Dickman constant (see, e.g., [35]). Combining this upper
bound, Theorem 3.12 and (6.12), we readily deduce the statement of the lemma. ��

Next we obtain an upper bound for the second sum Snsq
2 of (6.8), namely

Snsq
2 := 1

|A|
∑

f ∈Ansq

X2( f ).
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Given f ∈ Ansq , we bound X2( f ) := Cost(DDF(a f )), where a f := ERF( f ) is the
output square-free polynomial of the ERF procedure applied to f . By (6.10), we have

X2( f ) ≤ cN ,q · sa,

where cN ,q := M(N )
(

2 τ1λ(q) + τ1 + τ2 log N
)

, N := deg(a f ) and sa is the highest
degree of the irreducible factors of a f . Since f ∈ Ansq , we have N ≤ r − 1 and
sa ≤ r − 2. Moreover, it is easy to see that these bounds are optimal. Therefore we
obtain

X2( f ) ≤ cr−1,q (r − 2).

Combining this bound, Theorem 3.12 and (4.12), we deduce that if q > 15δ13/3G , then

Snsq
2 ≤ cr−1,q (r − 2)

|Ansq |
|A| ≤ cr−1,q (r − 2)

(

1 + 15δ13/6G

q1/2

)

r2δG qr−m−1

qr−m

≤ cr−1,q

(

1 + 15δ13/6G

q1/2

)

r3δG
q

. (6.13)

From the upper bounds of Lemma 6.3 and (6.13), we conclude that

E[X2] = 1

|A|
∑

f ∈Asq

X2( f ) + 1

|A|
∑

f ∈Ansq

X2( f )

≤ cr ,q

(

1 + 15δ13/6G

q1/2

) (

1 + Mr

q

)

ξ(r + 1) + cr−1,q

(

1 + 15δ13/6G

q1/2

)

r3δG
q

.

Since c j,q := M( j)
(

2 τ1λ(q) + τ1 + τ2 log j
)

, we have cr−1,q ≤ cr ,q . As a conse-
quence, we obtain the following result.

Theorem 6.4 For q > 15δ13/3G , the average cost E[X2]of theDDF algorithm restricted
to A is bounded by

E[X2] ≤ ξ (2 τ1λ(q) + τ1 + τ2 log r)M(r) (r + 1)

(

1 + Mr + r2δG
q

)

×
(

1 + 15δ13/6G

q1/2

)

= ξ (2 τ1λ(q) + τ1 + τ2 log r)M(r) (r + 1)
(

1 + o(1)
)

,

where Mr := Dδq
1
2 + 14 D2δ2 + r2δ, δ := ∏m

i=1 wt(Gi ), D := ∑m
i=1(wt(Gi ) − 1)

and ξ ∼ 0.62432945 . . . is the Golomb–Dickman constant.
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In [18, Theorem 5], the authors prove that the average cost of the DDF algo-
rithm applied to a random polynomial f ∈ Fq [T ] of degree at most r is of order
0.26689 (2 τ1 λ(q) + τ2) r3. We prove that, assuming that fast arithmetic is used, the
average cost of this algorithm restricted toA is of order ξ(2 τ1 λ(q)+τ1+τ2 log r) (r +
1) M(r) arithmetic operations in Fq .

The DDF algorithm does not completely factor any polynomial f ∈ A having
distinct irreducible factors of the same degree. More precisely, the classical factoriza-
tion algorithm ends in this step if the input polynomial f has a factorization pattern
λ ∈ {0, 1}r . We conclude this section with a result on the probability that the DDF
algorithm outputs the complete factorization of the input polynomial of A.

In [19], it is shown that most factorizations are completed after the application of
the DDF procedure. More precisely, it is proved that, when r is fixed and q tends to
infinity, the probability that the DDF algorithm produces a complete factorization of
a random polynomial of degree at most r in Fq [T ] is of order of e−γ ∼ 0.5614 . . .,
where γ ∼ 0.57721 . . . is the Euler constant (see [18, Theorem 6]). We generalize
this result to the family A.

