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Abstract
This paper proposes seven combinatorial problems around formulas for the char-
acteristic polynomial and the spectral numbers of an isolated quasihomogeneous
hypersurface singularity. One of them is a new conjecture on the characteristic poly-
nomial. It is an amendment to an old conjecture of Orlik on the integral monodromy
of an isolated quasihomogeneous singularity. The search for a combinatorial proof of
the new conjecture led us to the seven purely combinatorial problems.
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1 Introduction

This paper proposes seven combinatorial problems around formulas for the character-
istic polynomial and the spectral numbers of a quasihomogeneous singularity. One of
them is a new conjecture on the characteristic polynomial. It is an amendment to an
old conjecture of Orlik on the integral monodromy of an isolated quasihomogeneous
singularity. The search for a combinatorial proof of the new conjecture led us to the
seven purely combinatorial problems.
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We start with a result on Z-lattices with automorphisms. Then we describe Orlik’s
conjecture and our new conjecture. Finally, we give a rough outline of the seven
problems.

Definition 1.1 Let M ⊆ N = {1, 2, 3, . . .} be a finite nonempty subset. ItsOrlik block
is a pair (HM , hM )with HM aZ-lattice of rank

∑
m∈M ϕ(m) and hM : HM → HM an

automorphism with characteristic polynomial
∏

m∈M �m (�m is the m-th cyclotomic
polynomial) and with a cyclic generator e1 ∈ HM , i.e.,

HM =
rkM⊕

j=1

Z · h j−1
M (e1). (1.1)

(HM , hM ) is unique up to isomorphism. AutS1(HM , hM ) denotes the group of all
automorphisms of HM which commute with hM and which have all eigenvalues in
S1.

Definition 6.1 enriches the set M to a directed graph G (M). An edge goes from
m1 ∈ M tom2 ∈ M if m1

m2
is a power of a prime number p and if nom3 ∈ M\{m1,m2}

with m2|m3|m1 exists. Then it is called a p-edge. The main result in [5] is cited
precisely in Theorem 6.2. Roughly it is as follows.

Theorem 1.2 [5, Theorem 1.2] Let (HM , hM ) be the Orlik block of a finite nonempty
subset M ⊆ N. Then AutS1(HM , hM ) = {±hkM | k ∈ Z} if and only if condition (I)
or condition (II) in Theorem 6.2 is satisfied. They are conditions on the graph G (M).

A weight system w = (w1, . . . , wn) with wi ∈ Q>0 equips any monomial
xj = x j1

1 ...x jn
n with a weighted degree degw xj := ∑n

i=1 wi ji . A polynomial
f ∈ C[x1, . . . , xn] is called an isolated quasihomogeneous singularity if for some
weight system w with wi ∈ Q ∩ (0, 1) each monomial in f has weighted degree
1 and if the functions ∂ f

∂x1
, . . . ,

∂ f
∂xn

vanish simultaneously only at 0 ∈ Cn . Then

the Milnor lattice HMilnor := Hn−1( f −1(1),Z) is a Z-lattice of some rank μ ∈ N

[12], which is calledMilnor number. It comes equipped with a natural automorphism
hmon : HMilnor → HMilnor of finite order, the monodromy. Thus its characteristic
polynomial has the form

pch,hmon = ∏
m∈M1

�
ν(m)
m

for a finite subset M1 ⊆ N and a function ν : M1 → N. Denote νmax :=
max(ν(m) |m ∈ N) and for j = 1, . . . , νmax

Mj := {m ∈ M1 | ν(m) ≥ j}, g j :=
∏

m∈Mj

�m .
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Then

M1 ⊃ M2 ⊃ ... ⊃ Mνmax �= ∅

and pch,hmon =
νmax∏

j=1

g j .

The polynomials g1, . . . , gνmax are called elementary divisors of pch,hmon .

Conjecture 1.3 (Orlik’s conjecture, [14, Conjecture 3.1]) For any isolated quasiho-
mogeneous singularity, there is an isomorphism

(HMilnor, hmon) ∼=
νmax⊕

j=1

(HMj , hMj ).

The conjecture is known to be true for curve singularities [11] and a few other cases,
but it is still (after 45 years) open in general. The following conjecture is independent
of Orlik’s conjecture, but it is motivated by Orlik’s conjecture, as it concerns the sets
M1, . . . , Mνmax .

Conjecture 1.4 Forany isolatedquasihomogeneous singularity, eachof the sets M1,…,
Mνmax satisfies condition (I) in Theorem 6.2.

If this is true for some singularity, then Theorem 1.2 gives for these sets
AutS1(HMj , hMj )

∼= {±hkMj
| k ∈ Z}. If also Orlik’s conjecture holds, then this is

helpful in determining the automorphisms of the Milnor lattice which respect the
monodromy (and intersection form or Seifert form).

Examples 1.5 (i) Fixμ ∈ Z. The singularity Aμ, f (x1) = xμ+1
1 , is quasihomogeneous

with w1 = 1
μ+1 . Here

pch,hmon(t) = tμ+1 − 1

t − 1
=

∏

m∈M
�m(t),

with M = {a ∈ N | a �= 1 and a divides μ + 1}.

Here (HMilnor, hmon) ∼= (HM , hM ) is well known, so Orlik’s conjecture holds here.
The set M satisfies condition (I) in Theorem 6.2 (because of Theorem 6.9), so Con-
jecture 1.4 holds here. Therefore AutS1(HMilnor, hmon) = {±hkmon | k ∈ Z}.

(ii) The Thom–Sebastiani sum of two singularities f (x) and g(y) is f (x) + g(y).
Then [20]

(HMilnor, hmon)( f + g) ∼= (HMilnor, hmon)( f ) ⊗ (HMilnor, hmon)(g)

But it is unknown whether Orlik’s conjecture holds for f + g if it holds for f and g.
Example 6.5 (ii) shows that condition (I) in Theorem 6.2 does not behave well under
tensor product of products of cyclotomic polynomials. This motivates problem 7.
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(iii) It is not even clear for all Brieskorn–Pham singularities
∑n

j=1 x
a j
j whether

Orlik’s conjecture or Conjecture 1.4 hold. Though both conjectures hold if gcd(ai , a j )

= 1 for all i and j with i �= j [3, Proposition 6.3].

Orlik’s Conjecture 1.3 concerns the Milnor lattice. Any proof requires to go into
geometry. But we hope that our Conjecture 1.4 is amenable to a combinatorial proof.
It just concerns the characteristic polynomial. Milnor and Orlik [13] proved a formula
which expresses this in terms of the weight system w of the quasihomogeneous sin-
gularity. It says div pch,hmon = Dw, where Dw is defined in (3.9). See Theorem 3.9.
Therefore we hope that there will be a purely combinatorial Proof of Conjecture 1.4
dealing solely with properties of w. This is problem 6 below. For most of the other
problems, we need two more data.

First, an isolated quasihomogeneous singularity comes also equipped with expo-
nents α1, . . . , αμ ∈ Q ∩ (0, n). They are slightly finer invariants than pch,hmon . They
satisfy

div pch,hmon =
μ∑

j=1

[e2π iα j ]

and, for any d ∈ N with vi := d · wi ∈ N for all i ∈ {1, . . . , n},
μ∑

j=1

td·α j = ρ(v,d)

where ρ(v,d) is defined in (3.8). See Theorem 3.9.
Second, the weight systems w for which isolated quasihomogeneous singularities

exist, can be characterized by a combinatorial condition (C1) (and equivalent com-
binatorial conditions (C1)′ and (C2), see Lemma 3.3). This is cited in Theorem 3.5.
It was proved first by Kouchnirenko [8, Remarque 1.13 (i)]. The necessity of (C1)
had already been seen by K. Saito [17], the sufficiency not. A weaker combinatorial
property (C1) is equivalent to ρ(v,d) ∈ Z[t] (3.16).

The seven problems are given in detail in the later chapters. Roughly, they are as
follows.

Problem 1: (Remark 3.8) Let (v, d) = (v1, . . . , vn, d) ∈ Nn+1 with d > maxi vi be
given which satisfies (C1). Write ρ(v,d) = ∑

α∈ 1
dZ

σ(α) · td·α ∈ Z[t].
Is Dw = ∑

α σ (α) · [e2π iα]?
Problem 2 : (Remark 3.11 (ii)) Let (v, d) = (v1, . . . , vn, d) ∈ Nn+1 with d >

maxi vi be given which satisfies (C1). Give combinatorial proofs of the
formulas inTheorem3.9which connect Dw andρ(v,d) with the exponents
and with one another.

Problem 3: (Remark 3.11 (iii)) Make some good use of the conditions for J with
|J | ≥ 2 in (C1).

Problem 4: (Remarks 5.2) Find examples different from Ivlev’s example for weight
systems w which satisfy (C1), but not (C1).
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Problem 5: (Remark 5.6) Prove or disprove K. Saito’s Conjecture 5.4 that dw ∈ M1
or dw

2 ∈ M1 for w with (C1). Here dw := lcm(denominator of wi | i ∈
{1, . . . , n}).

