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Abstract
A weakly distance-regular digraph is quasi-thin if the maximum value of its inter-
section numbers is 2. In this paper, we focus on commutative quasi-thin weakly
distance-regular digraphs, and classify such digraphs with valency more than 3. As a
result, this family of digraphs is completely determined.
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1 Introduction

Throughout this paper, � always denotes a finite simple digraph. We write V� and
A� for the vertex set and arc set of �, respectively. A path of length r from x to y
is a sequence of vertices (x = w0, w1, . . . , wr = y) such that (wt−1, wt ) ∈ A� for
t = 1, 2, . . . , r . A digraph is said to be strongly connected if, for any two distinct
vertices x and y, there is a path from x to y. The length of a shortest path from x
to y is called the distance from x to y in �, denoted by ∂�(x, y). Let ∂̃�(x, y) =
(∂�(x, y), ∂�(y, x)) and ∂̃(�) = {∂̃�(x, y) | x, y ∈ V�}. We call ∂̃�(x, y) the two-
way distance from x to y in �. If no confusion occurs, we write ∂(x, y) (resp. ∂̃(x, y))
instead of ∂�(x, y) (resp. ∂̃�(x, y)). An arc (u, v) of � is of type (1, r) if ∂(v, u) = r .
A path (w0, w1, . . . , wr−1) is said to be a circuit of length r if ∂(wr−1, w0) = 1. A
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circuit is undirected if each of its arcs is of type (1, 1). Let Cr denote the undirected
circuit of length r .

A strongly connected digraph � is said to be weakly distance-regular if, for any h̃,
ĩ , j̃ ∈ ∂̃(�), the cardinality of the set

Pĩ, j̃ (x, y) := {z ∈ V� | ∂̃(x, z) = ĩ and ∂̃(z, y) = j̃}

is constant whenever ∂̃(x, y) = h̃. This constant is denoted by ph̃
ĩ, j̃
. The integers ph̃

ĩ, j̃

are called the intersection numbers. We say that � is commutative if ph̃
ĩ, j̃

= ph̃
j̃,ĩ

for

all ĩ , j̃ , h̃ ∈ ∂̃(�). A weakly distance-regular digraph is quasi-thin (resp. thin) if the
maximum value of its intersection numbers is 2 (resp. 1). The size of �ĩ (x) := {y ∈
V� | ∂̃(x, y) = ĩ} depends only on ĩ , denoted by kĩ . The integer k := ∑

(1, j)∈∂̃(�)
k1, j

is called the valency of �, which is often called the out-degree of �.
Some special families ofweakly distance-regular digraphswere classified. See [7,8]

for valency 2, [9–11] for valency 3 and [7] for thin case. In this paper, we classify
commutative quasi-thin weakly distance-regular digraphs of valency more than 3, and
obtain the following main result.

Theorem 1.1 If � is a commutative quasi-thin weakly distance-regular digraph of
valency more than 3, then � is isomorphic to one of the following Cayley digraphs:

(i) Cay(Z8, {1, 2, 3, 6}).
(ii) Cay(Z4p, {1, 2, 2p + i, 2p + 1, 2p + 2}), p �= 2 − i .
(iii) Cay(Z4 × Z4, {(0, 1), (1, 0), (2, 0), (0, 2)}).
(iv) Cay(Zq × Z4, {(0, 1), (1, 0), (1, 2), (0, 2 + i)}), q �= 3 + i .
(v) Cay(Z2q × Z2, {(0, 1), (1, 0), (2, 0), (1, 1)}).
(vi) Cay(Z4q × Z2, {(0, 1), (1, 0), (2, 0), (2q + 1, 0), (2q + 2, 0), (2qi, 1)}), q /∈

{3, 3 + i}.
(vii) Cay(Z2q × Z4, {(0, 1), (1, 0), (1, 2), (0, 2 − i), (2, 0), (2, 2)}), q /∈ {3, 3 + i}.
(viii) Cay(Z2q × Zn, {(0, 1), (1, 0), (2, 0), (0,−1)}).
(ix) Cay(Z2q × Zn, {(0, 1), (1, (c + 1)/2), (1, (c − 1)/2), (2, c), (0,−1)}).
(x) Cay(Z2n × Zq , {(0, 1), (1, (t + 1)/2), (−1, (1 − t)/2), (2, t), (−2,−t)}).

Here, i ∈ {0, 1}, 2 ≤ p, 3 ≤ q, 3 ≤ n ≤ q − (1 + (−1)q)/2, c = n/gcd(q, n),
t = q/gcd(q, n) and c, t are both odd.

Routinely, all digraphs in above theorem are commutative quasi-thin weakly
distance-regular. For the last seven families of Cayley digraphs, in Table 1, we list
the two-way distance from the identity element to any other element of the corre-
sponding group.

In order to give a high-level description of our proof of Theorem 1.1, we need
additional notations and terminologies. Let � be a weakly distance-regular digraph
and R = {�ĩ | ĩ ∈ ∂̃(�)}, where �ĩ = {(x, y) ∈ V� × V� | ∂̃(x, y) = ĩ}.
Then (V�, R) is an association scheme ([2,12,13]). Moreover, if � is quasi-thin, then
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Table 1 Two-way distance of digraphs in Theorem 1.1

� Conditions ∂̃((0, 0), (a, b)) with (a, b) �= (0, 0)

(iv) a �= 0 (β(b̂) + â, q + β(b̂) − â)

a = 0 (� b̂2 � + (−1)b̂� b̂−1
2 �i, �2 − b̂

2 � + (−1)b̂� 3−b̂
2 �i)

(v) 2 � â ( â+1
2 , q − â−1

2 )

(a, b) �= (0, 1) and 2 | â (b̂ + â
2 , q + b̂ − â

2 )

(a, b) = (0, 1) (1, 1)

(vi) 0 < â < 2q

(
â+2b̂+β(â)

2 , q − â−2b̂−β(â)
2

)

â > 2q

(
â+2b̂+β(â)

2 − q, 2q − â−2b̂−β(â)
2

)

a = 2q (q1−i + b̂ + (−1)b̂i, q1−i + b̂ + (−1)b̂i)

(a, b) = (0, 1) (1, 1)

(vii) a �= 0
(
β(b̂) + â+β(â)

2 , q + β(b̂) − â−β(â)
2

)

a = 0
(
� b̂2 � + � b̂−1

2 �i, �2 − b̂
2 � + � 3−b̂

2 �i
)

(viii) a = 0 and b̂ ≤ n
2 (b̂, b̂)

a = 0 and b̂ > n
2 (n − b̂, n − b̂)

a �= 0 and b̂ ≤ n
2

(
b̂ + â+β(â)

2 , b̂ + q − â−β(â)
2

)

a �= 0 and b̂ > n
2

(
n − b̂ + â+β(â)

2 , n − b̂ + q − â−β(â)
2

)

(ix) a = 0 and va,b ≤ n
2 (va,b, va,b)

a = 0 and va,b > n
2 (n − va,b, n − va,b)

a �= 0 and va,b ≤ n−β(â)
2

(
va,b + â+β(â)

2 , va,b + q − â−β(â)
2

)

a �= 0 and va,b >
n−β(â)

2

(
n − va,b + â−β(â)

2 , n − va,b + q − â+β(â)
2

)

(x) ua,b = 0 and va ≤ n
2 (va , va)

ua,b = 0 and va > n
2 (n − va , n − va)

ua,b �= 0 and va ≤ n−β(ua,b)

2

(
va + ua,b+β(ua,b)

2 , va + q − ua,b−β(ua,b)

2

)

ua,b �= 0 and va >
n−β(ua,b)

2

(
n − va + ua,b−β(ua,b)

2 , n − va + q − ua,b+β(ua,b)

2

)

For any element a in a residue class ring, we assume that â denotes the minimum nonnegative integer in a.
β(q) = (1 + (−1)q+1)/2, va = (â − β(â))/2,
0 ≤ va,b < n and va,b ≡ b̂ − (âc + β(â))/2 (mod n),

0 ≤ ua,b < q and ua,b ≡ 2b̂ − β(â)t − 2tva (mod q)

(V�, R) is quasi-thin. About this special scheme, see [4–6]. For two nonempty subsets
E and F of R, define

EF :=

⎧
⎪⎨

⎪⎩
�h̃

∣
∣
∣

∑

�ĩ∈E

∑

� j̃∈F
ph̃
ĩ, j̃

�= 0

⎫
⎪⎬

⎪⎭
,
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and write �ĩ� j̃ instead of {�ĩ }{� j̃ }. For any (a, b) ∈ ∂̃(�), we usually write ka,b

(resp. �a,b) instead of k(a,b) (resp. �(a,b)). Now we list basic properties of intersection
numbers which are used frequently in this paper.

Lemma 1.2 ([2, Chapter II, Proposition 2.2] and [1, Proposition 5.1]) For each ĩ :=
(a, b) ∈ ∂̃(�), define ĩ∗ = (b, a). The following hold:

(i) kd̃ kẽ = ∑
f̃ ∈∂̃(�)

p f̃

d̃,ẽ
k f̃ .

(ii) p f̃

d̃,ẽ
k f̃ = pd̃

f̃ ,ẽ∗ kd̃ = pẽ
d̃∗, f̃ kẽ.

(iii) |�d̃ �ẽ| ≤ gcd(kd̃ , kẽ).

(iv)
∑

ẽ∈∂̃(�)
p f̃

d̃,ẽ
= kd̃ .

(v) lcm(kd̃ , kẽ) | p f̃

d̃,ẽ
k f̃ .

(vi)
∑

f̃ ∈∂̃(�)
p f̃

d̃,ẽ
ph̃
g̃, f̃

= ∑
l̃∈∂̃(�)

pl̃
g̃,d̃

ph̃
l̃,ẽ
.

We now introduce the concepts about arcs. An arc of type (1, q − 1) is said to
be pure, if every circuit of length q containing it consists of arcs of type (1, q − 1);
otherwise, this arc is said to be mixed. We say that (1, q − 1) is pure if any arc of type
(1, q − 1) is pure; otherwise, we say that (1, q − 1) is mixed. The concepts of pure
arc and mixed arc are inspired by Suzuki in [7].

Another concept we need is a configuration. Let h and q be distinct integers more
than 2. If (�1,q−1)

2 = {�2,q−2} and (�1,h−1)
2 ⊆ �1,q−1�q−1,1, we say that the

configuration Cq,h exists.
For fixed x ∈ V�, let �q1,q2,...,ql (x) be the connected component of digraph

(V�,∪l
i=1�1,qi−1) containing vertex x . Note that �q1,q2,...,ql (x) does not depend on

the choice of vertex x up to isomorphism. If no confusion occurs, we write�q1,q2,...,ql
instead of �q1,q2,...,ql (x).

Let� be a commutative quasi-thinweakly distance-regular digraph of valencymore
than 3 in the remaining of this paper. We are now ready to give a high-level description
of our proof of Theorem 1.1.

Outline of the proof of Theorem 1.1.
In Sect. 2, we give a characterization of mixed arcs, i.e., we show that (1, q − 1) is

mixed if and only if p(1,q−2)
(1,q−1),(1,q−1) �= 0 and (1, q − 2) is pure.

In Sect. 3, we discuss the basic properties about the configurationCq,h . In particular,
we show that, if Cq,h exists, then (1, q − 1) is pure, h is a constant and h ∈ {3, 4}.

In Sect. 4, applying the results in Sects. 2 and 3, we prove the following result.

Proposition 1.3 Let K = {(1, r) | (1, r) ∈ ∂̃(�)}. Then one of the following holds:

C1) K = {(1, 1), (1, 2), (1, q − 1)}, where Cq,3 exists.
C2) K = {(1, 3), (1, q − 1), (1, q)}, where Cq,4 exists and (1, q) is mixed.
C3) K = {(1, 1), (1, 2), (1, q − 1), (1, q)}, where Cq,3 exists and (1, q) is mixed.
C4) K = {(1, 1), (1, q − 1)}, where (1, q − 1) is pure.
C5) K = {(1, q − 1), (1, q)}, where (1, q) is mixed.
C6) K = {(1, 1), (1, q − 1), (1, q)}, where (1, q) is mixed.
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In Sect. 5, we determine the subdigraphs �q,3 for the cases C1 and C3, the subdi-
graphs�q,4 for caseC2, the subdigraphs�2,q for casesC4 andC6, and the subdigraphs
�q,q+1 for cases C5 and C6.

In Sect. 6, we give a proof of Theorem 1.1. For the cases C1, C2 and C3, we
determine � based on the subdigraphs �q,3 and �q,4. For the cases C4, C5 and C6,
we determine � based on the subdigraphs �2,q and �q,q+1.

2 Characterization of mixed arcs

The main result of this section is the following important result which characterizes
mixed arcs.

Theorem 2.1 Let q ≥ 3 and (1, q − 1) ∈ ∂̃(�).

(i) If p(1,q−1)
(1,s−1),(1,t−1) �= 0 with s < t , then s = 2 and t = q.

(ii) The following are equivalent:
(a) (1, q − 1) is mixed; (b) p(1,q−2)

(1,q−1),(1,q−1) �= 0 and (1, q − 2) is pure; (c)

p(1,s−1)
(1,q−1),(1,q−1) �= 0 for some s.

(iii) If p(1,s−1)
(1,q−1),(1,q−1) �= 0, then s = q − 1.

In the proof of Theorem 2.1, we use the following auxiliary lemmas.

Lemma 2.2 Suppose d̃, h̃, l̃ ∈ ∂̃(�) and kd̃ = 2. The following hold:

(i) kh̃ = kh̃∗ ≤ 2.
(ii) |�h̃�l̃ | ≤ 2 and equality holds only if kh̃ = kl̃ = 2.
(iii) pẽ

d̃,d̃
= 2 for some ẽ ∈ ∂̃(�).

(iv) �d̃�d̃∗ = {�0,0, �e,e}. In particular, if pẽd̃,d̃∗ �= 0, then ẽ = ẽ∗.

Proof Since kh̃∗ = kh̃ = p(0,0)
h̃,h̃∗ by Lemma 1.2 (ii), (i) is valid. (ii) follows from (i) and

Lemma 1.2 (iii). By the commutativity of �, (iii) holds. In view of (ii) and Lemma 1.2
(i), (iv) is valid. �

The commutativity of � will be used frequently in the sequel, so we no longer refer
to it for the sake of simplicity.

Lemma 2.3 If (x0, x1, . . . , xn−1) is an undirected circuit in �, then ∂(x0, xi ) =
∂(xi , x0) = ∂(x0, xn−i ) for 1 ≤ i ≤ n − 1.

Proof It is routine by induction. �
Lemma 2.4 Let q ≥ 3. Suppose that (1, q − 1) is pure and k1,q−1 = 2. Then one of
the following holds:

(i) p(2,q−2)
(1,q−1),(1,q−1) = 2, �q � Cay(Z2q , {1, q + 1}), (�1,q−1)

i = {�i,q−i } for
2 ≤ i ≤ q − 1.
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(ii) p(2,q−2)
(1,q−1),(1,q−1) = 1, �q � Cay(Zq × Zq , {(1, 0), (0, 1)}), |(�1,q−1)

2| = 2.

Proof Similar to the proofs of Lemma 12 in [10] and Proposition 4.3 in [8]. �
Lemma 2.5 Let q ≥ 3. Suppose that p(1,q−2)

(1,q−1),(1,q−1) �= 0 and (1, q − 2) is pure. Then
the following hold:

(i) p(2,q−2)
(1,q−1),(1,q−2) �= 0 and p(2,q−2)

(1,q−1),(1,q−1) = 0.
(ii) Any circuit of length q containing an arc of type (1, q − 1) consists of arcs of

types (1, q − 1) and (1, q − 2).
(iii) If |(�1,q−1)

2| = 2 and k1,q−2 = 1, then p(2,q−1)
(1,q−1),(1,q−1) �= 0.

Proof (i) Let (z, z0)be an arc of type (1, q−1). By p(1,q−2)
(1,q−1),(1,q−1) �= 0 andLemma1.2

(ii), there exists a vertex zq−2 ∈ P(q−1,1),(1,q−2)(z, z0). Since (1, q − 2) is pure, we
assume that (z0, z1, . . . , zq−2) is a circuit consisting of arcs of the same type. Hence,
∂̃(z, z1) = (2, q − 2). The fact that ∂̃(z, z0) = (1, q − 1) and ∂̃(z0, z1) = (1, q − 2)
imply p(2,q−2)

(1,q−1),(1,q−2) �= 0.

Suppose p(2,q−2)
(1,q−1),(1,q−1) �= 0. Let (y0, y1) and (y1, y2) be arcs of type (1, q − 1)

such that ∂̃(y0, y2) = (2, q −2). Since p(2,q−2)
(1,q−1),(1,q−2) �= 0, there exists a vertex y′

1 ∈
P(1,q−1),(1,q−2)(y0, y2). By Lemma 2.2 (i), one has k1,q−1 = 2 and p(2,q−2)

(1,q−1),(1,q−1) =
1. Lemma 2.2 (ii) and (iii) imply that p(1,q−2)

(1,q−1),(1,q−1) = 2 and (y′
1, y1) is an arc of type

(1, q − 1). Since y0 ∈ P(q−1,1),(1,q−1)(y1, y′
1), from Lemma 2.2 (iv), we get q = 2, a

contradiction. Thus, (i) holds
(ii) Let (x0, x1, . . . , xq−1) be a circuit such that ∂̃(xq−1, x0) = (1, q − 1). Suppose

∂̃(x0, x1) = (1, p − 1) with p /∈ {q, q − 1}. It follows that q > 3 and ∂(x1, xq−1) =
q − 2.