Theorem 6.5 The probability that the DDF algorithm completes the factorization of a
random polynomial of A is bounded from above by

(

e−γ +e−γ /r + O(log r/r2)
)(

1+
o(1)

)

, where γ is Euler’s constant.

Proof Let A1 be set of elements of A whose irreducible factors have all distinct
degrees. The probability that the DDF algorithm outputs the complete factorization
of a random polynomial f ∈ A coincides with the probability that a random f ∈ A
belongs to A1. We may express A1 as the following disjoint union:

A1 =
⋃

λ∈Pr

A1,λ,

wherePr is the set of all vectorsλ := (λ1, . . . , λr ) ∈ {0, 1}r such thatλ1+· · ·+r λr =
r and A1,λ is the set of elements of A1 having factorization pattern λ. Hence,

P[A1] =
∑

λ∈Pr

P[A1,λ] = 1

|A|
∑

λ∈Pr

|A1,λ|. (6.14)

Observe that if f ∈ A1, then f is square-free. By Theorem 4.6, for m < r we have

|A1,λ| ≤ qr−m T (λ)

(

1 + Mr

q

)

,

where Mr := Dδq
1
2 +14 D2δ2+r2δ, δ := ∏m

i=1wt(Gi ) and D := ∑m
i=1(wt(Gi )−1).

Theorem 3.12 shows that if q > 15δ13/3G , then

P[A1] ≤
(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)
∑

λ∈Pr

T (λ).
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We observe that
∑

λ∈Pr
T (λ) expresses the probability that a random permutation of

Sr has a decomposition into cycles of pairwise different lengths. By [30, (4.57)] (see
also [17, Proposition 1]), it follows that

∑

λ∈Pr

T (λ) = e−γ + e−γ

r
+ O

(
log r

r2

)

.

We deduce that

P[A1] ≤
(

1 + 15δ13/6G

q1/2

) (

1 + Mr

q

) (

e−γ + e−γ

r
+ O

(
log r

r2

))

.

This finishes the proof of the theorem. ��

6.3 Equal-degree factorization

After the first two steps of the classical factorization algorithm, the general problem
of factorization is reduced to factorizing a collection of square-free polynomials b(k),
whose irreducible factors have all the same degree k. The procedure for equal-degree
factorization (EDF) receives as input a vector b f := DDF(a f ) = (b f (1), . . . , b f (s)),
where each b f (k) is the product of the irreducible factors of degree k of the square-
free part a f := ERF( f ) of f . Its output is the irreducible factorization b f (k) =
b f (k, 1) . . . b f (k, l) of each b f (k) in Fq [T ]. The probabilistic algorithm presented
here is based on the Cantor–Zassenhaus algorithm [53], and works for char(Fq) odd.

EDF algorithm

Input: a monic square-free polynomial c ∈ Fq [T ] whose irreducible factors in
Fq [T ] have all degree k.
Output: the complete factorization of c.

procedure EDF(c: square-free polynomial , k: integer)

If deg c = k, then return c
End if
Choose a random h ∈ Fq [T ] of degree deg c − 1.

Compute g := h(qk−1)/2 − 1 mod c
Compute d := gcd(g, c)
Return EDF(d, k) · EDF(c/d, k).

The EDF algorithm is based on the principle we now briefly explain. Assume that
the irreducible factorization of the input polynomial c is c = f1 . . . f j , with each fi

of degree k. The Chinese remainder Theorem implies that

Fq [T ]/(c) ∼= Fq [T ]/( f1) × · · · × Fq [T ]/( f j ).
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Under this isomorphism, a random h ∈ Fq [T ]/(c) is associated with a j-tuple
(h1, . . . , h j ), where each hi is a random element of Fq [T ]/( fi ). Since each fi is
irreducible, the quotient ring Fq [T ]/( fi ) is a finite field, isomorphic to Fqk . The mul-
tiplicative group F

∗
qk being cyclic, there are the same number (qk − 1)/2 of squares

and non-squares (see, e.g., [50, Lemma 14.7]). Recall that m ∈ F
∗

qk is a square if only

if m(qk−1)/2 = 1. Therefore, testing whether h(qk−1)/2
i = 1 discriminates the squares

in F
∗

qk . Thus, if g := h(qk−1)/2 − 1 mod c, then gcd(g, c) is the product of all the fi

with h a square in Fq [T ]/( fi ). From the probabilistic standpoint, a random element
hi of Fq [T ]/( fi ) has probability α := 1/2 − 1/(2qk) of being a square and the dual
probability β := 1/2 + 1/(2qk) of being a non-square.

