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Abstract
Let A be a K -subalgebra of the polynomial ring S = K [x1, . . . , xd ] of dimension d,
generated by finitely many monomials of degree r . Then, the Gauss algebra G(A) of
A is generated by monomials of degree (r − 1)d in S. We describe the generators and
the structure of G(A), when A is a Borel fixed algebra, a squarefree Veronese algebra,
generated in degree 2, or the edge ring of a bipartite graph with at least one loop. For
a bipartite graph G with one loop, the embedding dimension of G(A) is bounded by
the complexity of the graph G.

Keywords Gauss map · Gauss algebra · Birational morphism · Borel fixed algebra ·
Squarefree Veronese algebra · Edge ring

Mathematics Subject Classification 13C15 · 14M25 · 05E40 · 05C50 · 14E05

Essential parts of the paper were written while the authors visited the Mathematische Forschungsinstitut
in Oberwolfach in the frame of the “Research in Pairs” program. We thank the institute for its generous
support. The second author was in part supported by a Grant from IPM (No. 96130112).

B Jürgen Herzog
juergen.herzog@uni-essen.de

Raheleh Jafari
rjafari@khu.ac.ir

Abbas Nasrollah Nejad
abbasnn@iasbs.ac.ir

1 Fachbereich Mathematik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany

2 Mosaheb Institute of Mathematics, Kharazmi University, and School of Mathematics, Institute
for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

3 Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan
45137-66731, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10801-018-0865-8&domain=pdf


2 Journal of Algebraic Combinatorics (2020) 51:1–17

Introduction

Let V ⊆ P
n−1
K be a projective variety of dimension d − 1 over an algebraically closed

field K of characteristic zero. Denote by Vsm the set of non-singular points of V and
by G(d − 1, n − 1) the Grassmannian of d − 1-planes in P

n−1
K . The Gauss map of V

is the morphism

γ : Vsm −→ G(d − 1, n − 1),

which sends each point p ∈ Vsm to the embedded tangent space TpV of V at the
point p. The closure of the image of γ in G(d − 1, n − 1) is called the Gauss image
of V , or the variety of tangent planes, and is denoted by γ (V ). The homogeneous
coordinate ringofγ (V ) in thePlücker embeddingof theGrassmannianG(d − 1, n−1)
of (d − 1)-planes is called the Gauss algebra of V . The Gauss map is a classical
subject in algebraic geometry and has been studied by many authors. For example,
it is known that the Gauss map of a smooth projective variety is finite [4,13]; in
particular, a smooth variety and its Gauss image have the same dimension with the
obvious exception of a linear space. Zak [13, Corollary 2.8] showed that, provided
V is not a linear subvariety of P

n
K , the dimension of the Gauss image satisfies the

inequality dim V − dim Sing(V ) − 1 ≤ dim γ (V ) ≤ dim V , where Sing(V ) denotes
the singular locus of V . For an algebraic proof of Zak’s inequality, see [11].

We take up the situation where V ⊂ P
n−1
K is a unirational variety. To elaborate on

the algebraic side of the picture, consider the polynomial ring S = K [x1, . . . , xd ].
Let g = g1, . . . , gn be a sequence of non-constant homogeneous polynomials of the
same degree in S generating the K -subalgebra A = K [g] ⊆ S of dimension d. Then,
the Jacobian matrix �(g) of g has rank d [10, Proposition 1.1]. In this situation, we
define the Gauss algebra associated with g as the K -subalgebra generated by the set
of d × d minors of �(g) [1, Definition 2.1]. Since the definition does not depend
on the choice of the homogeneous generators of A, we simply denote the Gauss
algebra associated with g, by G(A), and call it the Gauss algebra of A. The Gauss
algebraG(A) is isomorphic to the coordinate ring of the Gauss image of the projective
variety defined parametrically by g in the Plücker embedding of the Grassmannian
G(d − 1, n − 1) of d − 1-planes. Moreover, there is an injective homomorphism of
K -algebras G(A) ↪→ A inducing the rational map from Proj (A) to its Gauss image
[1, Lemma 2.3].

In this paper, we study the Gauss algebra of toric algebras. If A ⊂ S is a toric
algebra with monomial generators g = g1, . . . , gn of the same degree, then all minors
of �(g) are monomials. In particular, the Gauss algebra is a toric algebra. For exam-
ple, it has been shown that the Gauss algebra of a Veronese algebra is again Veronese
[1, Proposition 3.2]. Veronese algebras are special cases of a more general class of
algebras, namely the class of Borel fixed algebras. As a generalization of the above
mentioned result, we show that the Gauss algebra of any Borel fixed algebra is again
Borel fixed, see Theorem 2.2. This approach provides a simple proof for [1, Propo-
sition 3.2]. Veronese algebras are actually principal Borel fixed algebras, that is, the
Borel set defining the algebra admits precisely one Borel generator. In general the
number of Borel generators of the Borel fixed algebra A and that of G(A) may be
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different. However, in Theorem 2.4 we show that the Gauss algebra of a principal
Borel fixed algebra is again principal. This has the nice consequence that the Gauss
algebra of a principal Borel fixed algebra is a normal Cohen–Macaulay domain, and
its defining ideal is generated by quadrics. Note that in general the property of A
being normal does not imply that G(A) is normal, and vice versa (Example 1.2 and
Theorem 3.2(d)).