Case 1. ∂(xq−1, x1) = 1.
Since x0 ∈ P(1,q−1),(1,p−1)(xq−1, x1), there exists y ∈ P(1,p−1),(1,q−1)(xq−1, x1).

By p(1,q−2)
(1,q−1),(1,q−1) �= 0, we can pick a vertex z ∈ P(1,q−1),(1,q−1)(xq−1, x1). Note

that |{x0, y, z}| = 3. Since (1, q − 2) is pure, one gets ∂̃(xi , xi+1) = (1, q − 2) for
1 ≤ i ≤ q − 2, which implies {x0, y, z} ⊆ �2,q−2(xq−2), contrary to Lemma 2.2 (i).

Case 2. ∂(xq−1, x1) = 2.
Let (z′0, z′1) and (z′1, z′2) be arcs of type (1, q − 2) such that ∂̃(z′0, z′2) = (2, q − 3).

By p(1,q−2)
(1,q−1),(1,q−1) �= 0, there exists a vertex z′ ∈ P(1,q−1),(1,q−1)(z′0, z′1). Since

(1, q −2) is pure, one gets ∂̃(z′, z′2) = (2, q −2). By x0 ∈ P(1,q−1),(1,p−1)(xq−1, x1),
there exists a vertexw ∈ P(1,q−1),(1,p−1)(z′, z′2), which implies ∂̃(z′0, w) = (2, q−2).

Since ∂̃(z′0, z′) = ∂̃(z′, w) = (1, q − 1), we have p(2,q−2)
(1,q−1),(1,q−1) �= 0, contrary to (i).

Note that ∂̃(xi , xi+1) = (1, q − 1) or (1, q − 2) for 0 ≤ i ≤ q − 2. If
∂̃(xi , xi+1) = (1, q − 1) for each i , by q ≥ 3, then ∂̃(x0, x2) = (2, q − 2), con-
trary to p(2,q−2)

(1,q−1),(1,q−1) = 0. Thus, (ii) holds.

(iii) By Lemma 2.2 (ii), k1,q−1 = 2. Since k1,q−2 = 1, we get p(1,q−2)
(1,q−1),(1,q−1) = 2

from Lemma 1.2 (v). Let (w0 = wq−1, w1, . . . , wq−2) be a circuit consisting of
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arcs of type (1, q − 2). Pick vertices w′ ∈ P(1,q−1),(1,q−1)(w0, w1) and w′′ ∈
P(1,q−1),(1,q−1)(w1, w2) such that ∂̃(w′, w′′) �= (1, q−2). Note that (w′′, w0) = q−2.
By (i), one has q − 2 < ∂(w′′, w′) ≤ 1+ ∂(w′′, w0) = q − 1. Since q ≥ 3, we obtain
∂(w′, w′′) = 2 from Lemma 2.2 (iv). The desired result follows. �

Lemma 2.6 Let (1, h − 1), (1, l − 1) ∈ ∂̃(�) and v = min{ j | p(i, j)
(1,h−1),(1,l−1) �= 0}

with h, l > 2. Suppose that (1, l − 1) is pure, or p(1,l−2)
(1,l−1),(1,l−1) �= 0 and (1, l − 2) is

pure. If (�1,l−1)
v ∩ �l−1,1�h−1,1 �= ∅, then h = l or p(1,l−2)

(1,h−1),(1,h−1) �= 0.

Proof Let (x0, x1, . . . , xv+1) be a circuit of length v + 2 such that ∂̃(xv+1, x0) =
(1, h − 1) and ∂̃(xi , xi+1) = (1, l − 1) for 0 ≤ i ≤ v. Suppose that h �= l.

Case 1. (1, l − 1) is pure.
Note that v + 2 > l. Since x0 �= xl , by Lemma 2.2 (i), we have k1,l−1 = 2.

In view of l > 2 and Lemma 2.4, we get �l � Cay(Z2l , {1, l + 1}) or Cay(Zl ×
Zl , {(1, 0), (0, 1)}).
Case 1.1. �l � Cay(Z2l , {1, l + 1}).

In view of Lemma 2.4 (i), we obtain (�1,l−1)
i = {�i,l−i } for 2 ≤ i ≤ l − 1. Then

∂̃(x0, xl−1) = (l − 1, 1). If v ≥ l, by Lemma 2.2 (iii), then ∂̃(x0, xl+1) = (1, l − 1),
contrary to the minimality of v; if v = l − 1, by xl−1 ∈ P(l−1,1),(1,l−1)(xl , x0) and
Lemma 2.2 (iv), then h = 2, a contradiction.

Case 1.2. �l � Cay(Zl × Zl , {(1, 0), (0, 1)}).
Let τ be an isomorphism from Cay(Zl × Zl , {(1, 0), (0, 1)}) to �l . Pick τ(a, b) ∈

�1,h−1(τ (0, 0)). Then 0 /∈ {a, b}. Since τ(a, b) ∈ P(1,h−1),(l−â,â)(τ (0, 0), τ (0, b)),
we get τ(e+a, f +b) ∈ �1,h−1(τ (e, f ))∩�â,l−â(τ (e, f +b)) and τ(e+b, f +a) ∈
�1,h−1(τ (e, f )) ∩ �â,l−â(τ (e + b, f )) for each (e, f ). By h �= 2, one has â + b̂ �= l.

Suppose a = −1. Since (τ (0, 0), τ (1, 0), τ (1 + a, b) = τ(0, b), τ (0, b +
1), . . . , τ (0, l − 1)) is a circuit of length l − b̂ + 2 containing arcs of types (1, h − 1)
and (1, l − 1), we get b = 1, contrary to â + b̂ �= l. Hence, a �= −1. Similarly,
b �= −1. By (�1,l−1)

v ∩ �l−1,1�h−1,1 �= ∅ and the minimality of v, one gets
v = ∂�(τ(a+1, b), τ (0, 0)) = 2l− â− b̂−1. By l−1 ≤ v, we obtain â+ b̂ < l. Note
that (τ (a + 1, b), τ (a + b+ 1, a + b), τ (a + b+ 2, a + b), . . . , τ (0, a + b), τ (0, a +
b+ 1), τ (0, a + b+ 2), . . . , τ (0, 0)) is a path. If a+ b = −1, then l + 1− â− b̂ ≥ v,
contrary to l > 2; if a + b �= −1, then 2l − 2â − 2b̂ ≥ v, contrary to â + b̂ > 1.

Case 2. p(1,l−2)
(1,l−1),(1,l−1) �= 0 and (1, l − 2) is pure.

Since h �= l and h, l > 2, one has v ≥ 2. By the minimality of v, we obtain
∂(x j , x j+2) = 2 for 0 ≤ j ≤ v − 1. Lemma 2.2 (ii) implies |(�1,l−1)

2| = 2
and k1,l−1 = 2. If |P(1,l−1),(1,l−1)(x0, x2)| = 2, then there exists a vertex x ′

1 ∈
P(1,l−1),(1,l−1)(x0, x2) such that ∂̃(x ′

1, x3) = (1, l − 2), contrary to the minimality

of v. Then |P(1,l−1),(1,l−1)(x0, x2)| = 1. By Lemma 2.2 (iii), p(1,l−2)
(1,l−1),(1,l−1) = 2. It

follows from Lemma 1.2 (i) and (v) that k1,l−2 = 1. In view of Lemma 2.5 (iii), we
have ∂̃(x j , x j+2) = (2, l − 1) for 0 ≤ j ≤ v − 1. Hence, v ≥ l − 1. By Lemma 2.5
(i) and Lemma 1.2 (iii), we obtain h �= l − 1.
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Let (y0, y1, . . . , yv+1) be a path consisting of arcs of type (1, l − 1) such that
∂̃(y j , y j+2) = (2, l−1) for 0 ≤ j ≤ v−1. Pick x ′

v+1 and y
′
v+1 such that�1,l−1(xv) =

{xv+1, x ′
v+1} and�1,l−1(yv) = {yv+1, y′

v+1}. Then ∂̃(xv−1, x ′
v+1) = ∂̃(yv−1, y′

v+1) =
(1, l − 2). Since k1,l−2 = 1, by Lemma 1.2 (iii) and the inductive hypothesis, we
have ∂̃(x0, x ′

v+1) = ∂̃(y0, y′
v+1), which implies ∂̃(x0, xv+1) = ∂̃(y0, yv+1). Thus,

∂̃(x0, xv+1) only depends on v.
Since (1, l − 2) is pure and k1,l−2 = 1, each �l−1(xi ) is a circuit of length

l − 1, denoted by (xi = x0,i , x1,i , . . . , xl−2,i ), where the first subscription of x is
taken modulo l − 1. The fact that p(1,l−2)

(1,l−1),(1,l−1) = 2 implies that ∂̃(xa,b, xa,b+1) =
∂̃(xa,b+1, xa+1,b) = (1, l − 1) for any a ∈ {0, 1, . . . , l − 2} and b ∈ {0, 1, . . . , v}.
By k1,l−2 = 1, one gets ∂̃(x j,v− j+1, x j+2,v− j−1) = (2, l − 1) for 0 ≤ j ≤ v − 1.
Since ∂̃(x0, xv+1) only depends on v, we obtain ∂̃(x0,v+1, xv+1,0) = ∂̃(x0, xv+1) =
(h − 1, 1). Let r be the minimal nonnegative integer such that r ≡ v + 1 (mod l − 1).
It suffices to show that r = l − 2. Note that (x0,0, x1,0, . . . , xr ,0 = xv+1,0, x0,v+1) is
a circuit. By h �= 2, r �= 0. Since h �= l − 1 and (1, l − 2) is pure, one gets r = l − 2.

This completes the proof of Lemma 2.6. �

Lemma 2.7 Let q ≥ 3. If (1, q − 1) is pure, or p(1,q−2)
(1,q−1),(1,q−1) �= 0 and (1, q − 2) is

pure, then (i) in Theorem 2.1 is valid.

Proof Let x0, x, x1 be vertices such that ∂̃(x0, x) = (1, s − 1), ∂̃(x, x1) = (1, t − 1)
and ∂̃(x0, x1) = (1, q − 1). By Lemma 2.2 (iv) and s < t , we have s �= q. Suppose
t �= q. Observe that p(2,q−2)

(1,q−1),(1,q−1) �= 0 or p(1,q−2)
(1,q−1),(1,q−1) �= 0. Pick x2 such that

∂̃(x1, x2) = (1, q − 1) and ∂(x2, x0) = q − 2.
We claim that ∂̃(x, x2) = (2, q − 1). If (1, q − 1) is pure, by q /∈ {s, t}, then our

claim is valid. Suppose that p(1,q−2)
(1,q−1),(1,q−1) �= 0 and (1, q−2) is pure. It follows from

Lemma 2.5 (i) that ∂̃(x0, x2) = (1, q − 2).
Suppose s = q − 1. Since x0 ∈ P(q−2,1),(1,q−2)(x, x2) and x �= x2, by Lemma 2.2

(iv), we get ∂̃(x, x2) = (1, 1) or (2, 2). In view of Lemma 2.3 and t �= q, ∂̃(x, x2) =
(2, 2). Since t �= q − 1, from Lemma 2.5 (ii), one has ∂(x2, x) > q − 2. Hence,
q = 3, s = 2 and t = 4. By x1 ∈ P(1,3),(1,2)(x, x2), there exists a vertex x ′

1 ∈
P(1,2),(1,3)(x2, x), which implies ∂(x1, x ′

1) = 2. It follows from Lemma 2.5 (i) that
∂(x ′

1, x1) = 2. By Lemma 2.2 (ii), we obtain (�1,2)
2 = {�1,1, �2,2}. Since x �= x2,

from Lemma 2.2 (i), one has k1,1 = 2. In view of Lemma 1.2 (i) and (v), we get
p(1,1)
(1,2),(1,2) = 1. By Lemma 2.2 (ii), p(2,2)

(1,2),(1,2) = 2. Hence, ∂̃(x, x1) = (1, 2), a
contradiction. Thus, s �= q − 1. Similarly, t �= q − 1.

Since t /∈ {q−1, q}, by Lemma 2.5 (ii), we get q−1 ≤ ∂(x2, x) ≤ 1+∂(x2, x0) =
q−1. The fact that s /∈ {q−1, q} and ∂(x2, x0) = q−2 imply ∂(x, x2) = 2. Therefore,
our claim is valid.

Since x ∈ P(1,s−1),(1,t−1)(x0, x1), there exists a vertex x ′ ∈ P(1,t−1),(1,s−1)(x0, x1).
Similarly, ∂̃(x ′, x2) = (2, q − 1). Since x1 ∈ �1,t−1(x) ∩ �1,s−1(x ′) ∩ �q−1,1(x2),
there exist vertices y′

1 ∈ P(1,q−1),(1,t−1)(x, x2) and y′′
1 ∈ P(1,q−1),(1,s−1)(x, x2). It

follows from Lemma 2.2 (i) that k1,q−1 = 2. Similarly, y′
1, y

′′
1 ∈ �2,q−1(x0). Then

�1,s−1�1,q−1 = {�2,q−1}. By Lemma 1.2 (i), we have k1,s−1 = p(2,q−1)
(1,s−1),(1,q−1). Since
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x1 ∈ P(1,t−1),(1,q−1)(x, x2), from Lemma 1.2 (iv), one gets k1,s−1 = 1. Similarly,

k1,t−1 = 1. In view of p(1,q−1)
(1,s−1),(1,t−1) �= 0, we obtain k1,q−1 = 1, a contradiction.

Thus, t = q. By Lemma 2.2 (iv), one has s = 2. �
Proof of Theorem 2.1. (ii) (a)⇒(b): By way of contradiction, we may assume that q is
the minimal integer such that (1, q − 1) is mixed and (b) does not hold. Since (1, 1)
is pure, q ≥ 3. Pick a circuit (x0, x1, . . . , xq−1) such that ∂̃(xq−1, x0) = (1, q − 1)
and ∂̃(x0, x1) = (1, c − 1) with c < q.

Suppose ∂̃(xi , xi+1) = (1, d − 1) for some i ∈ {1, 2, . . . , q − 2} and d /∈
{q, c}. Without loss of generality, we may assume i = q − 2. Lemmas 2.3, 2.7
and the minimality of q imply ∂̃(xq−2, x0) = ∂̃(xq−1, x1) = (2, q − 2). Since
x0 ∈ P(1,q−1),(1,c−1)(xq−1, x1), there exist vertices z0 ∈ P(1,c−1),(1,q−1)(xq−1, x1)
and zq−1 ∈ P(1,c−1),(1,q−1)(xq−2, x0). In view of Lemma 2.2 (i), k1,q−1 = 2.
By Lemmas 2.3, 2.7 and the minimality of q, we get ∂̃(zq−1, x1) = (2, q − 2)
and �1,q−1�1,c−1 = {�2,q−2}. It follows from Lemma 1.2 (i) that k1,c−1 =
p(2,q−2)
(1,q−1),(1,c−1). Since xq−1 ∈ P(1,d−1),(1,q−1)(xq−2, x0), by Lemma 1.2 (iv), we

obtain k1,c−1 = 1. Similarly, k1,d−1 = 1.
Since k1,q−1 = 2, by Lemma 1.2 (i) and Lemma 2.2 (i), one gets ∂̃(x j , x j+1) =

(1, q ′ −1) for some j ∈ {1, 2, . . . , q−3}, and k1,q ′−1 = 2.Without loss of generality,
we may assume j = 1. It follows from Lemmas 2.3, 2.7 and the minimality of q
that ∂̃(z0, x2) = (2, q − 2). Since x1 ∈ P(1,q−1),(1,q ′−1)(z0, x2), we have xq−1 or
zq−1 ∈ P(1,q ′−1),(1,q−1)(xq−2, x0), a contradiction. Hence, ∂̃(xi , xi+1) = (1, q − 1)
or (1, c − 1) for each i .

Since c < q, by Lemmas 2.3 and 2.6, we have ∂̃(xi , xi+1) = (1, q − 1) for some
i ∈ {1, 2, . . . , q − 2}. Without loss of generality, we may assume i = q − 2. Suppose
∂(xq−2, x0) = 2. Then ∂̃(xq−2, x0) = ∂̃(xq−1, x1) = (2, q − 2). Since xq−1 ∈
P(1,q−1),(1,q−1)(xq−2, x0), there exists a vertex x ′

0 ∈ P(1,q−1),(1,q−1)(xq−1, x1),
which implies ∂̃(xq−2, x ′

0) = (2, q − 2) and k1,q−1 = 2 from Lemma 2.2 (i).

Hence, (�1,q−1)
2 = {�2,q−2}. By Lemma 2.2 (iii), we get p(2,q−2)

(1,q−1),(1,q−1) = 2

and ∂̃(x0, x1) = (1, q − 1), a contradiction. Thus, ∂̃(xq−2, x0) = (1, q − 2) and

p(1,q−2)
(1,q−1),(1,q−1) �= 0.

Note that (1, q − 2) is mixed. By the minimality of q, p(1,q−3)
(1,q−2),(1,q−2) �= 0 and

(1, q − 3) is pure. It follows from Lemma 2.5 (ii) that the path (x0, x1, . . . , xq−2)

contains an arc of type (1, q − 3). Hence, c = q − 2 and ∂̃(x j , x j+1) = (1, q − 3)
for 0 ≤ j ≤ q − 3. By Lemma 2.3, we get q > 4. In view of Lemma 2.6, we obtain
p(1,q−4)
(1,q−2),(1,q−2) �= 0, a contradiction. Thus, our desired result holds.

