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Abstract

A weakly distance-regular digraph is quasi-thin if the maximum value of its inter-
section numbers is 2. In this paper, we focus on commutative quasi-thin weakly
distance-regular digraphs, and classify such digraphs with valency more than 3. As a
result, this family of digraphs is completely determined.
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1 Introduction

Throughout this paper, I' always denotes a finite simple digraph. We write VI" and
AT for the vertex set and arc set of I', respectively. A path of length r from x to y
is a sequence of vertices (x = wo, Wi, ..., w, = y) such that (w;_1, w;) € AT for
t =1,2,...,r. A digraph is said to be strongly connected if, for any two distinct
vertices x and y, there is a path from x to y. The length of a shortest path from x
to y is called the distance from x to y in I', denoted by dr(x, y). Let ar(x,y) =

(0r(x,y),or(y,x)) and () = {or(x, y) | x,y € VI'}. We call ar (x, y) the two-
way distance from x to y in . If no confusion occurs, we write 3 (x, y) (resp. d(x, y))
instead of dr (x, y) (resp. 5r(x, ¥)). An arc (u, v) of I is of type (1, r) if 0(v,u) =r.
A path (wo, wy, ..., wy_1) is said to be a circuit of length r if d(w;_1, wo) = 1. A
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circuit is undirected if each of its arcs is of type (1, 1). Let C, denote the undirected
circuit of length r.

A strongly connected digraph I is said to be weakly distance-regular if, for any h,
i, ] € d(I), the cardinality of the set

P:i(x,y)i={z € VT | d(x,z) =iand d(z, y) = j}

is constant whenever 9 (x, y) = h. This constant is denoted by pl . The integers .
ij i.j
are called the intersection numbers. We say that I" is commutative if p?i = p’jf,; for

alli, j, h € 3(I"). A weakly distance-regular digraph is quasi-thin (resp. thin) if the
maximum value of its intersection numbers is 2 (resp. 1). The size of I';(x) := {y €
VI | d(x,y) =1} depends only on i, denoted by k;. The integer k := Z(l,j)eé(l*) ki,j
is called the valency of I, which is often called the out-degree of .

Some special families of weakly distance-regular digraphs were classified. See [7,8]
for valency 2, [9-11] for valency 3 and [7] for thin case. In this paper, we classify
commutative quasi-thin weakly distance-regular digraphs of valency more than 3, and
obtain the following main result.

Theorem 1.1 If T is a commutative quasi-thin weakly distance-regular digraph of
valency more than 3, then I is isomorphic to one of the following Cayley digraphs:

(i) Cay(Zs, {1,2,3,6}).

(i) Cay(Zap,{1,2,2p+i,2p+1,2p+2}), p#2—1i.

(iii) Cay(Za x Z4,{(0, 1), (1,0), (2,0), (0,2)}).

(iv) Cay(Zy x Z4,{(0,1),(1,0), (1,2), (0,2 +i)}), g #3 +i.

(v) Cay(Zaq x Z2,{(0, 1), (1,0), (2,0), (1, D}).

(Vi) Cay(Zag x Za, {0, 1), (1,0), (2,0), 2q + 1,0), 2q + 2,0), 2qi, D)), ¢ ¢

{3,3+i}.

(vil) Cay(Zoy x Z4,{(0,1), (1,0), (1,2), (0,2 =), (2,0), (2,2)}), g ¢ {3,3+i}.
(viii) Cay(Zogq x Zn,{(0, 1), (1,0), (2,0), (0, =D}).

(ix) Cay(Zag x Zn,{(0,1), (1, (c + 1)/2), (1, (c = 1)/2), (2, ¢), (0, =D}).

(x) Cay(Zon x Zq,{(0, 1), (1, (t + 1)/2), (=1, (1 —1)/2), (2, 1), (=2, =0)}).

Here, i € {0,1},2 < p,3 <¢, 3 <n =<q— 1+ (=D9/2 ¢ =n/ged(g,n),
t =q/ged(qg, n) and c, t are both odd.

Routinely, all digraphs in above theorem are commutative quasi-thin weakly
distance-regular. For the last seven families of Cayley digraphs, in Table 1, we list
the two-way distance from the identity element to any other element of the corre-
sponding group.

In order to give a high-level description of our proof of Theorem 1.1, we need
additional notations and terminologies. Let I be a weakly distance-regular digraph
and R = {I'; | i € 9(I)}, where I'; = {(x,y) € V[ x VI | d(x,y) = i}.
Then (VT', R) is an association scheme ([2,12,13]). Moreover, if " is quasi-thin, then
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Table 1 Two-way distance of digraphs in Theorem 1.1

r Conditions 3((0,0). (a. b)) with (a. b) # (0. 0)
(@) a#0 (Bb) +a,q+Bb) —a)
a=0 81+ =0Pr2sli 12 - 51+ (—nPr3z21
® 244 (g -%5h
(a,b) # (0, ) and2 | b+4.q+b-9)
(a.b) = (0,1) (1.1
(vi) 0<a<2g <&+252+ﬁ<&> . &72227/9(&))
a>2q <w_q72q_%>
a=2q @' b+ (=DPi. g+ b+ (—1)Pi)
(a,b) = (0,1) 1,1
(vii) a#0 (ﬁ(;;) + @ 4y ph) - afg(a))
a=0 (r51+ 125490 12— 51+ 135201)
(viii) a=0andb <} (b, b)
a:Oand5>% (n—b,n—"b)
a#0andb <14 (’;+w,5+q—&‘§(‘”)

a#0andb >} (n_g+%,n_,;+q_w)
(ix) a=0andv, ) <% (Va.b» Va.p)
a=0and v, > 5 (n = va.p, 1 — Vg.p)
Oy (it By, g O
a#0andvgp > n_'g(a) (" — g+ ié(“)n —Vab+q— %(“))
(x) ugp =0and vg < % (Va, Va)
Uugp=0andvg > % (n—vg,n —vg)
wap #0andug < "EYa) (g et g tab )
wap #Oand vg > "I (g g teb ) g tab )

For any element a in a residue class ring, we assume that a denotes the minimum nonnegative integer in a.
B@) = (1+ (=12, v, = @ - p(@)/2,

0<wvgp <nandv,p =b — (ac+ B(a))/2 (mod n),

0<ugp <qandugp =2b— B(@r —2tvg (mod q)

(VT, R) is quasi-thin. About this special scheme, see [4—6]. For two nonempty subsets
E and F of R, define
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and write I";F]f instead of {F;}{F;}. For any (a,b) € (), we usually write kg,
(resp. I'y ) instead of k(4 p) (resp. I'(4,5)). Now we list basic properties of intersection
numbers which are used frequently in this paper.

Lemma 1.2 ([2, Chapter I, Proposition 2.2] and [1, Proposition 5.1]) For each i=
(a,b) € B(F) deﬁnel = (b, a). The following hold:

(@) kg ke =3 feir) Pde ky-

o d "1 5
k ;o k; =5, fke.
(iii) |F ;| < gcd(kd,k ).

(iv) Zeea(r)l) = k

(v) lem(kj, kz) | p

f ﬁ
VD) X feir P 5 Pej =

\1

e

We now introduce the concepts about arcs. An arc of type (1,¢g — 1) is said to
be pure, if every circuit of length ¢ containing it consists of arcs of type (1,q — 1);
otherwise, this arc is said to be mixed. We say that (1, ¢ — 1) is pure if any arc of type
(1, g — 1) is pure; otherwise, we say that (1, g — 1) is mixed. The concepts of pure
arc and mixed arc are inspired by Suzuki in [7].

Another concept we need is a configuration. Let 4 and ¢ be distinct integers more
than 2. If (I'4—1)> = {T24-2} and (T ,—1)*> € 'y 4—1Ty—1,1, we say that the
configuration C, j exists.

For fixed x € VT, let Ay 4,.....q,(x) be the connected component of digraph
(VT, Ul 1I'1,4;—1) containing vertex x. Note that Ay, 4. ....q,(x) does not depend on
the choice of vertex x up to isomorphism. If no confusion occurs, we write Ay, 4,,....q;
instead of Ay, 4,,....q,(X).

Let I be acommutative quasi-thin weakly distance-regular digraph of valency more
than 3 in the remaining of this paper. We are now ready to give a high-level description
of our proof of Theorem 1.1.

Outline of the proof of Theorem 1.1.

In Sect. 2, we give a characterization of mixed arcs, i.e., we show that (1, g — 1) is
mixed if and only if pg:g:f;’(lyq_l) # 0 and (1, g — 2) is pure.

In Sect. 3, we discuss the basic properties about the configuration Cy . In particular,
we show that, if Cy ; exists, then (1, g — 1) is pure, & is a constant and i € {3, 4}.

In Sect. 4, applying the results in Sects. 2 and 3, we prove the following result.

Proposition 1.3 Let K = {(1,r) | (1,7) € d(I")}. Then one of the following holds:

Cl) K ={(1,1,(1,2),(,q — 1)}, where Cy 3 exists.

C2) K ={(1,3),(1,g — 1), (1, q)}, where C, 4 exists and (1, q) is mixed.

C3) K ={(1,1),(1,2),(1,g — 1), (1, q)}, where C, 3 exists and (1, q) is mixed.
C4) K ={(1,1),(1,q — 1)}, where (1,q — 1) is pure.

C5) K ={(l,q — 1), (1, q)}, where (1, q) is mixed.

C6) K ={(1,1),(1,qg — 1), (1, g)}, where (1, q) is mixed.
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In Sect. 5, we determine the subdigraphs A, 3 for the cases C1 and C3, the subdi-
graphs A, 4 for case C2, the subdigraphs A, , for cases C4 and C6, and the subdigraphs
Ay 4+1 for cases C5 and C6.

In Sect. 6, we give a proof of Theorem 1.1. For the cases C1, C2 and C3, we
determine I" based on the subdigraphs A, 3 and A, 4. For the cases C4, C5 and C6,
we determine I' based on the subdigraphs A ;, and A 441.

2 Characterization of mixed arcs

The main result of this section is the following important result which characterizes
mixed arcs.

Theorem 2.1 Let g > 3 and (1,q — 1) € 3(I).

(1) pr&’j__ll))’(l’[_l) #0withs <t, thens =2andt = gq.
(ii) The following are equivalent:
) (1,q — 1) is mixed: (b) p'"4~2 £ 0and (1,q — 2) is pure; (c)

o) (1.g=1.(1.q=1)
pu:;_l)’(lyq_l) # 0 for some s.
1,s—1
(iii) prgl,;—l)),(l,q—l) #0, thens = q — 1.
In the proof of Theorem 2.1, we use the following auxiliary lemmas.

Lemma 2.2 Suppose J, ﬁ, le 5(1") and kJ = 2. The following hold:
6)) kﬁ = kiz* <2

(i) |T';T;l < 2 and equality holds only if kj; = k; = 2.

(iii) pf; ;= 2forsomeé e ().

(iv) T30, = {T0,0, Le,e}. In particular, if pg 5. 70 thene =&,

Proof Since kj. = kj; = pg)hz) by Lemma 1.2 (ii), (i) is valid. (ii) follows from (i) and
Lemma 1.2 (iii). By the conimutativity of I', (ii1) holds. In view of (ii) and Lemma 1.2
(1), (iv) is valid. O

The commutativity of I will be used frequently in the sequel, so we no longer refer
to it for the sake of simplicity.

Lemma 2.3 If (xo,x1,...,X,—1) is an undirected circuit in T, then 9(xg, x;) =
d(xi, x0) = d(x0, Xxp—i) for 1 <i <n—1.

Proof 1t is routine by induction. O

Lemma 2.4 Let q > 3. Suppose that (1,q — 1) is pure and k1 41 = 2. Then one of
the following holds:

. 2,q—2 i
@) pGID (g = 2 Ag & Cay(Zog. {1.q +1}), T1g1) = (Tigi} for
2<i<qg-1
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.. 2,q—2
(i) paH gy =1 Ag = Cay(Zg x Zg, {(1,0), (0, DD, [(T14-1)?| =2

Proof Similar to the proofs of Lemma 12 in [10] and Proposition 4.3 in [8]. O
Lemma 2.5 Letq > 3. Suppose that p(1 Z f)) (L.g—1) # 0and (1, q —2) is pure. Then
the following hold:

o (2.9-2) (2,4-2) _
D Plg—1),01,4-2 FO0ad Pyt 1,4-1) =0 ,
(ii) Any circuit of length g containing an arc of type (1, q — 1) consists of arcs of
types (1,q — 1) and (1,q — 2).

2,
(i) If|(T1g-0)?| =2 and ky g = 1, then p(; g gt #0.

Proof (i) Let (z, zo) beanarcoftype (1, g—1).By pg’g:f; (Lg—1) # 0and Lemma 1.2

(ii), there exists a vertex z4—2 € Py—1.1),(1,4—2)(2, 20). Since (1, g — 2) is pure, we
assume that (zo, z1, . . ., Zg—2) is a circuit consisting of arcs of the same type. Hence,
9(z,z1) = (2, g — 2). The fact that 3(z, zo) = (1,¢ — 1) and 9(z0, z1) = (1,9 — 2)
imply p#7=2 £0

PY Pag-1.0.4-2 7V

2,2
Suppose p((1 Z 1; (1.g-1) # 0. Let (yo yl) and (y1, y2) be arcs of type (1,g — 1)

such thata(yo y2) = (2,9 —2). Since p(1 g %)) (1.g—2) # 0, there exists a vertex yi €

2,4—2
P(1.g—1).(1.g—2) (Yo, ¥2). By Lemma22(1) one has kj 41 = 2 and Pf1,Z_1§,<1,q_1) =

1. Lemma 2.2 (ii) and (iii) imply that p(1 g 1; (g-1) = 2 and (y}, y1) is an arc of type

(1,g —1).Since yo € Pig—1,1),1,4-1 (1, yl), from Lemma 2.2 (iv), we getg = 2, a
contradiction. Thus, (i) holds :

(ii) Let (xo, X1, ..., X4—1) be a circuit such that d(x,_1, xo) = (1, ¢ — 1). Suppose
5(x0, x1) = (1, p— 1) with p ¢ {g, q — 1}. It follows that ¢ > 3 and d(x1, x4—1) =
qg —2.

Casel. 0(x;—1,x1) = 1.
Since xg € P(l,q_l),(l,p_l)(xq_l, X1), there exists y € P(l,p—l),(l,q—l)(xq—l’ x1).
1,g—2 .
By pEl,Z—l;,(l,q—l) # 0, we can pick a vertex z € P(1 4—1),(1,g—1)(Xg—1, x1). Note

that |{xo, y, z}| = 3. Since (1, g — 2) is pure, one gets 5(x,~, Xi+1) = (1,q — 2) for
1 <i < g — 2, which implies {xo, y, z} € I'2 4—2(x4-2), contrary to Lemma 2.2 (i).
Case 2. 0(x;—1, x1) = 2.

Let (z(, z}) and (2], z}) be arcs of type (1, ¢ — 2) such that 5(z6, 75) = (2,9 —3).

1.g—2 . .
By pglyz_l))’(l’q_l) # 0, there exists a vertex z’ € P 4—1),(1,9—1)(2g, 2})- Since

(1, g —2) is pure, one gets 3(z’, z5) = (2, ¢ —2). By xo € P(1 g—1,(1, p—1)(Xg—1, X1),
there exists a vertex w € P(1 4—1),(1,p—1)(Z’, z5), which implies 5(16, w) = (2,g-2).
Since 5(z(’), z/)~= 3z, w) = (1, g — 1), we have pgjg:fi(l’q_l) # 0, contrary to (i).