Problem 6: (Remark 6.4 (i)) Prove (or disprove) combinatorially Conjecture 1.4.
Problem 7: (Remark 6.4 (iii)) Find a natural condition on products f of cyclotomic

polynomials which implies for any elementary divisor of f condition (I)
in Theorem 6.2 and which is stable under tensor product. Prove that Dw
for w with (C1) satisfies it (this would prove Conjecture 1.4).

Some comments: The problems 1, 2, 3 and 7 are motivated by problem 6, i.e., the
wish to prove combinatoriallyConjecture 1.4. If Conjecture 1.4 and Orlik’s conjecture
hold, we understand the Milnor lattice with monodromy of an isolated quasiho-
mogeneous singularity much better, and we can determine AutS1(HMilnor, hmon)

much easier. This, in turn, will be useful for many problems on singularities,
for example, for period maps and Torelli problems. The problems 1 and 2 are
closely related. A positive solution to one of them will probably also give a
positive solution to the other one. And both will probably be useful for posi-
tive solutions of the problems 6 and 7. [6] made good use of the conditions
for |J | = 1 in (C1). They give rise to a graph. But the problems here prob-
ably require to involve also the conditions for |J | ≥ 2. Problem 3 is vague,
but fundamental. The condition (C1) is because of Theorem 3.5 central for the
classification of (weight systems of) isolated quasihomogeneous singularities. We
need to be able to work with the condition (C1). Problem 3 addresses this.
It looks surprisingly difficult to find solutions for the very concrete problem 4.
Though the problems 4 and 5 are less important than the other problems. Prob-
lem 5 is motivated by the (more important) problems 6 and 7. They are closely
related. A positive solution of problem 6 goes probably via a positive solution of
problem 7.

The paper is structured as follows. Section 2 gives notations and basic facts around
cyclotomic polynomials. Section 3 introduces for abstract weight systemsw and (v, d)

the objects Dw and ρ(v,d) and the conditions (C1) and (C1), and it states elementary
facts as well as the formulas and facts which hold for the weight systemsw of isolated
quasihomogeneous singularities. This is all classical. Section 4 gives more explicit
formulas in the cases of the quasihomogeneous singularities of cycle type and chain
type. This builds on Sect. 3 and on [6] and is elementary. Section 5 presents examples.
Especially, it gives counter-examples to the part of K. Saito’s Conjecture 5.4 which
says that dw ∈ M1 in the case of a weight system w with all wi < 1

2 . These counter-
examples are interesting also in Sect. 6. Section 6 formulates in Theorem 6.2 the main
result from [5] on automorphisms of Orlik blocks. It discusses Conjecture 1.4, it gives
examples, and it proves Conjecture 1.4 in special cases, which include the cycle type,
the chain type, the cases with n = 2 and many of the cases with n = 3 (Theorem 6.9).

2 Notations around cyclotomic polynomials

This section fixes some notations and recalls some well-known formulas around prod-
ucts of cyclotomic polynomials.
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In this paper N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .}. Whenever a number
n ∈ N is fixed then N := {1, . . . , n}.

Denote byμ(C) ⊆ S1 the group of all unit roots. Denote byQ[μ(C)] andZ[μ(C)]
the group rings with elements

∑l
j=1 b j [ζ j ] where b j ∈ Q, respectively, b j ∈ Z and

where ζ j ∈ μ(C), with multiplication [ζ1] · [ζ2] = [ζ1 · ζ2]. The unit element is [1].
The trace of an element

∑l
j=1 b j [ζ j ] is

tr

⎛

⎝
l∑

j=1

b j [ζ j ]
⎞

⎠ :=
l∑

j=1

b j · ζ j ∈ C. (2.1)

The degree of it is

deg

⎛

⎝
l∑

j=1

b j [ζ j ]
⎞

⎠ :=
l∑

j=1

b j ∈ Q. (2.2)

The trace map tr : Q[μ(C)] → C and the degree map deg : Q[μ(C)] → Q are ring
homomorphisms.

The divisor of a unitary polynomial f = (t − λ1) · ... · (t − λl) ∈ C[t] with
λ j ∈ μ(C) is

div f := [λ1] + · · · + [λl ]. (2.3)

Of course tr(div f ) = λ1 + · · · + λl and deg(div f ) = deg f .
For two polynomials, f as above and g = (t − κ1) · ... · (t − κk) with κ j ∈ μ(C),

define the new polynomial f ⊗ g ∈ C[t] with zeros in μ(C) by

( f ⊗ g)(t) :=
k∏

i=1

l∏

j=1

(t − κiλ j ). (2.4)

Then

div ( f ⊗ g) = (div f ) · (div g), (2.5)

tr(div ( f ⊗ g)) = (tr(div f )) · (tr(div g)), (2.6)

deg( f ⊗ g) = (deg f ) · (deg g). (2.7)

The order ord (ζ ) ∈ N of a unit root ζ ∈ μ(C) is the minimal number m ∈ N with
ζm = 1. For m ∈ N, the m-th cyclotomic polynomial is

�m(t) =
∏

ζ : ord (ζ )=m

(t − ζ ) ∈ C[t]. (2.8)
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It is in Z[t], it has degree ϕ(m), and it is irreducible in Z[t] and Q[t]. Denote

m := div (tm − 1), �m := div�m, Em := 1

m
m . (2.9)

Then 1 = [1]. Of course

tn − 1 =
∏

m|n
�m(t), n =

∑

m|n
�m, (2.10)

�n =
∏

m|n
(tm − 1)μMoeb(

n
m ), �n =

∑

m|n
μMoeb

( n

m

)
· m . (2.11)

Here μMoeb is the Möbius function [1]

μMoeb : N → {0, 1,−1},

m →
⎧
⎨

⎩

(−1)r if m = p1 · ... · pr with p1, . . . , pr
different prime numbers,

0 else
(2.12)

(here r = 0 is allowed, so μMoeb(1) = 1). The traces of m and �m are

trm =
{
1 if m = 1
0 if m ≥ 2,

(2.13)

tr�m = μMoeb(m). (2.14)

It is easy to see that

a · b = gcd(a, b) · lcm(a,b), Ea · Eb = Elcm(a,b), (2.15)

[ζ ] · b = b if ord (ζ )|b, (2.16)

div ( f ) · b = deg f · b if f |(tb − 1). (2.17)

Especially

a · b = a · b if a|b. (2.18)

It is more difficult to write down formulas for �a · �b. They can be cooked up from
the following special cases.

�a · �b = �a·b if gcd(a, b) = 1, (2.19)

�pa · �pb = ϕ(pb) · �pa if p is a prime number (2.20)

and a > b ≥ 0,

�pa · �pa = ϕ(pa) ·
a∑

j=0

�p j − pa−1 · �pa

if p is a prime number and a > 0. (2.21)
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Especially

�2a · �2a = 2a−1 ·
a−1∑

j=0

�p j . (2.22)

Fix a finite set M ⊆ N and a map ν : N → N0 with support M (so M = {m ∈
N | ν(m) �= 0}) and define the unitary polynomial

� :=
∏

m∈M
�ν(m)

m ∈ Z[t] (2.23)

(if M = ∅, then � = 1). Of course, then

div� =
∑

m∈M
ν(m) · �m . (2.24)

Define also

dM := lcm(m ∈ M}. (2.25)

Then M ⊆ {m ∈ N |m divides dM }. (2.11) and (2.24) give a unique function χ :
N → Z with finite support

supp (χ) ⊆ {n ∈ N | ∃ m ∈ M with n|m} ⊆ {n ∈ N | n divides dM } (2.26)

and

div� =
∑

n∈N
χ(n) · n, (2.27)

ν(m) =
∑

n:m|n
χ(n), (2.28)

χ(n) =
∑

m: n|m
ν(m) · μMoeb

(m

n

)
. (2.29)

ν and χ and the following third function L : N → Z determine each other. L does
not have finite support. The numbers L(k) ∈ Z are the Lefschetz numbers of �. They
are defined by

L(k) :=
deg�∑

j=1

λkj if � =
deg�∏

j=1

(t − λ j ). (2.30)
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Especially L(1) = tr(div�). Observe

m−1∑

a=0

[e2π ia/m] = m,

m−1∑

a=0

[e2π ika/m] = gcd(k,m) · m/ gcd(k,m) (2.31)

Thus

L(k) =
∑

m∈M
χ(m) · tr

(
gcd(k,m)m/ gcd(k,m)

)

=
∑

m:m|k
m · χ(m). (2.32)

Möbius inversion [1] gives

m · χ(m) =
∑

k|m
μMoeb(

m

k
) · L(k). (2.33)

L does not have finite support, but the following extended periodicity property:

L(k) = L(gcd(k, dM )). (2.34)

Therefore L is determined by its values on {m ∈ N |m|dM }. (2.34) implies the peri-
odicity

L(k) = L(k + dM ), (2.35)

but it is stronger. In fact, (2.34) is equivalent to supp (χ) ⊆ {m ∈ N |m|dM } and to
M ⊆ {m ∈ N |m|dM }.