(b)⇒(c): It is obvious.
(c)⇒(a): Suppose for the contrary that (1, q − 1) is pure. By Lemma 2.2 (ii), we

have |(�1,q−1)
2| = 2 and k1,q−1 = 2. Lemma 2.4 implies that p(2,q−2)

(1,q−1),(1,q−1) = 1
and there exists an isomorphism τ from Cay(Zq × Zq , {(1, 0), (0, 1)}) to �q . It fol-
lows from Lemma 2.2 (iii) and Lemma 1.2 (i), (v) that k1,s−1 = 1. Observe that
(τ (0, 0), τ (1, 1), . . . , τ (−1,−1)) is a circuit consisting of arcs of type (1, s − 1).
Since s �= q from Lemma 2.2 (iv), (1, s − 1) is mixed. Then p(1,s−2)

(1,s−1),(1,s−1) �= 0.
By Lemma 1.2 (i), we get (τ (1, 1), τ (3, 3)) ∈ �1,s−2 and k1,s−2 = 1. Note that
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(τ (0, 0), τ (1, 0), τ (1, 1), τ (3, 3), τ (4, 4), . . . , τ (−1,−1)) is a circuit of length q con-
taining arcs of types (1, q − 1) and (1, s − 2), contrary to the fact that (1, q − 1) is
pure. Thus, we have the assertion.

(i) follows by (ii) and Lemma 2.7.
(iii) By Lemma 2.2 (iv), s �= q. (ii) implies that p(1,q−2)

(1,q−1),(1,q−1) �= 0 and (1, q − 2)
is pure. In view of Lemma 2.2 (ii) and Lemma 2.5 (iii), we only need to consider the
case that |(�1,q−1)

2| = 2 and k1,q−2 = 2. Then k1,q−1 = 2. By Lemma 1.2 (i) and

(v), we have p(1,q−2)
(1,q−1),(1,q−1) = 1. Suppose s �= q − 1. In view of Lemma 2.2 (iii),

one gets p(1,s−1)
(1,q−1),(1,q−1) = 2 and k1,s−1 = 1. Let (x0, x), (x, x1) and (x, x ′

1) be arcs

of type (1, q − 1) such that ∂̃(x0, x1) = (1, s − 1) and ∂̃(x0, x ′
1) = (1, q − 2). Pick

vertices x2, z such that ∂̃(x1, x2) = ∂̃(x, z) = (1, s − 1). Since p(1,s−1)
(1,q−1),(1,q−1) = 2,

we obtain ∂̃(x1, z) = ∂̃(x ′
1, z) = ∂̃(z, x2) = (1, q−1) and ∂̃(x ′

1, x2) = (1, q−2). The
fact that x ′

1 ∈ P(1,q−2),(1,q−2)(x0, x2) and k1,s−1 = 1 imply that (1, s − 1) is mixed.
It follows from (ii) that ∂̃(x0, x2) = (1, s − 2) and (1, q − 2) is mixed, contrary to the
fact that (1, q − 2) is pure. �

3 Configuration Cq,h

In this section, we will discuss some useful properties of the configuration Cq,h .

Lemma 3.1 Suppose that Cq,h exists. Then k1,h−1 = 1, k1,q−1 = 2, (1, q − 1) is pure
and �q � Cay(Z2q , {1, q + 1}). Moreover, if (1, q) is mixed, then k1,q = 2.

Proof Pick four distinct vertices x, y, z, w such that ∂̃(x, w) = ∂̃(y, w) = (1, q − 1)
and ∂̃(x, z) = ∂̃(z, y) = (1, h − 1). By Lemma 2.2 (i), k1,q−1 = 2. In view of h > 2
and Lemma 2.2 (iv), we have |(�1,h−1)

2| = 1. Since (�1,q−1)
2 = {�2,q−2}, from

Theorem 2.1 (ii), (1, q−1) is pure. Lemma 2.4 implies�q � Cay(Z2q , {1, q+1}). So
that there exists a vertexw′ ∈ P(1,q−1),(q−1,1)(x, y)withw′ �= w. Write ∂̃(x, y) = f̃ .
ByLemma1.2 (i) and (v), one has k f̃ = 1. Since (�1,h−1)

2 = {� f̃ }, we get k1,h−1 = 1.
If (1, q) is mixed, then k1,q = 2 from Theorem 2.1 (ii) and Lemma 1.2 (i). �
Lemma 3.2 Suppose that Cq,h exists. The following hold:

(i) If (1, h − 1) is pure, then h = 4.
(ii) If (1, h − 1) is mixed, then h = 3.

Proof Let (x, z), (z, y) be two arcs of type (1, h−1). Observe P(1,q−1),(q−1,1)(x, y) �=
∅. It follows from Lemma 2.2 (iv) that ∂(x, y) = ∂(y, x). In view of Lemma 3.1, one
has k1,h−1 = 1. If (1, h − 1) is pure, by Lemma 2.2 (ii), then ∂̃(x, y) = (2, 2) and
h = 4; if (1, h − 1) is mixed, by Theorem 2.1 (ii), then ∂̃(x, y) = (1, 1) and h = 3. �
Lemma 3.3 IfCq,h exists, then�1,q−1�1,h−1 = {�2,q}and�q,2 ∈ �1,h−1(�1,q−1)

q−1.

Proof Pick four distinct vertices x, y, z, w such that ∂̃(x, y) = ∂̃(x, w) = (1, q − 1)
and ∂̃(y, z) = ∂̃(z, w) = (1, h−1). By Lemma 3.1, (1, q−1) is pure and k1,h−1 = 1.
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In view of Lemma 2.2 (ii), we have |�1,q−1�1,h−1| = 1. It follows from Theorem 2.1
(i) that ∂(x, z) = 2. Note that q − 1 ≤ ∂(z, x) ≤ 1+ ∂(w, x) = q. It suffices to show
that ∂(z, x) = q.

Assume the contrary, namely there exists a path (z = x0, x1, . . . , xq−1 = x).
Suppose that ∂̃(xi , xi+1) = (1, p−1) for some i ∈ {0, 1, . . . , q−2} and p �= q. Since
k1,h−1 = 1, we obtain ∂̃(z, x1) �= (1, h−1). Hence, p �= h.Without loss of generality,
we may assume i = q−2. Since (1, q−1) is pure, one has ∂(y, xq−2) = q−1, which
implies ∂(xq−2, y) = 2. By x ∈ P(1,p−1),(1,q−1)(xq−2, y) and Lemma 2.2 (i), we get
∂̃(w, z) = (1, p − 1), contrary to h ≥ 3. Hence, ∂̃(xi , xi+1) = (1, q − 1) for each i .
It follows from Lemma 3.1 and Lemma 2.4 (i) that ∂̃(z, x) = (q − 1, 1), contrary to
Lemma 2.2 (i). �
Lemma 3.4 If (1, q − 1) is mixed and Cq−1,h exists, then �1,q−1�1,h−1 = {�2,q} and
�q,2 ∈ �1,h−1(�1,q−2)

q−2�1,q−1.

Proof Let x, y, z be vertices such that ∂̃(x, y) = (1, q − 1) and ∂̃(y, z) =
(1, h − 1). By Theorem 2.1 (ii), we have p(1,q−2)

(1,q−1),(1,q−1) �= 0. Pick a vertex
w ∈ P(q−1,1),(1,q−2)(x, y). It follows from Theorem 2.1 (i) that ∂(x, z) = 2. Since
h /∈ {q, q − 1} from Lemma 3.1, by Lemma 2.5 (ii), one obtains ∂(z, x) ≥ q − 1.
In view of Lemma 3.3, we get ∂̃(w, z) = (2, q − 1), which implies ∂̃(x, z) = (2, q)

from Lemma 2.2 (iv). The desired results follow by Lemma 3.3. �
Lemma 3.5 Suppose q ≥ 3 and p(2,s)

(1,q−1),(1,1) �= 0. The following hold:

(i) If (1, q − 1) is pure, then s = q and �q,2 ∈ �1,1(�1,q−1)
q−1.

(ii) If (1, q − 1) is mixed and s = q, then �q,2 ∈ �1,1�1,q−1(�1,q−2)
q−2.

Proof (i) Note that s = q − 1 or q. Suppose for the contrary that s = q − 1. Let
xq−1, xq , x0 be three vertices such that ∂̃(xq−1, xq) = (1, q − 1), ∂̃(xq , x0) = (1, 1)
and ∂̃(xq−1, x0) = (2, q − 1). Pick a path (x0, x1, . . . , xq−1).

Case 1. ∂(xi+1, xi ) /∈ {1, q − 1} for some i ∈ {0, 1, . . . , q − 2}.
Without loss of generality, we may assume ∂̃(xq−2, xq−1) = (1, p − 1) with

p /∈ {2, q}. Since (1, q − 1) is pure, we get ∂̃(xq−2, xq) = (2, q − 1) from
Theorem 2.1 (i). In view of xq ∈ P(1,q−1),(1,1)(xq−1, x0), there exists a vertex
x ′ ∈ P(1,1),(1,q−1)(xq−2, xq), which implies k1,q−1 = 2 by Lemma 2.2 (i). Since
(1, q − 1) is pure, we have ∂̃(x ′, x0) = (2, q − 1) and �1,q−1�1,1 = {�2,q−1}.
It follows from Lemma 1.2 (i) that k1,1 = p(2,q−1)

(1,q−1),(1,1). In view of xq−1 ∈
P(1,p−1),(1,q−1)(xq−2, xq) and Lemma 1.2 (iv), we obtain k1,1 = 1. By xq ∈
P(1,q−1),(q−1,1)(x ′, xq−1) and Lemma 2.2 (iv), one gets ∂(x ′, xq−1) = ∂(xq−1, x ′).
Since xq−2 ∈ P(1,1),(1,p−1)(x ′, xq−1), we obtain ∂̃(xq−1, xq−2) = (1, p−1), contrary
to p �= 2.

Case 2. ∂(xi+1, xi ) ∈ {1, q − 1} for 0 ≤ i ≤ q − 2.
Let r − 1 be the number of arcs of type (1, q − 1) in the path (x0, x1, . . . , xq−1).

Lemma 2.3 implies r > 1. Without loss of generality, we may assume ∂̃(x j , x j+1) =
(1, q−1)with q−r ≤ j ≤ q−2. It follows from Theorem 2.1 (ii) that ∂̃(x j , x j+2) =
(2, q − 2) or (2, q − 1) for each j .
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Suppose ∂̃(x j , x j+2) = (2, q − 1) for some j . It follows from Lemma 2.2 (ii) that

(�1,q−1)
2 = {�2,q−2, �2,q−1} and k1,q−1 = 2. Lemma 2.4 implies p(2,q−2)

(1,q−1),(1,q−1) =
1. By Lemma 2.2 (iii), p(2,q−1)

(1,q−1),(1,q−1) = 2. Hence, ∂̃(xq , x0) = (1, q − 1), a contra-
diction.

Suppose ∂̃(x j , x j+2) = (2, q − 2) for each j . Since ∂̃(xq−1, x0) �= (1, q − 1), we
have r < q from Lemma 2.4. Hence, ∂̃(xq−r , xq) = (r , q−r). By Lemma 2.3, r = q

2 .
Since ∂̃(x0, xr ) = (

q
2 ,

q
2 ), there exists a path (yr = xr , yr+1, . . . , yq = x0) consisting

of arcs of type (1, q − 1). Then (x0, x1, . . . , xr = yr , yr+1, . . . , yq−1) is a circuit of
length q containing arcs of types (1, q − 1) and (1,1), a contradiction.

(ii) It is an immediate consequence of Theorem 2.1 (ii). �
Let Ai, j denote a matrix with rows and columns indexed by V� such that

(Ai, j )x,y = 1 if ∂̃(x, y) = (i, j), and (Ai, j )x,y = 0 otherwise.

Lemma 3.6 Suppose that q > 2, (1, q − 1) is pure and �q � Cay(Z2q , {1, q + 1}).
The following hold:

(i) If (1, 1) ∈ ∂̃(�), then A1,q−1A1,1 = A1,q−1 or A1,q−1A1,1 = k1,1A2,q .
(ii) If (1, q) is mixed, then A1,q−1A1,q = 2A2,q−1 and (A1,q)

2 = 2A1,q−1.
(iii) If (1, q) is mixed and A1,q−1A1,1 = A1,q−1, then A1,q A1,1 = A1,q .
(iv) If (1, q) is mixed and A1,q−1A1,1 = k1,1A2,q , then A1,q A1,1 = k1,1A2,q+1.

Proof (i) Suppose p(1,q−1)
(1,q−1),(1,1) �= 0. Since �q � Cay(Z2q , {1, q + 1}), we obtain

p(1,1)
(1,q−1),(q−1,1) = 2. By Lemma 1.2 (i) and (v), we get k1,1 = 1, which implies

A1,q−1A1,1 = A1,q−1. Suppose p
(1,q−1)
(1,q−1),(1,1) = 0.ByTheorem2.1 (i), Lemma2.3 and

Lemma 3.5 (i), we have �1,q−1�1,1 = {�2,q}, which implies A1,q−1A1,1 = k1,1A2,q
from Lemma 1.2 (i).
(ii) By Theorem 2.1 (ii), we get p(1,q−1)

(1,q),(1,q) �= 0. Since k1,q−1 = 2, from Lemma 1.2
(i) and Lemma 2.2 (i), we have k1,q = 2.

Let x, y, z, w be vertices such that ∂̃(x, y) = (1, q − 1), ∂̃(y, z) = (1, q) and
w ∈ P(1,q−1),(q,1)(y, z). By Lemma 2.4 (i), we have ∂̃(x, w) = (2, q − 2). In view of
Theorem 2.1 (i), one gets ∂̃(x, z) = (2, q − 1), which implies A1,q−1A1,q = 2A2,q−1
from Lemma 1.2 (i) and Lemma 2.2 (i).

By Lemma 2.4 (i), there exists a vertex y′ ∈ P(1,q−1),(1,q−1)(x, w) with y �= y′.
Since p(2,q−1)

(1,q−1),(1,q) = 2, one has ∂̃(y′, z) = (1, q), which implies (A1,q)
2 = 2A1,q−1

from Lemma 1.2 (i).
(iii) By Lemma 1.2 (i), we have k1,1 = 1. Let x0, x1, x2, x3 be vertices such that

∂̃(x0, x2) = (1, q − 1), x1 ∈ P(1,q−1),(1,1)(x0, x2) and x3 ∈ P(1,q),(1,q)(x0, x2). It
follows from (ii) that ∂̃(x3, x1) = (1, q). Since x1 ∈ P(1,q),(1,1)(x3, x2), by Lemma 1.2
(i), we get A1,q A1,1 = A1,q .
(iv) Let z0, z1, z2, z′0 be vertices such that ∂̃(z0, z1) = (1, q), ∂̃(z1, z2) = (1, 1) and

z′0 ∈ P(q,1),(1,q−1)(z0, z1). Since A1,q−1A1,1 = k1,1A2,q , ∂̃(z′0, z2) = (2, q). In view
of (ii), one has ∂̃(z0, z2) �= (1, q), which implies ∂(z0, z2) = 2 from Lemma 2.3 and
Theorem 2.1 (i). Since ∂̃(z′0, z2) = (2, q), by Lemma 2.2 (iv), we get ∂(z2, z0) �= q.
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It follows from Lemma 2.5 (ii) that ∂(z2, z0) = q + 1. The desired result holds by
Lemma 1.2 (i) and Lemma 2.2 (i). �
Lemma 3.7 Suppose that (1, 1) ∈ ∂̃(�) and Cq,h exists. The following hold:

(i) h = 3, k1,1 = 1 and A1,q−1A1,1 = A1,q−1.
(ii) If (1, q) is mixed, then A1,q A1,1 = A1,q .

Proof (i) Let x, y, z be vertices such that ∂̃(x, y) = (1, q − 1) and ∂̃(y, z) = (1, 1).
Suppose ∂̃(x, z) = (2, q). Since Cq,h exists, by Lemma 3.3, there exists a vertex
w ∈ P(1,q−1),(1,h−1)(x, z), which implies ∂̃(z, y) = (1, h − 1), contrary to h ≥ 3. It
follows from Lemma 3.1 and Lemma 3.6 (i) that A1,q−1A1,1 = A1,q−1 and ∂̃(x, z) =
(1, q − 1). Then (�1,h−1)

2 = {�1,1} and h = 3. By Lemma 1.2 (i), k1,1 = 1.
(ii) It is an immediate consequence of Lemma 3.1 and Lemma 3.6 (iii). �
Proposition 3.8 If Cq,h and Cq ′,h′ both exist, then h = h′.

Proof If (1, 1) ∈ ∂̃(�), by Lemma 3.7 (i), then h = h′ = 3; if (1, 1) /∈ ∂̃(�), by
Theorem 2.1 (ii) and Lemma 3.2, then h = h′ = 4. �

4 Proof of Proposition 1.3

We shall prove Proposition 1.3 by contradiction. Suppose that C1–C6 do not hold.
Let B be the set consisting of (p, p − 1) and (p − 1, p) where (1, p − 1) is
mixed, C = {(p, q) | Cp,q or Cq,p exists} and D = {(p, q) | (p, p − 1) ∈
B and Cp−1,q exists, or (q, q − 1) ∈ B and Cq−1,p exists}.