Note that d(x;, xj41) = (I,g — 1) or (I,g —2) for 0 < i < q —2.1If
5(x,,xl+1) = (1,q — 1) for each i, by ¢ > 3, then 3 (xp, x2) = (2,¢ — 2), con-
trary to p(IZ f; (1g—1y = 0. Thus, (ii) holds.

(iii) By Lemma 2.2 (ii), k1 41 = 2. Since k1 42> = 1, we get p(1 - %)) (g—1) = 2
from Lemma 1.2 (v). Let (wg = wy—1, w1, ..., wg—2) be a circuit consisting of
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arcs of type (1,¢q — 2). Pick vertices w’ € P(1,4-1),(1,g—1)(wo, wy) and w” €
P1.g—1y.(1.g—1) (w1, wa) such that (w’, w”) # (1, g—2). Note that (w”, wp) = g —2.
By (i), onehas g —2 < d(w”, w’) < 1+ d(w”, wy) = g — 1. Since g > 3, we obtain
d(w’, w”) = 2 from Lemma 2.2 (iv). The desired result follows. O

Lemma 2.6 Let (1.h — 1), (1.1 — 1) € 3() and v = min{j | p(y} ) 1, 1) # O}

with h,l > 2. Suppose that (1,1 — 1) is pure, or pﬁfj; (1I—1) #0and (1,1 —2)is

1,1-2
pure. If T1—)* NT—11Th—11 # 0, then h =1 or pél:h—l)),(l,h—l) # 0.

Proof Let (xo,gcl, ..., Xy41) be a circuit of length v + 2 such that 5(xv+1, Xp) =
(1,h —1)and 9(x;, xj+1) = (1,1 — 1) for 0 < i < v. Suppose that i # [.

Case 1. (1,1 — 1) is pure.

Note that v + 2 > [. Since xg # x;, by Lemma 2.2 (i), we have kj ;1 = 2.
In view of [ > 2 and Lemma 2.4, we get A; >~ Cay(Zy, {1, + 1}) or Cay(Z; x
Zy, {(1,0), (0, D).

Case 1.1. A; >~ Cay(Zyy, {1,1+ 1}).

In view of Lemma 2.4 (i), we obtain (F1,1,1)" ={Ii;—i}for2 <i <[ —1.Then
dxo, xi—) =1 —1,1).Ifv > 1, by Lemma 2.2 (iii), then é(xo,x1+1) =(,1-1),
contrary to the minimality of v; if v =1 — 1, by x;—1 € Py—1,1),(1,1-1)(x1, X0) and
Lemma 2.2 (iv), then 7 = 2, a contradiction.

Case 1.2. A; >~ Cay(Z; x Zy, {(1,0), (0, 1)}).

Let T be an isomorphism from Cay(Z; x Z;, {(1, 0), (0, 1)}) to A;. Pick t(a, b) €
I'1,4—1(x(0,0)). Then O ¢ {a, b}. Since t(a, b) € Py j—1),1—-a,a)(t(0,0), (0, b)),
wegett(e+ta, f+b) e 'y p_1(t(e, )Nz _a(t(e, f+b))andt(e+b, f+a)
Cin—1(z(e, f))NTs_a(t(e+Db, [)) foreach (e, f). By h # 2, one has a +b 1.

Suppose a = —1. Since (7(0,0),7(1,0),t(1 + a,b) = 1(0,b),t(0,b +
1),...,7(0,1 — 1)) is acircuit of length [ — bh+2 containing arcs of types (1, h — 1)
and (1, — 1), we get b = 1, contrary to a + b # l. Hence, a # —1. Similarly,
b # —1. By (' ;—1)" N Ti—11Th—11 # ¥ and the minimality of v, one gets
v=0r(t(a+1,b),7(0,0) =21—a—b—1.Byl—1 < v,weobtaina+b < I. Note
that (t(a+1,b),7(a+b+1,a+b),t(a+b+2,a+b),...,7(0,a+b), t(0,a+
b+1),7(0,a+b+2),...,7(0,0)) isapath. Ifa+b = —1,thenl+1—a—b>v,
contrary to/ > 2;ifa + b # —1, then 2/ — 2a — 2b > v, contrary to a +bh>1.

1,1-2 .
Case 2. pél’lq;’(l’lq) # 0and (1, — 2) is pure.

Since h # [ and h,l > 2, one has v > 2. By the minimality of v, we obtain
0(xj,xj42) = 2for0 < j < v — 1. Lemma 2.2 (ii) implies |(I‘1,1_1)2| =2
and ky ;-1 = 2. If [Pa1,1-1),(1,1-1)(x0, X2)| = 2, then there exists a vertex xi €
P(1,1-1),(1,1-1) (x0, x2) such that é(x;,x3) = (1,1 — 2), contrary to the minimality
of v. Then | P11 1).1.1-1) (X0, ¥2)] = 1. By Lemma 2.2 (iii), pglljj)),(l,,_l) = 2.1t
follows from Lemma 1.2 (i) and (v) that k; ;—» = 1. In view of Lemma 2.5 (iii), we
have é(xj,x]urz) =2, —1)for0 < j <v—1.Hence,v >1[— 1. By Lemma 2.5
(i) and Lemma 1.2 (iii), we obtain & #£ [ — 1.
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Let (o, y1, ..., Yu+1) be a path consisting of arcs of type (1,/ — 1) such that
é(yj, yj+2) = 2,1—=1)for0 < j < v—1.Pickx,  andy, ,suchthatTj;_(x,) =
{xo+1, 2, yand Ty -1 (v) = {Yo+1, Yy g} Then d(xy—1, x5, ) = (o1, Yy y) =
(1,1 —2). Since ky ;— 2 = 1, by Lemma 1.2 (iii) and the inductive hypothesis, we
have 3 (xg, x v+1) = 8(yo yv+1) which implies 3(x0,xv+1) = 8(y0 Yy+1). Thus,
a(xo, Xy+1) only depends on v.

Since (1,1 — 2) is pure and kj;—» = 1, each A;_;(x;) is a circuit of length
I — 1, denoted by (x; = xg,;, x1, ,, ..., Xx1—2,i), where the first subscription of x is

taken modulo [ — 1. The fact that p(1 f ]2) (di-1) = = 2 implies that B(xa bs Xa.b+1) =

8(xa,b+1,xa+1,b) = {1,/ —1)foranya € {0,1,...,] —2}and b € {0, 1, ..., v}.
By ki/—2 = 1, one gets d(xj y— 1, Xj+2.0—j—1) = (2,1 — 1) for 0 < j < v — L.
Since 9 (xo, Xyp+1) only depends on v, we obtain 5(Xo,v+1 , Xp+1,0) = 3 (x0, Xy41) =
(h — 1, 1). Let r be the minimal nonnegative integer such thatr = v+ 1 (mod/ — 1).

It suffices to show that r = [ — 2. Note that (xg,0, X1,0, - - - » Xr.0 = Xp+1,0, X0,v+1) 18
acircuit. By 7 # 2,r #0.Since h # 1 — 1 and (1,/ — 2) is pure, one gets r =1 — 2.
This completes the proof of Lemma 2.6. O

Lemma 2.7 Letq > 3. If (1,q — 1) is pure, orp(1 g 1; (lg—1) #0and (1,q —2)is
pure, then (1) in Theorem 2.1 is valid.

Proof Let xo, x, x| be vertices such that 3 (xo, x) = (1,5 — 1), 3(x, x1) = (1,1 — 1)
and 9(xg,x1) = (1,9 — 1) By Lemma 2.2 (iv) and s < t, we have s # ¢q. Suppose
t # q. Observe that p(;'9"]) | |/ # 0or p{d_0) | | 5 0.Pick xp such that
a(xisxz) = (17 q’_’_ l) and 8(X2, X()) =4 — 2

We claim that d(x, x2) = (2,9 — 1). If (1, ¢ — 1) is pure, by g ¢ {s, t}, then our

claim is valid. Suppose that p((I’Z:%)) (Lg—1) # 0and (1, g —2) is pure. It follows from

Lemma 2.5 (i) that 9 (xo, x2) = (1, g — 2).

Suppose s = g — 1. Since xp € Py—2,1),(1,4—2)(x, x2) and x # x2, by Lemma 2.2
(iv), we get d(x, x2) = (1, 1) or (2, 2). In view of Lemma 2.3 and t # ¢, d(x, x2) =
(2,2). Since t # g — 1, from Lemma 2.5 (ii), one has d(x», x) > g — 2. Hence,

=3,s =2andt = 4. By x1 € Pq,3),31,2(x, x2), there exists a vertex xi €
P(12),(1,3)(x2, x), which implies 9 (x1, x{) = 2. It follows from Lemma 2.5 (i) that
8(x{,x1) = 2. By Lemma 2.2 (ii), we obtain (Fl’z)z = {T'1,1, '2,2}. Since x # x2,
from Lemma 2.2 (i), one has k; 1 = 2. In view of Lemma 1.2 (i) and (v), we get

P{ia). 12 = L. By Lemma 2.2 (i), p(y’3) ;, = 2. Hence, 3(x,x1) = (1,2), a
contradiction. Thus, s # g — 1. Similarly, t # g — 1.

Sincetr ¢ {g—1, ¢}, by Lemma 2.5 (ii), we getg — 1 < 9(x2,x) < 1+09(x2, x09) =
g—1.Thefactthats ¢ {g—1, ¢} and d(x3, x0) = g —21imply d(x, x) = 2. Therefore,
our claim is valid.

Since x € P(q5—1y,(1,:—1)(X0, X1), there exists a vertex x" € P1 ¢—1),(1,s—1) (X0, X1).
Similarly, 3(x’, x2) = (2,¢ — 1). Since x| € Ci—1(x) Ny s—1(x) N Tg—p1(x2),
there exist vertices yi € P(Lq_l)’(l’,_l)(x,xz) and yi/ € P(l,q_l),(l,s_l)(x,xz). It
follows from Lemma 2.2 (i) that ky ;1 = 2. Similarly, y{, ¥/ € 'z 4—1(x0). Then

. 2.q4-1 .
I s-1T14-1=1{T24-1}.ByLemma 1.2 (i), we have k ;| = pEl’f_l)),(l,q_l).Since
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X1 € Pa—1),(1,g-1(x, xz) from Lemma 1.2 (iv), one gets ki 1 = 1. Similarly,
k1t—1 = 1. In view of p 1? 11))(1 -1 # 0, we obtain k1 4,1 = 1, a contradiction.

Thus, t = g. By Lemma 2 2 (iv), one has s = 2. O

Proof of Theorem 2.1. (ii) (a)=(b): By way of contradiction, we may assume that g is
the minimal integer such that (1, ¢ — 1) is mixed and (b) does not hold. Since (1, 1)
is pure, ¢ > 3. Pick a circuit (xg, X1, ..., X4—1) such that é(xq,l,xo) =({,g—-1)
and 9 (xo, x1) = (1,c — 1) with ¢ < q.

Suppose 5(x,,x,+1) = (1,d — 1) for some i € {1,2,...,qg —2} and d ¢
{g, c}. Without loss of generality, we may assume i/ = g — 2. Lemmas 2.3, 2.7
and the minimality of ¢ imply B(xq 2,X0) = B(xq 1,x1) = (2,9 — 2). Since
X0 € P1,g—1),(1,e-1)(Xg—1, x1), there exist vertices zo € P c—1),(1,q—1)(Xg—1, X1)

and z;1 € Puc—1),(1,q-1)(xg-2,X0). In view of Lemma 2.2 (i), k1,41 = 2.

By Lemmas 2.3, 2.7 and the minimality of g, we get 5(zq_1, x1) = 2,9 —2)

and I'y y 11 = {I'24-2}. It follows from Lemma 1.2 (i) that k1.1 =
(2,9-2)

p(l g—1,(Le—1)" Since Xg—1 € P(Ld_l),(l,q_l)(xq_z,xo), by Lemma 1.2 (iV), we
obtain ki,c—1 = 1. Similarly, k1 4—1 = 1.

Since k1,41 = 2, by Lemma 1.2 (i) and Lemma 2.2 (i), one gets 5(xj, Xjy1) =
(1,¢'—1)forsome j € {1,2,...,q—3},and ki,4—1 = 2. Without loss of generality,
we may assume j = 1. It follows from Lemmas 2.3, 2.7 and the minimality of ¢
that 5(10,x2) = (2,9 — 2). Since x1 € P 4-1),(1,4'~1)(20, x2), we have x4 or
Zg—1 € P,g'—1),(1,4—1)(Xq—2, X0), a contradiction. Hence, d(x;, Xi+1) = (L,g —1)
or (1,c — 1) foreachi.

Since ¢ < g, by Lemmas 2.3 and 2.6, we have 5(xi, Xi+1) = (1,q — 1) for some
ief{l,2,...,qg—2}. Without loss of generality, we may assume i = g — 2. Suppose
d(xg—2,x0) = 2. Then d(x4—2,x0) = d(xg—1,X1) = (2,q — 2). Since x,_1 €
P1,q—1),(1,g—1)(xg—2, X0), there exists a vertex x(/) € Pu,g-1),01,qg—1)(xg-1, X1),

which implies 5(xq,2,x6) = (2,9 —2) and k141 = 2 from Lemma 2.2 (i).
2,q-2
Hence, (Fl,q_1)2 = {I'242}. By Lemma 2.2 (iii), we get pEI,Z—l)),(l,q—l) =2

and d(xg, x1) = (1,¢ — 1), a contradiction. Thus, 3(x,—2, x0) = (1,¢ — 2) and

(1,g—2)
Pag-1).0.4-1) 7 0 -
o

Note that (1, g — 2) is mixed. By the minimality of ¢, P(1.g-2).(1,4-2) # 0 and
(1, g — 3) is pure. It follows from Lemma 2.5 (ii) that the path (xo, x1, ..., x4-2)
contains an arc of type (1, g — 3). Hence, c = ¢ — 2 and 5(Xj,)€j+1) =(l,qg —3)
for0 < j < g — 3. By Lemma 2.3, we get ¢ > 4. In view of Lemma 2.6, we obtain

(1,g—4) .. .
P(1g-2).(1,4-2) = 0, a contradiction. Thus, our desired result holds.

(b)=(c): It is obvious.

(c)=(a): Suppose for the contrary that (1, g — 1) is pure. By Lemma 2.2 (ii), we
have [(I'1 4— D% = 2 and k; g—1 = 2. Lemma 2.4 implies that pé Z 25 (g =1
and there exists an isomorphism 7 from Cay(Z, x Z,, {(1, 0), (0, 1)}) to A It fol-
lows from Lemma 2.2 (iii) and Lemma 1.2 (i), (v) that k1 = 1. Observe that
(r(0,0),7(1,1),...,7(—1,—1)) is a circuit consisting of arcs of type (1,s — 1).
Since s # ¢ from Lemma 2.2 (iv), (1, s — 1) is mixed. Then pgll";:lz)))(l)#]) # 0.
By Lemma 1.2 (i), we get (t(1,1),7(3,3)) € I'y s—2 and k; s—» = 1. Note that
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(r(0,0),7(1,0), t(1,1),7(3,3),t(4,4), ..., t(—1, —1)) isacircuit of length g con-
taining arcs of types (1, — 1) and (1, s — 2), contrary to the fact that (1,g — 1) is
pure. Thus, we have the assertion.

(i) follows by (ii) and Lemma 2.7.