The Gauss algebra of a squarefree Veronese algebra is much harder to understand.
We can give a full description of G(A), when A is a squarefree Veronese algebra
generated in degree 2. In Theorem 3.2 we show that G(A) is defined by all monomials
u of degree d and | supp(u)| ≥ 3, provided d ≥ 5. Algebras of this type may be
viewed as the base ring of a polymatroid. In particular, G(A) is normal and Cohen–
Macaulay. However, G(A) is not normal for d = 4. Yet for any d, the Gauss map
γ : Proj (A) ��� Proj (G(A)) is birational.

In the last section of this paper we study the Gauss algebra of the edge ring of a
finite graph. LetG be a loop-less connected graph with d vertices. It is well known that
the dimension of the edge ring A = K [G] of G is d, if G is not bipartite, and is d − 1
if G is bipartite. In our setting, G(A) is defined under the assumption that dim A = d.
By using a well-known theorem [5] of graph theory, the generators of G(A), when
G is not bipartite, correspond to d-sets E of edges of G, satisfying the property that
the subgraph with edges E has an odd cycle in each of its connected components.
In the bipartite case we form the graph GL , where L is a non-empty subset of the
vertex set of G, by adding a loop to G for each vertex in L . Then, A = K [GL ] has
dimension d, and there is bijective map from the set of pairs (V , T ) to the set of
monomial generators of G(A), where V is a non-empty subset of L and T is a set of
edges which form a spanning forest G(T ) of G with the property that each connected
component of G(T ) contains exactly one vertex of V . From this description it follows
that if |L| = 1, then the embedding dimension of the Gauss algebra is bounded by the
complexity of the graph, which by definition, is the number of spanning trees of the
graph. This is an important graph invariant. The number of spanning trees provides a
measure for the global reliability of a network. For a complete bipartite graph Km;n
the embedding dimension of the Gauss algebra is

(n+m−2
n−1

)(n+m−2
m−1

)
, see Example 4.7,

while the number of spanning tress is mn−1nm−1, see for instance [6, Theorem 1].
In general, the defining ideal of the Gauss algebra admits many binomial generators.
Thus, it is not surprising that the Gauss algebra is rarely a hypersurface ring. This
is, for example, the case, when G is a cycle with one loop or a path graph with two
loops attached. The Gauss algebra of an odd (resp. even) cycle of length d with one
loop attached is a hypersurface ring of dimension d (resp. d − 1). More generally, we
expect that if G is a bipartite graph on [d], L = {i} and A is the edge ring of GL , then
G(A) is a hypersurface ring of dimension d − 1, if and only if G is an even cycle.

1 Toric algebras

In this section, we collect some basic fact s about the Gauss algebra of a toric algebra.
Let S = K [x1, . . . , xd ]be a polynomial ring over K , where K is a field of characteristic
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zero. Let g = g1, . . . , gn be a sequence of monomials with gi = xa1i1 · · · xadid for
i = 1, . . . , n. We associate with the sequence g two matrices, namely �(g) and
Log(g), where �(g) is the Jacobian matrix of g and Log(g) = (ai j ) is the exponent
matrix (or log-matrix ) of g, whose columns are the exponent vectors of themonomials
in g. We denote the r -minor

det

⎡

⎢
⎢⎢
⎣

∂gi1
∂x j1

· · · ∂gi1
∂x jr

...
. . .

...
∂gir
∂x j1

· · · ∂gir
∂x jr

⎤

⎥
⎥⎥
⎦

= det

⎡

⎢⎢
⎣

ai1 j1
gi1
x j1

· · · ai1 jr
gi1
x jr

...
. . .

...

air j1
gir
x j1

· · · air jr
gir
x jr

⎤

⎥⎥
⎦

by [i1, . . . , ir | j1, . . . , jr ]�(g).
The multi-linearity property of the determinant implies that

x j1 . . . x jr [i1, . . . , ir | j1, . . . , jr ]�(g) = gi1 . . . gir [i1, . . . , ir | j1, . . . , jr ],

where [i1, . . . , ir | j1, . . . , jr ] is the r -minor corresponding to the rows i1, . . . , ir
and columns j1, . . . , jr of the transpose of Log(g). Therefore, r -minors of �(g) are
monomials of the form

[i1, . . . , ir | j1, . . . , jr ] · gi1 . . . gir
x j1 . . . x jr

. (1)

By relation (1), the Jacobian matrix and the log-matrix of g have the same rank (see
also [9, Proposition 1.2]).

Let A = K [g] be the toric K -algebra with generators g = g1, . . . , gn . It is well
known that the dimension of A is the rank of the matrix Log(g). Thus, if all monomials
of g are of degree r and the rank of Log(g) is d, then the Gauss algebra G(A) of A is
a toric algebra generated by monomials of degree (r − 1)d. Then, (1) implies that

G(A) = K [(gi1 · · · gid )/(x1 · · · xd) : det(Log(gi1, . . . , gid )) �= 0].

The injective K -algebra homomorphism G(A) ↪→ A is defined by multiplying each
generator of G(A) by x1 · · · xd . Therefore,

G(A) 	 K [gi1 · · · gid : det(Log(gi1, . . . , gid )) �= 0] ⊆ A.

The morphism G(A) ↪→ A induces the rational Gauss map

γ : Proj (A) ��� Proj (G(A)).
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Remark 1.1 Let A = K [g1, . . . , gn] be a standard graded K -subalgebra of
K [x1, . . . , xd ], up to degree renormalization, and X = Proj (A). Since

X =
n⋃

i=1

Spec(K [g1/gi , . . . , gn/gi ]),

it follows that the field K (X) of rational functions of X is equal to the field of fractions
of any of the algebras K [g1/gi , . . . , gn/gi ].

Let B ⊂ A be an extension of homogeneous standard graded algebras, and X =
Proj (A) and Y = Proj (B). Let A be a domain. Then, the corresponding dominant
rational map X ��� Y is birational if and only if K (X) = K (Y ).