Suppose thatCq,h exists for some q and h. In view of Lemma 3.1, (1, q−1) is pure.
If (1, 1) ∈ K , from Lemma 3.7 (i), then h = 3; if (1, 1) /∈ K , from Lemma 3.2 and
Theorem 2.1 (ii), then h = 4. Since C1, C2 and C3 do not hold, by Proposition 3.8,
there exists (1, p−1) ∈ K such that p �= 2 and (q, p) /∈ B∪C∪D. Suppose thatCt,h

does not exist for any t and h. Since the valency of � is more than 3, we may assume
that (1, q − 1) ∈ K with q �= 2. Since C4, C5 and C6 do not hold, from Theorem 2.1
(ii), there exists (1, p − 1) ∈ K such that p �= 2 and (q, p) /∈ B ∪ C ∪ D.

We set

l = min
{
r | p(2,r)

(1,i−1),(1, j−1) �= 0, i �= j, i, j ≥ 3, (i, j) /∈ B ∪ C ∪ D
}

.

Without loss of generality, we may assume p(2,l)
(1,q−1),(1,p−1) �= 0. By Lemma 2.5 (ii)

and Theorem 2.1 (ii), one has l ≥ 3.
Choose vertices x , y and z with ∂̃(x, y) = (1, q − 1), ∂̃(y, z) = (1, p − 1) and

∂̃(x, z) = (2, l). Then there exists y′ such that ∂̃(x, y′) = (1, p − 1) and ∂̃(y′, z) =
(1, q − 1).

The minimality of l will be used many times in the sequel, so we will not refer to it
every time for the sake of simplicity.Wewill reach a contradiction under the following
two separate cases:
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A) There exists a shortest path from z to x containing an arc of type (1, h − 1) with
h /∈ {2, q, p}.

B) Each arc of any shortest path from z to x is of type (1, 1), (1, q−1) or (1, p−1).

4.1 The case A

Without loss of generality, we may assume that (z = x0, x1, . . . , xl = x) is a path
such that ∂̃(x0, x1) = (1, h − 1). For each i , write hi = ∂(xi+1, xi ) + 1.

Step 1 Show that Ct,h exists for some t .

Assume the contrary, namely Ct,h does not exist for any t . Suppose that
(h, q), (h, p) ∈ B ∪ C ∪ D. Observe {(h, q), (h, p)} � B. It follows from Propo-
sition 3.8 that {(h, q), (h, p)} � C ∪ D. Without loss of generality, we may assume
(h, q) ∈ B and (h, p) ∈ C ∪ D. If Ch,p exists, by Lemma 3.1, then q = h + 1 and
(1, q − 1) is mixed, contrary to (q, p) /∈ D. If (1, h − 1) is mixed and Ch−1,p exists,
then Cq,p exists, a contradiction. Thus, (h, q) or (h, p) /∈ B ∪ C ∪ D.

Without loss of generality, wemay assume that (h, p) /∈ B∪C∪D. Theorem 2.1 (i)
implies ∂̃(y, x1) = (2, l). Since z ∈ P(1,p−1),(1,h−1)(y, x1), there exists a vertex y′′ ∈
P(1,h−1),(1,p−1)(x, z), which implies k1,p−1 = 2 from Lemma 2.2 (i). By Theorem 2.1
(i) again, we get ∂(y′, x1) = 2 and ∂̃(y′′, x1) = (2, l). Then �1,p−1�1,h−1 = {�2,l}
and k2,l = 2. Since p(2,l)

(1,q−1),(1,p−1) �= 0, from Lemma 1.2 (i) and (iv), we obtain

k1,h−1 = p(2,l)
(1,p−1),(1,h−1)=1. By k2,l = 2, ∂(x1, y′) < l. Hence, (h, q) ∈ B ∪ C ∪ D.

Since k1,h−1 = 1, one gets (h, q) ∈ B from Lemma 3.1. Suppose that (1, q −
1) is mixed. By Theorem 2.1 (ii) and Lemma 1.2 (ii), one has p(1,h−1)

(1,q−1),(1,q−1) =
k1,q−1, which implies ∂̃(y, y′′) = (1, q − 1). Since z ∈ P(1,p−1),(p−1,1)(y′′, y), from
Lemma 2.2 (iv), one obtains q = 2, a contradiction. Now suppose that (1, h − 1) is
mixed. By Theorem 2.1 (ii) again, ∂̃(y′′, y) = (1, h − 1). In view of Lemma 2.2 (iv),
h = 2, a contradiction. Thus, Ct,h exists for some t .

Step 2 Show that {(q, h), (p, h)} � C ∪ D.

Suppose for the contrary that {(q, h), (p, h)} ⊆ C∪D. ByStep 1 andLemma3.1,we
have k1,h−1 = 1. We conclude that (x1, x2, . . . , xl) consists of arcs of types (1, q −1)
and (1, p − 1).

By Proposition 3.8, Cq,h exists, or Cq−1,h exists and (1, q − 1) is mixed. Suppose
hl−1 = 2. By Lemma 3.7 (i) or (ii), we have ∂̃(xl−1, y) = (1, q − 1). Theorem 2.1 (i)
implies ∂(xl−1, z) = 2, contrary to ∂(z, xl−1) < l. Then h j �= 2 for 1 ≤ j ≤ l − 1.
Step 1 and Proposition 3.8 imply that h j ∈ {q, p, h} for any j . Since h /∈ {q, p},
one gets l ≥ 4 from Lemma 2.5 (ii) and Theorem 2.1 (ii). If h j = h for any j , by
Lemma 3.2 and k1,h−1 = 1, then (1, h − 1) is pure and h = 4, which imply z = x4, a
contradiction. In the path (x1, x2, . . . , xl), without loss of generality, we may assume
that the number of arcs of type (1, p − 1) is not less than the number of arcs of type
(1, q − 1).

Without loss of generality, we may assume hl−1 = p. By Proposition 3.8 again,
Cp,h exists, or Cp−1,h exists and (1, p − 1) is mixed. Suppose that Cp−1,h exists and
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(1, p−1) is mixed. Then p ≥ 4. In view of Lemma 3.1 and Proposition 3.8, we obtain
(q, p − 1) /∈ B ∪ C ∪ D. Lemma 3.6 (ii) implies ∂̃(xl−1, y′) = (1, p − 2). It follows
from Theorem 2.1 (i) that ∂(xl−1, z) = 2, contrary to ∂(z, xl−1) < l. Hence, Cp,h

exists. Suppose h1 = h. Then ∂̃(y, x2) = (1, p − 1). By Theorem 2.1 (i) again, one
has ∂(x, x2) = 2, contrary to ∂(x2, x) < l. Thus, h j ∈ {q, p} for 1 ≤ j ≤ l − 1.

Suppose h j = p for each j . SinceCp,h exists, by Lemma 3.3, we get ∂(x1, y) = p,
and so l ≥ p. In view of Lemma 3.1 andLemma 2.4 (i), one has ∂̃ (x1, xp) = (p−1, 1).
Since ∂̃(y′, z) = (1, q−1), we obtain ∂̃(x, x1) �= (1, p−1) and l > p. Let xl+1 = y′.
By Lemma 2.4 (i), one gets ∂̃(x1, xp+2) = (1, p− 1). Then xp+2 = y′ and (y′, z, x1)
is a circuit, a contradiction. Therefore, our conclusion is valid.

Without loss of generality, we may assume hl−3 = q and hl−2 = p. Observe
that Cp,h exists and (q, h) ∈ C ∪ D. From Lemma 3.1 and Proposition 3.8, we get
k1,q−1 = k1,p−1 = 2 and there exists a vertex x ′

l−1 ∈ P(1,p−1),(1,p−1)(xl−2, x) with
x ′
l−1 �= xl−1. Hence, xl−1, x ′

l−1 ∈ �2,l(xl−3). In viewof Lemma1.2 (i) andLemma2.2

(i), we obtain A1,q−1A1,p−1 = 2A2,l . Since ∂̃(xl−1, z) = ∂̃(x, x1) = (3, l − 1)
and x ∈ P(1,p−1),(2,l)(xl−1, z), there exists a vertex z′′ ∈ P(2,l),(1,p−1)(x, x1), which
implies ∂̃(y′, z′′) = (1, q − 1). Then ∂̃(y′, x1) = (2, l) and ∂̃(z, x1) = (1, p − 1),
contrary to h �= p. The desired result follows.

In the following, we reach a contradiction based on the above discussion.
By Step 2, we may assume (p, h) /∈ C∪D. It follows from Step 1 and Lemma 3.1

that k1,h−1 = 1. In view of Theorem 2.1 (i), we have ∂(y, x1) = ∂(y′, x1) = 2.

Case 1. ∂(x1, y) = l.
Since y′ ∈ P(1,p−1),(1,q−1)(x, z), there exists a vertex z′ ∈ P(1,p−1),(1,q−1)(y, x1).

It follows fromLemma 2.2 (i) that k1,p−1 = 2. By Theorem 2.1 (i), we have ∂̃(x, z′) =
(2, l), which implies �1,q−1�1,p−1 = {�2,l}. In view of Lemma 1.2 (i), k1,q−1 =
p(2,l)
(1,q−1),(1,p−1).Observe z ∈ P(1,p−1),(1,h−1)(y, x1). Lemma1.2 (iv) implies k1,q−1 =

1. Since k1,h−1 = 1, we obtain ∂(x1, y′) < l. Note that (q, h) ∈ B ∪ C ∪ D. From
Lemma 3.1, one has (q, h) ∈ B. By Theorem 2.1 (ii), we get ∂̃(z, z′) = (1, q − 1) or
∂̃(z′, z) = (1, h − 1), contrary to Lemma 2.2 (iv).

Case 2. ∂(x1, y) < l.
Note that (p, h) ∈ B. By Lemma 3.2, (1, p − 1) is mixed and p = h + 1 = 5.

Since k1,3 = 1, one gets k1,4 = p(1,3)
(1,4),(1,4) from Theorem 2.1 (ii) and Lemma 1.2 (ii).

If ∂(x1, y′) = l, then there exists a vertex w ∈ P(1,q−1),(1,4)(y′, x1), which implies
∂̃(z, w) = (1, 4), contrary to Lemma 2.2 (iv). Hence, ∂(x1, y′) < l.

Pick a vertex w′ ∈ �1,3(y). Since k1,4 = p(1,3)
(1,4),(1,4), one has ∂̃(z, w′) =

∂̃(w′, x1) = (1, 4). The fact that ∂(x1, y′) < l implies (q, 4) ∈ C ∪ D. By Proposi-
tion 3.8, Cq,4 exists, or Cq−1,4 exists and (1, q − 1) is mixed. In view of Lemma 3.3
or 3.4, we get q = ∂(x1, y′) < ∂(z, x) ≤ 1 + ∂(w′, x) = q + 1. Thus, l = q + 1.

Suppose that Cq,4 exists. Pick a vertex x ′
2 ∈ P(1,3),(4,1)(w

′, x1). Then ∂̃(x, x ′
2) =

(1, q−1). By Lemma 3.1, there exists a circuit (x ′
2, x

′
3, . . . , x

′
l = x) consisting of arcs

of type (1, q − 1). Since (z, x1, x ′
2, x

′
3, . . . , x

′
l ) is a shortest path, ∂̃(x1, x ′

3) = (2, l). It
follows that ∂̃(x ′

l−1, z) = ∂̃(x, x1) = (3, l−1). The fact that x ∈ P(1,q−1),(2,l)(x ′
l−1, z)

and ∂(x1, y) < l imply ∂̃(x ′
2, x1) = (2, l), a contradiction.
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Suppose that Cq−1,4 exists and (1, q − 1) is mixed. Since (1, 4) is mixed, by
Lemma 3.1, we obtain q ≥ 7. It follows from Lemma 3.4 that there exists a vertex y1
such that ∂̃(w′, y1) = (1, q − 2) and ∂(y1, x) = q − 1. By Proposition 3.8, we have
(5, q − 1) /∈ B ∪ C ∪ D. Theorem 2.1 (i) implies ∂̃(z, y1) = (2, l) = (2, q + 1). In
view of w′ ∈ P(1,4),(1,q−2)(z, y1), there exists a vertex y′′ ∈ P(1,4),(1,q−2)(x, z). By
Lemma 3.1 and Lemma 3.6 (ii), we get ∂̃(y′′, y′) = (1, q −1), contrary to Lemma 2.2
(iv).

By the above discussion, we finish the proof of Proposition 1.3 for the case A.

4.2 The case B

Let (z = x0, x1, . . . , xl = x) be a path. For each i , write hi = ∂(xi+1, xi ) + 1. Note
that hi ∈ {2, q, p}.
Step 1 Show that |{i | hi �= 2, 0 ≤ i ≤ l − 1}| ≥ 2 and |{hi | 0 ≤ i ≤ l − 1}| ≥ 2.

Suppose that h j = 2 for 0 ≤ j ≤ l − 2. It follows from Lemma 2.3 that l = 3
or 4. In view of Lemma 2.2 (i), we obtain k1,1 = 2. By Lemma 2.3, ∂̃(x0, x2) =
(2, 2) and �2 is not isomorphic to C3. If (1, 3) is pure, then there exists a vertex
x ′
1 ∈ P(1,3),(1,3)(x2, x0), a contradiction. Then (1, 3) /∈ ∂̃(�) or (1, 3) is mixed. Since

(q, p) /∈ B, we get {q, p} �= {3, 4} from Theorem 2.1 (ii). By Lemma 2.5 (ii), one has
l = 4 and 5 ∈ {q, p}. Lemma 2.3 and Theorem 2.1 (i) imply ∂(y, x1) = ∂(y′, x1) = 2.
Since ∂(x1, y) ≤ 4 and ∂(x1, y′) ≤ 4, (1, 4) is mixed from Lemma 3.5 (i). By
Theorem 2.1 (ii), (1, 3) is pure, a contradiction. Therefore, the first statement is valid.
The second statement follows from Lemma 2.6 and Theorem 2.1 (iii).

Step 2 Show that k1,q−2 = 1 if |{i | hi = q}| ≥ 2 and (1, q − 1) is mixed.

Without loss of generality, we may assume that hl−2 = hl−1 = q. Note that
∂(xl−2, x) = 2. By Theorem 2.1 (ii) and Lemma 2.2 (ii), we have |(�1,q−1)

2| = 2 and

k1,q−1 = 2. Suppose p(1,q−2)
(1,q−1),(1,q−1) = 1. It follows from Lemma 2.2 (iii) that there

exists a vertex x ′
l−1 ∈ P(1,q−1),(1,q−1)(xl−2, x) such that ∂̃(x ′

l−1, y) = (1, q−2). Pick
a vertex x ′ ∈ P(1,q−2),(1,q−1)(xl−2, y). By Theorem 2.1 (i), one gets ∂(x ′, z) = 2,

contrary to ∂(z, x ′) < l. Hence, p(1,q−2)
(1,q−1),(1,q−1) = 2. In view of Lemma 1.2 (i) and

(v), we obtain k1,q−2 = 1.

Step 3 Show that ∂(xl−1, z) ≥ 2.

Suppose for the contrary that ∂(xl−1, z) = 1.

Case 1. (1, l − 1) is mixed.
By Theorem 2.1 (ii), (1, l − 2) is pure and there exists a vertex x ′

l−2 such that

∂̃(x ′
l−2, xl−1) = (1, l − 1) and ∂̃(x ′

l−2, z) = (1, l − 2). Observe that l − 1, l ∈
{2, q, p}. Since (q, p) /∈ B, l = 3. From Lemma 2.5 (ii), {q, p} = {3, 4}. Without
loss of generality, we may assume p = 4. By Theorem 2.1 (ii), (1, 3) is pure. In
view of ∂(x ′

l−2, y) ≤ 3 and Lemma 3.5 (i), we get ∂(y, x ′
l−2) = 1. It follows from

Lemma 2.3 and Theorem 2.1 (i) that ∂̃(y, x ′
l−2) = (1, 3) and ∂(x, x ′

l−2) = 2, contrary
to ∂(x ′

l−2, x) < l.
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Case 2. (1, l − 1) is pure.
Observe that l ∈ {q, p}.

Case 2.1. hl−1 �= 2.
Without loss of generality, we may assume hl−1 = q. By l ≥ 3 and Lemma 2.2

(iv), one has l = p, which implies h j = p for 0 ≤ j ≤ l − 2. In view of Lemma 2.2
(i), k1,p−1 = 2.

We claim that k1,q−1 = 2 and there exists z′ ∈ P(1,p−1),(1,p−1)(y, x1) \ {z}.
Lemma 2.4 implies �p � Cay(Z2p, {1, p + 1}) or Cay(Zp × Zp, {(1, 0), (0, 1)}).
Suppose �p � Cay(Z2p, {1, p + 1}). Since Cp,q does not exist, from Lemma 2.2
(ii), we have |(�1,q−1)

2| = 2 and k1,q−1 = 2. It follows from Lemma 2.4
(i) that the claim is valid. Suppose �p � Cay(Zp × Zp, {(1, 0), (0, 1)}). Then
|P(1,p−1),(p−1,1)(xl−1, y)| = 1. Lemma 1.2 (v) and Lemma 2.2 (i) imply k

∂̃(xl−1,y)
=

2. By Lemma 1.2 (i), k1,q−1 = 2. Since ∂̃(xl−1, x1) = (2, p − 2), one has
∂̃(y, x1) �= (2, p − 2) from Lemma 2.4 (ii). In view of Lemma 2.2 (iii), the claim is
valid.

By Theorem 2.1 (i), ∂̃(x, z′) = (2, l). In view of Lemma 1.2 (i) and Lemma 2.2 (i),
one gets A1,q−1A1,p−1 = 2A2,l , which implies that ∂̃(x, xl−1) = (1, q − 1), contrary
to q �= 2.