(iii) By Lemma 2.2 (iv), s # q. (i) implies that pgll”z:%;’(l’qil) #0and (1,9 —2)
is pure. In view of Lemma 2.2 (ii) and Lemma 2.5 (iii), we only need to consider the
case that [(I'y 4—1)*| = 2 and ky 4> = 2. Then ky 4,—1 = 2. By Lemma 1.2 (i) and

(v), we have péig’gilz;(],q_l) = 1. Suppose s # g — 1. In view of Lemma 2.2 (iii),

one gets pE}:;:]I)),(],q_l) =2and k1 ;1 = 1. Let (x, x), (x, x1) and (x, xg) be arcs
of type (1, g — 1) such that d(x, x1) = (1,5 — 1) and d(xo, x]) = (1, g — 2). Pick
vertices x3, z such that d(x1, x2) = 3(x,z) = (1,5 — 1). Since p{;S_}) | ) =2,
we obtain d(xy, z) = d(x}, z) = d(z, x2) = (1, ¢ — 1) and d(x}, x2) = (1, ¢ —2). The
fact that x| € P(l,q—z),q,q—z) (x0, x2) and ky s—1 = 1 imply that (1, s — 1) is mixed.
It follows from (ii) that d(xg, x2) = (1, s —2) and (1, ¢ — 2) is mixed, contrary to the
fact that (1, ¢ — 2) is pure. O

3 Configuration Cg

In this section, we will discuss some useful properties of the configuration Cy 5.

Lemma 3.1 Suppose that Cy j, exists. Then ki 1 = 1, k1,41 =2, (1, — 1) is pure
and Ay >~ Cay(Zog, {1, q + 1}). Moreover, if (1, q) is mixed, then ky 4 = 2.

Proof Pick four distinct vertices x, y, z, w such that 8(x, w) = d(y, w) = (1,¢ — 1)
and d(x,z) = d(z, y) = (1, h — 1). By Lemma 2.2 (i), k1 4—1 = 2. In view of & > 2
and Lemma 2.2 (iv), we have |(I' ,—1)%| = 1. Since (I'1 4—1)*> = {I'2,4—2}, from
Theorem 2.1 (ii), (1, ¢ — 1) is pure. Lemma 2.4 implies A, ~ Cay(Zaq4, {1, ¢+1}). So
that there exists a vertex w' € P(1 g—1),(g—1,1)(x, y) withw’ # w. Write Ax,y) = f.
ByLemma 1.2 (i) and (v), one has kf~ = 1. Since (F1,h71)2 = {I‘f:},we getkyp—1 = 1.
If (1, g) is mixed, then ky ; = 2 from Theorem 2.1 (ii) and Lemma 1.2 (i). O

Lemma 3.2 Suppose that Cy j, exists. The following hold:
1) If (1, h — 1) is pure, then h = 4.
@{i) If (1, h — 1) is mixed, then h = 3.

Proof Let (x, 2), (z, y) be twoarcs of type (1, h—1). Observe P(j 4_1),(¢—1,1)(x, ¥) #
@. It follows from Lemma 2.2 (iv) that d(x, y) = d(y, x). In view of Lemma 3.1, one
has k1 ,—1 = 1. If (1, h — 1) is pure, by Lemma 2.2 (ii), then d(x,y) = (2,2) and
h = 4;if (1, h — 1) is mixed, by Theorem 2.1 (ii), then d(x, y)=(,1)andh =3.0

Lemma 3.3 IfC, j exists, thenT'y g 1I'1 -1 = (T2 g} andTy o € Flgh_l(l“l,q_l)q‘l.

Proolc Pick four distinct vertices x, y, z, w such that d(x, y) = d(x, w) = (l,g—1
and d(y,z) = d(z,w) = (1,h—1).ByLemma3.1, (1, — 1) ispureand ky 1 = 1.
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In view of Lemma 2.2 (ii), we have |I"1 4 _1I"1 51| = 1. It follows from Theorem 2.1
(i) that d(x, z) = 2. Note thatg — 1 < d(z, x) < 14 d(w, x) = q. It suffices to show
that d(z, x) = q.

Assume the contrary, namely there exists a path (z = xp, x1,...,X5-1 = X).
Supposethaté(x,-,x,url) = (1, p—1)forsomei € {0, 1,...,g—2}and p # g. Since
k1,n—1 = 1, we obtain d(z, x1) # (1, h—1).Hence, p # h. Without loss of generality,
we may assume i = g — 2. Since (1, ¢ — 1) is pure, one has 9(y, x,—2) = ¢ — 1, which
1mphes 0(xg—2,y) =2.Byx € P, p-1),(1,4— 1)(xq 2, y) and Lemma 2.2 (i), we get
d(w, z) = (1, p — 1), contrary to & > 3. Hence, 8(x,,x,+1) = (l,q — 1) for each i.
It follows from Lemma 3.1 and Lemma 2.4 (i) that a(z, x) = (g — 1, 1), contrary to
Lemma 2.2 (i). ]

Lemma3.4 If (1,q — 1) is mixed and Cy 1 j exists, then 'y g1y p—1 = {I'2,4} and
Pg2€Tin1(T -2 Tigo1.

Proof Let x,y,z be vertices such that 5(x,y) = (l,g — 1) and 5(y,z) =
(1,h — 1). By Theorem 2.1 (ii), we have pSZ f; (Lg—1) # 0. Pick a vertex
w € Py_1,1),(1,g—2)(x,y). It follows from Theorem 2.1 (1) that a(x, z) = 2. Since
h ¢ {q,q — 1} from Lemma 3.1, by Lemma 2.5 (ii), one obtains d(z, x) > ¢ — 1.
In view of Lemma 3.3, we get a(w z7) = (2,q — 1), which implies a(x 2)=(2,9)

from Lemma 2.2 (iv). The desired results follow by Lemma 3.3. O
Lemma 3.5 Suppose q > 3 and pélz’;)fl),(lvl) # 0. The following hold:

(i) If (1,q — 1) is pure, then s = q and 'y » € Fl,](Fqu)q_l.
(i) If (1,q — 1) is mixed and s = q, then 'y » € F]g]Fl,q_l(Fl,q_z)q_z.

Proof (i) Note that s = g — 1 or g. Suppose for the contrary that s = g — 1. Let
Xg—1, Xq, X0 be three vertices such that 9(x,—1,x5) = (1,4 — 1), (x4, x0) = (1, 1)
and S(xq_l,xo) = (2,9 — 1). Pick a path (xq, x1, ..., xg—1).

Case 1. 9(xj+1,x;) ¢ {l,q — 1} for some i € {O,}, ey q — 2}

Without loss of generality, we may assume d(xy—2,X,—1) = (I, p — 1) with
p ¢ {2,q}. Since (1,g — 1) is pure, we get 5(xq_2,xq) = (2,9 — 1) from
Theorem 2.1 (i). In view of x; € Pq4-1),(1,1)(xg-1, X0), there exists a vertex
x' € Pa1y,1,g-1)(xg—2, X4), which implies kj ,—1 = 2 by Lemma 2.2 (i). Since
(1,g — 1) is pure, we have 5(x/,x0) = Q2,g -1 and I't y1T'11 = {241}
It follows from Lemma 1.2 (i) that k;; = pgg 1)) 1.1y In view of x4,-1 €
P, p—1),(1,g-1)(*¥4—2,x4) and Lemma 1.2 (iv), we obtain k;;; = 1. By x;, €
P1,g-1),(g—-1,1)(x", x4—1) and Lemma 2.2 (iv), one gets d(x", x4—1) = 9(xg—1, x").
Since x4 € P(l’l)’(l,p_l)(x’, X4—1), weobtain d(x,—1, x4—2) = (1, p—1), contrary
to p # 2.

Case 2. 0(xjt+1,x;) € {l,g—1}for0 <i <qg —2.

Let r — 1 be the number of arcs of type (1, g — 1) in the path (xg, x1, ..., x4—-1).
Lemma 2.3 implies 7 > 1. Without loss of generality, we may assume 9 (x i Xjr1) =
(1,g—1) withg—r < j < g —2.1tfollows from Theorem 2.1 (ii) that 8 (x, xj4+2) =
2,g —2)or (2,q — 1) for each j.
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Suppose 5(xj, Xjy2) = (2,q — 1) for some j. It follows from Lemma 2.2 (ii) that

o 2,92
(T1.g-1)* = 1{T24-2, T2 4—1} and k; 4—1 = 2. Lemma 2.4 implies pEI,Z—I;,(l,q—l) =

9—1 = 2. Hence, 3(x,, x0) = (1, g — 1), a contra-

(2
1. By Lemma 2.2 (iii), pEl,q—l),(l,q—l) =

diction. 3 5
Suppose d(x;, xj42) = (2, g — 2) for each j. Since d(x4-1, x0) # (1, — 1), we
have r < ¢ from Lemma 2.4. Hence, 5(xq_,, xy) = (r,q—r).ByLemma2.3,r = %.

Since 9 (xg, x;) = (4, %), there exists a path (y, = X, Y41, ..., Yg = X0) consisting
of arcs of type (1,¢g — 1). Then (xo, X1, ..., X = Yr, Yr+1, ..., Y4—1) 18 a circuit of
length ¢ containing arcs of types (1, g — 1) and (1,1), a contradiction.

(ii) It is an immediate consequence of Theorem 2.1 (ii). O

Let A; ; denote a matrix with rows and columns indexed by VI' such that
(Ai ay = Lifd(x,y) = (i, j), and (A; ;)x.y = O otherwise.

Lemma 3.6 Suppose that g > 2, (1,q — 1) is pure and Ay ~ Cay(Zay, {1, q + 1}).
The following hold:

@) If (1, 1) € a(I"), then Ay 4—1A1,1 = A1 g—10r A1 4g—1A1,1 = k1,1A2,4.

(ii) If (1, q) is mixed, then Ay 4 1A1,4 = 2A2 41 and (Al,q)2 =2A14-1.
(iii) If(l, q) is mixed and Al,q—lAl,l = Al,q—l; then Al,qu,l = Al’q.
(iv) If (1, q) is mixed and Ay 4_1A1,1 = ki1,1A2,4, then Ay 4A11 = k1,142 441

Proof (i) Suppose pé}:g:};’(l’l) # 0. Since A, >~ Cay(Zoy, {1,q + 1}), we obtain

a,n _
Pag-1,q-1.n) =

Ay 4-1A1,1 = A1,4—1.Suppose PSZZ:B,(LD = 0.By Theorem2.1 (i), Lemma 2.3 and
Lemma 3.5 (i), we have I'y ;,_1I"1,1 = {I'2,4}, which implies A; 41411 = k11424
from Lemma 1.2 (i).

(ii) By Theorem 2.1 (i), we get pé}:g)}lf,q) # 0. Since k1 41 = 2, from Lemma 1.2
(1) and Lemma 2.2 (i), we have ky , = 2.

Let x, y, z, w be vertices such that 5(x, y) =({,qg — 1), 5(y, z) = (1,q) and
w € P1,4-1),(4,1)(y, 2). By Lemma 2.4 (i), we have 5(x, w) = (2,9 —2). In view of
Theorem 2.1 (i), one gets é(x, z) = (2,q — 1), whichimplies Ay ; 1A1 4 =2A2 41
from Lemma 1.2 (i) and Lemma 2.2 (i).

By Lemma 2.4 (i), there exists a vertex y' € P g—1),(1,¢—1)(x, w) with y # y.
Since pg:;]:ll;’(l’q). = 2, one has 5(y/, z) = (1, g), which implies (Al,q)2 =2A141
from Lemma 1.2 (i).
~(iii) By Lemma 1.2 (i), we have k;,; = 1. Let xo, x1, x2, x3 be vertices such that
d(xp, x2) = (1,g — 1), x1 € P 4-1),01,1)(x0, x2) and x3 € P(1 ¢),(1,9)(x0, x2). It
follows from (ii) that 5(}53, x1) = (1, g).Since x1 € P(1 ¢),(1,1)(x3, x2), by Lemma 1.2
@), we get Al,qu,l = Al’q.

@iv) Let zo, z1, 22, z6 be vertices such that 5(20, z1) =(1,9), 5(z1, z2) = (1, 1) and
20 € Pg.1),(1,g-1)(z0, 21). Since Ay 4 1A11 = k1,1A2,4, 3(2, 22) = (2, q). In view
of (ii), one has 5(20, z2) # (1, g), which implies 9(zq, z2) = 2 from Lemma 2.3 and
Theorem 2.1 (i). Since 5(16, z2) = (2, ), by Lemma 2.2 (iv), we get 9(z2, 20) # ¢-

2. By Lemma 1.2 (i) and (v), we get k1,1 = 1, which implies
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It follows from Lemma 2.5 (ii) that d(z2, z0) = g + 1. The desired result holds by
Lemma 1.2 (i) and Lemma 2.2 (i). m]

Lemma 3.7 Suppose that (1, 1) € 3(I') and Cy.n exists. The following hold:

() h=3,kii1=1land A1 4_1A11 = A1 41
(i) If (1, q) is mixed, then Ay 4A11 = A1 4.

Proof (i) Let x, y, z be vertices such that d(x, y) = (1,¢ — 1) and 3(y, z) = (1, 1).
Suppose 5(x, z2) = (2,q). Since Cy ;, exists, by Lemma 3.3, there exists a vertex
w € P(1,4-1),01,n—1)(x, 2), which implies (z, y)=(1,h—1),contrarytoh > 3. It
follows from Lemma 3.1 and Lemma 3.6 (i) that Ay ;1A | = Ay 41 and 5(}6, 7) =
(1,g — 1). Then (Fl,h—1)2 ={I'11}and h = 3. By Lemma 1.2 (i), k1,1 = 1.

(ii) It is an immediate consequence of Lemma 3.1 and Lemma 3.6 (iii). O

Proposition 3.8 If C, j, and C jy both exist, then h = h'.

Proof If (1,1) € a(I"), by Lemma 3.7 (i), then h = b’ = 3;if (1,1) ¢ (), by
Theorem 2.1 (ii) and Lemma 3.2, then h = h' = 4. O

4 Proof of Proposition 1.3

We shall prove Proposition 1.3 by contradiction. Suppose that C1-C6 do not hold.
Let B be the set consisting of (p, p — 1) and (p — 1, p) where (1,p — 1) is
mixed, C = {(p,q) | Cpq or Cy,p exists} and D = {(p,q) | (p,p—1) €
Band Cp_1 4 exists, or (g,g — 1) € B and C;_1,, exists}.

Suppose that C,j, exists for some ¢ and 4. In view of Lemma 3.1, (1, g — 1) is pure.
If (1, 1) € K, from Lemma 3.7 (i), then & = 3;if (1, 1) ¢ K, from Lemma 3.2 and
Theorem 2.1 (ii), then 2 = 4. Since C1, C2 and C3 do not hold, by Proposition 3.8,
there exists (1, p—1) € K suchthat p # 2 and (g, p) ¢ BUCUD. Suppose that C; p,
does not exist for any # and 4. Since the valency of I" is more than 3, we may assume
that (1, g — 1) € K with g # 2. Since C4, C5 and C6 do not hold, from Theorem 2.1
(i1), there exists (1, p — 1) € K such that p # 2 and (g, p) ¢ BUCUD.

We set

l=min{r|P512:;),1),(],j,1) #0,0i#j,i,]=3, G, J) ¢‘BUGUD}'

Without loss of generality, we may assume pf?:é)—l),(l, —1) # 0. By Lemma 2.5 (ii)
and Theorem 2.1 (ii), one has [ > 3.