Therefore, if A = K [g1, . . . , gn] is the toric algebra as above, then the morphism
γ : Proj (A) ��� Proj (G(A)) is birational if and only if for all i < j , the fractions
gi/g j can be expressed as a product of fractions of the form (gi1 · · · gid )/(g j1 · · · g jd )

with det(Log(gi1, . . . , gid )) �= 0 and det(Log(g j1, . . . , g jd )) �= 0.
For example, γ : Proj (A) ��� Proj (G(A)) is birational, when A ⊆ k[s, t] is the

coordinate ring of the projective monomial curve parametrized by the generators of
A [1, Proposition 3.8].

In general, normality, Cohen–Macaulayness or other homological or algebraic prop-
erties are not preserved when passing from A to G(A). For example, the squarefree
r -Veronese algebra A = K [Vr ,d ] is normal Cohen–Macaulay, while for r = 2 the
Gauss algebra G(A) is normal and Cohen–Macaulay if and only if d ≥ 5, see Theo-
rem 2.3.

The following example shows that the Gauss algebra of a non-normal toric algebra
may be normal.

Example 1.2 Let A = K [s6, s5t, s4t2, s3t3, t6] ⊂ K [s, t] be the homogeneous coor-
dinate ring of the projective monomial curve embedded in P

4
K . By [1, Lemma 3.7], the

K -algebra A is not an isolated singularity and hence is not normal. However, the Gauss
algebra G(A) is the 8-Veronese algebra in k[t, s], which is normal, Cohen–Macaulay
and an isolated singularity.

2 Borel fixed algebras

We start with the following lemma which is crucial for the kind of algebras studied in
this section.

Lemma 2.1 Let g1, . . . , gd ∈ S = K [x1, . . . , xd ] be homogeneous polynomials, and
let ϕ : S → S be a linear automorphism. Then,

det(�(ϕ(g1), . . . , ϕ(gd))) = det(ϕ) · ϕ(det(�(g1, . . . , gd))).
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Proof Consider the linear transformation ϕ(xi ) = ∑d
j=1 a ji x j , i = 1, . . . , d. For

polynomial g ∈ K [x1, . . . , xd ], a direct computation with derivatives shows that

∂ϕ(g)

∂xi
= ai1ϕ

(
∂g

∂x1

)
+ · · · + aidϕ

(
∂g

∂xd

)
.

We have

det(�(ϕ(g1), . . . , ϕ(gd ))) = det

⎛

⎜
⎜⎜
⎜⎜
⎝

⎡

⎢
⎣

a11 · · · a1d
...

. . .
...

ad1 · · · add

⎤

⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎣

ϕ

(
∂g1
∂x1

)
· · · ϕ(

∂gd
∂x1

)

...
. . .

...

ϕ

(
∂g1
∂xd

)
· · · ϕ

(
∂gd
∂xd

)

⎤

⎥
⎥⎥
⎥⎥
⎦

⎞

⎟
⎟⎟
⎟⎟
⎠

= det(ϕ). det(ϕ(�(g1, . . . , gd )))

= det(ϕ).ϕ(det((�(g1, . . . , gd)))).


�
Recall that a set G = {g1, . . . , gn} of monomials of the same degree in

K [x1, . . . , xd ] is called Borel set, if the monomial ideal generated by G is fixed under
the action of all linear automorphisms ϕ : S → S defined by non-singular upper
triangular matrices. The ideal generated by a Borel set is called a Borel fixed ideal.

If char(K ) = 0, as we always assume in this paper, the Borel fixed ideals are just the
strongly stable monomial ideals, that is, the monomial ideals I with the property that
xi (u/x j ) ∈ I for the all monomial generators u of I , and all integers i < j such that x j
divides u. Let B ⊆ G. Then, the elements of B are called Borel generators of G, if G
is the smallest Borel set containing B. In this case, if B = {u1, . . . , ut }, we write G =
〈u1, . . . , ut 〉. For instance, the Borel set generated by {x1x3, x2x4} is 〈x1x3, x2x4〉 =
{x21 , x1x2, x1x3, x1x4, x22 , x2x3, x2x4}. A Borel set G is called principal if there exists
u ∈ G such that G = 〈u〉.

Let G be a Borel set of monomials of degree r . The Borel generators of G are
characterized by the property that they are maximal among the monomials of G with
respect to the following partial order on the monomials: Let u = xi1xi2 . . . xir and
v = x j1x j2 . . . x jr with i1 ≤ i2 ≤ · · · ≤ ir and j1 ≤ j2 ≤ · · · ≤ jr . Then, we set
u ≺ v, if ik ≤ jk for k = 1, . . . , r . In particular, if v = xc1i1 · · · xcrir with ci > 0, and
u = xa11 · · · xadd . Then, u � v if and only if there exists j , such that

ai j+1 + · · · + ad ≥ c j+1 + · · · + cr + 1. (2)

Let G = {g1, . . . , gn} ⊂ K [x1, . . . , xd ] be a Borel set. Then, we call A =
K [g1, . . . , gn], a Borel fixed algebra, if dim(A) = d. Note that dim(A) = d, if
and only if there exists j such that xd |g j . Indeed, since G is a Borel set, the condition
implies that {xr1, xr−1

1 x2, . . . , x
r−1
1 xd} ⊆ G, where r is the degree of themonomials in

G. The log-matrix of these elements is upper triangular and so has rank d. This shows
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that dim(A) = d. Indeed, A is isomorphic to the polynomial ring K [x1, . . . , xd ] by
multiplication by 1/xr−1.