Case 2.2. hl−1 = 2.
Without loss of generality, we may assume l = q. By xl−1 �= y′ and Lemma 2.2

(i), one gets k1,q−1 = 2. Since z ∈ P(1,q−1),(q−1,1)(xl−1, y′), we have ∂̃(y′, xl−1) =
(2, 2) from Lemma 2.2 (iv) and Lemma 2.3. In view of x ∈ P(1,1),(1,p−1)(xl−1, y′),
there exists a vertex x ′′ ∈ P(1,p−1),(1,1)(y′, xl−1). Then x ′′ �= x and k1,1 = 2. The

fact that ∂̃(xl−1, y′) = (2, 2) implies p(1,1)
(1,q−1),(q−1,1) = p(1,q−1)

(1,1),(1,q−1) = 0. Since
(1, q − 1) is pure, by Lemma 2.3, Theorem 2.1 (i) and Lemma 3.5 (i), we obtain
A1,1A1,q−1 = 2A2,q . Hence, y′ ∈ P(1,1),(1,q−1)(x ′′, z), a contradiction.

Step 4 Show that p(2,l−1)
(1,s−1),(1,1) �= 0 for some s > 2 if ∂(xl−1, z) = 2.

Pick a path (xl−1, w, z) such that ∂̃(xl−1, w) = (1, s−1), ∂̃(w, z) = (1, t −1) and
s ≥ t . By Step 1, we may assume h0 = q. If t = 2, then s > 2 since l ≥ 3, and the
desired result holds. Suppose t �= 2. Since (q, p) /∈ C∪D, from Lemmas 3.3 and 3.4,
we have t = s or (s, t) ∈ B.

Case 1. s = t .
Since ∂(x1, w) < l, by Theorem 2.1 (i), one has t = q or (t, q) ∈ B ∪ C ∪ D.

Case 1.1. t = q.
Suppose ∂̃(xl−1, y′) = (1, q − 1). By Theorem 2.1 (i), hl−1 = p. It follows from

Theorem2.1 (ii) and (iii) that (1, p−1) ismixed and q = p−1, contrary to (q, p) /∈ B.
Since w �= y′, by Lemma 2.2 (i), one gets k1,q−1 = 2 and p(2,l−1)

(1,q−1),(1,q−1) = 1.

Case 1.1.1. (1, q − 1) is pure.
By Lemma 2.4, one has |(�1,q−1)

2| = 2 and p(2,q−2)
(1,q−1),(1,q−1) = 1. In view of

Lemma 2.2 (iii), we get ∂̃(xl−1, z) = (2, q − 2), which implies l = q − 1 and
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∂̃(w, x1) = (2, q − 2). It follows from Theorem 2.1 (ii) that ∂̃(y′, x1) = (2, q − 1).
By Lemma 2.2 (iii) again, we obtain p(2,q−1)

(1,q−1),(1,q−1) = 2. Then ∂̃(x, y′) = (1, q −1),
a contradiction.

Case 1.1.2. (1, q − 1) is mixed.
By Theorem 2.1 (ii), (1, q − 2) is pure. Since p(2,l−1)

(1,q−1),(1,q−1) = 1, one gets

p(1,q−2)
(1,q−1),(1,q−1) = 2 from Lemma 2.2 (ii) and (iii). In view of Lemma 1.2 (i) and

(v), one has k1,q−2 = 1. Lemma 2.5 (iii) implies ∂̃(xl−1, z) = (2, q − 1) and l = q.
Pick vertices x ′

l−2 ∈ P(q−1,1),(1,q−2)(xl−1, w) and x ′
1 ∈ P(1,q−2),(q−1,1)(w, z). Note

that ∂̃(x ′
l−2, x

′
1) �= (2, q − 3). By k1,q−2 = 1, we obtain l = q = 3. In view of

Lemma 2.5 (ii) and Theorem 2.1 (ii), we get p = 4, which implies that (1, 3) is
pure. Since ∂̃(xl−1, z) = (2, 2), there exists a vertex x ′ ∈ P(1,3),(1,3)(z, xl−1). Then
(xl−1, w, z, x ′) is a circuit containing arcs of types (1, 2) and (1, 3), a contradiction.

Case 1.2. (t, q) ∈ B and t = q − 1.
Note that q > 3. Theorem 2.1 (ii) implies that (1, q − 2) is pure. Since q −

1 /∈ {2, q, p}, we have ∂̃(xl−1, z) �= (2, q − 3). In view of Lemma 2.2 (ii), we get
|(�1,q−2)

2| = 2 and k1,q−2 = 2, which imply p(2,q−3)
(1,q−2),(1,q−2) = 1 from Lemma 2.4.

By Lemma 2.2 (iii), we obtain p(2,l−1)
(1,q−2),(1,q−2) = 2. In view of Lemma 1.2 (i) and (v),

one gets k2,l−1 = 1.
Since k1,q−2 = 2 and (q, p) /∈ D, by Lemma 3.1, we have (q −1, p) /∈ B∪C∪D.

It follows from ∂(w, xl−2) < l and Theorem 2.1 (i) that hl−2 �= p. Hence, hi �= p
for 0 ≤ i ≤ l − 2. In view of Step 2, we get |{ j | h j = q}| < 2. By Step 1, one has
hl−1 = p.

Since ∂(x1, x) < l and (q − 1, p) /∈ B ∪ C ∪ D, we have ∂̃(y′, x1) �= (1, q − 2)
from Theorem 2.1 (i). In view of Theorem 2.1 (ii), we get p(1,q−2)

(1,q−1),(1,q−1) �= 0, which

implies |(�1,q−1)
2| = 2 and k1,q−1 = 2 from Lemma 2.2 (ii). Since k1,q−2 = 2, by

Lemma 1.2 (i) and (v), we get p(1,q−2)
(1,q−1),(1,q−1) = 1. It follows from Lemma 2.2 (iii)

that there exists a vertex z′ ∈ P(1,q−1),(1,q−1)(y′, x1)\ {z}. In view of Theorem 2.1 (i),
we obtain z′ ∈ �2,l(x) and �1,p−1�1,q−1 = {�2,l}. Since x ∈ P(1,p−1),(2,l)(xl−1, z)
and k2,l−1 = 1, we obtain k1,p−1 = 2 from Lemma 1.2 (i) and Lemma 2.2 (i).

Hence, p(2,l)
(1,p−1),(1,q−1) = 2 and there exists a vertex y′′ ∈ P(1,p−1),(1,q−1)(x, z) such

that ∂̃(y′′, x1) = (1, q − 2). By Theorem 2.1 (i), one has ∂(x, x1) = 2, contrary to
∂(x1, x) < l.

Case 1.3. (t, q) ∈ B and t = q + 1.
Since (1, q) is mixed, (1, q − 1) is pure and p(1,q−1)

(1,q),(1,q) �= 0 from Theorem 2.1

(ii). By ∂(xl−1, z) = 2 and Lemma 2.2 (ii), we have |(�1,q)
2| = 2 and k1,q =

2. If p(2,l−1)
(1,q),(1,q) = 2, then there exists a vertex w′ ∈ P(1,q),(1,q)(xl−1, z) such that

∂̃(y′, w′) = (1, q); if p(2,l−1)
(1,q),(1,q) = 1, by Lemma 2.2 (iii), then p(1,q−1)

(1,q),(1,q) = 2 and

∂̃(y′, w) = (1, q). Without loss of generality, we may assume ∂̃(y′, w) = (1, q).
By Theorem 2.1 (i), we have ∂(x, w) = 2. Since k1,q = 2 and Cq,p does not exist,

we obtain (q + 1, p) /∈ B ∪ C ∪ D from Lemma 3.1. It follows that l ≤ ∂(w, x) ≤
∂(w, xl−1)+1 = q+1. In view of Lemma 2.5 (i), one gets l−1 = ∂(z, xl−1) > q−1.
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Then ∂(w, x) = l. Since x ∈ P(l,2),(2,l)(w, z), by Lemma 2.2 (iv), one has q = 1, a
contradiction.

Case 1.4. (t, q) ∈ C ∪ D.
Suppose that (1, t−1) is pure. By Lemma 3.1, k1,t−1 = 1 or�t � Cay(Z2t , {1, t+

1}), which implies ∂̃(xl−1, z) = (2, t − 2). Hence, t = p, a contradiction.
Suppose that (1, t − 1) is mixed. It follows from Lemma 3.1 that k1,t−1 = 1 or

Ct−1,q exists. If k1,t−1 = 1, byTheorem2.1 (ii), then ∂(xl−1, z) = 1, a contradiction; if
Ct−1,q exists, by Lemma 3.1 and Lemma 3.6 (ii), then ∂(xl−1, z) = 1, a contradiction.

Case 2. (s, t) ∈ B.
Note that (1, s − 1) is mixed and s = t + 1. By Theorem 2.1 (ii), (1, t − 1) is pure.

Since ∂(x1, w) < l, from Theorem 2.1 (i), one has t = q or (t, q) ∈ B ∪ C ∪ D.

Case 2.1. t = q.
Note that s = q + 1 and l − 1 = ∂(z, xl−1) ≥ q − 1. Since (1, q) is mixed, by

Theorem 2.1 (ii), one has p(1,q−1)
(1,q),(1,q) �= 0. Pick a vertex x ′

l−2 ∈ P(q,1),(1,q−1)(xl−1, w).

The fact that q+1 /∈ {2, q, p} implies ∂̃(x ′
l−2, z) �= (2, q−2). By Lemma 2.2 (ii), we

get |(�1,q−1)
2| = 2 and k1,q−1 = 2. In view of Lemma 2.4, we get p(2,q−2)

(1,q−1),(1,q−1) =
1. Since ∂̃(x ′

l−2, z) �= (2, q − 2), we obtain ∂̃(x ′
l−2, y

′) = (1, q − 1) from Lemma 2.2
(iii).

Note that p(1,q−1)
(1,q),(1,q) �= 0 and k1,q−1 = 2. By Lemma 1.2 (i) and Lemma 2.2

(i), we obtain k1,q = 2. Since Cq,p does not exist, (q + 1, p) /∈ B ∪ C ∪ D

from Lemma 3.1. Since x ∈ P(1,hl−1−1),(1,p−1)(xl−1, y′), there exists a vertex
x ′ ∈ P(1,p−1),(1,hl−1−1)(xl−1, y′). In view of Theorem2.1 (i), we have ∂(x ′

l−2, x
′) = 2.

Since q ≤ l and l ≤ ∂(x ′, x ′
l−2) ≤ 1 + ∂(y′, x ′

l−2) = q, we get ∂̃(x ′
l−2, x

′) = (2, l).
Suppose w = y′. Since x ∈ P(1,hl−1−1),(1,p−1)(xl−1, w) and p �= q + 1, by

Theorem 2.1 (i), we have hl−1 = p. Theorem 2.1 (ii) and (iii) imply that (1, q) is
pure, a contradiction. Suppose w �= y′. By p(2,l)

(1,q−1),(1,p−1) �= 0 and p > 2, we get
w ∈ P(1,q−1),(1,p−1)(x ′

l−2, x
′). Since x ′ ∈ P(1,p−1),(p−1,1)(xl−1, w), fromLemma 2.2

(iv), we obtain q = 1, a contradiction.

Case 2.2. (t, q) ∈ B.
Note that t = q − 1 and s = q. By Theorem 2.1 (ii), p(1,q−2)

(1,q−1),(1,q−1) �= 0 and
(1, q − 2) is pure. Lemma 2.2 (i) implies k1,q−2 = 1 or 2.

Case 2.2.1. k1,q−2 = 1.
Since ∂(z, xl−1) ≥ q−2, l ≥ q−1. Pick a vertex x ′

l−2 ∈ P(q−1,1),(1,q−2)(xl−1, w).

The fact that (1, q − 2) is pure implies that ∂̃(x ′
l−2, z) = (2, q − 3) and l = q − 1,

contrary to q − 1 /∈ {2, q, p}.
Case 2.2.2. k1,q−2 = 2.

Since ∂(w, xl−2) < l, one gets hl−2 �= p from Theorem 2.1 (i). Then h j �= p for
0 ≤ j ≤ l −2. Step 2 implies |{i | hi = q}| < 2. It follows from Step 1 that hl−1 = p
and h j = 2 for 1 ≤ j ≤ l − 2.

Since (q, p) /∈ D and (1, q − 2) is pure, by Lemma 3.1, one has (q − 1, p) /∈
B ∪ C ∪ D. In view of w ∈ P(1,q−1),(1,q−2)(xl−1, z), there exists a vertex w′ ∈
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P(1,q−2),(1,q−1)(xl−1, z). It follows from Theorem 2.1 (iii) that w′ �= y′. Observe
∂(x1, x) < l. Theorem 2.1 (i) and Lemma 2.2 (i) imply ∂̃(y′, x1) �= (1, q − 2) and
∂̃(w′, x1) = (1, q−2). Since (1, q−2) is pure, by Lemma 2.3, we have ∂̃(xl−1, x1) =
(2, 2) and l = q = 4. In view of ∂(x2, w′) ≤ 2 and Lemma 3.5 (i), we obtain
∂(w′, x2) = 1. Then (x2, x3, w′) is a circuit containing arcs of types (1, 1) and (1, 2),
a contradiction.

Case 2.3. (t, q) ∈ C ∪ D.
Observe that (1, t−1) is pure and (1, t) ismixed.ByLemma3.1,we have k1,t−1 = 1

or �t � Cay(Z2t , {1, t + 1}). It follows from Theorem 2.1 (ii) that p(1,t−1)
(1,t),(1,t) �= 0.

Pick a vertex x ′
l−2 ∈ P(t,1),(1,t−1)(xl−1, w). In view of k1,t−1 = 1 or Lemma 2.4 (i),

one gets ∂̃(x ′
l−2, z) = (2, t − 2). Note that l − 1 = ∂(z, xl−1) ≥ t − 1. Hence, l = t .

Since (1, t − 1) is pure, we obtain t = p, contrary to (q, p) /∈ C ∪ D.
We complete the proof of Step 4.

Step 5 Show that (1, s − 1) is pure if ∂(xl−1, z) = 2.

Suppose for the contrary that (1, s − 1) is mixed. Theorem 2.1 (ii) implies that
p(1,s−2)
(1,s−1),(1,s−1) �= 0 and (1, s − 2) is pure. Pick vertices w ∈ P(1,s−1),(1,1)(xl−1, z)

and x ′
l−2 ∈ P(s−1,1),(1,s−2)(xl−1, w).

Case 1. s > 3.
By Lemma 2.5 (ii), we have ∂(z, xl−1) �= s − 2. Since (q, p) /∈ B, one gets

{s − 1, s} �= {q, p}. It follows from Lemma 3.5 (ii) that ∂̃(xl−1, z) = (2, s − 1)
and l = s. Since (1, s − 2) is pure, by Lemma 2.3 and Theorem 2.1 (i), we obtain
∂(x ′

l−2, z) = 2. From Lemma 3.5 (i), we obtain ∂̃(x ′
l−2, z) = (2, s − 1). Since z ∈

P(2,s−1),(s−1,2)(x ′
l−2, xl−1), by Lemma 2.2 (iv), one has s = 2, a contradiction.

Case 2. s = 3.
Note that l ≤ 4 and x ′

l−2 �= z. Lemma 2.2 (i) implies k1,1 = 2. Without loss of
generality, we may assume p �= 3. By Lemma 2.5 (ii) and Theorem 2.1 (ii), we have
p = 4 or 5.

Suppose p = 4. Theorem 2.1 (ii) implies that (1, 3) is pure. If ∂̃(x ′
l−2, z) = (2, 2),

by p(2,2)
(1,3),(1,3) �= 0, then there exists a vertex w′ ∈ P(1,3),(1,3)(x ′

l−2, z), which implies
that (x ′

l−2, w
′, z, w) is a circuit containing arcs of types (1, 1) and (1, 3), a contradic-

tion. It follows from Lemma 2.3 that ∂̃(x ′
l−2, z) = (1, 1). Since ∂(x ′

l−2, y) ≤ 3, by

Theorem 2.1 (i) and Lemma 3.5 (i), we get ∂̃(y, x ′
l−2) = (1, 3). Then ∂(x, x ′

l−2) = 2,
contrary to l ≥ 3.

Suppose p = 5. By Lemma 2.5 (ii) and Theorem 2.1 (ii), one has l = 4. Since
∂(w, x) ≤ 3, we obtain ∂(y, w) = 2 from Lemma 2.3 and Theorem 2.1 (i). In view of
∂(w, y) ≤ 4 and Lemma 3.5 (i), (1, 4) is mixed. It follows from Theorem 2.1 (ii) that
(1, 3) is pure. By Lemma 2.3, we get ∂̃(x ′

l−2, z) = (2, 2), which implies that there
exists a vertexw′ ∈ P(1,3),(1,3)(x ′

l−2, z). Hence, (x
′
l−2, w

′, z, w) is a circuit containing
arcs of types (1, 1) and (1, 3), a contradiction.

Step 6 Show that {hl−1, s} = {q, p} if ∂(xl−1, z) = 2.
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By Step 5, (1, s − 1) is pure. From Step 4 and Lemma 3.5 (i), we get ∂̃(xl−1, z) =
(2, s) and l = s+1, which imply s ∈ {q, p}. Pick a vertexw ∈ P(1,s−1),(1,1)(xl−1, z).
Without loss of generality, we may assume s = q.