Choose vertices x, y and z with (x, y)=(l,g — 1), 5(y, z) = (1,p—1)and
d(x,z) = (2,1). Then there exists y’ such that d(x, y') = (1, p — 1) and 3(y', z) =
(1,q — 1.

The minimality of / will be used many times in the sequel, so we will not refer to it
every time for the sake of simplicity. We will reach a contradiction under the following
two separate cases:
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A) There exists a shortest path from z to x containing an arc of type (1, 4 — 1) with

h¢12,q, p}.
B) Each arc of any shortest path from z to x is of type (1, 1), (1,g— D) or (1, p—1).

4.1 ThecaseA

Without lgss of generality, we may assume that (z = xg, x1,...,X; = x) is a path
such that 9(xg, x1) = (1, h — 1). For each i, write h; = 9(x;11, x;) + 1.

Step 1 Show that C; j exists for some ¢.

Assume the contrary, namely C;; does not exist for any ¢. Suppose that
(h,q), (h, p) € BUCUD. Observe {(h, q), (h, p)} §Z B. It follows from Propo-
sition 3.8 that {(h, g), (h, p)} € €U D. Without loss of generality, we may assume
(h,q) € Band (h, p) € CUD.If Cy,, exists, by Lemma 3.1, then ¢ = h + 1 and
(1, g — 1) is mixed, contrary to (¢, p) ¢ D.If (1, h — 1) is mixed and Cj,_1, exists,
then C,, , exists, a contradiction. Thus, (&, g) or (h, p) ¢ BUCUD.

Without loss of generality, we may assume that (i, p) ¢ BUCUD. Theorem 2.1 (i)
implies d(y, x1) = (2,1). Since z € P, p—1),(1,h—1)(y, x1), there exists a vertex y” €
Pa,n—1),1,p—1)(x, z), whichimplies k1,1 = 2 from Lemma 2.2 (i). By Theorem 2.1
(i) again, we get 3(y', x;) = 2 and 3(y”, x;) = (2,1). Then Lo p—1T1 -1 = {2}
and kp; = 2. Since pg:f])—l),(l,p—l) # 0, from Lemma 1.2 (i) and (iv), we obtain

kip_i = p((%:;)_l)’(l’h_lfl. By ko =2, d(x1,y') < I. Hence, (h, q) € BUCUD.
Since k1 ,—1 = 1, one gets (h,q) € B from Lemma 3.1. Suppose that (1, —

1) is mixed. By Theorem 2.1 (ii) and Lemma 1.2 (ii), one has pﬁ’gjg gt =

k1,41, which implies d(y,y") = (1,4 —1).Since z € P, p—1),(p—1,n(»", ), from
Lemma 2.2 (iv), one obtains ¢ = 2, a contradiction. Now suppose that (1,2 — 1) is
mixed. By Theorem 2.1 (ii) again, d(y”, y) = (1, h — 1). In view of Lemma 2.2 (iv),
h = 2, a contradiction. Thus, C; j exists for some ¢.

Step2 Show that {(g. k), (p, h)} ¢ €U D.

Suppose for the contrary that {(g, &), (p, 1)} € CUD. By Step 1 and Lemma 3.1, we
have k1 ,—1 = 1. We conclude that (x1, x2, ..., x;) consists of arcs of types (1, g — 1)
and (1, p — 1).

By Proposition 3.8, Cy ; exists, or C,_1,;, exists and (1, ¢ — 1) is mixed. Suppose
h;—1 = 2. By Lemma 3.7 (i) or (ii), we have d(x_1, y) = (1,g — 1). Theorem 2.1 (i)
implies d(x;_1, z) = 2, contrary to d(z, x;—1) < l.Thenh; #2for1 < j <[l —1.
Step 1 and Proposition 3.8 imply that 4; € {g, p, h} for any j. Since h ¢ {q, p},
one gets [ > 4 from Lemma 2.5 (ii) and Theorem 2.1 (ii). If h; = h for any j, by
Lemma 3.2 and k1 -1 = 1, then (1, 7 — 1) is pure and & = 4, which imply z = x4, a
contradiction. In the path (x1, x2, ..., x7), without loss of generality, we may assume
that the number of arcs of type (1, p — 1) is not less than the number of arcs of type
(l,g —1).

Without loss of generality, we may assume h;_1 = p. By Proposition 3.8 again,
Cp,n exists, or C, 1 p, exists and (1, p — 1) is mixed. Suppose that Cj,_1 ;, exists and
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(1, p—1) is mixed. Then p > 4. In view of Lemma 3.1 and Proposition 3.8, we obtain
(g, p—1) ¢ BUCUD. Lemma 3.6 (ii) implies d(x;—1, y') = (1, p — 2). It follows
from Theorem 2.1 (i) that 9(x;—1, z) = 2, contrary to d(z,x;—1) < [. Hence, Cp
exists. Suppose 71 = h. Then 5(y, x2) = (1, p — 1). By Theorem 2.1 (i) again, one
has 9(x, x2) = 2, contrary to d(x2,x) < [. Thus, h; € {g, p}for1 < j <[ —1.

Suppose hj = p foreach j. Since C, j, exists, by Lemma 3.3, we get (x1, y) = p,
andsol > p.Inview of Lemma 3.1 and Lemma 2.4 (i), one has 3 (x1, xp) = (p—1,1).
Since d(y’, z) = (1, g — 1), we obtain d(x, x1) # (1, p—1)and! > p.Letxj41 = y'.
By Lemma 2.4 (i), one gets d(x1, xp42) = (1, p—1). Then x, 12 = y"and (', z, x1)
is a circuit, a contradiction. Therefore, our conclusion is valid.

Without loss of generality, we may assume /#;_3 = ¢ and h;_» = p. Observe
that C, ;, exists and (g, #) € CU D. From Lemma 3.1 and Proposition 3.8, we get
ki4—1 = ki,p—1 = 2 and there exists a vertex x;_; € P(1,p—1),(1,p—1)(X;—2, x) with
x;_; # x;—1.Hence,x;_1,x_; € T'2;(x;—3).Inview of Lemma 1.2 (i) and Lemma 2.2
(i), we obtain Ay ,_1A1 -1 = 2Ap;. Since d(x;—1,2) = d(x,x1) = (3,1 — 1)
and x € P(1,p—1),2,1)(x1—1, 2), there exists a vertex 2’ € P21y (1, p—1)(x, x1), which
implies 3(y',z”) = (1,q — 1). Then 3(y’, x;) = (2,1) and 3(z,x;) = (1, p — 1),
contrary to i # p. The desired result follows.

In the following, we reach a contradiction based on the above discussion.

By Step 2, we may assume (p, h) ¢ CU D. It follows from Step 1 and Lemma 3.1
that k; ,—; = 1. In view of Theorem 2.1 (i), we have d(y, x;) = 3(y/, x1) = 2.

Casel.9(x1,y) =1.

Since y" € P, p—1),(1,4—1)(x, 2), there exists a vertex z’ € P, p—1),(1,¢—1)(¥, X1).
It follows from Lemma 2.2 (i) that k1,1 = 2. By Theorem 2.1 (i), we have Ax,7) =
(2,1), which implies I'y 4 1I"1,p—1 = {I'2;}. In view of Lemma 1.2 (i), k1 41 =
Pa—1).1.p1)-Observez € P(1p1).(1h-1) (v, x1). Lemma 1.2 (iv) implies k1 41 =
1. Since k; ,—1 = 1, we obtain d(xj, y’) < I. Note that (g, h) € BUCU D. From
Lemma 3.1, one has (¢, h) € B. By Theorem 2.1 (ii), we get Az, 7)) =, qg—1)or
3(z',z) = (1, h — 1), contrary to Lemma 2.2 (iv).

Case2.0(x1,y) <.

Note that (p, h) € B. By Lemma 3.2, (1, p — 1) ismixedand p = h + 1 = 5.
Since k1 3 = 1, one gets k1 4 = ngg,(m) from Theorem 2.1 (ii) and Lemma 1.2 (ii).
If 3(x1, y") = I, then there exists a vertex w € P(1 4—1),(1,4(y’, x1), which implies
5(z, w) = (1, 4), contrary to Lemma 2.2 (iv). Hence, 9(x1, y') < L.

Pick a vertex w’ € T'j3(y). Since kj4 = pg”ig’(l’@, one has d(z, w') =
d(w’, x1) = (1,4). The fact that d(x;, y') < [ implies (¢,4) € €U D. By Proposi-
tion 3.8, Cy 4 exists, or C;_1 4 exists and (1, g — 1) is mixed. In view of Lemma 3.3
or3.4,wegetqg = d(x1,y) <9d(z,x) <1+9w',x) =qg+ 1. Thus,l =g + 1.

Suppose that C, 4 exists. Pick a vertex x) € P(13),4,1)(w’, x1). Then a(x, xy) =
(1, —1). By Lemma 3.1, there exists a circuit (xj, x3, ..., x; = x) consisting of arcs
of type (1, g — 1). Since (z, x1, x5, X3, ..., x/) is a shortest path, 3(x1, X)) =(2,0). 1t
follows thaté(xl’_l, 7) = d(x, x1) = (3,1—1). The fact that x € Pi,g-1),.0(X_1,2)
and d(x1, y) <[ imply 5(xé, x1) = (2,1), a contradiction.
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Suppose that C,_1,4 exists and (1,g — 1) is mixed. Since (1,4) is mixed, by
Lemma 3.1, we obtain g > 7. It follows from Lemma 3.4 that there exists a vertex y;
such that 5(w’, y1) = (1,q —2) and d(y1, x) = g — 1. By Proposition 3.8, we have
5,9 — 1) ¢ BUCUD. Theorem 2.1 (i) implies iz, y)=2,)=2,9+1).In
view of w’ € P 4),(1,4—2)(z, y1), there exists a vertex y” € P 4),(1,g—2)(x, 2). By
Lemma 3.1 and Lemma 3.6 (ii), we get (y”, y') = (1, ¢ — 1), contrary to Lemma 2.2
@iv).

By the above discussion, we finish the proof of Proposition 1.3 for the case A.

4.2 The caseB

Let (z = xo, X1, ..., X = x) be a path. For each i, write h; = 9(x;+1, x;) + 1. Note
that h; € {2, q, p}.

Step1 Show that [{i | h; #2, 0<i <l—-1}|>2and |{h; |0 <i <[—-1}|>2.

Suppose that h; = 2 for 0 < j < [ — 2. It follows from Lemma 2.3 that [ = 3
or 4. In view of Lemma 2.2 (i), we obtain ki1 = 2. By Lemma 2.3, é(xo, X2) =
(2,2) and A, is not isomorphic to Cz. If (1, 3) is pure, then there exists a vertex
x} € P(13),(1,3)(x2, x0), a contradiction. Then (1, 3) ¢ 3(I") or (1, 3) is mixed. Since
(g, p) ¢ B, weget{q, p} # {3, 4} from Theorem 2.1 (ii). By Lemma 2.5 (ii), one has
[ =4and5 € {q, p}. Lemma 2.3 and Theorem 2.1 (i) imply 3 (y, x1) = 9(y’, x1) = 2.
Since d(x1,y) < 4 and d(x1,y’) < 4, (1,4) is mixed from Lemma 3.5 (i). By
Theorem 2.1 (ii), (1, 3) is pure, a contradiction. Therefore, the first statement is valid.
The second statement follows from Lemma 2.6 and Theorem 2.1 (iii).

Step 2 Show thatky ;> = 1if |{i | h; = q}| = 2 and (1, g — 1) is mixed.

Without loss of generality, we may assume that h;_» = h;_; = ¢. Note that
d(x7—2, x) = 2. By Theorem 2.1 (ii) and Lemma 2.2 (ii), we have |(F1,q_1)2| = 2and
ki.4—1 = 2. Suppose pg’g:f)) (Lg_1y = 1. It follows from Lemma 2.2 (iii) that there
exists a vertex x;_, € P(1,4-1),(1,¢—1)(X—2, X) such that é(xl’fl, y) = (1, —2). Pick
a vertex x' € P(1,4—2),(1,q—1)(x1—2, y). By Theorem 2.1 (i), one gets d(x’, z) = 2,

contrary to d(z, x’) < [. Hence, pé}’g:f; (lg—1) = 2. In view of Lemma 1.2 (i) and

(v), we obtain ky ;2 = 1.
Step 3 Show that 9(x;_1, z) > 2.

Suppose for the contrary that d(x;—1,z) = 1.
Case 1. (1,] — 1) is mixed.

By Theorem 2.1 (ii), (1,7 — 2) is pure and there exists a vertex xl/f2 such that
d(x] . x1—1) = (1,1 — 1) and d(x/_,,2) = (1, — 2). Observe that [ — 1, €
{2,q, p}. Since (g, p) ¢ B, = 3. From Lemma 2.5 (ii), {g, p} = {3, 4}. Without
loss of generality, we may assume p = 4. By Theorem 2.1 (ii), (1, 3) is pure. In
view of 3(x;_,,y) < 3 and Lemma 3.5 (i), we get d(y, x;_,) = 1. It follows from
Lemma 2.3 and Theorem 2.1 (i) that 3(y, x/_,) = (1,3) and d(x, x;_,) = 2, contrary
to d(x;_,,x) < L.
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Case 2. (1,1 — 1) is pure.
Observe that! € {q, p}.

Case 2.1. hj_1 # 2.

Without loss of generality, we may assume s;_1 = ¢g. By / > 3 and Lemma 2.2
(iv), one has [ = p, which implies &; = p for 0 < j </ — 2. In view of Lemma 2.2
1), k1,p—1 = 2.

We claim that kj ,—1 = 2 and there exists 7 € Pa,p—1),a,p-1 (v, x1) \ {z}.
Lemma 2.4 implies A, ~ Cay(Zzp, {1, p + 1}) or Cay(Z, x Zp,{(1,0), (0, D)}).
Suppose A, =~ Cay(Zyp, {1, p + 1}). Since Cj , does not exist, from Lemma 2.2
(i), we have |(1"1,q_1)2| = 2 and kj 41 = 2. It follows from Lemma 2.4
(i) that the claim is valid. Suppose A, >~ Cay(Z, x Zp,{(1,0), (0, 1)}). Then
[P, p—1),(p—1,1)(x1—1, y)| = 1. Lemma 1.2 (v) and Lemma 2.2 (i) imply ké(xl—lq}’) =
2. By Lemma 1.2 (i), k141 = 2. Since d(x,_1,x1) = (2, p — 2), one has
5(y, x1) # (2, p — 2) from Lemma 2.4 (ii). In view of Lemma 2.2 (iii), the claim is
valid.

By Theorem 2.1 (i), S(x, 7y = (2,1).In view of Lemma 1.2 (i) and Lemma 2.2 (),
one gets Ay 4—1A1,p—1 = 2A2;, which implies that 5(x, xi—1) = (1, g — 1), contrary
tog # 2.

Case 2.2. hj_1 = 2.

Without loss of generality, we may assume [ = ¢. By x;—; # y’ and Lemma 2.2
(i), one gets k1 4—1 = 2. Since z € P(1,4—1),(g—1,1)(x1—1, "), we have Ay, xi_1) =
(2,2) from Lemma 2.2 (iv) and Lemma 2.3. In view of x € P 1),1,p—1)(Xi—1, ¥'),
there exists a vertex x” € P p—1y,1,1)(y', x1—1). Then x” # x and k1,1 = 2. The
fact that 8(.x;_1, y) = (2,2) implies pg”;)_l)’(q_.l’l) = pg”'f;(ll)’q_l)‘ = 0. Sinc?e
(1, — 1) is pure, by Lemma 2.3, Theorem 2.1 (i) and Lemma 3.5 (i), we obtain
A11A1,g—1 = 2A5 4. Hence, y' € P(1.1),(1,4—1)(x”, 2), a contradiction.