Theorem 2.2 The Gauss algebra of a Borel fixed algebra is a Borel fixed algebra.

Proof Let A be a Borel fixed algebra with monomial generators G = {g1, . . . , gn}.
LetG ′ be the set of the correspondingmonomial generators ofG(A). Wewant to show
thatG ′ is a Borel set. For this, it is enough to show that the ideal I ′ generated byG ′ is a
Borel fixed ideal. Let g be amonomial generator in I ′. Then, g = det(�(gi1, . . . , gid )).
Let I be the monomial ideal generated by G. By Lemma 2.1, for any upper triangular
automorphism ϕ : S → S, one has

ϕ(g) = ϕ(det(�(gi1, . . . , gid ))) = det(ϕ)−1(det�(ϕ(gi1), . . . , ϕ(gid ))).

Since I is a Borel fixed ideal, each ϕ(gi ) is a K -linear combination of elements of G.
By using the fact that �(−) is a multilinear function, we get ϕ(g) ∈ I ′. This shows
that G(A) is Borel fixed. 
�
Corollary 2.3 ([1], Proposition 3.2) The Gauss algebra of an r-Veronese algebra is an
(r − 1)d-Veronese algebra.

Proof Consider themonomials g1 = x1x
r−1
d , . . . , gd−1 = xd−1x

r−1
d , gd = xrd . As the

log-matrix of g is non-singular, the monomial g1 · · · gd/x1 · · · xd = x (r−1)d
d belongs

to the Gauss algebra. Since the r -Veronese is a Borel fixed ideal, the assertion follows
from Theorem 2.2. 
�

In general, the number of Borel generators of the Borel fixed algebra A and that of
G(A) may be different. In fact, let {x2x3, x1x4} be the set of Borel generators of A.
Then, A = K [x21 , x1x2, x22 , x1x3, x2x3, x1x4] and the log-matrix of the generators of
A is

⎡

⎢⎢
⎣

2 1 0 1 0 1
0 1 2 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1

⎤

⎥⎥
⎦ .

Therefore, G(A) = K [x41 , x31 x2, x21 x22 , x1x32 , x31 x3, x21 x2x3, x1x22 x3], and x1x22 x3 is
the single Borel generator of G(A).

However if A is principal Borel, then G(A) is principal Borel as well. More pre-
cisely, we have the following.

Theorem 2.4 Let A be a principal Borel fixed algebra with Borel generator m =
x
ai1
i1

· · · xairir
with ai j > 0, for j = 1, . . . , r . Then, G(A) is a principal Borel fixed

algebra with Borel generator

m′ = mir

xi1−1
i1

xi2−i1
i2

· · · xir−1−ir−2
ir−1

xir−ir−1+1
ir

.
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Proof We first show that m′ ∈ G(A). Let gk,l = xl(m/xik ), k = 1, . . . , r , l =
ik−1, . . . , ik − 1 for all k, where i0 = 1. Then, the gk,l belong to 〈m〉, and

m′ =
⎛

⎝
r∏

k=1

ik−1∏

l=ik−1

gk,l

⎞

⎠ /x1x2 · · · xd .

We order the monomials gk,l lexicographically and consider the corresponding log-
matrix A. The i th row with i /∈ {i1, . . . , ir } has only one nonzero entry which is 1. So
in order to compute the determinant of the log-matrix, we reduce to the computation
of the cofactor of that nonzero entry; indeed, we skip the i th row and the column
corresponding to the nonzero entry. This can be done for all i /∈ {i1, . . . , ir }. Then,
we obtain the log-matrix M of the following sequence of monomials

m, xi1
m

xi2
, . . . , xir−1

m

xir

with respect to xi1 , . . . , xir . Subtracting the first column of M from the other columns
of M , we obtain the following matrix

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

ai1 1 0 · · · · · · · · · 0
ai2 −1 1 0 · · · · · · 0
ai3 0 −1 1 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

...
...

. . .
. . . 1 0

air−1 0 · · · · · · 0 −1 1
air 0 · · · · · · · · · 0 −1

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

Now for each i > 1, we add the i th row to the first row. The result is a lower triangular
matrix with nonzero entries on the diagonal. This shows that A is non-singular, and
proves that m′ is a generator of the Borel fixed algebra G(A).

Since G(A) is a Borel fixed ideal, by Theorem 2.2, it is enough to prove that for

any monomial g in G(A), one has g � m′. Let m = x
ai1
i1

· · · xairir
, m′ = x

a′
i1

i1
· · · xa

′
ir

ir
.

By definition of m′, we have a′
i j

= ir ai j+1 − i j+1 + i j for j = 2, . . . , r − 1, and

a′
ir

= ir (air − 1) + ir−1 − 1. Let

g =
(

ir∏

i=1

gi

)

/x1x2 · · · xir ,

where g1, . . . , gir belong to the minimal monomial generating set of A, the latter
having a non-singular log-matrix. If g � m′, then by Borel order property (2), there

exists 1 ≤ j ≤ r − 1, such that
∏ir

j=1 g j is divisible by w = x
bi j
i j

· · · xbirir
, and
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ir∑

l=i j+1

bl − (ir − i j ) ≥ 1 +
ir∑

l=i j+1

a′
il

=
r−2∑

k= j

(ir aik+1 − ik+1 + ik) + ir (air − 1) + ir−1

=
⎛

⎝
r∑

l= j+1

ail − 1

⎞

⎠ ir + i j .