Suppose hl−1 = 2. Observe that ∂̃(xl−1, z) = (2, q) = (2, l − 1). By Lemma 2.3
and Theorem 2.1 (i), we get ∂(xl−1, y) = 2. In view of Lemma 3.5 (i), one has
∂̃(xl−1, y) = (2, q). It follows from Lemma 2.2 (iv) that p = 2, a contradiction.
Hence, hl−1 ∈ {q, p}.

Suppose hl−1 = s. Since l ≥ 3, one getsw �= x and k1,q−1 = 2 fromLemma2.2 (i).
By Lemma 2.2 (iv) and xl−1 ∈ P(q−1,1),(1,q−1)(x, w), we have ∂(x, w) = ∂(w, x).
In view of z ∈ P(2,l),(1,1)(x, w), there exists z′ ∈ P(1,1),(2,l)(w, x). Since l ≥ 3,

we get z′ �= z and k1,1 = 2. By ∂̃(w, x) �= (1, 1), we obtain p(1,1)
(1,q−1),(q−1,1) =

p(1,q−1)
(1,q−1),(1,1) = 0. In view of Lemma 2.3, Theorem 2.1 (i) and Lemma 3.5 (i), one

has �1,q−1�1,1 = {�2,q}. Since p(2,q)

(1,q−1),(1,1) = 2 from Lemma 1.2 (i), one obtains

∂̃(x, z) = (1, 1), a contradiction. Thus, hl−1 = p.

Step 7 Fora, b ∈ {2, q, p} anda < b, show that p(3,l−1)
(1,b−1),(2,l) �= 0 if p(3,l−1)

(1,a−1),(2,l) = 0.

Without loss of generality, we may assume b = q. We claim that hi = q for
some i ∈ {0, 1, . . . , l − 1}. Assume the contrary, namely hi �= q for each i . Suppose
a = 2. By Step 1, we may assume hl−1 = 2. It follows from Steps 3, 4 and 6 that
∂̃(xl−1, z) = (3, l−1), contrary to p(3,l−1)

(1,1),(2,l) = 0. Suppose a = p. By Step 1, wemay
assume hl−2 = hl−1 = p. It follows fromSteps 3, 4 and 6 that ∂(xl−1, z) = 2 and there
exists a vertex w ∈ P(1,q−1),(1,1)(xl−1, z). Theorem 2.1 (i) implies ∂(xl−2, w) = 2,
contrary to ∂(w, xl−2) < l. So our claim is valid.

Without loss of generality, we may assume hl−1 = q. It suffices to show that
∂(xl−1, z) = 3.

Suppose ∂(xl−1, z) = 2. It follows from Steps 4–6 that (1, p − 1) is pure
and there exists a vertex w′ ∈ P(1,1),(1,p−1)(xl−1, z). By Lemma 3.5 (i), we have
∂̃(xl−1, z) = (2, p) and l = p + 1. Let (y0 = z, y1, . . . , yl−2 = w′) be a path
consisting of arcs of type (1, p − 1). Since xl−1 ∈ P(1,1),(1,q−1)(w

′, x), there exists
x ′
l−1 ∈ P(1,q−1),(1,1)(w

′, x). Note that (z = y0, y1, . . . , yl−2, x ′
l−1, x) is a shortest

path. Then ∂̃(yl−3, x ′
l−1) = (2, l). Hence, ∂̃(x, y1) = ∂̃(x ′

l−1, z) = (3, l − 1), con-
trary to a ∈ {2, p}. By Step 3, we obtain ∂(xl−1, z) = 3, as desired.

Based on the above discussion, we consider two cases, and reach a contradiction,
respectively.

Case 1. p(3,l−1)
(2,l),(1,1) �= 0.

Pick a vertex y1 ∈ P(3,l−1),(1,1)(x, z). By Step 7, wemay assume p(3,l−1)
(1,q−1),(2,l) �= 0.

Then there exist vertices z′ ∈ P(2,l),(1,q−1)(x, y1) and y′
1 ∈ P(1,p−1),(1,q−1)(x, z′).

It follows from Lemma 2.2 (i) that k2,l = 2. Observe that x ∈ P(l,2),(2,l)(z, z′).
By Lemma 2.2 (iv) and Lemma 2.3, we get ∂̃(z′, z) = (2, 2). Lemma 2.5 (ii) and
Theorem 2.1 (ii) imply q = 3.

By ∂̃(z′, z) = (2, 2) and Lemma 3.5 (i), (1, 2) is mixed, which implies p(1,1)
(1,2),(1,2) �=

0 fromTheorem2.1 (ii). Since ∂(y′
1, y1) = 2, byLemma2.2 (ii), we have |(�1,2)

2| = 2
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and k1,2 = 2. In view of ∂̃(z, z′) = (2, 2), p(1,1)
(1,2),(1,2) = 1. It follows from Lemma 2.2

(iii) that there exists a vertex z′′ ∈ P(1,2),(1,2)(y′
1, y1) \ {z′}. In view of Theorem 2.1

(i), we get z′′ ∈ �2,l(x). Since k2,l = 2, we obtain z′′ = z, a contradiction.

Case 2. p(3,l−1)
(2,l),(1,1) = 0.

We claim that any shortest path from z to x does not contain an edge. Suppose for the
contrary that hl−1 = 2. It follows from Steps 3, 4 and 6 that ∂(xl−1, z) = 3, contrary
to p(3,l−1)

(2,l),(1,1) = 0. Thus, the claim is valid. By Step 7, we have p(3,l−1)
(1,q−1),(2,l) �= 0 and

p(3,l−1)
(1,p−1),(2,l) �= 0. Pick a vertex yl−1 ∈ P(q−1,1),(3,l−1)(x, z). It follows that there exist

vertices x ′ ∈ P(1,p−1),(2,l)(yl−1, z) and y′′ ∈ P(1,p−1),(1,q−1)(x ′, z). By Lemma 2.2
(i), k2,l = 2. In view of Lemma 1.2 (i), one obtains k1,q−1 = 2 or k1,p−1 = 2.

Case 2.1. k1,q−1 = 2 and k1,p−1 = 2.
In viewof the claimandStep 1, there exists a vertex z1 such that ∂̃(z, z1) = (1, p−1)

and ∂(z1, yl−1) = l−2.ByTheorem2.1 (i), if y′ = y′′, then x, x ′ ∈ �l,2(z); if y′ �= y′′,
then y′, y′′ ∈ �l,2(z1). In view of Lemma 1.2 (i), we have A1,q−1A1,p−1 = 2A2,l ,
which implies ∂̃(x ′, y) = (1, q − 1). Thus, ∂̃(yl−1, y) = (2, l) and ∂̃(x, y) = (1, p−
1), a contradiction.

Case 2.2. k1,q−1 = 1 or k1,p−1 = 1.
Without loss of generality, we may assume k1,q−1 = 1. Then y′ = y′′ and

k1,p−1 = 2. It follows from Theorem 2.1 (i) that ∂̃(yl−1, y′) = (2, l). In view

of x ′ ∈ P(1,p−1),(1,p−1)(yl−1, y′), one gets p(2,l)
(1,p−1),(1,p−1) = 1 and there exists

a vertex y0 ∈ P(1,p−1),(1,p−1)(x, z). Since k2,l = 2, by Lemma 1.2 (i) and
Lemma 2.2 (ii), we have |(�1,p−1)

2| = 2. In view of Theorem 2.1 (i), we get

y0 ∈ �2,l(yl−1). Then ∂̃(x ′, y0) �= (1, p − 1). Since p(2,l)
(1,p−1),(1,p−1) = 1, we obtain

y ∈ P(1,p−1),(1,p−1)(x ′, z) and ∂̃(yl−1, y) �= (2, l). By ∂(yl−1, y) = 2 and Theo-
rem 2.1 (ii), (1, p−1) is pure, which implies l > p−2. Then ∂̃(yl−1, y) = (2, p−2),
contrary to x ∈ P(1,q−1),(1,q−1)(yl−1, y).

Thus, we finish the proof of Proposition 1.3 for the case B.

5 Subdigraphs

In this section, we focus on the existence of some special subdigraphs of commutative
quasi-thin weakly distance-regular digraphs.

Let F be a nonempty subset of R and x ∈ V�. Set F(x) := {y ∈ V� | (x, y) ∈
∪ f ∈F f }, and Fq1,q2,...,ql (x) is a collection of vertices y satisfying each arc in one of
the paths from x to y is of type (1, q1−1), (1, q2−1), . . . , (1, ql−1−1) or (1, ql −1).
If �ĩ∗� j̃ ⊆ F for any �ĩ , � j̃ ∈ F , we say that F is closed. Let 〈F〉 be the minimum
closed subset containing F . We write 〈�1,q−1〉 instead of 〈{�1,q−1}〉.
Proposition 5.1 If Cq,h exists, then �q,h � Cay(Zq × Z4, {(1, 0), (0, 1), (1, 2)}) for
q > 2 and q �= h.

Proof For fixed x ∈ V�, by Lemma 3.1, there exists an isomorphism τ from
Cay(Z2q , {1, q + 1}) to �q(x). Write τ(a) = (a, 0) for each a ∈ Z2q . Suppose
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that there exists a vertex (s, 0) ∈ �1,h−1(0, 0). From Lemma 2.4 (i), we have s = q.
Since (1, 0) ∈ P(1,q−1),(q−1,1)((0, 0), (q, 0)) , by Lemma 2.2 (iv), we get h = 2,
contrary to h ≥ 3. Hence, �1,h−1 /∈ 〈�1,q−1〉. In view of Lemma 3.1, one obtains
k1,h−1 = 1. Since Cq,h exists, V�q,h(x) has a partition Fq(x)∪̇Fq(x ′). It follows
that σ : Fq(x) → Fq(x ′), y �→ y′ is an isomorphism from �q(x) to �q(x ′),
where y′ ∈ �1,h−1(y). Write σ(a, 0) = (a, 1) for each a. Since Cq,h exists again,
((a, 1), (a + q, 0)) ∈ �1,h−1. The desired result holds. �
Proposition 5.2 Let q ≥ 3. If k1,q−1 = 2 and (1, q − 1) is pure, then �q �
Cay(Z2q , {1, q + 1}).
Proof Suppose not. By Lemma 2.4, there exists an isomorphism τ from Cay(Zq ×
Zq , {(1, 0), (0, 1)}) to �q .

By Lemma 3.1 and Proposition 1.3, C4, C5 or C6 holds, which implies that
K ⊆ {(1, 1), (1, q − 1), (1, q)}. If (1, q) ∈ ∂̃(�), then (1, q) is mixed, which implies
p(1,q−1)
(1,q),(1,q) �= 0 and k1,q = 2 by Lemma 1.2 (i), Lemma 2.2 (i) and Theorem 2.1 (ii).

Step 1 Show that �1,q−1�1,1 = {�2,q} if (1, 1) ∈ ∂̃(�).

Suppose p(1,1)
(1,q−1),(q−1,1) �= 0. Note that ∂̃�(τ (a, b), τ (a + 1, b − 1)) = (1, 1). By

Lemma 2.2 (i), k1,1 = 2. Observe that τ(1, 0) ∈ P(1,1),(1,q−1)(τ (0, 1), τ (2, 0)) and
(τ (0, 1), τ (2, 0)) /∈ �1,q−1 ∪ �1,1. In view of Theorem 2.1 (i) and Lemma 3.5 (i), we
get (τ (0, 1), τ (2, 0)) ∈ �2,q , contrary to the fact that (τ (2, 0), τ (3, 0), . . . , τ (0, 0),

τ (0, 1)) is a path of length q − 1. Thus, p(1,1)
(1,q−1),(q−1,1) = 0. It follows that

�1,q−1�1,1 = {�2,q}.
Step 2 Show that �1,q�1,1 = {�2,q+1} if (1, 1), (1, q) ∈ ∂̃(�).

Let x, y, z, w be vertices such that ∂̃(x, y) = (1, q), ∂̃(y, z) = (1, 1) and w ∈
P(q,1),(1,q−1)(x, y). By Step 1, ∂̃(w, z) = (2, q). Since k1,q−1 = 2, from Lemma 1.2
(i) and Lemma 2.2 (i), we obtain k2,q = 2. Suppose ∂(x, z) = 1. In view of Lemma 2.3
and Theorem 2.1 (i), one has ∂̃(x, z) = (1, q). Note that x ∈ P(1,q),(1,q)(w, z) and

p(1,q−1)
(1,q),(1,q) �= 0. By Lemma 2.2 (ii), we get (�1,q)

2 = {�1,q−1, �2,q}. Since k1,q = 2,

from Lemma 1.2 (i) and (v), we obtain p(1,q−1)
(1,q),(1,q) = 1. In view of Lemma 2.2 (iii), we

have p(2,q)

(1,q),(1,q) = 2, which implies k2,q = 1, a contradiction. Then ∂(x, z) = 2. Since

∂̃(w, z) = (2, q), by Lemma 2.2 (iv), we have ∂(z, x) �= q. In view of Lemma 2.5
(ii), ∂(z, x) = q + 1. Thus, �1,q�1,1 = {�2,q+1}.
Step 3 Show that (A1,q−1)

2 = A2,q−2 + 2A2,2q−2.

In view of Lemma 2.4 (ii) and Theorem 2.1 (ii), we have (A1,q−1)
2 = A2,q−2 +

p(2,t)
(1,q−1),(1,q−1)A2,t with t �= q−2. By Lemma 2.2 (iii), one gets p(2,t)

(1,q−1),(1,q−1) = 2,
which implies k2,t = 1 from Lemma 1.2 (i) and (v). Let x, y, y′, z be vertices such
that ∂̃(x, z) = (2, t) and P(1,q−1),(1,q−1)(x, z) = {y, y′}.

We claim that ∂(x, x1) = 3 for any path (z = x0, x1, . . . , xt = x). Assume the
contrary, namely ∂(x, x1) = 1 or 2.
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Case 1. ∂(x, x1) = 1.
Since x1 /∈ {y, y′}, we have ∂̃(x, x1) = (1, 1) or (1, q). If ∂̃(x, x1) = (1, 1), by

Step 1, then ∂̃(x1, y) = (2, q), contrary to q > 2; if ∂̃(x, x1) = (1, q), by p(1,q−1)
(1,q),(1,q) �=

0, then y or y′ ∈ �1,q(x1), which implies that (y, z, x1) or (y′, z, x1) is a circuit,
contrary to q > 2.

Case 2. ∂(x, x1) = 2.
Pick a vertex w ∈ P(1,h−1),(1,l−1)(x, x1). Suppose h = q. Then w ∈ {y, y′}. Since

(1, q − 1) is pure, ∂̃(w, x1) �= (1, 1). In view of Theorem 2.1 (i) and (ii), we have
∂̃(z, x1) = (1, 1), and y or y′ ∈ �q−1,1(x1), which imply p(1,q−1)

(1,q−1),(1,1) �= 0, contrary
to Step 1. Thus, h �= q and l �= q.

Suppose h = l = 2. Lemma 2.2 (i) implies k1,1 = 2. By Step 1, y, y′ ∈ �2,q(w).

It follows from Lemma 1.2 (i) that p(2,q)

(1,1),(1,q−1) = 2 and y, y′ ∈ �1,q−1(x1).

Since (1, q − 1) is pure, we get q = 3 and ∂̃(z, x1) = (1, 2). Observe that
y, y′ ∈ P(1,2),(1,2)(x1, z), contrary to p(2,1)

(1,2),(1,2) = 1.

Suppose h = q+1 or l = q+1. By p(1,q−1)
(1,q),(1,q) �= 0, wemay assume that h = q+1

and ∂̃(w, y) = (1, q). Since ∂(y, x1) ≤ 2, one gets l = q + 1 from Step 2. In view of
∂̃(x, x1) = (2, t − 1) and Lemma 2.2 (ii), one has (�1,q)

2 = {�1,q−1, �2,t−1}. Since
k1,q−1 = 2, by Lemma 1.2 (i) and (v), we obtain p(1,q−1)

(1,q),(1,q) = 1. By Lemma 2.2

(iii), we get p(2,t−1)
(1,q),(1,q) = 2, which implies k2,t−1 = 1. Since k1,q−1 = k1,q = 2

and k2,t = 1, from Lemma 1.2 (i), one has ∂̃(z, x1) = (1, 1). In view of Step 1,
∂̃(y, x1) = (2, q). Since w ∈ P(q,1),(1,q)(y, x1), from Lemma 2.2 (iv), we get q = 2,
a contradiction.

Thus, our claim is valid.
Suppose that the path (x0, x1, . . . , xt ) contains arcs of different types. Without loss

of generality, we may assume ∂̃(z, x1) = (1, u − 1) and ∂̃(x1, x2) = (1, v − 1) with
u �= v. Pick a vertex x ′

1 ∈ P(1,v−1),(1,u−1)(z, x2). By the claim, we get ∂̃(x, x1) =
∂̃(x, x ′

1) = (3, t − 1). It follows from Lemma 1.2 (iv) that k2,t ≥ 2, a contradiction.
Then the path (x0, x1, . . . , xt ) consists of arcs of the same type.

Suppose ∂̃(xi , xi+1) = (1, 1) for 0 ≤ i ≤ t − 1. By Lemma 2.3, t = 2. In view
of Step 1, we get ∂̃(y, x1) = (2, q). Since (x1, x2 = x, y) is a path, one has q ≤ 2, a
contradiction.

Suppose ∂̃(xi , xi+1) = (1, q) for 0 ≤ i ≤ t − 1. Then ∂(z, x2) = 2. In view of
p(1,q−1)
(1,q),(1,q) �= 0 and Lemma 2.5 (i), we have ∂(x2, z) > q − 1, which implies t ≥ 3.