Step 4 Show that pglzjﬁ:llg’(l’l) # 0 for some s > 2 if d(x;—1,z) = 2.

Pick a path (x;_, w, z) such that 3 (x;_1, w) = (1, s — 1), d(w,z) = (1,1 —1) and
s > t. By Step 1, we may assume hg = g. If t = 2, then s > 2 since / > 3, and the
desired result holds. Suppose ¢ # 2. Since (¢, p) ¢ CUD, from Lemmas 3.3 and 3.4,
we have t = s or (s, t) € B.

Casel.s =1.
Since d(x;, w) < [, by Theorem 2.1 (i), one hast =g or (t,q) € BUCUD.

Casel.l.7 =gq.
Suppose d(x;—1, y") = (1, g — 1). By Theorem 2.1 (i), h;—; = p. It follows from
Theorem 2.1 (ii) and (iii) that (1, p—1) ismixedand¢ = p—1,contraryto (¢, p) ¢ B.

Since w # y’, by Lemma 2.2 (i), one gets ki,4g—1 =2and pff’éill)) (Lg—1) = 1.
Case 1.1.1. (1, g — 1) is pure.

(2,9-2) _
- (1,g=1),(,g-1) —
Lemma 2.2 (iii), we get d(x;—1,2) = (2,9 — 2), which implies /| = ¢ — 1 and

By Lemma 2.4, one has |(F1,q_1)2| = 2 and p 1. In view of
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d(w, x1) = (2, ¢ — 2). It follows from Theorem 2.1 (ii) that 3(y', x1) = (2, g — 1).
By Lemma 2.2 (iii) again, we obtain pg’;’:i; (lg—1) = 2. Then 5(x, y)y=(,q-1),
a contradiction.

Case 1.1.2. (1, ¢ — 1) is mixed.
By Theorem 2.1 (ii), (1,g — 2) is pure. Since pg’lq__ll)) Hg-1) = 1, one gets

pg’g:f; (g—1) = 2 from Lemma 2.2 (ii) and (iii). In view of Lemma 1.2 (i) and

(v), one has ky ;> = 1. Lemma 2.5 (iii) implies d(x1,2) = (2, qg—1and! =gq.
Pick vertices xl’_2 € Py-1,1),(1,q—2)(x1—1, w) and xi € P1,4-2),(4—1,1(w, z). Note
that 5(xl/_2, x)) # (2,9 —3). By k142 = 1, we obtain | = g = 3. In view of
Lemma 2.5 (ii) and Theorem 2.1 (ii), we get p = 4, which implies that (1, 3) is
pure. Since d(x1_1,2) = (2,2), there exists a vertex x’ € P(1.3),(1,3)(z, x;—1). Then
(x;—1, w, z, x’) is a circuit containing arcs of types (1, 2) and (1, 3), a contradiction.

Case 1.2. (t,q) e Bandt =¢q — 1.

Note that ¢ > 3. Theorem 2.1 (ii) implies that (1,q¢ — 2) is pure. Since g —
1 ¢ {2,q, p}, we have 5(x1,1, z) # (2,9 — 3). In view of Lemma 2.2 (ii), we get
|(F1,q_2)2| =2 and ky 42 = 2, which imply PE?,’Z:g,a,q—z) = 1 from Lemma 2.4.

By Lemma 2.2 (iii), we obtain pg’z__% (lg-2) = 2. In view of Lemma 1.2 (i) and (v),

one gets ky j—1 = 1.

Since k1,q—> = 2and (g, p) ¢ D,by Lemma 3.1, we have (¢ — 1, p) ¢ BUCUD.
It follows from o (w, x;—2) < [ and Theorem 2.1 (i) that h;_» # p. Hence, h; # p
for0 <i <1 —2.1Inview of Step 2, we get |{j | h; = q}| < 2. By Step 1, one has
hi—1 = p.

Since d(x1,x) <land (g — 1, p) ¢ BUCUD, we have 3(y’, x1) # (1,q — 2)

from Theorem 2.1 (i). In view of Theorem 2.1 (ii), we get pgll ’Zj;-(l- g—1) = 0, which

implies |(F1,q_1)2| = 2 and k41 = 2 from Lemma 2.2 (ii). Since k; 42 = 2, by
Lemma 1.2 (i) and (v), we get pgijg:%;’(l’q_l) = 1. It follows from Lemma 2.2 (iii)
that there exists a vertex 7 € P(l,q_l),(lﬁq_l)(y/, x1) \ {z}. In view of Theorem 2.1 (i),
we obtain 7' € I'p;(x) and Iy p-1T1,g—1 = {T'2,4}. Since x € P p—1),2,))(Xi-1,2)
and kp ;1 = 1, we obtain kj 1 = 2 from Lemma 1.2 (i) and Lemma 2.2 (i).
Henc~e, PE12:271),(1,(171) = 2 and there exists a vertex y” € P(1,p—1),(1,¢—1)(x, 2) such
that 9(y”, x1) = (1, ¢ — 2). By Theorem 2.1 (i), one has d(x, x;) = 2, contrary to
d(xy, x) <.
Case13.(t,q) e Bandt =¢q + 1.

Since (1, g) is mixed, (1, — 1) is pure and pg:g;(ll)’q) # 0 from Theorem 2.1
(ii). By d(x/—1,z) = 2 and Lemma 2.2 (i), we have |(T'; ;)| = 2 and k1, =
2. 1If p(z’l_l) = 2, then there exists a vertex w' € P(1,¢),(1,q)(Xi—1, z) such that

(1.9).(1,9)
3 . 2,1—1 1,q—1
oy, w) = (1, q); if pfl’q)’()l’q) = 1, by Lemma 2.2 (iii), then pELZ),(l),q) = 2 and

5(y/, w) = (1, g). Without loss of generality, we may assume 5()/, w) = (1, q).

By Theorem 2.1 (i), we have d(x, w) = 2. Since k1 , = 2 and C, , does not exist,
we obtain (¢ + 1, p) ¢ B U C U D from Lemma 3.1. It follows that [ < d(w, x) <
d(w, x;—1)+1 = g—+1.Inview of Lemma 2.5 (i), one gets [ — 1 = d(z, x;—1) > g — 1.
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Then d(w, x) = [. Since x € P 2) 2.)(w, z), by Lemma 2.2 (iv), one has ¢ = 1, a
contradiction.

Case 14. (t,q) e CUD.

Suppose that (1, # —1) is pure. By Lemma 3.1, k1 ;—1 = 1 or A; > Cay(Zy, {1, t+
1}), which implies 5(x1_1, z) = (2,t — 2). Hence, t = p, a contradiction.

Suppose that (1, ¢ — 1) is mixed. It follows from Lemma 3.1 that ky ;-1 = 1 or
Ci—1,4exists. Ifky ;1 = 1,by Theorem 2.1 (ii), then d (x;—1, z) = 1,acontradiction; if
C; 1,4 exists, by Lemma 3.1 and Lemma 3.6 (ii), then d(x;—1, z) = 1, a contradiction.

Case 2. (s, 1) € B.
Note that (1, s — 1) is mixed and s = ¢ + 1. By Theorem 2.1 (ii), (1, # — 1) is pure.
Since d(x1, w) < [, from Theorem 2.1 (i), one has t = g or (t,q) € BUCUD.

Case2.1.t =gq.
Note thats =g + land/ — 1 = 9(z,x;—1) = g — 1. Since (1, g) is mixed, by

Theorem 2.1 (ii), one has pg’g)_(ll) 2 # 0.Pickavertex x;_, € Pg,1),(1,g—1)(X1—1, w).

The factthatg + 1 ¢ {2, g, p} implies 5(x1/72, 7) # (2,g—2). By Lemma 2.2 (ii), we

get |(F17q_1)2| =2and ky 41 = 2. In view of Lemma 2.4, we get pg’;’if; (lg—1) =

1. Since 5()(1/_2, 7) # (2, q —2), we obtain 5(}5;_2, y) = (1,q — 1) from Lemma 2.2
(iii).

Note that PS:Z)_,(Il),q) # 0 and kj 4—; = 2. By Lemma 1.2 (i) and Lemma 2.2
(i), we obtain kj, = 2. Since C, , does not exist, (g + 1,p) ¢ BUCUD
from Lemma 3.1. Since x € P(l,h,,l—l),(l,p—l)(xl—l,y/), there exists a vertex
x" € Pa,p—1),(1,h_—1)(x1—1, ¥"). Inview of Theorem 2.1 (i), we have 3 (x;_,, x") = 2.
Since g <land! <d(x",x;_,) < 1+3(y, x/_,) =g, we get 5(xl/72, x)=(@2,10).

Suppose w = y’. Since x € Pap_—1,a,p-n(x—1,w) and p # g + 1, by
Theorem 2.1 (i), we have h;_; = p. Theorem 2.1 (ii) and (iii) imply that (1, g) is
pure, a contradiction. Suppose w # y’. By pg:é)—l),(l,p—l) # 0and p > 2, we get
w € P(l,q—l),(l,p—l)(xl/fzi x").Since x’ € P, p-1),(p—1,1(x1-1, w), from Lemma 2.2
(iv), we obtain g = 1, a contradiction.

Case 2.2. (t,q) € B.
Note that t = ¢ — 1 and s = ¢g. By Theorem 2.1 (ii), pgg:fg (Lg—1) # 0 and
(1, g — 2) is pure. Lemma 2.2 (i) implies ky 4> = 1 or 2. '

Case2.2.1.ky g2 = 1.

Since d(z, xj—1) > q -2,1> q— 1. Pick a vertex xl/72 € P(qfl’l)’(hq,z)(xl_l, w).
The fact that (1, g — 2) is pure implies that 5()51/72’ 72)=2,g—-3)andl =qg — 1,
contrary tog — 1 ¢ {2, q, p}.

Case 2.2.2.ky g2 =2.

Since d(w, x;—2) < I, one gets h;_» # p from Theorem 2.1 (i). Then ; # p for
0 <j <I1-2.Step2implies |{i | h; = q}| < 2. It follows from Step 1 thath;_; = p
andhj =2forl <j<Il-2.

Since (¢, p) ¢ D and (1, g — 2) is pure, by Lemma 3.1, one has (¢ — 1, p) ¢
BUCUD. In view of w € P 4-1),(1,g—2)(x1—1, 2), there exists a vertex w' €
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P(1,4-2),(,g-1(x1—1, 2). It follows from Theorem 2.1 (iii) that w’ # y'. Observe
d(x1,x) < I. Theorem 2.1 (i) and Lemma 2.2 (i) imply B(y x1) # (1,g —2) and
8(w x1) = (1, q 2). Since (1, g —2) is pure, by Lemma 2.3, we have a(xl 1,X1) =
2,2) and [ = = 4. In view of d(x, w') < 2 and Lemma 3.5 (i), we obtain
a(w’, xp) = 1. Then (x2, x3, w’) is a circuit containing arcs of types (1, 1) and (1, 2),
a contradiction.

Case 2.3. (t,q) € CUD.

Observethat (1, r—1) ispureand (1, ¢) ismixed. By Lemma 3.1, wehave k) ;1 = 1
or A, = Cay(Zy. {1.1 + 1}). It follows from Theorem 2.1 (ii) that p(;'}; | ,) # 0.
Pick a vertex xl/_z € Pu.1y,a1,i—1)(xj—1, w). In view of k1 ;1 = 1 or Lemma 2.4 (i),
one gets 5(xl’_2, z) = (2,t—2).Notethat — 1 = 9(z,x;—1) >t — 1. Hence, [ =1t.
Since (1,1 — 1) is pure, we obtain t = p, contrary to (g, p) ¢ CUD.

We complete the proof of Step 4.

Step 5 Show that (1, s — 1) is pure if 9 (x;—1, 2) = 2.

Suppose for the contrary that (1, s — 1) is mixed. Theorem 2.1 (ii) implies that
PS,’;V:%;,UJ—]) # 0 and (1, s — 2) is pure. Pick vertices w € P 5—1),(1,1)(Xi-1, 2)

and x;_, € P(s_1,1),(1,5—2) (11, w).

Casel.s > 3.

By Lemma 2.5 (ii), we have d(z, x;—1) # s — 2. Since (g, p) ¢ B, one gets
{s — 1,5} # {q, p}. It follows from Lemma 3.5 (ii) that dx_1,2) = (2,5 — 1)
and / = s. Since (1, s — 2) is pure, by Lemma 2.3 and Theorem 2.1 (i), we obtain
d(x/_,,z) = 2. From Lemma 3.5 (i), we obtain é(xl’_z, z) = (2,5 — 1). Since z €
P2,s—1),(s-1,2)(X]_5, X1—1), by Lemma 2.2 (iv), one has s = 2, a contradiction.

Case 2. s = 3.

Note that [ < 4 and xl’_2 # z. Lemma 2.2 (i) implies ky,; = 2. Without loss of
generality, we may assume p # 3. By Lemma 2.5 (ii) and Theorem 2.1 (ii), we have
p=4orS5.

Suppose p = 4. Theorem 2.1 (ii) implies that (1, 3) is pure. If 5(’51/72’ z) = (2,2),
by p(1 3) a. 3) # 0, then there exists a vertex w’ € P(1,3),(1,3)(xl’_2, z), which implies
that (xl_z, w’, z, w) is a circuit containing arcs of types (1, 1) and (1, 3), a contradic-
tion. It follows from Lemma 2.3 that 5(xl’_2, z) = (1,1). Since d(x,_,, y) < 3, by
Theorem 2.1 (i) and Lemma 3.5 (i), we get d(y, x[_5) = (1,3). Then d(x, x;_,) =2,
contrary to [ > 3.

Suppose p = 5. By Lemma 2.5 (ii) and Theorem 2.1 (ii), one has [ = 4. Since
d(w, x) < 3, weobtain d(y, w) = 2 from Lemma 2.3 and Theorem 2.1 (i). In view of
d(w, y) <4 and Lemma 3.5 (i), (1, 4) is mixed. It follows from Theorem 2.1 (ii) that
(1, 3) is pure. By Lemma 2.3, we get S(xl’_Z, z) = (2, 2), which implies that there
exists a vertex w' € Py 3),(1,3)(x]_,, 2). Hence, (x;_,, w’, z, w) is a circuit containing
arcs of types (1, 1) and (1, 3), a contradiction.

Step 6 Show that {h;_y, s} = {q. p}if 0(x;—1,2) = 2.
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By Step 5, (1, s — 1) is pure. From Step 4 and Lemma 3.5 (i), we get Axi_1,2) =
(2,s)and! = s+ 1, whichimply s € {g, p}. Picka vertex w € P s—1),(1,1)(xi—-1, 2).
Without loss of generality, we may assume s = q.

Suppose h;—1 = 2. Observe that é(xl_l,z) =(2,9) = (2,1l —1). By Lemma 2.3
and Theorem 2.1 (i), we get d(x;—1, y) = 2. In view of Lemma 3.5 (i), one has
d(x_1, y) = (2,¢q). It follows from Lemma 2.2 (iv) that p = 2, a contradiction.
Hence, h;—1 € {q, p}.