All the formulas (2.24)–(2.35) make also sense if div� is replaced by any element
of Q[μ(C)]. Then ν, χ and L have values in Q.

3 Weight system and characteristic polynomial of an isolated
quasihomogeneous singularity

Fix a number n ∈ N, and denote N := {1, 2, . . . , n} and ei := (0, .., 0, 1, 0, .., 0) ∈
Nn

0 (with 1 at the i-th place) for i ∈ N .

Definition 3.1 A weight system is a tuple (v1, . . . , vn, d) ⊆ (Q>0)
n+1 with vi <

d. Another weight system is equivalent to it, if the second one has the form
q · (v1, . . . , vn, d) for some q ∈ Q>0. A weight system is integer if (v1, . . . , vn, d) ∈
Nn+1. It is reduced if it is integer and it is minimal with this property, i.e.,
gcd(v1, . . . , vn, d) = 1. It is normalized if d = 1.
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Any equivalence class contains a unique reduced weight system and a unique nor-
malized weight system. From now on, the letters (v1, . . . , vn, d) will be reserved for
integer weight systems, and (w1, . . . , wn, 1)will be the equivalent normalized weight
system, i.e., wi = vi

d .
Let (v1, . . . , vn, d) be an integer weight system (not necessarily reduced, it does

not matter here). For J ⊆ N and k ∈ N0 denote

ZJ := {α ∈ Zn | αi = 0 for i /∈ J }, NJ
0 := ZJ ∩ Nn

0,

(Zn)k := {α ∈ Zn |
∑

i

αi · vi = k}, (Nn
0)k := (Zn)k ∩ Nn

0,

(ZJ )k := ZJ ∩ (Zn)k, (NJ
0 )k := (ZJ )k ∩ Nn

0 = NJ
0 ∩ (Nn

0)k .

So, ZJ is a coordinate plane in Zn where some coordinates are 0, (ZJ )k is an affine
hyperplane in ZJ , andNJ

0 and (NJ
0 )k are the intersections of ZJ and (ZJ )k with the

quadrant Nn
0. Of course, Z

N = Zn and Z∅ = {(0, . . . , 0)}.
Remark 3.2 For J ⊆ N with J �= ∅ define the semigroup

SG(J ) :=
∑

j∈J

N0 · v j ⊆ N0 (3.1)

and observe

∑

j∈J

Z · v j = Z · gcd(v j | j ∈ J ). (3.2)

Then

(NJ
0 )k �= ∅ ⇐⇒ k ∈ SG(J ), (3.3)

(ZJ )k �= ∅ ⇐⇒ gcd(v j | j ∈ J )|k. (3.4)

The following combinatorial lemma is a specialization of [6, Lemma 2.1]. It will
be useful in Theorem 3.5. (The conditions (C2)′ and (C3) in [6, Lemma 2.1] are less
important.)

Lemma 3.3 Fix an integer weight system (v1, . . . , vn, d). The following three condi-
tions (C1), (C1)′ and (C2) are equivalent.

(C1): ∀ J ⊆ N with J �= ∅ (NJ
0 )d �= ∅ or ∃ K ⊆ N\J

with |K | = |J | and ∀ k ∈ K (NJ
0 )d−vk �= ∅.

(C1)’: As (C1), but only for J with |J | ≤ n+1
2 .

(C2): ∀ J ⊆ N with J �= ∅ ∃ K ⊆ N
with |K | = |J | and ∀ k ∈ K (NJ

0 )d−vk �= ∅.
Proof (C1) ⇒ (C1)′ is trivial. (C1)′ ⇒ (C1) and (C2) ⇒ (C1) are easy. See [6]
for details. The least easy implication is (C1) ⇒ (C2). In [6] it was proved via the
condition (C3) there. A more direct proof will be given now.
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Suppose that (C1) holds. Fix J ⊆ N with J �= ∅. We want to find a K ⊆ N such
that J and K satisfy (C2). Define the support of J by

supp (J ) := { j ∈ J | ∃ α ∈ (NJ
0 )d with α j �= 0} ⊆ J .

Consider J1 := J\supp (J ).
1st case, J1 = ∅: Then J and K := J satisfy (C2).
2nd case, J1 �= ∅: The definition of J1 implies (N

J1
0 )d = ∅. Therefore (C1) gives

the existence of a set K1 ⊆ N\J1 with |K1| = |J1| and ∀ k ∈ K1 (N
J1
0 )d−vk �= ∅.

Because of v − dk > 0, any element β ∈ (N
J1
0 )d−vk satisfies β j �= 0 for some

j ∈ J1.
If some k ∈ K1 would be in J\J1, then for any element β ∈ (N

J1
0 )d−vk the element

α := β + ek would contradict J1 ∩ supp (J ) = ∅. Thus K1 ⊆ N\J . Now J and
K := K1 ∪ supp (J ) satisfy (C2). ��
Remarks 3.4 (i) Denote with a bar the analogous conditions (C1), (C1)′, (C2) where
N0 is replaced by Z. Also these conditions are equivalent to one another. The proof
is the same as above.

(ii) Recall that a polynomial

f =
∑

α∈Nn
0

aα · xα ∈ C[x1, . . . , xn] where xα = xα1
1 ...xαn

n

is quasihomogeneous with respect to a weight system (v1, . . . , vn, d) if

n∑

i=1

αi · vi = d for all α with aα �= 0.

Recall that a quasihomogeneous polynomial has an isolated singularity at 0 if the
functions ∂ f

∂xi
vanish simultaneously precisely at 0. The set of all quasihomogeneous

polynomials with a given weight system (v1, . . . , vn, d) is the (finite dimensional)
space {∑α∈(Nn

0)d
aα · xα | aα ∈ C}. A generic quasihomogeneous polynomial with the

given weight system is one in a Zariski open subset of this space.
(iii) Let f be a quasihomogeneous polynomial with weight system (v1, . . . , vn, d)

and an isolated singularity at 0. Then all fibers f −1(τ ) ⊆ Cn for τ ∈ C∗ are smooth and
diffeomorphic. The Milnor lattice HMilnor := H (red)

n−1 ( f −1(1),Z) (reduced homology

if and only if n = 1) is a Z-lattice of rank μ = ∏n
j=1(

d
v j

− 1) ∈ N. It comes
equippedwith a natural automorphism hmon of finite order, calledmonodromy. The pair
(HMilnor, hmon) depends up to isomorphism only upon the weight system. Theorem
3.9 expresses pch,hmon in terms of the weight system. Orlik’s conjecture predicts the
isomorphism class of the pair (HMilnor, hmon) and uses only the weight system for
this.

The following theorem is cited from [6, Theorem 2.2]. It was first proved byKouch-
nirenko [8, Remarque 1.13 (i)]. See [6, Remarks 2.3] for its history and contributions
in [8–10,15,17,21,22].
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Theorem 3.5 Let (v1, . . . , vn, d) ∈ Nn+1 be an integer weight system. The following
three conditions are equivalent.

(IS3): There exists a quasihomogeneous polynomial f with the weight system
(v1, . . . , vn, d) and an isolated singularity at 0.

(IS3)’: A generic quasihomogeneous polynomial with the weight system
(v1, . . . , vn, d) has an isolated singularity at 0.

(C1) to (C2): The weight system (v1, . . . , vn, d) satisfies one of the equivalent con-
ditions (C1), (C1)′, (C2).

In Definition 3.6, some objects will be associated to any weight system. Before
studying them in the case of weight systems of isolated quasihomogeneous singular-
ities, their shape under weaker conditions will be discussed in Lemma 3.7.

Definition 3.6 Let (v, d) = (v1, . . . , vn, d) ∈ Nn+1 be an integer weight system.

(a) Define unique numbers s1, . . . , sn, t1, . . . , tn ∈ N by

vi

d
= si

ti
and gcd(si , ti ) = 1,

so by reducing the fractions vi/d. The numbers depend only on the normalized
weight system w = (w1, . . . wn) = ( v1

d , . . . , vn
d ).

(b) Define

dw := lcm(t j | j ∈ N ). (3.5)

Of course dw|d. If (v, d) is reduced and gcd(v1, . . . , vn)|d (which holds, for
example, if (C2) holds), then gcd(v1, . . . , vn) = 1 and then dw = d.