Since k1,q−1 = 2 and |(�1,q)
2| = 2 from Lemma 2.2 (ii), one gets p(1,q−1)

(1,q),(1,q) = 1
by Lemma 1.2 (i) and (v). In view of Lemma 2.2 (iii), there exists a vertex x ′′

1 ∈
P(1,q),(1,q)(z, x2) such that ∂̃(x ′′

1 , x3) = (1, q − 1), a contradiction.
Hence, ∂̃(xi , xi+1) = (1, q − 1) for 0 ≤ i ≤ t − 1. Since �q � Cay(Zq ×

Zq , {(1, 0), (0, 1)}), we have t = 2q − 2.
In the following, we reach a contradiction based on the above discussion.
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Suppose q > 3. Note that ∂̃�(τ (a, b), τ (a + 1, b + 1)) = (2, 2q − 2). Since

(τ (1, 1), τ (2, 1), τ (3, 1), . . . , τ (−1, 1), τ (0, 1), τ (0, 2), . . . , τ (0, 0)),

(τ (1, 1), τ (2, 1), τ (2, 2), . . . , τ (2,−1), τ (2, 0), τ (3, 0), . . . , τ (0, 0))

are two shortest paths, we get τ(3, 1), τ (2, 2) ∈ �4,2q−4(τ (0, 0)). But τ(1, 1) ∈
P(2,2q−2),(2,q−2)(τ (0, 0), τ (3, 1)) and P(2,2q−2),(2,q−2)(τ (0, 0), τ (2, 2)) = ∅, a con-
tradiction. In the following, we consider q = 3.

Case 1. (1, 1) ∈ ∂̃(�).
ByStep 3 andLemma1.2 (i), we have k2,4 = 1. FromStep 2, one gets (1, 3) /∈ ∂̃(�).

Since the valency of� ismore than 3, byLemma2.2 (i), one has k1,1 = 2. Let x, y, z, z′
be distinct vertices such that ∂̃(x, y) = (1, 2) and ∂̃(y, z) = ∂̃(y, z′) = (1, 1). By
Step 1, we obtain z, z′ ∈ �2,3(x). In view of Lemma 1.2 (i), one has p(2,3)

(1,2),(1,1) = 2,

which implies that there exists a vertex y′ such that ∂̃(x, y′) = (1, 2) and ∂̃(y′, z) =
∂̃(y′, z′) = (1, 1) with y′ �= y. Hence, (y, z, y′, z′) is an undirected circuit of length
4. By Lemma 2.3, we get ∂̃(y, y′) = (2, 2) and p(2,2)

(1,1),(1,1) = 2. From Lemma 1.2 (i)

and (v), k2,2 = 1. Since x ∈ P(2,1),(1,2)(y, y′), we have p(2,2)
(2,1),(1,2) = 2, contrary to

�3 � Cay(Z3 × Z3, {(1, 0), (0, 1)}).
Case 2. (1, 1) /∈ ∂̃(�).

Note that (1, 3) ∈ ∂̃(�). Pick a vertex w ∈ P(1,3),(1,3)(τ (0, 0), τ (0, 1)). By
Lemma 2.2 (ii), we have |(�1,3)

2| = 1 or 2.

Case 2.1. |(�1,3)
2| = 1.

Since k1,2 = 2, by Lemma 1.2 (i), we have p(1,2)
(1,3),(1,3) = 2 and ∂̃�(w, τ(1, 0)) =

(1, 3). Pick a vertex x ′ ∈ P(1,3),(1,3)(τ (0, 0), τ (1, 0)) with x ′ �= w. Observe
x ′ ∈ P(1,3),(1,3)(τ (0, 0), τ (0, 1)). Since w, x ′ ∈ P(3,1),(1,3)(τ (0, 1), τ (1, 0)), from
Lemma 1.2 (i) and (v), we obtain k

∂̃�(τ (0,1),τ (1,0)) = 1 and |P(1,2),(2,1)(τ (0, 1),
τ (1, 0))| = 2, contrary to �3 � Cay(Z3 × Z3, {(1, 0), (0, 1)}).
Case 2.2. |(�1,3)

2| = 2.
Since |(�1,3)

2| = 2, (w, τ(1, 0)) /∈ �1,3. It follows that P(1,2),(1,3)(w, τ(1, 1)) =
{τ(0, 1)}. By Lemma 1.2 (i) and Lemma 2.2 (i),(ii), we have |�1,2�1,3| = 2. In view
of Theorem 2.1 (i), one obtains ∂̃�(w, τ(0, 2)) = (2, 2) and ∂�(w, τ(1, 1)) = 2. By
Step 3, we get p(2,4)

(1,2),(1,2) = 2. Hence, ∂�(τ(1, 1), w) = 3 or 5.

Case 2.2.1. ∂�(τ(1, 1), w) = 3.
Pick a path (τ (1, 1), z1, z2, w). Suppose that (z2, w) ∈ �1,3. The fact that

∂�(τ(1, 1), τ (0, 0)) = 4 implies z2 �= τ(0, 0). Since |(�1,3)
2| = 2, from Theo-

rem 2.1 (iii) and Lemma 2.5 (i), we get (z2, τ (0, 1)) ∈ �2,3, which implies (�1,3)
2 =

{�1,2, �2,3}. Since k1,2 = 2, by Lemma 1.2 (i) and (v), we obtain p(1,2)
(1,3),(1,3) = 1. In

view of Lemma 2.2 (iii), one has p(2,3)
(1,3),(1,3) = 2 and ∂̃�(τ (0, 1), τ (1, 1)) = (1, 3), a

contradiction.
Observe that the path (τ (1, 1), z1, z2, w) consists of arcs of type (1, 2). Since

(τ (0, 1), τ (1, 2)), (τ (1, 1), τ (2, 2)) ∈ �2,4, we have z1 = τ(2, 1) and z2 = τ(0, 1),
a contradiction.
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Case 2.2.2. ∂�(τ(1, 1), w) = 5.
By ∂̃�(w, τ(0, 2)) = (2, 2) and Lemma 2.2 (ii), �1,2�1,3 = {�2,2, �2,5}. Then

τ(2, 0) ∈ P(2,1),(2,5)(τ (0, 0), w). Since (τ (1, 1), τ (1, 2), τ (2, 2), τ (2, 0), τ (0, 0), w)

and (τ (1, 1), τ (2, 1), τ (2, 2), τ (2, 0), τ (0, 0), w) are two shortest paths, ∂̃�(w,

τ(1, 2)) = ∂̃�(w, τ(2, 1)) = (3, 4). It follows from Step 3 and Lemma 1.2 (i) that
k2,4 = 1. Since τ(0, 1) ∈ P(1,3),(2,4)(w, τ(1, 2)), we obtain (w, τ(1, 0)) ∈ �1,3,
contrary to |(�1,3)

2| = 2.
This completes the proof of the proposition. �

Proposition 5.3 Let q > 2, k1,q−1 = 2 and (1, q − 1) be pure. The following hold:

(i) If (1, q) is mixed, then �q,q+1 � Cay(Z4q , {1, 2, 2q + 1, 2q + 2}).
(ii) If k1,1 = 2, then �2,q � Cay(Zq × Z4, {(1, 0), (1, 2), (0, 1), (0, 3)}) for q �= 4.

Proof Assume that l = q + 1 and (1, q) is mixed, or l = 2 and k1,1 = 2. In
view of Theorem 2.1 (ii), Lemma 1.2 (i) and Lemma 2.2 (i), we have k1,l−1 = 2.
By Proposition 5.2, there exists an isomorphism τ from Cay(Z2q , {1, q + 1}) to
�q(x) for fixed x ∈ V�. Write τ(a) = (a, 0) for any a. Suppose that there
exists a vertex (s, 0) ∈ �1,l−1(0, 0). By Lemma 2.4 (i), we have s = q. Since
(1, 0), (q + 1, 0) ∈ P(1,q−1),(q−1,1)((0, 0), (q, 0)), from Lemma 2.2 (iv), one gets
l = 2. In view of Lemma 1.2 (i) and (v), we obtain k1,1 = 1, a contradiction. Hence,
�1,l−1 /∈ 〈�1,q−1〉.

If l = q + 1, by Lemma 3.6 (ii), then (A1,q)
2 = 2A1,q−1; if l = 2, by Lemma 3.6

(i) and Lemma 1.2 (i), then A1,q−1A1,1 = 2A2,q . Then V�l,q(x) has a partition
Fq(x)∪̇Fq(x ′). Let σ be an isomorphism from �q(x) to �q(x ′) such that σ(0, 0) ∈
�1,l−1(0, 0). Write σ(a, 0) = (a, 1) for each a. Suppose l = q + 1. Since (A1,q)

2 =
2A1,q−1, we have (a, 1), (a + q, 1) ∈ �1,q(a, 0) and (a + 1, 0), (a + q + 1, 0) ∈
�1,q(a, 1), which imply that (i) holds. Suppose l = 2. Since A1,q−1A1,1 = 2A2,q , one
gets (a, 1), (a+q, 1) ∈ �1,1(a, 0). Ifq = 4, byLemma2.3, then (4, 0), (2, 0), (6, 0) ∈
�2,2(0, 0) since (1, 3) is pure, contrary to Lemma 2.2 (i). Thus, (ii) holds. �
Proposition 5.4 Suppose that C6 holds. If k1,1 = 2 and k1,q−1 = 1, then �1,q /∈
〈{�1,1, �1,q−1}〉 and �2,q � Cay(Zq × Zn, {(1, 0), (0, 1), (0,−1)} with n ≤ q −
(1 + (−1)q)/2.

Proof Since (1, q) is mixed, from Theorem 2.1 (ii), (1, q −1) is pure. By Lemma 2.3,
we get �1,q−1 /∈ 〈�1,1〉. For fixed x0 ∈ V�, V�2,q(x0) has a partition ∪̇m−1

i=0 F2(xi )
with m > 1. Let τ be an isomorphism from Cay(Zn, {1, n − 1}) to �2(x0). Write
τ(a) = (0, a) for eacha. Since k1,q−1 = 1,σ j : F2(x j ) → F2(x j+1), y j �→ y j+1 is an
isomorphism from�2(x j ) to�2(x j+1), where y j+1 ∈ �1,q−1(y j ) for 0 ≤ j ≤ m−2.
Write σ j ( j, a) = ( j + 1, a).

Assume that (s, t) ∈ �1,q−1(m−1, 0). Since k1,q−1 = 1, we have s = 0. It follows
from Lemma 1.2 (i) and Lemma 2.3 that t = 0, or 2 | n and t = n/2.

Suppose 2 | n and t = n/2. Since (1, q − 1) is pure and k1,q−1 = 1, from
Lemma 1.2 (i), we get ∂̃�((0, 0), (0, n/2)) = (m, q−m), which implies q = 2m from
Lemma 2.3. Hence, q ≤ n and (0, 0) ∈ �1,q−1(m − 1, n/2). Since {i | (1, i − 1) ∈
∂̃(�)} = {2, q, q + 1}, one has (0,m), (0,−m) ∈ �m,m(0, 0). Since km,m ≤ 2 by
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Lemma 2.2 (i), we obtain m = n/2 and n = q. Hence, ((0, 0), (1, 0), . . . , (m −
1, 0), (0, n/2), (0, n/2 − 1), . . . , (0, 1)) is a circuit of length q containing arcs of
types (1, 1) and (1, q − 1), contrary to the fact that (1, q − 1) is pure. Then t = 0 and
m = q. Since (1, q −1) is pure and k1,q−1 = 1, one has ((m−1, a), (0, a)) ∈ �1,q−1
for each a. Thus, �2,q � Cay(Zq × Zn, {(1, 0), (0, 1), (0,−1)}.

Since (1, q) is mixed, we have p(1,q−1)
(1,q),(1,q) = k1,q from Theorem 2.1 (ii) and

Lemma 1.2 (ii). We prove n ≤ q − (1 + (−1)q)/2 by the way of contradiction.
Assume that n > q − (1 + (−1)q)/2. Suppose that q is even. Since (1, q − 1) is
pure and k1,q−1 = 1, by Lemma 1.2 (i), we get ∂̃�((0, 0), (q/2, 0)) = (q/2, q/2)
and kq/2,q/2 = 1. Observe ∂̃�((0, 0), (0, q/2)) = (q/2, q/2), a contradiction. Sup-
pose that q is odd. Pick a vertex x ∈ P(1,q),(1,q)(((q − 1)/2, 0), ((q + 1)/2, 0)).
Note that x, (0, (q + 1)/2) ∈ �(q+1)/2,(q+1)/2(0, 0). Since (x, ((q + 1)/2, 0), ((q +
3)/2, 0), . . . , (0, 0)) is a path containing arcs of types (1, q − 1) and (1, q), there
exists a path ((0, (q +1)/2) = x0, x1, . . . , x(q+1)/2 = (0, 0)) containing arcs of types
(1, q − 1) and (1, q). Then ((0, 0), (0, 1), . . . , (0, (q + 1)/2) = x0, x1, . . . , x(q−1)/2)

is a circuit of length q+1 containing arcs of types (1, 1), (1, q−1) and (1, q), contrary
to Lemma 2.5 (ii).

Suppose that (h, l) ∈ �1,q(0, 0) for some h ∈ {0, 1, . . . , q − 1} and l ∈ Zn . By
Lemma 2.3, h �= 0. Without loss of generality, we may assume 2l̂ ≤ n. The fact
that p(1,q−1)

(1,q),(1,q) = k1,q implies ∂̃�((h, l), (1, 0)) = (1, q). Since ((0, 0), (h, l), (h +
1, l), . . . , (0, l), (0, l − 1), . . . , (0, 1)) and ((1, 0), (2, 0), . . . , (h, 0), (h, 1), . . . ,
(h, l)) are two circuits, one has q − h + l̂ + 1 ≥ q + 1 and h + l̂ ≥ q + 1. Hence,
q + 1 ≤ 2l̂ ≤ n, contrary to n ≤ q − (1+ (−1)q)/2. Thus, �1,q /∈ 〈{�1,1, �1,q−1}〉. �

6 Proof of Theorem 1.1

For any nonempty subset F of R with F = 〈F〉, let

V�/F := {F(x) | x ∈ V�} and �F
ĩ

:= {(F(x), F(y)) | y ∈ F�ĩ F(x)}.

The digraph (V�/F, ∪
(1,s)∈∂̃(�)

�F
1,s) is said to be the quotient digraph of � over F ,

denoted by �/F .
In the following,we divide the proof of Theorem1.1 into four subsections according

to separate assumptions based on Proposition 1.3.

6.1 The cases C1, C2 and C3

By Lemma 3.1, k1,q−1 = 2. If (1, 1) ∈ ∂̃(�), by Lemma 3.7 (i), then k1,1 = 1; if

(1, q) ∈ ∂̃(�), then (1, q) is mixed, which imply p(1,q−1)
(1,q),(1,q) �= 0 and k1,q = 2 from

Theorem 2.1 (ii) and Lemma 3.1.

Case 1. (1, q) /∈ ∂̃(�).
Note that C1 holds. Since Cq,3 exists, from Lemma 3.2, (1, 2) is mixed. By

Lemma 3.1, we have k1,2 = 1, which implies p(1,1)
(1,2),(1,2) = 1 from Theorem 2.1
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(ii). In view of Proposition 5.1, � is isomorphic to one of the digraphs in Theorem 1.1
(iv) for i = 0.

Case 2. (1, q) ∈ ∂̃(�).
Note that C2 or C3 holds. Assume that h = 4 or 3. Since Cq,h exists, by Propo-

sition 5.1, there exists an isomorphism τ from Cay(Zq × Z4, {(1, 0), (0, 1), (1, 2)})
to �q,h(x) for fixed x ∈ V�. Write τ(a, b) = (a, b, 0) for each (a, b). Suppose that

there exists (c, d, 0) such that ∂̃�((0, 0, 0), (c, d, 0)) = (1, q). Since p(1,q−1)
(1,q),(1,q) �= 0

and (1, q − 1) is pure from Lemma 3.1, we get d ∈ {1, 3} and c �= 0. Observe
that ((0, 0, 0), (c, d, 0), (c+ 1, 3, 0), (c+ 2, 3, 0), . . . , (0, 3, 0)) is a circuit of length
q − ĉ + 2 containing arcs of types (1, q) and (1, h − 1), contrary to Lemma 2.5 (ii).
Hence, �1,q /∈ 〈{�1,q−1, �1,h−1}〉.

By Lemma 3.1 and Lemma 3.6 (ii), we have (A1,q)
2 = 2A1,q−1, which implies

that V�q,q+1,h has a partition Fq,h(x)∪̇Fq,h(x ′). Let σ be an isomorphism from
�q,h(x) to �q,h(x ′) such that σ(0, 0, 0) ∈ �1,q(0, 0, 0). Write σ(a, b, 0) = (a, b, 1)
for each (a, b). Since (0, 0, 1) ∈ P(1,q),(1,h−1)((0, 0, 0), (0, 1, 1)) and k1,h−1 = 1,
we get (0, 1, 1) ∈ �1,q(0, 1, 0). Similarly, (0, b, 1) ∈ �1,q(0, b, 0) for each b. The
fact that (A1,q)

2 = 2A1,q−1 implies that (a, b, 1), (a, b + 2, 1) ∈ �1,q(a, b, 0) and
(a + 1, b, 0), (a + 1, b + 2, 0) ∈ �1,q(a, b, 1) for each (a, b). Thus, �q,q+1,h �
Cay(Z2q × Z4, {(2, 0), (2, 2), (1, 0), (1, 2), (0, 1)}).