Suppose ;1 = s.Since! > 3,one getsw # x and ky 41 = 2 fromLemma 2.2 (i).
By Lemma 2.2 (iv) and x;—1 € Py—1,1),(1,g—1)(x, w), we have d(x, w) = d(w, x).
In view of z € P 1y 1,1)(x, w), there exists 7 e Pa,1),e,n(w, x). Since | > 3,
we get 77 # z and kj; = 2. By d(w,x) # (1, 1), we obtain pE]I”;)q)’(qf],l) =
pEll:Z:})),(l,l) = 0. In view of Lemma 2.3, Theorem 2.1 (i) and Lemma 3.5 (i), one
ljas [ 4-1T1,1 = {I'2,4). Since Pg,’;j)—l),(l,l) = 2 from Lemma 1.2 (i), one obtains
d(x, z) = (1, 1), a contradiction. Thus, h;—; = p.

J=1) 3,[-1)

Step7 Fora.b € {2, q. p}anda < b,showthat p(}', "}, ;) # 0if pii7—) ) = 0.
Without loss of generality, we may assume b = ¢g. We claim that h; = ¢ for
somei € {0, 1,...,] — 1}. Assume the contrary, namely %; # g for each i. Suppose

a = 2. By Step 1, we may assume h;—; = 2. It follows from Steps 3, 4 and 6 that
A(x_1,2) = (3, 1—1), contrary to pﬁf}%” = 0. Supposea = p. By Step 1, we may
assume h;_» = hj_1 = p.Itfollows from Steps 3,4 and 6 that 9 (x;_1, z) = 2 and there
exists a vertex w € P14-1),(1,1)(x1-1, 2). Theorem 2.1 (i) implies d(x;—2, w) = 2,
contrary to d(w, x;—2) < [. So our claim is valid.

Without loss of generality, we may assume h;_1 = gq. It suffices to show that
a(x;—1,2) =3.

Suppose d(x;—1,z) = 2. It follows from Steps 4-6 that (1, p — 1) is pure
and there exists a vertex w’ € P11, p—1(xi-1,z). By Lemma 3.5 (i), we have
dx—1,2) = (2, p)and [ = p + 1. Let (yo = 2z, y1,...,yi—2 = w') be a path
consisting of arcs of type (1, p — 1). Since x;—1 € P1,1),(1,4—1)(w’, x), there exists
xl/fl [S P(]iqfl))(])l)(w/, x). Note that (z = yo, y1,..., YI-2, xl/fl’ x) is a shortest
path. Then 5(y1_3,xl’71) = (2,1). Hence, d(x, y;) = 5(x1/71, z) = (3,1 — 1), con-
trary to a € {2, p}. By Step 3, we obtain d(x;_1, z) = 3, as desired.

Based on the above discussion, we consider two cases, and reach a contradiction,
respectively.

(B,I-1)
Case 1. Pa.L1 # 0.

Pick a vertex y; € P3,—1),(1,1)(x, z). By Step 7, we may assume pg,’é_—ll)),(z,l) # 0.
Then there exist vertices 2’ € Py (1,¢q—1)(x, y1) and y] € P p—1),(1,q—1(x, 2).
It follows from Lemma 2.2 (i) that kp; = 2. Observe that x € Py 2) 2.1)(z, ).
By Lemma 2.2 (iv) and Lemma 2.3, we get 3(z',z) = (2,2). Lemma 2.5 (ii) and
Theorem 2.1 (ii) imply g = 3.

By d(z. 2) = (2.2) and Lemma 3.5 (i), (1, 2) is mixed, which implies p{;';) | 5, #
0 from Theorem 2.1 (ii). Since d(y}, y1) = 2,by Lemma 2.2 (ii), we have |(T12)% =2
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and k12 = 2. In view off)(z, N =(2,2), pgll g 12 = = 1. It follows from Lemma 2.2
(iii) that there exists a vertex z” € P(1,2),(1,2)(¥}, y1) \ {}. In view of Theorem 2.1
(i), we get 2”7 € 'y 1 (x). Since kp; = 2, we obtain z” = z, a contradiction.

3,1—1
Case 2. szz) 1)1 =0.

We claim that any shortest path from z to x does not contain an edge. Suppose for the
contrary that #;—1 = 2. It follows from Steps 3, 4 and 6 that d(x;—1, z) = 3, contrary
to pg f) (11) = = 0. Thus, the claim is valid. By Step 7, we have pg’f]__ll)) @0 # 0 and

pg ; 11)) (2 ) # 0.Pickavertex y;—1 € Pg—1,1),3,/—1)(x, z). It follows that there exist

vertices x' € P(1,p—1),2,) V=1, 2) and y” € P p_1),(1,9-1)(x", 2). By Lemma 2.2
(1), k2, = 2. In view of Lemma 1.2 (i), one obtains k1 41 =2 orky 1 = 2.

Case2.1. ky g1 =2and ky p—1 = 2.

In view of the claim and Step 1, there exists a vertex z| suchthatd(z, z1) = (1, p—1)
andd(zy, yi—1) = [—2.By Theorem 2.1 (i), if y' = y”,thenx, x" € I 2(2);ify’ # y”,
then y’, y” € I';2(z1). In view of Lemma 1.2 (i), we have Ay 1A p—1 = 242,
which implies d(x’, y) = (1, ¢ — 1). Thus, d(y;—1, y) = (2, ) and d(x, y) = (1, p —
1), a contradiction.

Case 2.2. k]’q,1 =1lor k]ypfl =1.
Without loss of generality, we may assume ki 4—1 = 1. Then y’ = y” and
ki,p—1 = 2. It follows from Theorem 2.1 (i) that 5(yl,1, y) = (2,1). In view
2.1 .
of x" € P, p—1).(1,p—1)(Yi—1,Y"), one g.ets pglyp)_l)’(l’p_l) = 1 and there.ex1sts
a vertex yo € Pu,p—1),(1,p-1)(x,z). Since k; = 2, by Lemma 1.2 (i) and
Lemma 2.2 (ii), we have |(F1)p,1)2| = 2. In view of Theorem 2.1 (i), we get
= . 2.1 .
Yo € T2(yi—1). Then d(x’, yo) # (1, p — 1). Since pE]’p)fl)’(Lpfl) = 1, we obtain
y € Pap-1.a.p-n&',2) and d(yi—1,y) # (2,0). By d(yi-1,y) = 2 and Theo-
rem 2.1 (ii), (1, p — 1) is pure, which implies/ > p —2. Then d(y;—1, y) = (2, p—2),

contrary to x € P(l,qfl),(l,qfl)(ylfl ,Y).
Thus, we finish the proof of Proposition 1.3 for the case B.

5 Subdigraphs

In this section, we focus on the existence of some special subdigraphs of commutative
quasi-thin weakly distance-regular digraphs.

Let F be a nonempty subset of R and x € VI'. Set F(x) :={y e VI' | (x,y) €
Urer f}, and Fy, 4, ... (x) is a collection of vertices y satisfying each arc in one of
the paths from x to y isof type (1, g1 — 1), (1, g2 —1), ..., (1, g1 — 1) or (1, g; — 1).
If s cF for any Iz, I‘]v € F, we say that F is closed. Let (F) be the minimum
closed subset containing F'. We write (I'1 4 1) instead of ({I'{ 4—1}).

Proposition 5.1 If C, j, exists, then A, ~ Cay(Zy x Z4,{(1,0), (0, 1), (1, 2)}) for
q > 2andq # h.

Proof For fixed x € VI, by Lemma 3.1, there exists an isomorphism t from
Cay(Zzq, {1,q + 1}) to Ay(x). Write t(a) = (a,0) for each a € Zy,. Suppose
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that there exists a vertex (s, 0) € I'1 ,—1(0, 0). From Lemma 2.4 (i), we have s = q.
Since (1,0) € Pq,4-1),4-1,1)((0,0), (g,0)) , by Lemma 2.2 (iv), we get h = 2,
contrary to 2 > 3. Hence, I'y,—1 ¢ (I'1 4—1). In view of Lemma 3.1, one obtains
ki,n—1 = L. Since Cy  exists, VA, ;(x) has a partition Fq(x)OFq(x’). It follows
that o : F;(x) — F,(x’), y +— ' is an isomorphism from A, (x) to A, (x"),
where y' € T’y p—1(y). Write o (a,0) = (a, 1) for each a. Since Cy j exists again,
((a, 1), (@a+q,0)) € I't ,—1. The desired result holds. O

Proposition5.2 Let ¢ > 3. If ki y—1 = 2 and (1,q — 1) is pure, then A, ~
Cay(Zoy, {1,q + 1}).

Proof Suppose not. By Lemma 2.4, there exists an isomorphism 7 from Cay(Z, x
Z({) {(17 0)7 (0’ 1)}) to Al]'

By Lemma 3.1 and Proposition 1.3, Cfl, C5 or C6 holds, which implies that
Kc{l,1),(,qg—-1),0,9)}If(1,q) € a(I'), then (1, g) is mixed, which implies

pEi:Z;(ll)’q) # 0and k1 ; =2 by Lemma 1.2 (i), Lemma 2.2 (i) and Theorem 2.1 (ii).

Step 1 Show that 'y ,_1T'y1 = {Ta2,}if (1, 1) € 3(T").

Suppose pgi:;)_l)’(q_l’l) +# 0. Note that dr (t(a, b), T(@+ 1,b — 1)) = (1, 1). By
Lemma 2.2 (i), k1,1 = 2. Observe that 7(1,0) € Pq,1),(1,g—1)(t(0, 1), 7(2,0)) and
(t(0,1),7(2,0)) ¢ I'1 4—1 UI'y1. In view of Theorem 2.1 (i) and Lemma 3.5 (i), we
get (t(0, 1), 7(2,0)) € I'p 4, contrary to the fact that (7(2,0), 7(3,0),...,7(0,0),
7(0, 1)) is a path of length ¢ — 1. Thus, pE}:;)_l)’(q_L]) = 0. It follows that
Fig-1Cr = {24}

Step2 Show that 'y ,T'y ; = {T2,, 1} if (1, 1), (1, ¢) € 3().

Let x, y, z, w be vertices such that 5(x, y) = (,q), 5(y, z) = (1,1) and w €
Py 1),(1,g—1)(x,y). By Step 1, 5(w, 7) = (2,q). Since ky 41 = 2, from Lemma 1.2
(i) and Lemma 2.2 (i), we obtain k2 ; = 2. Suppose d(x, z) = 1.In view of Lemma 2.3
and Theorem 2.1 (i), one has 9(x, z) = (1, q). Note that x € P(q 4),(1,9)(w, z) and

l,g—1 .. .
p((lsg),(l),q) # 0. By Lemma 2.2 (ii), we g,:let (1“1;,,])2 ={I'1,4g-1,T24}. Since k1 4 = 2,
q—

from Lemma 1.2 (i) and (v), we obtain Pllgg = 1. In view of Lemma 2.2 (iii), we
have pg’Z; g = 2, which implies k> , = 1, a contradiction. Then d(x, z) = 2. Since

5(w, 7) = (2,¢q), by Lemma 2.2 (iv), we have d(z, x) # ¢. In view of Lemma 2.5
(i), 3(z,x) = ¢ + 1. Thus, ' Ty 1 = {T'2 441}

Step3 Show that (A1 4-1)> = Az g2 + 24224

In view of Lemma 2.4 (ii) and Theorem 2.1 (ii), we have (A1,q,1)2 =Ay42+
pg”;)il)‘(lyqfl)Az,t with ¢t # g —2. By Lemma 2.2 (iii), one gets pglz:;)il)’(l’qil) =2,
which implies k>, = 1 from Lemma 1.2 (i) and (v). Let x, y, y’, z be vertices such
that 9(x, z) = (2, ) and P(l,q—l),(l,q—l)(xy z7) = {y, y/}.

We claim that d(x, x1) = 3 for any path (z = xo, x1, ..., X = x). Assume the
contrary, namely d(x, x;) = 1 or 2.
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Case 1. 9(x, x;) = 1. N y

Since x; ¢ {y,y’}, we have 9(x,x;) = (1, 1) or (1,q). If 3(x, x;) = (1 1) by
Stepl,thené(xl,y) (2, q),contrarytog > 2; 1f3(x x1) = (1,9), byp(l o, (lq) *
0, then y or y’ € I'1 4(x1), which implies that (y, z, x1) or (', z, x1) is a circuit,
contrary to g > 2.

Case 2. 9(x, x1) = 2.

Pick a vertex w € Py s—1).(1.1—1)(x, x1). Suppose A = g. Then w € {y, y’}. Since
(1,g — 1) is pure, d(w, x1) # (1, 1). In view of Theorem 2.1 (i) and (ii), we have
5(1, x1)=(,1),and yory e [y—1,1(x1), which imply p((}:;]:}g’(l’l) # 0, contrary
to Step 1. Thus, h # g and [ # q.

Suppose h = [ = 2. Lemma 2.2 (i) implies k1,1 = 2. By Step 1, y, y' € T2 4 (w).

It follows from Lemma 1.2 (i) that pg’f))(l gon = 2and y,y" € Tig1(x).

Since (1,4 — 1) is pure, we get ¢ = 3 and é(z,xl) = (1,2). Observe that

2,1
v, ¥ € Pu.2),1,2(x1, 2), contrary to pELZ;,(l,Z) =1.

Suppose h = g+ 1orl =qg+1.By pg’g)_(ll)q) # 0, we may assume thath = g +1

and 9 (w, y) = (1, g). Since 9(y, x1) < 2,one gets/ = g + 1 from Step 2. In view of
d(x,x1) = (2,1 — 1) and Lemma 2.2 (ii), one has (I'; q) = {I'1,4g—1,T"2,,—1}. Since
ki,q—1 = 2, by Lemma 1.2 (i) and (v), we obtain pgl Z) (11) o = 1. By Lemma 2.2

(iii), we get pg:;;})lyq) = 2, which implies k>, 1 = 1. Since k1 41 = k14 = 2

and kp; = 1, from Lemma 1.2 (i), one has 5(z,x1) = (1, 1). In view of Step 1,
5(y, x1) = (2,q). Since w € Py 1),(1,4)(y, X1), from Lemma 2.2 (iv), we get ¢ = 2,
a contradiction.

Thus, our claim is valid.

Suppose that the path (xo, x1, ..., x;) contains arcs of different types. Without loss
of generality, we may assume a(z, x1) = (1,u — 1) and 3(x1, x2) = (1, v — 1) with
u # v. Pick a vertex xl € Pav—1),(1,u—1)(z, x2). By the claim, we get 8(x X1) =
5(x, x{) = (3,t — 1). It follows from Lemma 1.2 (iv) that k» ; > 2, a contradiction.
Then the path (xq, x1, . .., x;) consists of arcs of the same type.

Suppose 5(x,', Xi+1) = (1, 1) for0 <i <t — 1. By Lemma 2.3, t = 2. In view
of Step 1, we get 5(y, x1) = (2, g). Since (x1,xo = x, y)isapath,onehasg < 2,a
contradiction.

Suppose 5(xi,x,-+1) = (l,q) for0 <i <t — 1. Then d(z, x2) = 2. In view of
pg Z) (11) 2 # 0 and Lemma 2.5 (i), we have d(x3, z) > g — 1, which implies ¢ > 3.

(Lg=1) 4
1.¢).(1,q)
by Lemma 1.2 (i) and (v). In view of Lemma 2.2 (iii), there exists a vertex x| €

P(1.4),(1,q)(z, x2) such that 5(xi’, x3) = (1,q — 1), a contradiction.

Hence, 3(x;, xi+1) = (1,g — 1) for 0 < i < ¢ — 1. Since A, =~ Cay(Z, x
Zg,{(1,0), (0, )}), we have t = 2q — 2.

In the following, we reach a contradiction based on the above discussion.