Therefore,

r∑

l=i j+1

bil ≥
⎛

⎝
r∑

l= j+1

ail

⎞

⎠ ir . (3)

We may write gs as a product of monomials gs = fshs with supp( fs) ⊆ {i1, . . . , i j }
and supp(hs) ⊆ {i j+1, . . . , ir }. As gs � x

ai1
i1

· · · xairir
, we have deg(hs) ≤∑r

l= j+1 ai j
and, since w divides g1 · · · gir , we get

ir∑

l=i j+1

bil ≤
d∑

s=1

deg(hs) ≤ d
r∑

l= j+1

ail .

Together with (3), it follows that
∑ir

s=1 deg(hs) = ir
∑r

l= j+1 ail , and this implies
deg(hs) =∑r

l= j+1 ail .
Let L be the log-matrix of g1, . . . , gir . Then, the summation of the last ir − i j

entries of each column of L is equal to
∑r

l= j+1 ail , and so the summation of the first
j entries of each column is equal to ir −∑r

l= j+1 ail . This implies that L is singular,
a contradiction. 
�
Corollary 2.5 Let A be a principal Borel fixed algebra. Then, G(A) is normal and for
suitable monomial order its defining ideal has a quadratic Gröbner basis.

Proof By the above theorem, G(A) is a principal Borel fixed algebra. A principal
Borel set is a polymatroid. Therefore, G(A) is normal, see [7, Corollary 6.2]. In [3]
it is shown that the principal Borel fixed sets are sortable, and so G(A) has quadratic
Gröbner basis. 
�
Corollary 2.6 Let A be a Borel fixed algebra such that dim A = dimG(A) = d. Then,
the Gauss map γ : Proj (A) ��� Proj (G(A)) is birational.

Proof By the hypothesis on the dimension ofG(A), there exists a generator u ofG(A)

such that xd |u. For 1 ≤ i < j ≤ d, we have

xi
x j

= xi (u/xd)

x j (u/xd)
,
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which implies that γ is birational, since any quotient of monomials in A is the product
of some of the xi/x j , see Remark 1.1. 
�

3 Squarefree Veronese algebras

Let Vr ,d be the set of all squarefree monomials of degree r in S = K [x1, . . . , xd ].
The K -subalgebra A = K [Vr ,d ] of S is called the squarefree r -Veronese algebra.
By Proposition 2.3, the Gauss algebra associated with a Veronese algebra is again a
Veronese algebra. The situation for squarefree Veronese algebra is more complicated.

Denote by MonS(t, r) the set of all monomials u of degree r in S, such that
| supp(u)| ≥ t , where supp(u) = {i : xi |u}.
Proposition 3.1 The monomial ideal generated by MonS(t, r) is polymatroidal. In
particular, the K -algebra K [MonS(t, r)] is normal and Cohen–Macaulay.

Proof The normality of the K -algebra K [MonS(t, r)] follows from [7, Theorem 6.1],
once we have shown that the ideal generated by MonS(t, r) is polymatroidal. Let
u = xa11 · · · xadd , v = xb11 · · · xbdd ∈ MonS(t, r). By symmetry, we may assume that
a1 > b1. Suppose a1 > 1, then xiu/x1 ∈ MonS(t, r) for any i �= 1, and so the
exchange property holds. Next suppose that a1 = 1, then b1 = 0. If supp(u) has
more than t elements, we may replace x1 by any variable xi ∈ supp(v). Finally,
suppose that supp(u) has exactly t elements. Since x1 /∈ supp(v), there exists x j ∈
supp(v)\ supp(u). Replacing x1 by x j , the exchange property is satisfied. 
�

In the following result, we describe the structure of the Gauss algebra of the square-
free 2-Veronese algebra K [V2,d ]. Note that for d ≤ 3, the Gauss algebra is isomorphic
to a polynomial ring.

Theorem 3.2 Let A = K [V2,d ], with d ≥ 4. Then,

(a) G(A) = K [MonS(3, 4)\{x1x2x3x4}], if d = 4;
(b) G(A) = K [MonS(3, d)], if d ≥ 5;
(c) the embedding dimension of G(A) is

edimG(k[A]) =
{
e − 1, if d = 4,
e, if d = 5,

where e = (2d−1
d

)− (d − 1)
(d
2

)− d;
(d) the Gauss algebra is a normal Cohen–Macaulay domain, if and only if d ≥ 5;
(e) the Gauss map γ : Proj (A) ��� Proj (G(A))) is birational.

For the proof of the theorem, we need the following

Lemma 3.3 ([5, Theorem 2.1]) Let G be a loop-less connected graph with the same
number of vertices and edges. Then, the log-matrix of the edge ideal of G is non-
singular if and only if G contains an odd cycle.
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Proof of Theorem 3.2 First, we show that any monomial of the form m = g/x1 · · · xd
belongs toMonS(3, d), where g = gi1 · · · gid is a product of pairwise distinct elements
of V2,d . This then yields the inclusion G(A) ⊆ K [MonS(3, d)]. Suppose that the
number of elements in the support of m is less than 3. Then, at least d − 2 variables
have degree 1 in g. Hence, g can be written as a product of at most d − 1 monomials
in A, which is a contradiction.

Now, to prove (a) and (b), letm be an element of MonS(3, d). For d = 4 and d = 5,
the assertions can be shown by direct computations. Let d > 5, and first assume that
m = x1 · · · xd . If d is odd, then let

g1 = x1x2, g2 = x2x3, . . . , gd−1 = (xd−1xd), gd = (xd x1).

Then, the log-matrix of g1, . . . , gd is non-singular by Lemma 3.3. If d is even, then
let

g1 = x1x2, g2 = x2x3, g3 = x3x1, g4 = x4x5, g5 = x5x6, . . . ,

gd−1 = (xd−1xd), gd = (xd x4).