Then, the EDF algorithm is applied recursively to the polynomials d = gcd(g, c)
and c/d. In this way, all the irreducible factors of c := b(k) are extracted successively.

Following [18, Section 5], in this section we analyze the average-case complexity
of the EDF algorithm applied to the familyA, namely we consider the expected value
E[X3] of the random variable X3 of (6.3):

E[X3] := 1

|A|
∑

f ∈A
X3( f ).

We decompose X3 as in (6.3) in the form

X3( f ) :=
�r/2�
∑

k=1

X3,k( f ), X3,k( f ) :=Cost(EDF(b f (k))) (1 ≤ k ≤ �r/2�),

where b f (k) is the kth coordinate of b f := DDF(a f ) = (b f (1), . . . , b f (s)). Hence,
we have

E[X3] = 1

|A|
�r/2�
∑

k=1

∑

f ∈A
X3,k( f ) =

�r/2�
∑

k=1

E[X3,k].

Fix k with 1 ≤ k ≤ �r/2� and write E[X3,k] as follows:

E[X3,k] = 1

|A|
∑

f ∈Asq

X3,k( f ) + 1

|A|
∑

f ∈Ansq

X3,k( f ) =: Ssq
3,k + Snsq

3,k .

We first bound Ssq
3,k . For this purpose, we express Asq as the disjoint union

Asq =
�r/k�
⋃

j=0

Asq
j,k,
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where Asq
j,k is the set of all the elements f ∈ Asq having j irreducible factors of

degree k. Hence,

Ssq
3,k = 1

|A|
�r/k�
∑

j=0

∑

f ∈Asq
j,k

X3,k( f ). (6.15)

We first bound the cost X3,k( f ) of the EDF algorithm applied to any f ∈ Asq
j,k .

Lemma 6.6 For any f ∈ Asq
j,k , we have

X3,k( f ) ≤ j( j − 1)

αβ

(

τ1 μk M(r) + τ3 U(r)
) k

r
,

where μk := λ
( qk−1

2

) := �log( qk−1
2 )� + ν(

qk−1
2 ) − 1 and τ3 := max{τ1, τ2}.

Proof If j = 0 or j = 1, then the EDF procedure does not perform any computation,
and the result trivially follows. Therefore, we may assume that j ≥ 2.

The cost of a recursive call to the EDF procedure for f ∈ Asq
j,k is determined by the

cost of computing h(qk−1)/2 mod f , where h is a random element of Fq [T ]/( f ), a
greatest common divisor of f with a polynomial of degree at most jk and a division of
two polynomials of degree at most jk. Observe that μk multiplications modulo f are
required to compute h(qk−1)/2 mod f using binary exponentiation. We conclude that
h(qk−1)/2 mod f can be computed with at most 2 τ1 μk M( jk) arithmetic operations
in Fq , while the remaining greatest common divisor and division are computed with
at most τ2 U( jk) and τ1 M( jk) arithmetic operations in Fq . In other words, we have

2 τ1 μk M( jk) + τ2 U( jk) + τ1 M( jk) ≤
(

τ1 μk
M(r)

k r
+ τ2

U(r)

2 k r
+ τ1

M(r)

2 k r

)

( jk)2

arithmetic operations in Fq . Applying [18, Lemma 4] with τ̃1 := τ1M(r)
k r and τ̃2 :=

τ3 U(r)
k r , we see that

X3,k( f ) ≤
(

j( j − 1)

2αβ
+ j

∞
∑

m=0

m
∑

l=0

(
m

l

)

αm−lβl(1 − (1 − αm−lβl) j−1)
)

×(μk τ̃1 + τ̃2) k2.