(c) For k ∈ N define

M(k) := { j ∈ N | t j divides k}, (3.6)

and μ(k) :=
∏

j∈M(k)

(
1

w j
− 1

)

=
∏

j∈M(k)

d − v j

v j
∈ Q>0 (3.7)

(the empty product is by definition 1).
(d) Define a quotient of polynomials

ρ(v,d)(t) := tv1+···+vn ·
n∏

j=1

td−v j − 1

tv j − 1
∈ Q(t) (3.8)

and an element of Q[μ(C)]

Dw :=
n∏

j=1

(
1

s j
t j − 1

)

∈ Q[μ(C)]. (3.9)
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Lemma 3.7 Let (v, d) be an integer weight system.

(a) Then

M(k) = M(gcd(k, dw)) (3.10)

=
{

j ∈ N | d

gcd(k, dw)
divides v j

}

, (3.11)

μ(k) = μ(gcd(k, dw)). (3.12)

(b) The Lefschetz numbers L(k) of the element Dw are

L(k) = L(gcd(k, dw)) (3.13)

= (−1)n−|M(k)| · μ(k) ∈ Q∗. (3.14)

(c)

(v, d) satisfies (C2) ⇒ μ(k) ∈ N for all k ∈ N. (3.15)

(v, d) satisfies (C2) ⇐⇒ ρ(v,d) ∈ Z[t]. (3.16)

Proof (a) As all t j divide dw by definition of dw, t j |k is equivalent to t j | gcd(k, dw).
This shows (3.10) and (3.12). Now suppose k|dw (just for simplicity of notations). By
definition t j = d/ gcd(v j , d). Thus for any j ∈ J

t j |k ⇐⇒ d

gcd(v j , d)
|k ⇐⇒ d

k
| gcd(v j , d) ⇐⇒ d

k
|v j .

This shows (3.11).
(b) The following calculation gives (3.14).

L(k) = tr

⎛

⎝
n∏

j=1

(
gcd(k, t j )

s j
t j / gcd(k,t j ) − 1

)
⎞

⎠

=
n∏

j=1

(
gcd(k, t j )

s j
· tr (t j / gcd(k,t j )

) − 1

)

=
∏

j∈M(k)

(
t j
s j

− 1

)

·
∏

j /∈M(k)

(−1)

= (−1)n−|M(k)| · μ(k).

The equality (3.13) L(k) = L(gcd(k, dw)) is a consequence of the analogous proper-
ties (3.10) of M(k) and (3.12) of μ(k) and of (3.14).

(c) Recall from Remark 3.2 that (ZJ )d−vl �= ∅ ⇐⇒ gcd(v j | j ∈ J )|(d − vl).
Therefore (C2) says
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(GCD) ∀ J ⊆ N the gcd(v j | j ∈ J ) divides at least |J | of the numbers d − vl for
l ∈ N .

For any k ∈ N with k|d, obviously the analogous condition with M(k) instead of
N holds then, too. It is easy to derive from this directly μ(k) ∈ N for this k. But it
will also follow from the consideration below of ρ(v,d). Then μ(k) ∈ N for all k ∈ N

follows with (3.12).
ρ(v,d) is a quotient of cyclotomic polynomials. The condition (GCD) says that any

cyclotomic polynomial in the denominator turns up with at least the same multiplicity
in the numerator, especially the cyclotomic polynomials�gcd(v j | j∈J ) for some J ⊆ N .

Thus ρ(v,d) ∈ Z[t] is equivalent to (C2).
Now suppose that (C2) holds. Then (GCD) holds for N and also for any M(k)

instead of N . The argument above for ρ(v,d) ∈ Z[t] applies also to the partial product∏
j∈M(k)(...) for any k ∈ N and shows that it is inZ[t]. Dividing out all factors (t−1),

one can insert t = 1 and obtains for the partial product

μk =
∏

j∈M(k)

d − v j

v j
∈ Z ∩ Q>0 = N.

��

Remark 3.8 Let (v, d) be an integer weight system with (C2). Then (3.16) gives
ρ(v,d) = ∑

α∈ 1
dZ

σ(α) · td·α with a function σ : 1
dZ → Z with finite support.

And (3.15) gives L(k) ∈ Z.
Open problem 1:

(a) Is Dw ∈ Z[μ(C)]? Equivalent: Are the χ(m) which are determined by the L(k)
and (2.33) in Z?

(b) Is Dw = ∑
α∈ 1

dZ
σ(α) · [e2π iα]?

Yes for problem 1 (b) would imply Yes for problem 1 (a).

The following theorem is classical, see the Remarks 3.10 for its origins.

Theorem 3.9 Let (v, d) be an integer weight system with (C2), i.e., a weight system
of isolated quasihomogeneous singularities.

Then the divisor of the characteristic polynomial of its monodromy is Dw, so here
Dw ∈ N0[t], and

tr((monodromy)k) = (−1)n−|M(k)| · μ(k). (3.17)

Also ρ(v,d) ∈ N0[t], thus

ρ(v,d) =
μ∑

j=1

td·α j for certain α j ∈ Q. (3.18)
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These numbers (α1, . . . , αμ) are the exponents of the singularity, and e2π iα1 , . . . ,
e2π iαμ are the eigenvalues of the monodromy, i.e., the zeros of the characteristic
polynomial, so here

Dw =
μ∑

j=1

[e2π iα j ] ∈ N0[μ(C)]. (3.19)

Remarks 3.10 (i) Formula (3.17) was shown by Milnor in [12, §9.6]. Of course, the
trace of the k-th power of themonodromy is precisely the k-th Lefschetz number of the
characteristic polynomial of the monodromy. Therefore (3.17) together with (3.14)
and the equivalence of the data L, χ, ν,� in Sect. 2 implies that the characteristic
polynomial of the monodromy has the divisor Dw. This was first seen in [13].

(ii) The polynomial ρ(v,d) is the generating function of the exponents, which are
up to the shift v1 + · · · + vn the weighted degrees of the Jacobi algebra

C{x1, . . . , xn}
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)
f q.h.∼= C[x1, . . . , xn]

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

) .

This was (re)discovered by many people. Therefore ρ(v,d) ∈ N0[t].
(iii) Let (v, d) be an integer weight system with n ≤ 3. Theorem 3 in [18] says

ρ(v,d) ∈ Z[t] ⇐⇒ (I S3).

With (3.16) and Theorem 3.5, this is equivalent to (C1) ⇐⇒ (C1) for n ≤ 3.
This equivalence (C1) ⇐⇒ (C1) for n ≤ 3 is lemma 2.5 in [6]. It has a short
combinatorial proof.

Remarks 3.11 (i) Theorem 3.9 implies that for an integer weight system (v, d) with
(C2) the answer to the problem 1 (a)+(b) is Yes. But the proof is not combinatorial.
Theorem 3.9 gives also the following three implications:

(C2) ⇒ Dw ∈ N0[μ(C)], (3.20)

(C2) ⇒ ρ(v,d) ∈ N0[t], (3.21)

(C2) ⇒ Dw =
μ∑

j=1

[e2π iα j ]. (3.22)

(3.22) is the positive answer to problem 1 (b) in the case (C2). The known proofs of
(3.20), (3.21) and (3.22) are not combinatorial.

(ii) Let (v, d) be an integer weight system with (C2).
Open problem 2:

(a) Give a combinatorial proof of (3.20).
(b) Give a combinatorial proof of (3.21).
(c) Give a combinatorial proof of (3.22).
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(iii) One can separate in (C2) and (C1) the conditions for J of different values
of |J | ∈ N . The conditions for J with |J | = 1 lead to the graphs and types of a
quasihomogeneous singularity which are discussed in [6, ch. 3]. Sections 4 and 6 in
[6] make extensive and successful use of the conditions for |J | = 1. Below in Sect. 4,
we will extend formulas in [6] for parts of the Milnor number μ to formulas for parts
of Dw.

But it is irritatingly difficult tomake use of the conditions for J with |J | ≥ 2 in (C2)
or (C1). Though they must be used in solutions of the problems in (iii), and probably
also in a positive solution of the Conjecture 6.3 in Sect. 6, if that has a positive solution.

Open problem 3: Make some good use of the conditions for J with |J | ≥ 2 in
(C2) or (C1).

The last point in this section is a discussion of a well-known fact on the order of
the monodromy of a quasihomogeneous singularity. That order is

dmon := lcm(m ∈ N | ν(m) > 0)

where the numbers ν(m) are determined by Dw = ∑
m∈N ν(m) · �m .

Lemma 3.12 In the case of an isolated quasihomogeneous singularity with w j ≤ 1
2

for all j ∈ N, dmon = dw or dmon = dw
2 . If all w j < 1

2 , then dmon = dw.