Since k1 4—1 = 2 and |(1"1,q)2| = 2 from Lemma 2.2 (ii), one gets p
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Suppose ¢ > 3. Note that ar(t@a,b), t(a+1,b+1)) = (2, 2g — 2). Since

(r(1, 1), 72, 1), @3, 1), ..., (=1, 1), 7(0, 1), 7(0, 2), ..., (0, 0)),
(r(1,1),7(2,1),7(2,2),...,1(2,-1),1(2,0),7(3,0),...,7(0,0))

are two shortest paths, we get 7(3,1),7(2,2) € I'424-4(7(0,0)). But 7(1,1) €
P2.2g-2),2,4—2)(1(0,0), (3, 1)) and P2,24-2),(2,4-2)(t(0,0), T(2,2)) = §, a con-
tradiction. In the following, we consider ¢ = 3.

Case 1. (1,1) € 3(I"). )

By Step3 and Lemma 1.2 (i), we have k2 4 = 1. From Step 2, one gets (1, 3) ¢ o(I').
Since the valency of I" is more than 3, by Lemma 2.2 (i), one has k1,1 = 2.Letx, y, z, 4
be distinct vertices such that d(x, y) = (1,2) and d(y,z) = 9(y, Z) = (1,1). By
Step 1, we obtain z, 7’ € 'z 3(x). In view of Lemma 1.2 (i), one has p(1 ;) an = =2,
which implies that there exists a vertex y’ such that dx,y)=(1,2)and d(y', z) =
9(y’,z") = (1, 1) with y' # y. Hence, (y, z, y’, z’) is an undirected circuit of length
4. By Lemma 2.3, we get é(y, y) = (2,2) and p((%lz)) an = 2. From Lemma 1.2 (i)
and (v), k22 = 1. Since x € P.1),(1,2(y, y'), we have Pg,’lz)),(l,z) = 2, contrary to
Az >~ Cay(Zs x Z3,{(1,0), (0, D}).

Case2. (1,1) ¢ (). _

Note that (1,3) € 9(I'). Pick a vertex w € P(13),(1,3)((0,0), 7(0, 1)). By

Lemma 2.2 (ii), we have |(F1,3)2| =1lor?2.

Case 2.1. [(I' 3)?| = 1.

Since k12 = 2, by Lemma 1.2 (i), we have p&’g’(m) =2 and or(w, 7(1,0)) =
(1,3). Pick a vertex x’ € P 3),1,3(7(0,0), 7(1,0)) with x’ # w. Observe
x' € P(1.3),(1,3)(z(0,0), £(0, 1)). Since w,x € P3.1y,01,3(z(0, 1), z(1,0)), from
Lemma 1.2 (i) and (v), we obtain kép(r(o,l),r(l,O)) = 1 and [P(,2),2,1)(t(0, 1),
7(1,0))| = 2, contrary to A3 >~ Cay(Z3 x Z3, {(1, 0), (0, 1)}).

Case 2.2. |(I'1 3)?| = 2.

Since |(F1,3)2| =2, (w,t(1,0)) ¢ I'1 3. 1t follows that P(l,z),(lg)(w, t(1,1)) =
{r(0, 1)}. By Lemma 1.2 (i) and Lemma 2.2 (i),(ii), we have |I'; "1 3| = 2. In view
of Theorem 2.1 (i), one obtains 5r(w, 7(0,2)) = (2,2) and or(w, (1, 1)) = 2. By
Step 3, we get pg:;‘;’(m) = 2. Hence, or(z(1,1), w) =3 or 5.

Case 2.2.1. o (z(1, 1), w) = 3.

Pick a path (zr(1,1), z1, z2, w). Suppose that (z2, w) € I';3. The fact that
or(t(1,1),7(0,0)) = 4 implies zo # t(0,0). Since |(F1,3)2| = 2, from Theo-
rem 2.1 (iii) and Lemma 2.5 (i), we get (z2, 7(0, 1)) € I'2 3, which implies Iy, 3)2 =
{I"1,2, I'2.3}. Since k1 » = 2, by Lemma 1.2 (i) and (v), we obtain p(1 3) 13 = =1.In
view of Lemma 2.2 (iii), one has p(1’3;’(1’3) = 2 and Br (r(0, 1), (1, 1)) =(1,3),a
contradiction.

Observe that the path (t(1, 1), z1, z2, w) consists of arcs of type (1,2). Since
(0, 1), t(1,2)), (r(1,1),7(2,2)) € I'24, we have z; = (2, 1) and 2o = 7(0, 1),
a contradiction.
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Case 2.2.2. or(t(1, 1), w) = 5.

By ar(w, (0, 2)) = (2,2) and Lemma 2.2 (ii), I'1 21,3 = {I'2,2, ['2;5}. Then
7(2,0) € Po.1y,2,5(t(0,0), w). Since (z(1, 1), 7(1, 2), 7(2, 2), (2, 0), 7(0,0), w)
and (t(1,1),7(2,1),7t(2,2),71(2,0),7(0,0), w) are two shortest paths, 51~ (w,
7(1,2)) = ar(w, t(2, 1)) = (3, 4). It follows from Step 3 and Lemma 1.2 (i) that
k2,4 = 1. Since ‘L'(O, 1) € P(1,3),(2,4)(w, (1, 2)), we obtain (w, ‘1,'(1,0)) [S F1,3,
contrary to |(I"}3)?| = 2.

This completes the proof of the proposition. O

Proposition 5.3 Letq > 2, k1 41 = 2 and (1, g — 1) be pure. The following hold:

() If (1, q) is mixed, then Ay 411 ~ Cay(Zag, {1,2,2q + 1,2q + 2}).
(i) Ifki1 = 2, then Ay, ~ Cay(Zy, x Za, {(1,0), (1,2), (0, 1), (0, 3)}) for g # 4.

Proof Assume that [ = ¢ + 1 and (1,¢) is mixed, or / = 2 and k1; = 2. In
view of Theorem 2.1 (ii), Lemma 1.2 (i) and Lemma 2.2 (i), we have kj ;—; = 2.
By Proposition 5.2, there exists an isomorphism 7 from Cay(Zy,, {1,q + 1}) to
Ay (x) for fixed x € VI. Write 7(a) = (a,0) for any a. Suppose that there
exists a vertex (s,0) € I'1;—-1(0,0). By Lemma 2.4 (i), we have s = ¢. Since
(1,0),(g + 1,0) € Pi,4-1),4-1,1»((0,0), (g,0)), from Lemma 2.2 (iv), one gets
[ = 2.In view of Lemma 1.2 (i) and (v), we obtain k1,1 = 1, a contradiction. Hence,
Cri—1 ¢ (Tig-1)

If/ =g + 1, by Lemma 3.6 (ii), then (Al)q)2 =2A14-1;ifl =2, by Lemma 3.6
(1) and Lemma 1.2 (i), then Ay 4-1A11 = 2A3,. Then VA; 4(x) has a partition
Fy, (x)UFq (x). Let o be an isomorphism from A, (x) to A, (x") such that 0(0,0) €
I'1;-1(0, 0). Write o (a, 0) = (a, 1) for each a. Suppose [ = g + 1. Since (Al,q)2 =
2A1,4-1, we have (a,1),(a +¢q,1) € I'1y4(a,0) and (@ + 1,0), (@ +qg + 1,0) €
I'1,4(a, 1), which imply that (i) holds. Suppose / = 2. Since Aj 4_1A1,1 = 2A3 4, 0ne
gets (a, 1), (a+q, 1) € I'11(a, 0).1f¢ = 4,by Lemma?2.3, then (4, 0), (2, 0), (6,0) €
I'2.2(0, 0) since (1, 3) is pure, contrary to Lemma 2.2 (i). Thus, (ii) holds. O

Proposition 5.4 Suppose that C6 holds. If ki1 = 2 and kyy—1 = 1, then I'1 4 ¢
{T1,1, Tig—1}) and Ag g = Cay(Zg x Zy,{(1,0), (0, 1), (0, =D} withn < g —
(14 (=D7)/2.

Proof Since (1, ¢) is mixed, from Theorem 2.1 (ii), (1, ¢ — 1) is pure. By Lemma 2.3,
we get I'y g1 & (I'1,1). For fixed xg € VI', V Az 4(x0) has a partition L'J:.":_Ol Fr(x;)
with m > 1. Let  be an isomorphism from Cay(Z,, {1,n — 1}) to Az(xp). Write
7(a) = (0, a)foreacha.Sincek; ;1 = 1,0 : Fa(x;) — Fa(xj11),yj = yjt1isan
isomorphism from Aj(x;) to Az(xj41), where yj 11 € I'1 y—1(y;) for0 < j <m—2.
Write 0(j,a) = (j + 1, a).

Assume that (s, t) € I'; g1 (m — 1, 0). Since k1 41 = 1, we have s = 0. It follows
from Lemma 1.2 (i) and Lemma 2.3 thatt = 0, or 2 | n and r = n/2.

Suppose 2 | n and t = n/2. Since (1,q — 1) is pure and kj 41 = 1, from
Lemma 1.2 (i), we get ar (0, 0), (0, n/2)) = (m, g —m), which implies ¢ = 2m from
Lemma 2.3. Hence, ¢ < nand (0,0) € I'y y1(m — 1,n/2). Since {i | (1,i — 1) €
(M} = {2,q,q + 1}, one has (0, m), (0, —m) € om0, 0). Since k. m < 2 by
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Lemma 2.2 (i), we obtain m = n/2 and n = ¢. Hence, ((0, 0), (1,0), ..., (m —
1,0), (0,n/2),(0,n/2 — 1),...,(0, 1)) is a circuit of length g containing arcs of
types (1, 1) and (1, ¢ — 1), contrary to the fact that (1, g — 1) is pure. Then t = 0 and
m = q.Since (1,g — 1) is pure and k1 ;1 = 1, one has ((m — 1, a), (0, a)) € I'1 41
for each a. Thus, Ay ;, ~ Cay(Z, x Zy, {(1,0), (0, 1), (0, =D}.

Since (1, g) is mixed, we have PE}:Z)_,(Il),q) = k1,4 from Theorem 2.1 (ii) and
Lemma 1.2 (ii). We prove n < g — (1 + (—1)7)/2 by the way of contradiction.
Assume that n > g — (1 4+ (—1)9)/2. Suppose that ¢ is even. Since (1,g — 1) is
pure and ky 4,1 = 1, by Lemma 1.2 (i), we get ar (0, 0), (q/2,0) = (g/2,q9/2)
and k42 4/2 = 1. Observe 5r((0, 0), (0,9/2)) = (¢/2,q/2), a contradiction. Sup-
pose that g is odd. Pick a vertex x € P(14),1,9)(((g — 1)/2,0), (g + 1)/2,0)).
Note that x, (0, (g + 1)/2) € F(q_;,_l)/z,(q_;,_l)/z(o, 0). Since (x, ((g + 1)/2,0), ((¢ +
3)/2,0),...,(0,0)) is a path containing arcs of types (1,g — 1) and (1, g), there
exists a path ((0, (¢ +1)/2) = xo, x1, ..., X(g+1)/2 = (0, 0)) containing arcs of types
(1, q— 1) and (1, q). Then ((0, 0), (0, 1), ey (0, (L] + 1)/2) = X005 X1y +--» X(qfl)/z)
is acircuit of length g + 1 containing arcs of types (1, 1), (1, ¢g—1) and (1, g), contrary
to Lemma 2.5 (ii).

Suppose that (h,[) € I'1 4(0, 0) for some & € {0,1,...,g — 1} and ] € Z,. By
Lemma 2.3, & # 0. Without loss of generality, we may assume 2l < n. The fact

that p 471 ) = kiq implies r (1. 1), (1,0)) = (1, ). Since ((0,0), (. D). (b +

1,D),...,0,D,0,1 — 1),...,(0,1)) gnd (1,0, (2,0),... ,A(h,O), (h,1),...,
(h,1)) are two circuits, onehasg —h +[1+1>¢g+ 1and h +1 > g + 1. Hence,
g+1=<2l <n,contraryton < g— (1+(=1)79)/2. Thus,I'y 4, ¢ ({I'1,1,T1,4-1}). 0O

6 Proof of Theorem 1.1
For any nonempty subset F of R with F = (F’), let
VI'/JF :={F(x) | x € VI'} and F;,F ={(F(x),F(y) |y € FI;F(x)}.

The digraph (VI'/F, U(l,s)eé(F)FIF,s) is said to be the quotient digraph of T over F,
denoted by I'/ F'.

In the following, we divide the proof of Theorem 1.1 into four subsections according
to separate assumptions based on Proposition 1.3.

6.1 The cases C1,C2 and C3

By Lemma 3.1, k1 g1 = 2. If (1, 1) € 5(1"), by Lemma 3.7 (i), then k; 1 = 1; if
(1.q) € d(I"), then (1, g) is mixed, which imply p(;'? ") 5 0 and k4 = 2 from
Theorem 2.1 (ii) and Lemma 3.1.
Case 1. (1, ¢) ¢ d(I).

Note that C1 holds. Since Cg4 3 exists, from Lemma 3.2, (1,2) is mixed. By
Lemma 3.1, we have k1 = 1, which implies pé}:;;(]’z) = 1 from Theorem 2.1
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(i1). In view of Proposition 5.1, T" is isomorphic to one of the digraphs in Theorem 1.1
@iv) fori = 0.

Case 2. (1,¢) € 3(I).

Note that C2 or C3 holds. Assume that 4 = 4 or 3. Since Cy,;, exists, by Propo-
sition 5.1, there exists an isomorphism z from Cay(Z, x Z4, {(1,0), (0, 1), (1,2)})
to Ay p(x) for fixed x € VI'. Write z(a, b) = (a, b, 0) for each (a, b). Suppose that

there exists (¢, d, 0) such that Jr((0, 0, 0), (c, d, 0)) = (1, ¢). Since pE}:Z; d o #0
and (1,g — 1) is pure from Lemma 3.1, we get d € {1,3} and ¢ # 0. Observe
that ((0, 0, 0), (c,d,0), (c+1,3,0),(c+2,3,0),...,(0,3,0)) is a circuit of length
g — ¢ + 2 containing arcs of types (1, ¢) and (1, 2 — 1), contrary to Lemma 2.5 (ii).
Hence, I'1 4 ¢ ({T'1,4g—1, T1,n—1})-

By Lemma 3.1 and Lemma 3.6 (ii), we have (ALq)2 = 2A1,4-1, which implies
that VA, 441, has a partition F, »(x)UF, (x’). Let o be an isomorphism from
Ag.n(x)to Ay p(x") such that 6(0, 0, 0) € T'1 4(0, 0, 0). Write o (a, b,0) = (a, b, 1)
for each (a, b). Since (0,0, 1) € P(.¢),1,n-1)((0,0,0), (0,1, 1)) and k1 1 = 1,
we get (0,1,1) € I'; 4(0, 1, 0). Similarly, (0, b, 1) € I'1 4(0, b, 0) for each b. The
fact that (ALq)2 = 2Aq 41 implies that (a, b, 1), (a,b +2,1) € I'1 4(a, b, 0) and
(@+1,b,0),(a+1,b+2,0) € T'1 4(a, b, 1) for each (a, b). Thus, Ay 4y1,n =
Cay(Zog x Z4,{(2,0), (2,2), (1,0), (1,2), (0, D}).

If C2 holds, then I is isomorphic to one of the digraphs in Theorem 1.1 (vii) for

i = 1. Suppose that C3 holds. Since Cj 3 exists, from Lemma 3.2, (1, 2) is mixed. By

Lemma 3.1, we have kj » = 1, which implies p (. 1) 2.2 =1 from Theorem 2.1 (ii).