Now, the log-matrix is

[
A 0
0 B

]
,

where A and B are incidence matrices of odd cycles, and so it is non-singular.
Next assume that m �= x1 · · · xd . Without loss of generality, we may assume that

m = xr11 · · · xrd−1
d−1 . Since deg(m) = d, there exists i such that ri > 1. Let u =

m/xi . Then, u ∈ MonS′(3, d − 1), where S′ = K [x1, . . . , xd−1]. By induction,
(x1 · · · xd−1)u = g1 · · · gd−1 with gi ∈ A and L(g1, . . . , gd−1) non-singular. Let
gd = xi xd . Then, (x1 . . . xd)m = g1 · · · gd−1gd . Since all the entries of the last row
of Log(g1, . . . , gd) are zero, except the last one, which is equal to 1, we see that
Log(g1, . . . , gd) is non-singular.

(c) follows from (b) by a simple counting argument.
(d): If d ≥ 5, it follows from (b) and Proposition 3.1 that G(A) is normal, and

Cohen–Macaulay by Hochster [8]. On the other hand, a calculation with Singular [2]
shows that for d = 4, the h-vector of G(A) has a negative component. Therefore, in
this case G(A) is not Cohen–Macaulay.

(e): By Remark 1.1, it is suffices to show that for every 1 ≤ i < j ≤ n,

K

[
xi x j
xr xs

| 1 ≤ r < s ≤ n

]
⊂ K

[u
v

| u, v ∈ Mon(3, d)
]
.

For 1 ≤ i < j ≤ d, one has

xi
x j

= xkx
d−2
l xi

xk x
d−2
l x j

, (4)
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with i, j, k, l pairwise distinct. Hence, (xi x j )/(xr xs) has an expression as in (4), if
{i, j} ∩ {r , s} �= ∅. Otherwise,

xi x j
xr xs

= (x j xd−2
s xi )(xi xd−2

r x j )

(x j x
d−2
s xr )(xi x

d−2
r xs)

.


�
Remark 3.4 (a) Let A = K [Vr ,d ]. We may assume that d ≥ r + 2; otherwise, G(A)

is a polynomial ring. Then,

G(A) ⊆ {xa11 · · · xadd ∈ MonS(r + 1, (r − 1)d) : ai ≤ d − 2 for 1 ≤ i ≤ d}.

For r = 2, the equality holds if and only if d ≥ 5. It would be interesting to know for
which r > 2 and d the equality holds.

(b)According toWhite’s conjecture [12], the base ring of a polymatroid is generated
by the so-called exchange relations, which are quadratic binomials. Since MonS(3, d)

is polymatroidal, we expect that the Gauss algebra of K [V2,d ] has quadratic relations.

4 Edge rings

Let G be a simple graph on the vertex set V (G) = [d] and edge set E(G) =
{e1, . . . , em}. For given subset V ⊆ [d], we set xV = ∏

i∈V xi . In the case that
V is an edge e = {i, j}, we simply write e instead of xV = xi x j . The edge ideal I (G),
of G, is the ideal generated by the monomials e ∈ E(G). Note that the log-matrix of
E(G) is the incidence matrix of G.

Let V ⊆ V (G) and E ⊆ E(G) with |V | = |E |. We denote by �V ,E the minor of
the log-matrix Log(E(G)), with rows V and columns E .

Lemma 4.1 Let V ⊆ V (G) and E ⊆ E(G) with |V | = |E | = r , and let �V ,E be the
minor of the log-matrix Log(E(G)), with rows V and columns E. Suppose the edges
in E can be labeled as e1, . . . , er , such that

|V ∩ (e1 ∪ · · · ∪ ei )| = i for i = 1, . . . , r . (5)

Then, �V ,E �= 0. The converse holds if G is a bipartite graph.

Proof Suppose condition (5) holds. Let M be the matrix with rows V and columns
E . Let V ∩ e1 = {v}. Then, the first column of M has only one nonzero entry,
corresponding to vertex v. Let V ′ = V \{v}, and then

|V ′ ∩ {e2, . . . , ei }| = i − 1 for i = 2, . . . , r .

Now, by the induction hypothesis thematrixM ′ whose rows are V ′ andwhose columns
are e2, . . . , er is non-singular. It follows that M is non-singular.
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Conversely, assume that �V ,E �= 0. Then, we claim that there exists a column
e1 in E such that |V ∩ e1| = 1. Indeed, if |V ∩ ei | > 1, for i = 1, . . . , r , then
M is the incidence matrix of a bipartite graph. Now, Lemma 3.3 implies �V ,E = 0,
contradiction. LetV ′ = V \{v1}, whereV∩e1 = {v1}. Then, thematrixM ′ whose rows
are V ′ and whose columns are e2, . . . , er , is non-singular. Now, |V ′ ∩ {e2, . . . , ei }| =
i − 1 for i = 2, . . . , r , by induction. This implies that |V ′ ∩ {e1, . . . , ei }| = i for
i = 2, . . . , r . 
�
Corollary 4.2 Let G be a graph with c connected components, and V ⊂ V (G), with
|V | ≤ d − c. Then, there exists E ⊆ E(G) with |E | = |V | such that �V ,E �= 0.