Using the inequality 1 − (1 − u) j−1 ≤ ( j − 1)u for j ≥ 2 and 0 ≤ u ≤ 1, we obtain

∞
∑

m=0

m
∑

l=0

(
m

l

)

αm−lβl(1 − (1 − αm−lβl) j−1) ≤ ( j − 1)
∞
∑

m=0

m
∑

l=0

(
m

l

)

α2(m−l)β2l

≤ ( j − 1)
∞
∑

m=0

(α2 + β2)m = j − 1

2αβ
.

This easily implies the lemma. ��
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As a consequence of Lemma 6.6, we have

Ssq
3,k := 1

|A|
�r/k�
∑

j=2

∑

f ∈Asq
j,k

X3,k( f ) ≤
�r/k�
∑

j=2

j( j − 1)

αβ

(

τ1 μk M(r) + τ3 U(r)
) k

r

|Asq
j,k |

|A| .

(6.16)
In the next result, we obtain an explicit upper bound for Ssq

3,k .

Lemma 6.7 For q > 15δ13/3G , we have

Ssq
3,k ≤ 1

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)

,

where μk and τ3 are as in Lemma 6.6 and Mr is defined as in Theorem 6.4.

Proof According to (6.16), we estimate the probability P[Asq
j,k] that a random f ∈ A

is square-free and has j irreducible factors of degree k. In [34], it is shown that if q
is sufficiently large, then the probability that a random f ∈ Fq [T ] of degree at most r

has j distinct irreducible factors of degree k tends to e−1/k k− j

j ! .
We decompose the set Asq

j,k into the disjoint union

Asq
j,k =

⋃

λ∈P j,k
r

Asq
j,λ,

whereP j,k
r is the set of all r -tuples λ := (λ1, . . . , λr ) ∈ Z

r≥0 with λ1 +· · ·+r λr = r
and λk = j . Hence, we have

P[Asq
j,k] = 1

|A|
∑

λ∈P j,k
r

|Asq
j,λ|.

From Theorem 4.6, we deduce that

|Asq
j,λ| ≤ qr−m T (λ)

(

1 + Mr

q

)

.

From Theorem 3.12, it follows that, for q > 15δ13/3G ,

P[Asq
j,k] = 1

|A|
∑

λ∈P j,k
r

|Asq
j,λ| ≤

(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)
∑

λ∈P j,k
r

T (λ).
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The sum of the right-hand side expresses the probability that a random permutation
in Sr has exactly j cycles of length k. In [48], it is shown that

∑

λ∈P j,k
r

T (λ) = 1

j !k j

�r/k− j�
∑

i=0

(−1)i 1

i !ki
.

We observe that the sum of all probabilities is 1, that is,

�r/k�
∑

j=0

1

j !k j

�r/k− j�
∑

i=0

(−1)i 1

i !ki
= 1.

As a consequence, by (6.16) we deduce that

Ssq
3,k ≤

�r/k�
∑

j=2

j( j − 1)

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)

k2
(

1 + 15δ13/6G

q1/2

)

×
(

1 + Mr

q

)
1

j !k j

�r/k− j�
∑

i=0

(−1)i

i !ki

≤ 1

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)(

1 + 15δ13/6G

q1/2

)

×
(

1 + Mr

q

) �r/k�
∑

j=2

1

( j − 2)!k j−2

�r/k− j�
∑

i=0

(−1)i

i !ki

≤ 1

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)

.

This shows the lemma. ��

Next we obtain an upper bound for

Snsq
3,k := 1

|A|
∑

f ∈Ansq

X3,k( f ). (6.17)

Let f ∈ Ansq and b f := DDF(a f ) = (b f (1), . . . , b f (s)). Assume that deg(b f (k)) =
mk . We have the following bound (see, e.g., [50, Theorem 14.11]):

X3,k( f ) ≤ c (k log q + logmk)M(mk) log
(mk

k

)

,
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where c is a constant independent of k and q. Taking into account the estimate of
|Ansq | of (4.12) and Theorem 3.12, we conclude that if q > 15δ13/3G , then

Snsq
3,k ≤ c (k log q + logmk)M(mk) log

(
mk

k

)
2 r2δG

q
. (6.18)

Now we are able to bound the cost of the EDF procedure.