Proof Because of the Definition (3.9) of Dw, dmon is a divisor of dw. The equalities

n∏

j=1

(
1

w j
− 1

)

= μ = trid = tr(Mon)dmon = L(dmon)

= ±μ(dmon) = ±
∏

j : t j |dmon

(
1

w j
− 1

)

show that the second product can miss only indices j with w j = 1
2 . Therefore

lcm(t j | w j < 1
2 ) divides dmon. If all w j < 1

2 , then lcm(t j | w j < 1
2 ) = dw. If

some w j = 1
2 then lcm(t j | w j < 1

2 ) = dw or dw
2 . ��

4 Formulas for isolated quasihomogeneous singularities of cycle type
and of chain type

The formulas in this section concern the isolated quasihomogeneous singularities of
cycle type,

xnx
a1
1 + x1x

a2
2 + x2x

a3
3 + · · · + xn−1x

an
n , where n ∈ N, a1, . . . , an ∈ N,

and in the case n even neither a j = 1 for all even j nor a j = 1 for all odd j,

and of chain type,

xa1+1
1 + x1x

a2
2 + x2x

a3
3 + · · · + xn−1x

an
n where n ∈ N, a1, . . . , an ∈ N.
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The formulas start with normalized weight systems (w, 1) = (w1, . . . , wn, 1)
which satisfy a part of the conditions (C1) and (C2) in Lemma 3.3, namely that
part which concerns subsets J ⊆ N with |J | = 1. That part leads to graphs and types
of weight systems, see Sect. 3 in [6]. As already said in Remark 3.10 (iv), it is difficult
to make use of the conditions in (C1) and (C2) for J with |J | ≥ 2. The formulas here
do not make use of these higher conditions.

The formulas extend formulas in [6] for parts of the weight system and parts of
the Milnor number to formulas for parts of Dw. Some calculations already made in
[6] will be reproduced here for better readability. We start with the cycle type, then
consider a generalization of the chain type and finally specialize that to the chain type.
The formulas for the generalization of the chain type will allow to glue its root to
another graph.

Define the function

ρ :
∞⋃

k=0

Zk → Z,

ρ(x1, . . . , xk) := x1 . . . xk − x2 . . . xk + · · · + (−1)k−1xk + (−1)k (4.1)

(the case k = 0 is ρ(∅) = 1).

Lemma 4.1 (Partly [6, Lemma 3.4 and (4.6)]) Fix n ∈ N and n numbers a1, . . . , an ∈
N such that, if n is even, neither a j = 1 for all even j nor a j = 1 for all odd j .

Then there is a unique normalized weight system (w, 1) = (w1, . . . , wn, 1) with
a jw j + w j−1 = 1 for all j ∈ N, where w0 := wn. It is

w j = v j

d
where

v j := ρ(a j−1, a j−2, . . . , a2, a1, an, an−1, . . . , a j+1) ∈ N,

d :=
n∏

j=1

a j − (−1)n ∈ N. (4.2)

Define

γ := gcd(v1, d).

Then the unique numbers s j , t j ∈ Nwith gcd(s j , t j ) = 1 andw j = s j
t j
fromDefinition

3.6 are

s j = v j

γ
,

t1 = ... = tn = d

γ
. (4.3)

Especially γ = gcd(v j , d) for any j ∈ N.
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The Milnor number is

μ =
n∏

j=1

a j . (4.4)

The divisor Dw from Definition 3.6 is

Dw = γ · d/γ + (−1)n · 1. (4.5)

Proof The matrix of the system a jw j + w j−1 = 1 of linear equations has the deter-
minant

det

⎛

⎜
⎜
⎜
⎝

a1 1
1 a2

. . .
. . .

1 an

⎞

⎟
⎟
⎟
⎠

=
n∏

j=1

a j − (−1)n = d,

here d > 0 by hypothesis. Therefore it has a unique solution. It is easy to see that this
solution is given by (4.2). The conditions that in the case n even neither a j = 1 for all
even j nor a j = 1 for all odd j make sure that the numbers v j and d and the weights
w j are not zero, but positive. The equation a jw j + w j−1 = 1 implies w j < 1.

By definition t1 = d/γ . The identities (where w0 = wn, s0 = sn, t0 = tn)

s j
t j

= w j = 1−w j−1
a j

= t j−1−s j−1
t j−1·a j

gcd(t j−1, t j−1 − s j−1) = 1

}

⇒ t j = t j−1 · a j

gcd(a j , t j−1 − s j−1)
(4.6)

show t j−1|t j . As we have a cycle here, t j = d/γ and gcd(v j , d) = γ for any j ∈ N .
The Milnor number is calculated by (with v0 = vn)

μ =
n∏

j=1

d − v j−1

v j−1
=

n∏

j=1

a j · v j

v j−1
= a1 · ... · an .

The divisor Dw is defined in (3.9). Because of (2.15) it has only the two summands
d/γ and 1, and the coefficient of 1 is obviously (from (3.9)) χ(1) = (−1)n . As
μ = deg Dw = χ(d/γ ) ·d/γ +χ(1), the coefficient χ(d/γ ) ofd/γ is χ(d/γ ) = γ ,
so (4.5) holds. ��

Lemma 4.2 is a slight generalization of the chain type. Corollary 4.3 specializes it
to the chain type.

Lemma 4.2 (Partly [6, (4.10)]) Fix n ∈ N, n numbers a1, . . . , an ∈ N, two numbers
s0, t0 ∈ N with s0 < t0 and gcd(s0, t0) = 1, and define w0 := s0

t0
.
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Then there are unique weights w1, . . . , wn ∈ Q ∩ (0, 1) with a jw j + w j−1 = 1
for j = 1, . . . , n. Write w j = s j

t j
with s j , t j ∈ N and gcd(s j , t j ) = 1 and β j :=

gcd(t j−1 − s j−1, a j ) ∈ N and α j := a j
β j

∈ N. Then

s j = ρ(a j−1, . . . , a1) · t0 + (−1) j s0
β j · ... · β1

, (4.7)

t j = α j · t j−1 = α j · ... · α1 · t0. (4.8)

The partial divisor and the partial Milnor number associated to (w1, . . . , wn) are

n∏

j=1

(
1

s j
t j − 1

)

= (−1)n1 +
n∑

j=1

(−1)n− j β j ...β1

t0 − s0
· t j (4.9)

= (−1)n E1 +
n∑

j=1

(−1)n− j a j ...a1
1 − w0

· Et j , (4.10)

n∏

j=1

(
1

w j
− 1

)

= ρ(an, an−1, . . . , a1) + (−1)n−1w0

1 − w0
. (4.11)

Proof Theweights are unique and inQ∩(0, 1)because they are determined inductively
by the equations a jw j + w j−1 = 1, i.e.,

w j = 1 − w j−1

a j
= t j−1 − s j−1

a j · t j−1

= (t j−1 − s j−1)/β j

α j · t j−1
.

As 1 = gcd(s j−1, t j−1) = gcd(t j−1 − s j−1, t j−1), this shows (4.8). For j = 1 (4.7)
is clear. For j ≥ 2 the additional calculation

β j · s j = t j−1 − s j−1

= a j−1 · ... · a1 · t0
β j−1 · ... · β1

− ρ(a j−2, . . . , a1) · t0 + (−1) j−1s0
β j−1 · ... · β1

= ρ(a j−1, . . . , a1) · t0 + (−1) j s0
β j−1 · ... · β1

shows (4.7). Now the partial divisor is also calculated inductively. The induction uses
the partial divisor and the partial Milnor number for n − 1. Also t j |tn and (2.18)
(ab = ab for a|b) are used.
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⎛

⎝
n−1∏

j=1

(
1

s j
t j − 1

)
⎞

⎠ ·
(
1

sn
tn − 1

)

=
⎛

⎝
n−1∏

j=1

(
1

w j
− 1

)
⎞

⎠ · 1

sn
tn −

n−1∏

j=1

(
1

s j
t j − 1

)

= βn ...β1

t0 − s0
· tn + (−1)n +

n−1∑

j=1

(−1)n− j β j ...β1

t0 − s0
· t j .

This shows (4.9) and (4.10). The partial Milnor number is the degree of the partial
divisor. ��
Corollary 4.3 In the situation of Lemma 4.2, suppose w0 = w1. Then

s0 = s1 = 1, t0 = t1 = a1 + 1, β1 = a1, α1 = 1. (4.12)

Define

bk := (a1 + 1) · a2 · ... · ak for k = 1, . . . , n, b0 := 1, (4.13)

μk := ρ(ak, . . . , a2, a1 + 1), for k = 1, . . . , n, μ0 := 1. (4.14)

Then

s j = μ j−1

β j · ... · β2
, (4.15)

t j = α j · t j−1 = α j · ... · α2 · (a1 + 1) = b j

β j · ... · β2
, (4.16)

Dw =
n∏

j=1

(
1

s j
t j − 1

)

= (−1)n +
n∑

j=1

(−1)n− jβ j ...β2 · t j (4.17)

= (−1)n +
n∑

j=1

(−1)n− j b j · Et j , (4.18)

μk =
k∏

j=1

(
1

w j
− 1

)

= bk − μk−1. (4.19)

Furthermore, define

n∑

j=0

(−1)n− jb j =:
μ∑

i=1

[λi ]. (4.20)
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The definition (4.20) makes sense, as obviously for the divisor on the left hand side,

ν(m) =
{
1 if for some even k m|bn−k,m � |bn−k−1,

0 else.
(4.21)

Then

n∑

j=0

(−1)n− jb j =
n∏

j=1

(
1

μ j−1
b j − 1

)

(4.22)

Dw =
μ∑

i=1

[λμ
i ]. (4.23)

Proof Formula (4.12) is trivial. The formulas (4.15) to (4.19) are immediate con-
sequences of the formulas in Lemma 4.2. (4.22) is proved inductively by a similar
calculation as (4.9),

⎛

⎝
n∏

j=1

(
1

μ j−1
b j − 1

)
⎞

⎠ ·
(

1

μn−1
bn − 1

)

=
⎛

⎝
n−1∏

j=1

(
1

w j
− 1

)
⎞

⎠ · 1

μn−1
bn −

n−1∏

j=1

(
1

μ j−1
b j − 1

)

= bn +
n−1∑

j=0

(−1)n− jb j .