Proof Let |V | = r . Since r ≤ d − c, we can choose a set E of r edges such that
e ∩ V �= ∅ for each e ∈ E . Now, the matrix M with rows V and columns E is not the
incidence matrix of a forest, since for a forest the number of vertices is strictly bigger
than the number of edges. Hence, there exists an edge e1 in E such that e1 ∩ V = {v}.
Removing the edge e1 from G, the number of connected components c′ of G\{e1} is
at most c + 1. Let V ′ = V \{v}. Then, |V ′| ≤ d − c′. By induction, there exist edges
e2, . . . , er such that |V ′∩e2∪· · ·∪ei | = i−1 for i = 2, . . . , r . It follows that e1, . . . , er
satisfies condition (5). Therefore, the desired result follows from Lemma 4.1. 
�

LetG be a simple bipartite graph. Let L be a non-empty subset of [d], and letGL be
the graph which is obtained from G by attaching a loop to G at each vertex belonging
to L . For given set T ⊆ E(G), let G(T ) denote the graph with V (G(T )) = V (G)

and E(G(T )) = T .

Theorem 4.3 Let G be a bipartite graph with r components and L be a subset of [d].
Let A be the edge ring of GL. Then, the following statements hold.

(a) A has dimension d if and only if L contains at least one vertex of each component
of G.

(b) If condition (a) is satisfied, then the Gauss algebra G(A) is generated by the
monomials

gV ,T = xV
eT
xV c

,

where V is a non-empty subset of L, V c = [d]\V , and eT = ∏
e∈T e where

T ⊆ E(G) satisfies

(i) G(T ) is a forest , which may have isolated vertices as some of its connected
components;

(ii) each connected component of G(T ) contains exactly one vertex of V .

In particular, when |V | = 1, the cardinality of the minimal set of generators of
G(A) is bounded by the number of spanning trees of G. Moreover, gV ,T = gV ,T ′
if and only if each vertex of G has the same degree in T and T ′.

Proof (a) As G is a bipartite graph, the log-matrix of G is singular by Lemma 3.3.
We show that the log-matrix of GL has a non-singular maximal minor, if and only
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if L contains at least one vertex of each component of G. Let Li = Gi ∩ L , then
GL1

1 , . . . ,GLr
r are the connected components of GL , and the log-matrix of GL has

maximal rank if and only if the log-matrix of each GLi
i has maximal rank. Therefore,

it is enough to show that the log-matrix of a connected graph G, with at least one loop,
is non-singular. Assume that there is a loop at vertex 1. Then, the first column has
only one nonzero entry at 1st row. Let A denote the log-matrix of G and |V (G)| = n.
In order to compute the rank of A, we may skip the first row and the first column,
obtaining a newmatrix A1, which hasmaximal rank n−1, byCorollary 4.2. Therefore,
the rank of A is equal to n.

(b) We first show that conditions (i) and (ii) are equivalent to

(α) |T | = |V c|;
(β) the elements of T can be labeled as e1, . . . , em such that

|V c ∩ (e1 ∪ · · · ∪ ei )| = i for i = 1, . . . ,m.

Suppose that (i) and (ii) are satisfied. If T = ∅, then the equivalence of (i),(ii) with
α, β is trivial. Now, assume that T �= ∅, and let G(T )1, . . . ,G(T )t be the connected
components of G(T ) with |V (G(T )i )| ≥ 2 and vi be the vertex of V belonging to
G(T )i . Since G(T )i is a tree, we may label the edges of G(T )i as ei1 , . . . , eisi such
that vi ∈ ei1 and |ei j ∩ (ei1 ∪· · ·∪ei j−1)| = 1 for all j = 1, . . . , si . Then, the sequence
of edges

e11 , . . . , e1s1 , e21 , . . . , e2s2 , e31 , . . .

satisfies conditions (α),(β).
Conversely, condition (β) guarantees that G(T ) does not contain any cycle, and so

it is a forest, which by (α) has d −|V | edges. Therefore, |V | is equal to the number of
connected components ofG(T ). LetG(T )1, . . . ,G(T )t be the connected components
ofG(T )with |V (G(T )i )| ≥ 2, and let ei j be the first edge, with respect to the labeling
in (β), such that ei j ∩G(T ) j �= ∅. Then, |ei j ∩V | = 1, so each connected component
ofG(T ) contains at least one vertex in V . Since G(T ) has |V | number of components,
each component should contain exactly one element of V .

Let g belong to the minimal set of generators of G(A). Then, g = g1···gd
x1···xd , where

gi is a monomial generator of A and the log-matrix of g1, . . . , gd is non-singular.
Since the incidence matrix of a bipartite graph is singular by Lemma 3.3, at least
one gi corresponds to a loop. After relabeling, we may assume that {g1, . . . , gd} =
{x21 , . . . , x2s , e1, . . . , ed−s} and
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Log
(
x21 · · · x2s e1 · · · ed−s

)
=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

2 0 · · · 0 a1,1 · · · a1,d−s

0 2 0 a2,1 · · · a2,d−s
...

. . .
...

...
...

0 0 · · · 2 as,1 · · · as,d−s

0 0 · · · 0 as+1,1 · · · as+1,d−s
...

...
...

...
...

...
...