Theorem 6.8 For q > 15δ13/3G , the average cost E[X3] of theEDF algorithm restricted
to A is bounded as

E[X3] ≤ τ M(r) log q

((

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)

+ r2δG
q

)

= τ U(r) log q (1 + o(1)),

where τ is a constant independent of q and r, and Mr is defined as in Theorem 6.4.

Proof Recall that E[X3] = Ssq
3,k + Snsq

3,k . From Lemma 6.7 and (6.18), we have

Ssq
3,k ≤

(

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

) �r/2�
∑

k=1

1

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)

,

Snsq
3,k ≤ 2 c r2δG

q

�r/2�
∑

k=1

(k log q + logmk)M(mk) log
(mk

k

)

.

We first estimate the sum

S1 :=
�r/2�
∑

k=1

1

αβ

(

τ1μk
M(r)

k r
+ τ3

U(r)

k r

)

.

Recall that μk := �log( qk−1
2 )� + ν(

qk−1
2 ) − 1, α := 1/2 − 1/(2qk) and β := 1/2 +

1/(2qk). It is easy to see that

1

αβ
≤ 4q2

q2 − 1
≤ 16

3
, μk ≤ 2 k log q.

As a consequence,

S1≤ 64τ1
3

M(r)�r/2� log q

r
+ 32τ3

3

U(r)

r

�r/2�
∑

k=1

1

k

≤ M(r) log q

(
64τ1
3

+ 32τ3
3

H(�r/2�) log r

r

)

,
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where H(�r/2�) is the �r/2�th harmonic number. Since H(N ) ≤ 1+ ln N (see, e.g.,
[29, §6.3]), we deduce that if r ≥ 2, then H(�r/2�) log r/r ≤ 1. We conclude that

S1 ≤ M(r) log q

(
64τ1
3

+ 32τ3
3

)

. (6.19)

We now estimate the sum

S2 :=
�r/2�
∑

k=1

(k log q + logmk)M(mk) log
(mk

k

)

.

We have the following inequalities:

�r/2�
∑

k=1

k M(mk) log
(mk

k

)

≤ M(r)

�r/2�
∑

k=1

mk
log

(mk
k

)

mk
k

≤ M(r)

�r/2�
∑

k=1

mk ≤ r M(r),

�r/2�
∑

k=1

M(mk) log(mk) log
(mk

k

)

≤ M(r)

�r/2�
∑

k=1

log2(mk) ≤ M(r)

�r/2�
∑

k=1

mk ≤ r M(r).

Hence, we deduce that

S2 ≤ 2 r M(r) log q. (6.20)

From (6.19) and (6.20), we obtain the following upper bound for E[X3]:

E[X3] ≤ M(r) log q

((

1 + 15δ13/6G

q1/2

)(

1 + Mr

q

)(
64τ1
3

+ 32τ3
3

)

+ 4 c r3δG
q

)

.

Defining τ := max{ 64τ13 + 32τ3
3 , 4 c}, the statement of the theorem follows. ��

We remark that, for fields of even characteristic, a similar analysis can be carried
out, yielding a bound for E[X3] as in Theorem 6.8 (compare with [18, Section 5.4]).

In [18, Theorem 9], using the classical multiplication of polynomials, it is shown
that the EDF algorithm requires on averageO(r2 log q) arithmetic operations in Fq on
the set of elements of Fq [T ] of degree at most r . Theorem 6.8 proves that, using fast
multiplication, the EDF algorithm performs on average r log q arithmetic operations
in Fq onA, up to logarithmic terms and terms which tend to zero as q tends to infinity
(for fixed δG and r ).