For the final formula (4.23), it is in view of (2.31) and (4.18) enough to show

b j

gcd(b j , μ)
= t j for j ≥ 1. (4.24)

But μk = bk − μk−1 (for k ≥ 1) and bk = akbk−1 (for k ≥ 2) show

gcd(b j , μ) = gcd(b j , μn−1) = ... = gcd(b j , μ j ) = gcd(b j , μ j−1).

As w j = s j
t j

= μ j−1
b j

,

t j = b j

gcd(b j , μ j−1)
= b j

gcd(b j , μ)
.

��
Remark 4.4 The last formula (4.23) in corollary 4.3 fits to a result of Orlik and Randell
[16, (2.11) theorem]. They showed that the integral monodromy is theμ-th power of a
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cyclic automorphism of the Milnor lattice, whose eigenvalues are given by the divisor
in (4.20). Formula (4.23) just confirms that the divisor Dw has the eigenvalues which
fit to this theorem.

We made this calculation mainly to see how it works and to get some inspiration
for good guesses for other types of weight systems of isolated quasihomogeneous
singularities.

5 Examples and counter-examples

This section offers examples. Some of them are counter-examples to conjectures or
hopes.

Example 5.1 Recall that for weight systems with n = 3 (C1) ⇐⇒ (C1) by Remark
3.10 (iii). The first known (and the only documented) example of a weight system
(v1, . . . , vn, d) which satisfies (C1), but not (C1), is an example of Ivlev [2, 12.3]
with n = 4. It is the integer weight system

(v, d) = (1, 24, 33, 58, 265). (5.1)

By Lemma 3.7 (c) ρ(v,d) ∈ Z[t]. Ivlev (and we, too) calculated that ρ(v,d) is even in
N0[t]. By Theorem 3.5 any quasihomogeneous polynomial with this weight system
has a non-isolated singularity at 0.

Now we show that (v, d) satisfies (C1), but not (C1). Observe

(w, 1) =
(

1

265
,
24

265
,
33

265
,
58

265
, 1

)

, w j = v j

d
= s j

t j
, with s j = v j , t j = d,

and

265 = 5 · 53, 264 = 3 · 8 · 11 = 8 · 33 = 11 · 24,
265 − 33 = 232 = 4 · 58,
gcd(24, 33) = 3, 265 − 58 = 207 = 3 · 69,
but 207 /∈ SG(24, 33) := N0 · 24 + N0 · 33.

The following table lists the sets J with |J | ≤ 2 which satisfy alone or with a suitable
set K ⊆ N\J the condition (C1).

J {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 4} {3, 4}
K {1} {1} {3} {1, 3}

The set J = {2, 3} satisfies with K = {1, 4} (C1), but not (C1). In the notation of [6,
Example 3.2 (iii)], the weight system is of type XII (but with a different numbering).
The sets M(k) are
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M(k) =
{
M(265) = N = {1, 2, 3, 4} if 265|k,
M(1) = ∅ if 265 � |k.

Therefore only the values of L(k) = (−1)n−|M((k)| · μ(k) and χ(k) for k ∈ {1, 265}
are interesting.

(L(265), L(1)) = (66516, 1) = (μ, 1),

(χ(265), χ(1)) = (251, 1),

Dw = 251 · 265 + 1 · 1 = μ − 1

265
· 265 + 1.

Remarks 5.2 Open problem 4: Find other examples of integer weight systems (v, d)

which satisfy (C1), but not (C1). Both cases, ρ(v,d) ∈ N0[t] and ρ(v,d) ∈ Z[t]\N0[t],
are interesting. Because of Remark 3.10 (iii), all such examples satisfy n ≥ 4. Find
examples with n = 4 of other types as Ivlev’s example, which is of type XII in the
notation of [6, Example 3.2 (iii)].

Examples 5.3 Here some examples of weight systems of isolated quasihomogeneous
singularities are given, together with the values of ν, χ and L from Sect. 2.

(i) n = 3, N = {1, 2, 3},

(w1, w2, w3, 1) =
(
1

4
,
1

6
,
5

12
, 1

)

.

One singularitywith this weight system is x41+x62+x2x23 . Themonomials x41 , x
6
2 , x2x

2
3

give the type II in [6, example 3.2 (ii)]. The following table lists all sets M(k) and
suitable values of k.

N {1} {2} ∅
12 4 6 1

Therefore only the values of L(k) = (−1)n−|M(k)| ·μ(k) and χ(k) for k ∈ {12, 4, 6, 1}
are interesting.

(L(12), L(4), L(6), L(1)) = (21, 3, 5,−1),

(χ(12), χ(4), χ(6), χ(1)) = (1, 1, 1,−1),

Dw = 12 + 4 + 6 − 1

= 12 + (�6 + �4 + �3 + �2 + �1) + �2.

(ii) n = 4, N = {1, 2, 3, 4},

(w1, w2, w3, w4, 1) =
(
1

5
,
2

5
,
1

6
,
5

12
, 1

)

.

One singularity with this weight system is x51 + x1x22 + x63 + x3x24 . The monomials
x51 , x1x

2
2 , x

6
3 , x3x

2
4 give the type XIII in [6, example 3.2 (iii)]. The following table lists
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all sets M(k) and suitable values of k.

N {1, 2, 3} {3, 4} {1, 2} {3} ∅
60 30 12 5 6 1

Therefore only the values of L(k) = (−1)n−|M(k)| · μ(k) and χ(k) for k ∈
{60, 30, 12, 5, 6, 1} are interesting.

(L(60), L(30), L(12), L(5), L(6), L(1)) = (42,−30, 7, 6,−5, 1),

(χ(60), χ(30), χ(12), χ(5), χ(6), χ(1)) = (1,−1, 1, 1,−1, 1),

Dw = 60 − 30 + 12 + 5 − 6 + 1

= (�60 + �20 + �12 + �5 + �4 + �1) + (�12 + �4 + �1).

(iii) The curve singularity D2q , x
2q−1
1 + x1x22 :

n = 2, N = {1, 2}, μ = 2q, (w1, w2, 1) =
(

1

2q − 1
,
q − 1

2q − 1
, 1

)

.

The monomials x2q−1
1 , x1x22 give the type II in [6, example 3.2 (i)]. The following

table lists all sets M(k) and suitable values of k.

N ∅
2q − 1 1

Therefore only the values of L(k) = (−1)n−|M(k)| ·μ(k) and χ(k) for k ∈ {2q −1, 1}
are interesting.

(L(2q − 1), L(1)) = (2q, 1),

(χ(2q − 1), χ(1)) = (1, 1),

Dw = 2q−1 + 1.

(iv) The curve singularity D2q+1, x
2q
1 + x1x22 :

n = 2, N = {1, 2}, μ = 2q + 1, (w1, w2, 1) =
(

1

2q
,
2q − 1

4q
, 1

)

.

The monomials x2q1 , x1x22 give the type II in [6, example 3.2 (i)]. The following table
lists all sets M(k) and suitable values of k.

N {1} ∅
4q 2q 1
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Therefore only the values of L(k) = (−1)n−|M(k)| ·μ(k) and χ(k) for k ∈ {4q, 2q, 1}
are interesting.

(L(4q), L(2q), L(1)) = (2q + 1,−(2q − 1), 1),

(χ(4q), χ(2q), χ(1)) = (1,−1, 1),

Dw = 4q − 2q + 1. (5.2)

K. Saito proposed the following conjecture.

Conjecture 5.4 [19, (3.13) and (4.2)] Let (w1, . . . , wn, 1) be a normalized weight
system such thatρ(v,d) ∈ N0[t] or (in general stronger) such that (I S3) (fromTheorem
3.5) holds for the reduced weight system. Then Dw = ∑

m∈N ν(m) · �m satisfies

ν(dw) > 0 or ν

(
dw
2

)

> 0, (5.3)

ν(dw) > 0 if all w j <
1

2
, (5.4)

i.e., in the case (I S3) the monodromy has eigenvalues of order dw or of order dw
2 , and

if all w j < 1
2 it has eigenvalues of order dw.