Hence, T is isomorphic to one of the digraphs in Theorem 1.1 (vii) fori = 0.
We complete the proof of the main theorem for the cases C1, C2 and C3.

6.2 The case C4

Since the valency of I' is more than 3, from Lemma 2.2 (i), we have k1 1 = k1 41 = 2.
By Proposition 5.3 (ii), I" is isomorphic to one of the digraphs in Theorem (iv) for
i = 1. We complete the proof of the main theorem for the case C4.

6.3 The case C5

Since the valency of I' is more than 3, from Lemma 2.2 (i), we have k1 41 = k14 =
2. Note that (1, ¢) is mixed. By Theorem 2.1, (1,¢q — 1) is pure. If ¢ > 2, from
Proposition 5.3 (i), then I' = Cay(Z4q4, {1,2,2g + 1, 2q +2}). We consider ¢ = 2 in
the following.

By Theorem 2.1 (ii), p({’y) ;5 # O. It follows from Lemma 2.3 that ', ¢
(T'1.1). Suppose d(x0, x1) = (1,2) for xg, x; € VI. Then d(F>(xo), Fa(x1)) = 1
in T/(T'11). Since p{;’y) ;5 # 0. we get I’ 1 (xo) N T 2(x1) # @, which implies
d(Fa2(x1), F2(xp)) = 1.Hence, I'/(I'1 1) is aconnected undirected graph. By k1 » = 2,
I'/(C11) =G

Let (F2(xop), F>(x1), ..., F2(x;—1)) be an undirected circuit. Suppose [ # 2. With-
out loss of generality, we may assume that (xo, x1), (x1, x2), (x3,x2) € I'1 2. Then
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x1 # x3. In view of 3 (x0, X2) # (1, 1) and Lemma 2.2 (ii), one gets |[(I', 2% = 2.
Since k1,1 = 2, by Lemma 1.2 (i) and (v), we have p((l g 12 = = 1, which implies

x3 € Pq,2),a,2)(x0, x2) from Lemma 2.2 (iii). Hence, d(F2(xp), F2(x3)) = 1 and
| =4.Thus,] =2or4.

Case1.T'/(I'1 1) = Ca.

Notethat VI = F>(xg)UF>(x1). Let 7; be an isomorphism from Cay(Z,, {1, n—1})
to Az (x;). Write t;(a) = (a, i) for each a. Without loss of generality, we may assume
ar((0,0), (0, 1)) = (1,2). By Lemma 2.2 (ii), we get |(F1,2)2| =1lor2.

Case 1.1. (I'1 2)? = {I'1.1}.

By Lemma 1.2 (i), one has p(|’,) ;, = 2. which implies (1,0), (~1,0) €
I'1,2(0, 1). It follows from Lemma 2.3 that 51‘((1 0), (—1,0)) = (2,2). In view
of Lemma 1.2 (ii) and (vi), we get p<(11 ;; . 2)178 ]2; an = 2+ pg”]z;’(]’z) = 4. By
Lemma 1.2 (i) and (v), we obtain k> » = 1. It follows from Lemma 2.3 that n = 4 and
|VI'| = 8. Since (I'y, 2)? = {I"'1.1}, by [3], we obtain I' ~ Cay(Zs, {1, 2, 5, 6}).

Case 1.2. [(T' 2)?| = 2.
Assume that ((0, 1), (t,p)) € I'12 and ((0, 0), (¢, 0)) ¢ I'1 1. By Theorem 2.1 (iii)
and Lemma 2.3, we have dr((0, 0), (¢, 0)) = (2,2). Hence, n > 3. Since k1 = 2,

we get PE}:;;,(l,z) = 1 from Lemma 1.2 (i) and (v). In view of Lemma 2.2 (iii),

we obtain 1’((12,’5;,(1,2) = 2 and kp» = 1. By Lemma 2.3, one has (2,0), (-2,0) €

I'2.2(0, 0), which implies n = 4 and |VI'| = 8. Since |(F1,2)2| = 2, from [3],
I' >~ Cay(Zs, {1, 2, 3, 6}).

Case 2. I'/(I'1 1) =~ Ca4.

Note that VI = F>(xg)UF> (x))UF> (x2)UF>(x3). Let o; be an isomorphism from
Cay(Zp, {1,n — 1}) to Az (x;) for each i. Write 7;(a) = (a, i) for any a. Without loss
of generality, we may assume ér((O, J),0,j+1)=(,2)forj=0,1,2.

Since (0, j + 1) € Pa2),a,n((0, j), (1, j+ 1)), we have (1, j) or (—1, j) €
I'12(1, j+1). Without loss of generality, we may assume that ar((, J), (1, j+1) =
(1,2). Since (1, j + 1) € Pa,2).a,n((1, j), 2, j+ 1)) and I'/(T'1 1) = C4, one gets
(2, j), 2, j + 1) = (1,2). Similarly, d-((a, j), (a, j + 1)) = (1,2) for each
a€Zyand j € {0,1,2}.

BY p{1'3) 12 # 0. we may assume dr((0, 1), (1,0)) = (1,2). Since (1,0) €
P1,2),1,1)((0, 1), (2,0)), we get (1, 1) or (=1, 1) € I'7,1(2, 0).

Case 2.1. o ((1, 1), (2,0)) = (1,2). i

Since (2,0) € Pa.2),a.1((1, 1), (3,0)) and I'/(T'y 1) = Cy, 3r((2, 1), (3,0)) =
(1, 2). Similarly, or((a, 1), (@ + 1,0)) = (1,2) for each a € Z,. The fact that
P12 (12 # 0and T/(Iy 1) = Cq imply that (0,2) € P(1.2).1.2((0, 1), (=1, 1),
Hence, ((0 0), (0,1),(0,2),(—1,1)) is a circuit consisting of arcs of type (1, 2).
In view of Theorem 2.1 (iii), one gets dr((0, 0), (0,2)) = (2, 2), which implies
(I‘l,z)2 = {I'1.1, I'22} by Lemma 2.2 (ii). Since k1,1 = 2, from Lemma 1.2 (i) and
(v), we obtain PEI,’Q,(l,z) = 1. In view of Lemma 2.2 (iii), one has ngg,m) = 1 and
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kap = 1. By Lemma 2.3, we get ép((O, 0), (2,0)) = (1, 1). Since I'/(T"1,1) =~ Ca,
from Theorem 2.1 (i), one obtains dr ((0, 0), (1, 1)) = (2, 2), a contradiction.

Case 2.2. ir((—1, 1), (2,0)) = (1, 2).
S1ncep1;§(l2 #0and ((—1,0), (—1,2)) ¢ I'1.1, wehavear(( 1,0), (2,0)) =
(1,1),n =4and|VT| = 16.By[3],T" >~ Cay(Z4 xZ4,{(0, 1), (1,0), (2, 0), (0, 2)}).
We complete the proof of the main theorem for the case C5.

6.4 The case C6

By Theorem 2.1 (ii), pg:g)_’(ll)’q) # 0 and (1, g — 1) is pure. In view of Lemma 2.2 (i),

we have kl,lv kl,q—lv kl,q € {1,

Casel.ky, 1 =1.
By Lemma 1.2 (ii), we have PE%:Z)T(?@) =kig

Case 1.1. ky 4 = 1.

Since the valency of I' is more than 3, one has k;,; = 2. In view of Propo-
sition 5.4 and PH:Z)_,(?,(;) = 1, VI has a partition Fz,q(xo)OFz,q(xl) and there
exists an isomorphism t from Cay(Z, x Z,, {(1, 0), (0, 1), (0, —=1)} to Az 4(x0) for
n<q— 14 (=1)%)/2. Write t(a, b) = (a, b, 0) for each (a, b). Since k; 4, = 1,
o Fu(xo) — F24(x1), x x" is an isomorphism from Ap 4(x0) to A 4(x1),
where x’ € I'1,4(x). Write o(a,b,0) = (a,b, 1) for each (a, b). The fact that
pa=D - — implies 3r((a, b, 1), (@ + 1, b, 0)) = (1, g). Thus, I is isomorphic to

(L), (Lg) = :
one of the digraphs in Theorem 1.1 (viii).

Case 1.2. k1 4 = 2.

We claim that pé{:;i(qyl) # 0. Let x, y, z be vertices such that 5(x, y)=(1,1)and
9(y,z) = (1,g—1).Sinceky 4,1 = 1,by Lemma 2.3, Theorem 2.1 (i) and Lemma 3.5
(i), one gets d(x, z) = (2, q). It follows from Lemma 1.2 (i) and Lemma 2.2 (ii) that
|(T'1.4)% = 2. In view of Lemma 2.5 (iii), one gets pggi (0 £ 0, which implies

that there exists a vertex y' € P(1,¢),(1,9)(x, 2). Since p(1 Z) (11) D= 2, we obtain

8(y, y") = (1, ¢). Thus, our claim is valid.

Case1.2.1. k; 1 = 1.

Since k1, 4—1 = 1, we have I'1; ¢ (I'14—1). Let ¢ be an isomorphism from
Cay(Zy, {1}) to Ay(xp) for fixed xo € VI. Write ¢(a) = (a,0,0) for any
a € Zy. Since k11 = 1, VA 4(x0) has a partition Fq(xo)UFq (x1). It follows that
o Fy(xo) — Fy(x1), x —> x' is an isomorphism from A4 (x0) to Ay(xy), where
x" € T'1,1(x). Write o (a, 0,0) = (a, 1, 0) for each a.

Suppose that there exists (c, d, 0) such that ar0,0,0), (c,d,0)) = (1, q). The
fact that (1, g — 1) is pure and k1 41 = 1 imply d = 1 and ¢ # 0. Since k1,1 = 1,
by the claim and Lemma 1.2 (v), we get p( 1) = 2, which implies (¢, 1,0) €
P1,9).(4.1)((0,0,0), (0, 1, 0)). Then ((0, 1 0) (c, 1,0), (c+1,1,0),...,(—1,1,0))
is a circuit of length ¢ — ¢ + 1, a contradiction. Hence, 'y ; ¢ ({T'1 1, F],q71}>~
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Since p(] 0, (1])q) = 2, VI has a partition F3 q(xo)UFz q(xo) Let i be an iso-

morphism from A 4(xp) to Az,q(xo) such that ¥(0,0,0) € I'1 4(0,0,0). Write

. Lg—1
V(a,b,0) = (a,b,1) for each a € Z; and b € {0, 1}. Since PELZ),(R[,) =

p((}”;;’(q’l) = 2, we obtain (a, 0, 1), (a, 1, 1) € Ty 4(a, b,0) and (a + 1,0,0), (a +
1,1,0) € 'y 4(a, b, 1). Then I" is isomorphic to one of the digraphs in Theorem 1.1
(V).

Case 1.2.1. k1 1 = 2.

Since PE}:Z)_,(ll),q) = 2, from Proposition 5.4, VT has a partition Fz,q(xo)UFz,q(xl)
and there exists an isomorphism 7; from Cay(Z, x Z,, {(1,0), (0, 1), (0, =1)}) to
Ag 4(x;) fori = 0,1, where n < g — (1 + (=1)9)/2. Write t;(a, b) = (a, b, i) for
each (a, b) € Zy X Zy.

By the claim, we have pé};;( oD # 0. Without loss of generality, we may assume
0,0, 1), (0,-1,1) € I'1 4(0,0,0). In view of (0, —1,1) € P(1,4),1,1)((0,0,0),
(0,0, 1)), we may assume (0,0,1) € I'; 4(0,1,0). Since (0,0,0) ¢ Py 1),(1.9)

(0,0, 1), (0, 1, 1)) andpg’;)) (1) % 0, weget ((0,1,0), (0,1, 1)) € Ty 4. Similarly,

(0.5.1), (0,b—1,1) € 't 4(0, b, 0) for each b. In view of p(, - (1)q> — 2. we obtain
(a,b,1),(a,b—1,1) €'y y(a, b,0)and (a+1, b, 0), (a+1, b+1 0) eT14(a, b, 1)
for any (a, b) € Zy x Zy.

Suppose that ¢ = n/ged(q, n) and c is odd. Let ¢ be the mapping from I' to the
corresponding digraph in Theorem 1.1 (ix) satisfying ¢(a, b, i) = (2a + i, 2ac +
ic+i)/2+ b). Routinely, ¢ is an isomorphism.

Suppose that t = ¢g/gcd(g, n) and ¢ is odd. Let ¢ be the mapping from I" to the
corresponding digraph in Theorem 1.1 (x) such that ¥ (a, b,i) = (b +i,a + bt +
i(1 4 1)/2). Note that ¢ is well defined. Assume that ¥ (a, b,i) = ¥ (x,y, j) for
some (a, b, i) and (x, y, j). Since 2b+i = 2y + j (mod 2n), we have i = j and
b=y Bya+bt+i(l1+1)/2=23%+ 39+ j(l+1)/2 (mod q), one gets a = x.
Therefore, ¥ is a bijection. One can verify that ((x1, yi, i1), (x2, y2, i2)) is an arc if
and only if (¥ (x1, y1, 1), ¥ (x2, y2, i2)) is an arc. Hence, ¥ is an isomorphism.

Case 2. k1 41 = 2.
If "1y € I'y,g—1T4—1,1, by Proposition 5.3 (i), then I' >~ Cay(Z4q, {1, 2, 29, 2g +
1,2q+2}) for g > 3. In the following, we consider the case that I'y; ¢ I'y 41 Ig—1,1.
By Proposition 5.3 (i), there exists an isomorphism 7 from Cay(Zs4, {1, 2, 2q +
1,2qg + 2}) to Ay 4+1(x) for fixed x € VI'. Write t(a) = (a, 0) for each a € Zy,.
Observe that 9 ((0, 0), (b, 0)) + dr((b, 0), (0,0)) = g + (1 + (—=1)’*T1y/2for b ¢
{0, 26]}. Since 1—‘1,1 ¢ Fl,q—qu—l,l, we have Fl,l ¢ ({Fl,q—lz Fl,q}).

Case2.1. k11 = 1.

Observe that VT has a partition Fq,q_H(x)L')Fq,qH(x’).Note thato : Fy g41(x) =
Fyq+1(x"), y — y' is an isomorphism from Ay ,11(x) to Ag441(x’), where
¥y €Ty,1(y). Write 6 (a, 0) = (a, 1) for each a. If ¢ = 3, then (6, 0), (3, 1), (9, 1) €
I'3,3(0, 0), a contradiction. Hence, I' is isomorphic to one of the digraphs in Theo-
rem 1.1 (vi) fori = 0.
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Case 2.2. k1| = 2.

By Proposition 5.2 and Lemma 3.6 (i), (iv), one gets Aj ,_1A11 = 243, and
A14A11 = 2A3441. Hence, VT has a partition Fy 41(x)UF, 411(x). Let ¢ be
an isomorphism from Ay 4 11(x) to Ay 441 (x”) such that (0, 0) € T'11(0, 0). Write
¢(a,0) = (a, 1) for each a. Since Ay 4 1A1,1 = 2A2 4, and Aj 4A11 = 2A2441,
we have (a,1),(a + 2q,1) € TI'11(a,0) for each a. If 2 < g < 5, then
(29,0, (g,0), (3¢,0) € I'22(0, 0), contrary to Lemma 2.2 (i). Therefore, I is iso-
morphic to one of the digraphs in Theorem 1.1 (vi) fori = 1.

We complete the proof of the main theorem for the case C6.
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