If C2 holds, then � is isomorphic to one of the digraphs in Theorem 1.1 (vii) for
i = 1. Suppose that C3 holds. Since Cq,3 exists, from Lemma 3.2, (1, 2) is mixed. By

Lemma 3.1, we have k1,2 = 1, which implies p(1,1)
(1,2),(1,2) = 1 from Theorem 2.1 (ii).

Hence, � is isomorphic to one of the digraphs in Theorem 1.1 (vii) for i = 0.
We complete the proof of the main theorem for the cases C1, C2 and C3.

6.2 The case C4

Since the valency of� is more than 3, fromLemma 2.2 (i), we have k1,1 = k1,q−1 = 2.
By Proposition 5.3 (ii), � is isomorphic to one of the digraphs in Theorem (iv) for
i = 1. We complete the proof of the main theorem for the case C4.

6.3 The case C5

Since the valency of � is more than 3, from Lemma 2.2 (i), we have k1,q−1 = k1,q =
2. Note that (1, q) is mixed. By Theorem 2.1, (1, q − 1) is pure. If q > 2, from
Proposition 5.3 (i), then � � Cay(Z4q , {1, 2, 2q + 1, 2q + 2}). We consider q = 2 in
the following.

By Theorem 2.1 (ii), p(1,1)
(1,2),(1,2) �= 0. It follows from Lemma 2.3 that �1,2 /∈

〈�1,1〉. Suppose ∂̃(x0, x1) = (1, 2) for x0, x1 ∈ V�. Then ∂(F2(x0), F2(x1)) = 1
in �/〈�1,1〉. Since p(1,1)

(1,2),(1,2) �= 0, we get �1,1(x0) ∩ �1,2(x1) �= ∅, which implies
∂(F2(x1), F2(x0)) = 1.Hence,�/〈�1,1〉 is a connected undirected graph. By k1,2 = 2,
�/〈�1,1〉 � Cl .

Let (F2(x0), F2(x1), . . . , F2(xl−1)) be an undirected circuit. Suppose l �= 2. With-
out loss of generality, we may assume that (x0, x1), (x1, x2), (x3, x2) ∈ �1,2. Then
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x1 �= x3. In view of ∂̃(x0, x2) �= (1, 1) and Lemma 2.2 (ii), one gets |(�1,2)
2| = 2.

Since k1,1 = 2, by Lemma 1.2 (i) and (v), we have p(1,1)
(1,2),(1,2) = 1, which implies

x3 ∈ P(1,2),(1,2)(x0, x2) from Lemma 2.2 (iii). Hence, ∂(F2(x0), F2(x3)) = 1 and
l = 4. Thus, l = 2 or 4.

Case 1. �/〈�1,1〉 � C2.
Note thatV� = F2(x0)∪̇F2(x1). Let τi be an isomorphism fromCay(Zn, {1, n−1})

to �2(xi ). Write τi (a) = (a, i) for each a. Without loss of generality, we may assume
∂̃�((0, 0), (0, 1)) = (1, 2). By Lemma 2.2 (ii), we get |(�1,2)

2| = 1 or 2.

Case 1.1. (�1,2)
2 = {�1,1}.

By Lemma 1.2 (i), one has p(1,1)
(1,2),(1,2) = 2, which implies (1, 0), (−1, 0) ∈

�1,2(0, 1). It follows from Lemma 2.3 that ∂̃�((1, 0), (−1, 0)) = (2, 2). In view
of Lemma 1.2 (ii) and (vi), we get p(1,1)

(1,2),(1,2) p
(1,2)
(2,1),(1,1) = 2 + p(2,2)

(2,1),(1,2) = 4. By
Lemma 1.2 (i) and (v), we obtain k2,2 = 1. It follows from Lemma 2.3 that n = 4 and
|V�| = 8. Since (�1,2)

2 = {�1,1}, by [3], we obtain � � Cay(Z8, {1, 2, 5, 6}).
Case 1.2. |(�1,2)

2| = 2.
Assume that ((0, 1), (t, 0)) ∈ �1,2 and ((0, 0), (t, 0)) /∈ �1,1. By Theorem 2.1 (iii)

and Lemma 2.3, we have ∂̃�((0, 0), (t, 0)) = (2, 2). Hence, n > 3. Since k1,1 = 2,
we get p(1,1)

(1,2),(1,2) = 1 from Lemma 1.2 (i) and (v). In view of Lemma 2.2 (iii),

we obtain p(2,2)
(1,2),(1,2) = 2 and k2,2 = 1. By Lemma 2.3, one has (2, 0), (−2, 0) ∈

�2,2(0, 0), which implies n = 4 and |V�| = 8. Since |(�1,2)
2| = 2, from [3],

� � Cay(Z8, {1, 2, 3, 6}).
Case 2. �/〈�1,1〉 � C4.

Note that V� = F2(x0)∪̇F2(x1)∪̇F2(x2)∪̇F2(x3). Let σi be an isomorphism from
Cay(Zn, {1, n − 1}) to �2(xi ) for each i . Write τi (a) = (a, i) for any a. Without loss
of generality, we may assume ∂̃�((0, j), (0, j + 1)) = (1, 2) for j = 0, 1, 2.

Since (0, j + 1) ∈ P(1,2),(1,1)((0, j), (1, j + 1)), we have (1, j) or (−1, j) ∈
�1,2(1, j+1). Without loss of generality, wemay assume that ∂̃�((1, j), (1, j+1)) =
(1, 2). Since (1, j + 1) ∈ P(1,2),(1,1)((1, j), (2, j + 1)) and �/〈�1,1〉 � C4, one gets
∂̃�((2, j), (2, j + 1)) = (1, 2). Similarly, ∂̃�((a, j), (a, j + 1)) = (1, 2) for each
a ∈ Zn and j ∈ {0, 1, 2}.

By p(1,1)
(1,2),(1,2) �= 0, we may assume ∂̃�((0, 1), (1, 0)) = (1, 2). Since (1, 0) ∈

P(1,2),(1,1)((0, 1), (2, 0)), we get (1, 1) or (−1, 1) ∈ �2,1(2, 0).

Case 2.1. ∂̃�((1, 1), (2, 0)) = (1, 2).
Since (2, 0) ∈ P(1,2),(1,1)((1, 1), (3, 0)) and �/〈�1,1〉 � C4, ∂̃�((2, 1), (3, 0)) =

(1, 2). Similarly, ∂̃�((a, 1), (a + 1, 0)) = (1, 2) for each a ∈ Zn . The fact that
p(1,1)
(1,2),(1,2) �= 0 and �/〈�1,1〉 � C4 imply that (0, 2) ∈ P(1,2),(1,2)((0, 1), (−1, 1)).

Hence, ((0, 0), (0, 1), (0, 2), (−1, 1)) is a circuit consisting of arcs of type (1, 2).
In view of Theorem 2.1 (iii), one gets ∂̃�((0, 0), (0, 2)) = (2, 2), which implies
(�1,2)

2 = {�1,1, �2,2} by Lemma 2.2 (ii). Since k1,1 = 2, from Lemma 1.2 (i) and
(v), we obtain p(1,1)

(1,2),(1,2) = 1. In view of Lemma 2.2 (iii), one has p(2,2)
(1,2),(1,2) = 1 and
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k2,2 = 1. By Lemma 2.3, we get ∂̃�((0, 0), (2, 0)) = (1, 1). Since �/〈�1,1〉 � C4,
from Theorem 2.1 (i), one obtains ∂̃�((0, 0), (1, 1)) = (2, 2), a contradiction.

Case 2.2. ∂̃�((−1, 1), (2, 0)) = (1, 2).
Since p(1,1)

(1,2),(1,2) �= 0 and ((−1, 0), (−1, 2)) /∈ �1,1, we have ∂̃�((−1, 0), (2, 0)) =
(1, 1),n = 4and |V�| = 16.By [3],� � Cay(Z4 ×Z4, {(0, 1), (1, 0), (2, 0), (0, 2)}).

We complete the proof of the main theorem for the case C5.

6.4 The case C6

By Theorem 2.1 (ii), p(1,q−1)
(1,q),(1,q) �= 0 and (1, q − 1) is pure. In view of Lemma 2.2 (i),

we have k1,1, k1,q−1, k1,q ∈ {1, 2}.
Case 1. k1,q−1 = 1.

By Lemma 1.2 (ii), we have p(1,q−1)
(1,q),(1,q) = k1,q .

Case 1.1. k1,q = 1.
Since the valency of � is more than 3, one has k1,1 = 2. In view of Propo-

sition 5.4 and p(1,q−1)
(1,q),(1,q) = 1, V� has a partition F2,q(x0)∪̇F2,q(x1) and there

exists an isomorphism τ from Cay(Zq × Zn, {(1, 0), (0, 1), (0,−1)} to �2,q(x0) for
n ≤ q − (1 + (−1)q)/2. Write τ(a, b) = (a, b, 0) for each (a, b). Since k1,q = 1,
σ : F2,q(x0) → F2,q(x1), x �→ x ′ is an isomorphism from �2,q(x0) to �2,q(x1),
where x ′ ∈ �1,q(x). Write σ(a, b, 0) = (a, b, 1) for each (a, b). The fact that

p(1,q−1)
(1,q),(1,q) = 1 implies ∂̃�((a, b, 1), (a + 1, b, 0)) = (1, q). Thus, � is isomorphic to

one of the digraphs in Theorem 1.1 (viii).

Case 1.2. k1,q = 2.

We claim that p(1,1)
(1,q),(q,1) �= 0. Let x, y, z be vertices such that ∂̃(x, y) = (1, 1) and

∂̃(y, z) = (1, q−1). Since k1,q−1 = 1, by Lemma 2.3, Theorem2.1 (i) and Lemma 3.5
(i), one gets ∂̃(x, z) = (2, q). It follows from Lemma 1.2 (i) and Lemma 2.2 (ii) that
|(�1,q)

2| = 2. In view of Lemma 2.5 (iii), one gets p(2,q)

(1,q),(1,q) �= 0, which implies

that there exists a vertex y′ ∈ P(1,q),(1,q)(x, z). Since p(1,q−1)
(1,q),(1,q) = 2, we obtain

∂̃(y, y′) = (1, q). Thus, our claim is valid.

Case 1.2.1. k1,1 = 1.
Since k1,q−1 = 1, we have �1,1 /∈ 〈�1,q−1〉. Let ϕ be an isomorphism from

Cay(Zq , {1}) to �q(x0) for fixed x0 ∈ V�. Write ϕ(a) = (a, 0, 0) for any
a ∈ Zq . Since k1,1 = 1, V�2,q(x0) has a partition Fq(x0)∪̇Fq(x1). It follows that
σ : Fq(x0) → Fq(x1), x �→ x ′ is an isomorphism from �q(x0) to �q(x1), where
x ′ ∈ �1,1(x). Write σ(a, 0, 0) = (a, 1, 0) for each a.

Suppose that there exists (c, d, 0) such that ∂̃�((0, 0, 0), (c, d, 0)) = (1, q). The
fact that (1, q − 1) is pure and k1,q−1 = 1 imply d = 1 and c �= 0. Since k1,1 = 1,

by the claim and Lemma 1.2 (v), we get p(1,1)
(1,q),(q,1) = 2, which implies (c, 1, 0) ∈

P(1,q),(q,1)((0, 0, 0), (0, 1, 0)). Then ((0, 1, 0), (c, 1, 0), (c+1, 1, 0), . . . , (−1, 1, 0))
is a circuit of length q − ĉ + 1, a contradiction. Hence, �1,q /∈ 〈{�1,1, �1,q−1}〉.
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Since p(1,q−1)
(1,q),(1,q) = 2, V� has a partition F2,q(x0)∪̇F2,q(x ′

0). Let ψ be an iso-
morphism from �2,q(x0) to �2,q(x ′

0) such that ψ(0, 0, 0) ∈ �1,q(0, 0, 0). Write

ψ(a, b, 0) = (a, b, 1) for each a ∈ Zq and b ∈ {0, 1}. Since p(1,q−1)
(1,q),(1,q) =

p(1,1)
(1,q),(q,1) = 2, we obtain (a, 0, 1), (a, 1, 1) ∈ �1,q(a, b, 0) and (a + 1, 0, 0), (a +

1, 1, 0) ∈ �1,q(a, b, 1). Then � is isomorphic to one of the digraphs in Theorem 1.1
(v).

Case 1.2.1. k1,1 = 2.

Since p(1,q−1)
(1,q),(1,q) = 2, from Proposition 5.4, V� has a partition F2,q(x0)∪̇F2,q(x1)

and there exists an isomorphism τi from Cay(Zq × Zn, {(1, 0), (0, 1), (0,−1)}) to
�2,q(xi ) for i = 0, 1, where n ≤ q − (1 + (−1)q)/2. Write τi (a, b) = (a, b, i) for
each (a, b) ∈ Zq × Zn .

By the claim, we have p(1,1)
(1,q),(q,1) �= 0. Without loss of generality, we may assume

(0, 0, 1), (0,−1, 1) ∈ �1,q(0, 0, 0). In view of (0,−1, 1) ∈ P(1,q),(1,1)((0, 0, 0),
(0, 0, 1)), we may assume (0, 0, 1) ∈ �1,q(0, 1, 0). Since (0, 0, 0) /∈ P(q,1),(1,q)

((0, 0, 1), (0, 1, 1)) and p(1,1)
(1,q),(q,1) �= 0, we get ((0, 1, 0), (0, 1, 1)) ∈ �1,q . Similarly,

(0, b, 1), (0, b−1, 1) ∈ �1,q(0, b, 0) for each b. In view of p(1,q−1)
(1,q),(1,q) = 2. we obtain

(a, b, 1), (a, b−1, 1) ∈ �1,q(a, b, 0) and (a+1, b, 0), (a+1, b+1, 0) ∈ �1,q(a, b, 1)
for any (a, b) ∈ Zq × Zn .

Suppose that c = n/gcd(q, n) and c is odd. Let ϕ be the mapping from � to the
corresponding digraph in Theorem 1.1 (ix) satisfying ϕ(a, b, i) = (2â + i, (2âc +
ic + i)/2 + b̂). Routinely, ϕ is an isomorphism.

Suppose that t = q/gcd(q, n) and t is odd. Let ψ be the mapping from � to the
corresponding digraph in Theorem 1.1 (x) such that ψ(a, b, i) = (2b̂ + i, â + b̂t +
i(1 + t)/2). Note that ψ is well defined. Assume that ψ(a, b, i) = ψ(x, y, j) for
some (a, b, i) and (x, y, j). Since 2b̂ + i ≡ 2 ŷ + j (mod 2n), we have i = j and
b = y. By â + b̂t + i(1 + t)/2 ≡ x̂ + ŷt + j(1 + t)/2 (mod q), one gets a = x .
Therefore, ψ is a bijection. One can verify that ((x1, y1, i1), (x2, y2, i2)) is an arc if
and only if (ψ(x1, y1, i1), ψ(x2, y2, i2)) is an arc. Hence, ψ is an isomorphism.

Case 2. k1,q−1 = 2.
If �1,1 ∈ �1,q−1�q−1,1, by Proposition 5.3 (i), then � � Cay(Z4q , {1, 2, 2q, 2q +

1, 2q+2}) for q ≥ 3. In the following, we consider the case that�1,1 /∈ �1,q−1�q−1,1.
By Proposition 5.3 (i), there exists an isomorphism τ from Cay(Z4q , {1, 2, 2q +

1, 2q + 2}) to �q,q+1(x) for fixed x ∈ V�. Write τ(a) = (a, 0) for each a ∈ Z4q .

Observe that ∂�((0, 0), (b, 0)) + ∂�((b, 0), (0, 0)) = q + (1 + (−1)b̂+1)/2 for b /∈
{0, 2q}. Since �1,1 /∈ �1,q−1�q−1,1, we have �1,1 /∈ 〈{�1,q−1, �1,q}〉.
Case 2.1. k1,1 = 1.

Observe that V� has a partition Fq,q+1(x)∪̇Fq,q+1(x ′). Note that σ : Fq,q+1(x) →
Fq,q+1(x ′), y �→ y′ is an isomorphism from �q,q+1(x) to �q,q+1(x ′), where
y′ ∈ �1,1(y). Write σ(a, 0) = (a, 1) for each a. If q = 3, then (6, 0), (3, 1), (9, 1) ∈
�3,3(0, 0), a contradiction. Hence, � is isomorphic to one of the digraphs in Theo-
rem 1.1 (vi) for i = 0.
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Case 2.2. k1,1 = 2.
By Proposition 5.2 and Lemma 3.6 (i), (iv), one gets A1,q−1A1,1 = 2A2,q and

A1,q A1,1 = 2A2,q+1. Hence, V� has a partition Fq,q+1(x)∪̇Fq,q+1(x ′). Let ϕ be
an isomorphism from �q,q+1(x) to �q,q+1(x ′) such that ϕ(0, 0) ∈ �1,1(0, 0). Write
ϕ(a, 0) = (a, 1) for each a. Since A1,q−1A1,1 = 2A2,q and A1,q A1,1 = 2A2,q+1,
we have (a, 1), (a + 2q, 1) ∈ �1,1(a, 0) for each a. If 2 < q < 5, then
(2q, 0), (q, 0), (3q, 0) ∈ �2,2(0, 0), contrary to Lemma 2.2 (i). Therefore, � is iso-
morphic to one of the digraphs in Theorem 1.1 (vi) for i = 1.

We complete the proof of the main theorem for the case C6.
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