Saito was not aware of the part of Theorem 3.5 saying that the condition (C1) is
sufficient for (I S3) (necessity is proved in [17]). Probably therefore he gave in the
conjecture in [19, (3.13] the characterization ρ(v,d) ∈ N0[t], which is in the cases
n ≤ 3 sufficient and necessary for (I S3) ([2,18] [6, lemma 2.4]). In [19, (4.2)] he gave
the condition (I S3).

He proved in [19] a result which implies the conjecture for n = 3. He also stated
that it is true for n = 2.

The following examples disprove the part (5.4) of the conjecture for n = 4. They
can be extended easily to n ≥ 5.

Examples 5.5 Consider two curve singularities D2kq1+1 and D2kq2+1 with k, q1, q2 ∈
N with q1 and q2 odd and lcm(q1, q2) > max(q1, q2). Then their Thom–Sebastiani
sum D2kq1+1 ⊗ D2kq2+1 is a quasihomogeneous singularity in n = 4 variables with
normalized weights

(
1

2kq1
,
2kq1 − 1

2k+1q1
,

1

2kq2
,
2kq2 − 1

2k+1q2

)

and dw = 2k+1lcm(q1, q2). The divisor of the characteristic polynomial is because of
(5.2)

Dw = (2k+1q1 − 2kq1 + 1) · (2k+1q2 − 2kq2 + 1)

= (2k+1 − 2k − 2k) gcd(q1, q2)2k+1lcm(q1,q2)

+2k gcd(q1, q2)2k lcm(q1,q2) + 2k+1q1 + 2k+1q2
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−2kq1 − 2kq2 + 1.

= 2k gcd(q1, q2)2k lcm(q1,q2) + 2k+1q1 + 2k+1q2

−2kq1 − 2kq2 + 1.

Part (5.4) of Conjecture 5.3 does not hold here.

Remarks 5.6 In Examples 5.5 the part (5.3) of the conjecture does hold. That part of
the conjecture is still open.

We checked the tables of weight systems of isolated quasihomogeneous singular-
ities in n = 4 variables in [7] up to μ = 500 for all weight systems for which (5.4)
does not hold. There are 25 cases, and they are precisely those Thom–Sebastiani sums
D2kq1+1 ⊗ D2kq2+1 in Examples 5.4 which satisfy μ ≤ 500. In 23 cases k = 1, in 2
cases k = 2.

This indicates that for n = 4 their might be no counter-examples to (5.3) and only
the counter-examples in example 5.5 to (5.4).

Open problem 5:

(a) Prove or disprove the part (5.3) of Conjecture 5.4.
(b) Settle whether in the case n = 4 the only counter-examples to (5.4) are those in

example 5.5.

6 A conjecture on the orders of the eigenvalues of themonodromy of
an isolated quasihomogeneous singularity

Recall theDefinition1.1of theOrlik block (HM , hM ) andof thegroupAutS1(HM , hM )

for a finite nonempty set M ⊆ N. The main result in [5] characterizes those sets M
for which AutS1(HM , hM ) is as small as possible in terms of conditions on the set M .
It is recalled below in Theorem 6.2. The following definitions are needed.

Definition 6.1 Let M ⊆ N be a finite set of positive integers.
(a) A graph G (M) = (M, E(M)) is associated to it as follows. M itself is the set

of vertices. The edges in E(M) are directed. The set E(m) is defined as follows. From
a vertex m1 ∈ M to a vertex m2 ∈ M there is no edge if at least one of the following
two conditions holds:

(i) m1/m2 is not a power of a prime number.
(ii) An m3 ∈ M\{m1,m2} with m2|m3|m1 exists.

Ifm1/m2 is a power pk with k ∈ N of a prime number p and if nom3 ∈ M\{m1,m2}
withm2|m3|m1 exists, then there is a directed edge fromm1 tom2,which is additionally
labeled with p. It is called a p-edge. Together such edges form the set E(M) of all
edges.

(b) For any prime number p the components of the graph (M, E(M)\{p-edges})
which is obtained by deleting all p-edges, are called the p-planes of the graph. A
p-plane is called a highest p-plane if no p-edge ends at a vertex of the p-plane. A
p-edge from m1 to m2 is called a highest p-edge if no p-edge ends at m1.
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(c) A property (Tp) for a prime number p and a property (S2) for the prime number
2:

(Tp) : The graph G (M) has only one highest p-plane. (6.1)

(S2) : The graph (M, E(M)\{highest 2-edges})
has only 1 or 2 components. (6.2)

(d) The least common multiple of the numbers in M is denoted lcm(M) ∈ N. For
any prime number p denote

l(m, p) :=max(l ∈ N0 | pl divides m) for any m ∈ N,

l(M, p) :=max(l(m, p) |m ∈ M) = l(lcm(M), p).

Then m = ∏
p prime number p

l(m,p).

Theorem 6.2 [5, Theorem 1.2] Let M ⊆ N be a finite set of positive integers, and let
(HM , hM ) be its Orlik block. Then

AutS1(HM , hM ) = {±hkM | k ∈ Z} (6.3)

holds if and only if the graph G (M) satisfies one of the following two properties.

(I) G (M) is connected. It satisfies (S2). It satisfies (Tp) for any prime number p ≥ 3.
(II) G (M) has two components M1 and M2. The graphs G (M1) and G (M2) are

2-planes of G (M) and satisfy (Tp) for any prime number p ≥ 3. Furthermore

gcd(lcm(M1), lcm(M2)) ∈ {1; 2}, (6.4)

l(M1, 2) > l(M2, 2) ∈ {0; 1}. (6.5)

Motivated byOrlik’s Conjecture 1.3, Theorem6.2, and a search in the lists ofweight
systems and associated divisors Dw in [7], here we propose the following conjecture.

Conjecture 6.3 (= Conjecture 1.4) For any isolated quasihomogeneous singularity,
each of the sets M1, . . . , Mνmax satisfies condition (I) in Theorem 6.2.

Remarks 6.4 (i)Open problem 6: Prove Conjecture 6.3 combinatorially (or disprove
it by a counter-example).

(ii) The conjecture is hard to deal with, because it requires to split the characteristic
polynomial into its elementary divisors (as also Orlik’s conjecture). It is not easy to
extract from the formula for Dw, which is by the result of Milnor and Orlik the divisor
of the characteristic polynomial, information about these elementary divisors. This
formula is rather nice in terms of the m (though as a product, not a sum), but the
elementary divisors require to consider the �m .

(iii) Example 6.5 (i) shows that the conditions (I) and (II) together in Theorem 6.2
do not behave well under tensor product. Example 6.5 (ii) shows that condition (I)
alone does not behave well under tensor product. This leads to the open problem 7. It
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generalizes Conjecture 6.3. A solution of problem 7 (a)+(b) would imply a positive
solution of problem 6.

(iv) Open problem 7:

(a) Find a natural condition for products f of cyclotomic polynomials which implies
for any elementary divisor of f condition (I) in Theorem 6.2, and which is stable
under tensor product.

(b) Prove that the characteristic polynomial of any quasihomogeneous singularity
satisfies this condition.

(iv) It would be desirable to have other ways to express condition (I) in Theorem
6.2, e.g., in terms of the χ(m) of the divisor of a characteristic polynomial. But it is
not clear how they could look like.

(v) Conjecture 6.3 is therefore proved only in a few cases, in Theorem 6.9. The
proofs use Lemma 4.1 and Corollary 4.3.

Examples 6.5 (i) Consider f1 := �12�
2
6�

2
4�2 and f2 := �5�1. Then

f1 ⊗ f2 = �60�
2
30�

2
20�12�10�

2
6�

2
4�2

by (2.19)–(2.20). Denote by f1 = g1,1 · g1,2 and f2 = g2 and f1 ⊗ f2 = g⊗,1 · g⊗,2
the decompositions into elementary divisors and by M1,1, M1,2, M2, M⊗,1M⊗,2 ⊆ N

the corresponding sets (Fig. 1). Then
M1,1 = {12, 6, 4, 2} satisfies condition (I),
M1,2 = {6, 4} satisfies condition (II),
M2 = {5, 1} satisfies condition (I),
M⊗,1 = {60, 30, 20, 12, 10, 6, 4, 2} satisfies condition (I),
M⊗,2 = {30, 20, 6, 4} satisfies neither (I) nor (II).