Our analysis improves the worst-case analysis of [50, Theorem 14.11], where it is
proved that the EDF algorithm applied to a polynomial of degree at most r having
j irreducible factors of degree k requires O((k log q + log r)M(r) log j) arithmetic
operations in Fq , that is, O∼(k r log q) arithmetic operations in Fq .
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6.4 Average-case analysis of the classical algorithm

Now we are able to conclude the analysis of the average cost of the factorization
algorithm applied to elements ofA. For this purpose, it remains to analyze the behavior
of the classical factorization algorithmwhen thefirst three steps fail tofind the complete
factorization of the input polynomial, namely the expected value E[X4] of the random
variable X4 which counts the number of arithmetic operations in Fq that the algorithm
performs to factorize f /ERF( f ), when f runs over all elements ofA. We can rewrite
E[X4] as follows:

E[X4] = 1

|A|
∑

f ∈Asq

X4( f ) + 1

|A|
∑

f ∈Ansq

X4( f ) =: Ssq
4 + Snsq

4 .

We estimate the first sum Ssq
4 . If f ∈ Asq , then f /ERF( f ) = 1 and the algorithm

does not perform any further operation. Hence, the cost of this step is that of dividing
two polynomials of degree at most r, namely τ1M(r) arithmetic operations in Fq .
Thus,

Ssq
4 := 1

|A|
∑

f ∈Asq

X4( f ) ≤ τ1M(r). (6.21)

Now we estimate the second sum Snsq
4 . For this purpose, we decompose the set

Ansq into the disjoint union of the set Ansq
=2 of elements having all the irreducible

factors of multiplicity at most 2, and Ansq
≥2 := Ansq\Ansq

=2 . If f ∈ Ansq
=2 , then f is

of the form f = ∏

i fi
∏

j f 2j , and we have f /ERF( f ) = ∏

j f j . Consequently,
in this case only the first three steps of the algorithm are executed, and the worst-
case analysis of the classical algorithm of [50, Theorem 14.14] shows that X4( f ) ≤
c3 r M(r) log(rq), where c3 is a constant independent of q and r . On the other hand,
if f ∈ Ansq

≥2 , then the four steps of the algorithm are executed. Observe that the last
step is executed as many times as the highest multiplicity arising in the irreducible
factors of f /ERF( f ). Thus, the worst-case analysis of [50, Theorem 14.14] implies
that X4( f ) ≤ c4 r2M(r) log(rq), where c4 is a constant independent of q and r . It
follows that

Snsq
4 ≤ c3 r M(r) log(rq)

|Ansq
=2 |

|A| + c4 r2M(r) log(rq)
|Ansq

≥2 |
|A| (6.22)

Since Ansq
=2 is a subset of Ansq , from (4.12) we have that

|Ansq
=2 | ≤ r(r − 1)δGqr−m−1 ≤ r2δGqr−m−1. (6.23)

On the other hand, if f ∈ Ansq
≥2 , then deg(gcd( f , f ′)) ≥ 2. We deduce that

Res( f , f ′) = Subres( f , f ′) = 0. Hence, Ansq
≥2 is a subset of S1(W ), where W ⊂ A

r

is the affine variety defined by G1, . . . , Gm and S1(W ) is the first subdiscriminant
locus of W . We deduce that
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|Ansq
≥2 | ≤ r(r − 1)2(r − 2)δGqr−m−2 ≤ r4δGqr−m−2. (6.24)

Further, if q > 15δ13/3G , then Theorem 3.12 implies |A| ≥ 1
2qr−m . Replacing (6.23),

(6.24) in (6.22), we obtain

Snsq
4 ≤ 2 c3M(r) log(rq)

r3δG
q

+ 2 c4M(r) log(rq)
r6δG

q2 . (6.25)

Combining (6.21) and (6.25), we obtain the following result.

Theorem 6.9 Let q > 15δ13/3G . The average cost E[X4] of the fourth step of the
classical factorization algorithm on A is bounded in the following way:

E[X4] ≤ τ1M(r) + c r6δGM(r) log(rq)

q
= τ1M(r)(1 + o(1)),

where c is a constant independent of q and r.

Theorem 6.9 shows that the average cost of the last step of the classical factorization
algorithm applied to elements of A is τ1 M(r)(1 + o(1)) arithmetic operations in Fq ,
which asymptotically coincides with the cost of dividing two polynomials of degree
at most r .
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