0 0 0 0 ad,1 · · · ad,d−s

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

where A = [ar ,t ] is the log-matrix of e1 · · · ed−s . Let V = {1, . . . , s} and T =
{e1, . . . , ed−s}. Then,

g = gV ,T = x21 · · · x2s e1 · · · ed−s

x1 · · · xd = x1 · · · xs e1 · · · ed−s

xs+1 · · · xd ,

and the log-matrix is non-singular if and only if the submatrix A′ with rows s+1, . . . , d
and columns s + 1, . . . , d, is non-singular, and by Lemma 4.1, A′ is non-singular if
and only if condition (β) is satisfied. 
�
Example 4.4 Let G be a path graph with d vertices, and edges {1, 2}, {2, 3}, . . . , {d −
1, d}. Let L ⊆ [d] and A be the edge ring of GL . The induced subgraph by any set
T ⊂ E(G) can be considered as a disjoint union of intervals. Since G is a path graph,
G(T ) is a forest. By Theorem 4.3, the product of edges in T should be divisible by all
vertices in [d]\V . Therefore,G(T ), covers [d]. In other words, the generators ofG(A)

correspond to interval partitions of [d] with the property that each interval contains
exactly one element of V . Let [d] = ∪r

i=1[ai , bi ]with [ai , bi ]∩[a j , b j ] = ∅ for all i �=
j , andwith |V∩[ai , bi ]| = 1 for i = 1, . . . , r . The corresponding generator ofG(A) is

⎛

⎝
r∏

i=1

∏

j∈]ai ,bi [
x j

⎞

⎠
∏

j∈L
x
c j
j , (6)

where c j = 2, if j belongs to a proper interval, and is c j = 1, otherwise. Here [ai , bi ]
is said to be proper if bi − ai > 0.

The above discussions show that if L = [d], then the number of generators ofG(A)

is the number

λd =
d∑

r=1

∑

a∈Pr

r∏

i=1

(ai+1 − ai ),

where Pr = {a = (a0, . . . , ar ) : 0 = a0 < a1 < a2 < · · · < ar = d)}, for
r = 1, . . . , d. The sequence (λd)d≥1 begins as follows

1, 3, 8, 21, 55, 144, 377, . . . .

The recursive formula λd = 3λd−1 − λd−2 describes the beginning of the sequence.
This seems to be the rule for the whole sequence (λd)d≥1.
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In the case that L = {i < j}, G(A) is generated by j − i + 2 monomials

x2i x2 · · · xd−1, x2j x2 · · · xd−1,
(
x2i x

2
j x2 · · · xd−1

)
/xkxk+1 for i ≤ k ≤ j − 1.

An easy calculation shows that the log-matrix ofG(A) has rank j−i+1. In particular,
G(A) is a hypersurface ring. It can be shown that the multiplicity of G(A) is j − i .
When i = 1, j = d, the defining equation of G(A) is

f =

⎧
⎪⎨

⎪⎩

∏d/2
i=1y

2
2i − y1yd+1

∏d/2−1
i=1 y22i+1, if d is even;

y1
∏(d−1)/2

i=1 y22i+1 − yd+1
∏(d−1)/2

i=1 y22i+1, if d is odd,

and if j = i + 1, then the defining equation is quadratic. By computing the singular
locus, we see that G(A) is normal if and only if d = 2.

Example 4.5 Let G be a cycle with d vertices, and edges {1, 2}, {2, 3}, . . . , {d −
1, d}, {1, d}. Let L = {1} and A be the edge ring of GL . When d is even, the spanning
trees of G correspond to the generators of G(A). Each spanning tree of G is obtained
by removing one edge from G, and so the generators of G(A) are

x21

d∏

i=3

xi , x21

d−1∏

i=2

xi , x31

∏d
i=2 xi

x j x j+1
for j = 2, . . . , d − 1. (7)

When d is odd, in addition to the monomials in (7), G(A) has one more generator,
namely x1 · · · xd . For even d, dim(G(A)) = d − 1, and for odd d, dim(G(A)) = d.
Hence in both cases G(A) is a hypersurface ring with defining equation

f =
⎧
⎨

⎩

yd−1
∏d/2−1

i=1 y2i − yd
∏d/2−1

i=1 y2i−1, if d is even;

yd
∏(d−1)/2

i=1 y2i − yd+1
∏(d−1)/2

i=1 y2i−1, if d is odd.

The initial monomial of f (with respect to any monomial order) is squarefree. There-
fore, G(A) is normal.

Remark 4.6 Let G be a bipartite graph on [d], L = {i} and A be the edge ring of GL .
The above examples and computational evidence indicate that G(A) is a hypersurface
ring of dimension d − 1 if and only if G is an even cycle.

Example 4.7 Let G = Kn,m be a complete bipartite graph with partition sets X =
{x1, . . . , xn} and Y = {y1, . . . , ym}. Let A be the edge ring of G with one loop at
vertex x1. Then,

G(A) = K
[
x21 (x1, . . . , xn)

m−1(y1, . . . , ym)n−1
]
.

Indeed, any generator of G(A) can be written as x21 (e1 · · · en+m)/x1 · · · xn y1
· · · ym , where e j is an edge of G, which follows G(A) ⊆ K [x21 (x1, . . . , xn)m−1

(y1, . . . , ym)n−1].
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Let f be a monomial in the generating set of (x1, . . . , xn)m−1(y1, . . . , ym)n−1.
Then, f = xi1 · · · xim−1 y j1 · · · y jn−1 , for some 1 ≤ i1 ≤ · · · ≤ im−1 ≤ n and 1 ≤ j1 ≤
· · · ≤ jn−1 ≤ m. Now, let T be the subgraph of G with V (T ) = V (G) and E(T )

equal to

{e1 = x1y j1 , . . . , en−1 = xn−1y jn−1 , en = y1xi1 , . . . , en+m−2

= ym−1xim−1 , en+m−1 = xn yn}.

Then, T is a spanning tree of G, which implies that

x21 f = x21e1 · · · en+m−1/x1 · · · xn y1 · · · ym
is a generator of G(A).

As a consequence, the embedding dimension of G(A) is
(m+n−2

n−1

)(m+n−2
m−1

)
. How-

ever, the number of spanning tress of G is nm−1mn−1, see [6, Theorem 1]. Therefore,
among the spanning trees of G, many of them correspond to the same generator in
G(A).
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