(ii) Consider f1 := �2
7�3�1 and f2 := �2

5�3�1. Then

f1 ⊗ f2 = �4
35�

2
21�

2
15�

2
7�

2
5�

3
3�

3
1

(M⊗,1) (M⊗,2)

60
2

3
5

30

3
2

20

5 2

12

5
3

10

5

6

3

4

2

2

30

5

20

5
6 4

Fig. 1 For example 6.5 (i)
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(M⊗,1) = (M⊗,2) (M⊗,3) ((M⊗,4)

21

3
5

35

7 5

15

7
3

7

7

3

3

5

5

1

35

3

3

1

35

Fig. 2 For example 6.5 (ii)

by (2.19)–(2.21). Denote by f1 = g1,1 · g1,2 and f2 = g2,1 · g2,2 and f1 ⊗ f2 =
g⊗,1 · g⊗,2 · g⊗,3 · g⊗,4 the decompositions into elementary divisors and by Mi, j and
M⊗, j ⊆ N the corresponding sets (Fig. 2). Then

M1,1 = {7, 3, 1}, M1,2 = {7},
M2,1 = {5, 3, 1}, M2,2 = {5},
M⊗,1 = M⊗,2 = {35, 21, 15, 7, 5, 3, 1} and M⊗,4 = {35}

satisfy all condition (I), but
M⊗,3 = {35, 3, 1} satisfies neither (I) nor (II).

Remark 6.6 (i) Lemma 8.2 in [4] gives the sufficient condition in part (ii) for
AutS1(HM , hM ) = {±hkM | k ∈ Z}. It is a special case of condition (I) in Theorem
6.2. It holds for many elementary divisors of characteristic polynomials of isolated
quasihomogeneous singularities. But Examples 6.7 (i)–(iii) give quasihomogeneous
singularities where it does not hold for all elementary divisors of the characteristic
polynomial.

(ii) A special case of condition (I) [4, Lemma 8.2]: M contains a largest number
m1 such that G (M) is a directed graph with root m1. This implies (Tp) for any p.
Additionally, a chain of 2-edges exists which connects all 2-planes. This implies (S2).

Examples 6.7 (i) The weight system (w, 1) = ( 16 ,
1
10 ,

1
15 , 1) satisfies (C1) and (I S3).

It is of type I (=Fermat type) in the notation of [6, Example 3.2 (ii)]. The Brieskorn–
Pham singularity x61 + x102 + x153 has this weight system. Here

Dw = (6 − 1)(10 − 1)(15 − 1)

= (230 − 6 − 10 + 1)(15 − 1)

= 2030 + 6 + 10 + 15 − 1 =
22∑

j=1

div g j ,

with the elementary divisors g j with

div g j = 30 for 1 ≤ j ≤ 20,
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(M21) in (i) (M22) in (i) (M4) in (ii)
6

3
5

10

2 5

15

2
3

2

2

3

3

5

5

1

2

2

3

3

5

5

1

3
3

5
5

1

Fig. 3 For Examples 6.7 (i) and (ii)

div g21 = 6 + 10 + 15 − 2 − 3 − 5 + 1

= �6 + �10 + �15 + �2 + �3 + �5 + �1,

div g22 = 2 + 3 + 5 − 21 = �2 + �3 + �5 + �1.

The sets M21 = {6, 10, 15, 2, 3, 5, 1} for g21 and M22 = {2, 3, 5, 1} for g22 satisfy
condition (I) in Theorem 6.2, but not the stronger conditions in Remark 6.6 (ii) (Fig.
3).

(ii) The weight system (w, 1) = ( 2
15 ,

1
5 ,

1
3 , 1) satisfies (C1) and (I S3). It is of type

II in the notation of [6, Example 3.2 (ii)]. One singularity with this weight system is
x51 x2 + x52 + x33 . Here

Dw =
(
1

2
15 − 1

)

(5 − 1)(3 − 1) = (215 − 5 + 1)(3 − 1)

= 315 + 5 + 3 − 1

= 3�15 + 4�5 + 4�3 + 4�1 =
4∑

j=1

div g j ,

with the elementary divisors g j with

div g j = 15 for 1 ≤ j ≤ 3,

div g4 = �5 + �3 + �1.

The setM4 = {5, 3, 1} for g4 satisfies condition (I) in Theorem6.2, but not the stronger
conditions in Remark 6.6 (ii).

(iii) The first of Examples 5.4 is D7⊗D11 with (k, q1, q2) = (1, 3, 5) and (w, 1) =
( 16 ,

5
12 ,

1
10 ,

9
20 , 1). It satisfies (C1) and is of type IV in the notation of [6, Example 3.2

(iii)]. Here

Dw = 230 + 12 + 20 − 6 − 10 + 1 =
3∑

j=1

div g j ,
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(M1) (M2)

20
5

2

12

2

3
4

2

30
5

3

2
10

5 2

6

2

3
2

2

15
5

3 5
5

3
3

1

4
2

30
5

3

2
10

5 2

6

2

3
2

2

15
5

3 5
5

3
3

1

Fig. 4 For example 6.7 (iii)

with the elementary divisors g j with div g j = ∑
m∈Mj

�m and

M1 = {30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1},
M2 = {30, 15, 10, 6, 5, 4, 3, 2, 1},
M3 = {1}.

The setsM1 andM2 satisfy condition (I) inTheorem6.2, but not the stronger conditions
in Remark 6.6 (ii) (Fig. 4).

Lemma 6.8 Suppose that numbers k1, . . . , kl ∈ N with k j |k j−1 for j = 2, . . . , l are
given. Then the set M ⊆ N which is defined by k1 − k2 + · · · + (−1)l−1kl =∑

m∈M �m is either empty or satisfies the conditions in Remark 6.6(ii).

Proof We suppose that the setM is not empty. If k j = k j−1 for some j ∈ {2, 3, . . . , l},
we can drop k j and k j−1. Therefore we can suppose k j < k j−1 for j ∈ {2, . . . , l}.
We have to prove the following two claims.

Claim 1 The graph G (M) is a directed graph with root k1.

Claim 2 In G (M) a chain of 2-edges exists which connects all 2-planes.

Proof of claim 1: The cases l ∈ {1, 2} are trivial. Suppose l ≥ 3. The proof uses
induction over l.

Define the sets M1 and M2 by k1 −k2 = ∑
m∈M1

�m and
∑l

j=3(−1) j−1k j =
∑

m∈M2
�m , so that M = M1∪̇M2. The graph G (M1) is obviously a directed graph

with root k1. The graph G (M2) is by induction hypothesis a directed graph with root
k3. For the proof of the claim it is sufficient to show that the graph G (M) contains
a directed edge from a vertex in M1 to k3. As k2 < k1, a prime number q with
l(k2, q) < l(k1, q) exists. Then the number
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m := ql(k1,q) ·
∏

p prime number,p �=q

pl(k3,p)

is in M1, and there is a directed edge from m to k3. ��
Useful for the proof of claim 2 will be

Claim 3 For any prime number p and any r ∈ N0, the set M(p, r) := {m ∈
M | l(m, p) = r} is either empty or a single p − plane. In the second case its graph
is a directed graph with a root.

Proof of claim 3: M(p, r) = {pr · m |m ∈ M̃(p, r)} where M̃(p, r) is the support of
the divisor

∑

j : l(k j ,p)≥r

(−1) j−1k̃ j with k̃ j := p−l(k j ,p) · k j .

If this divisor is not 0, claim 1 applies and gives claim 3.

Proof of claim 2: Two cases will be distinguished.
1st case, for any odd j ∈ {1, . . . , l − 1} k j

k j+1
= 2l(k j ,2)−l(k j+1,2): Then

M(2, r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ if r > l(k1, 2),
or if l(k j , 2) ≥ r > l(k j+1, 2) for an even j,
or if l(kl , 2) ≥ r and l is even.

{2r · m | m|k̃ j } where k̃ j := 2−l(k j ,2) · k j
if l(k j , 2) ≥ r > l(k j+1, 2) for an odd j,
or if l(kl , 2) ≥ r and j = l is odd.

Define

k̃min :=
{
k̃l if l is odd,
k̃l−1 if l is even.

Then the set {2r · k̃min | M(2, r) �= ∅} is the set of vertices in M of a chain of 2-edges
which connects all 2-planes.

2nd case, a minimal odd j ∈ {1, 2, . . . , l − 1} with k j
k j+1

�= 2l(k j ,2)−l(k j+1,2) exists:

Then a prime number p ≥ 3 with l(k j , p) > l(k j+1, p) exists. And then {2r−l(k j ,2) ·
k j | 0 ≤ r ≤ l(k j , 2)} ⊆ M . Therefore for 0 ≤ r ≤ l(k j , 2) the set M(2, r) is not
empty. For r > l(k j , 2) the set M(2, r) is as in the 1st case. Thus the set {2r−l(k j ,2) ·
k j | M(2, r) �= ∅} is the set of vertices in M of a chain of 2-edges which connects all
2-planes. ��
Theorem 6.9 Conjecture 6.3 holds for the weight systems of isolated quasihomo-
geneous singularities of cycle type and of chain type. It holds for all isolated
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quasihomogeneous singularities in n = 2 variables. It holds for the isolated quasiho-
mogeneous singularities in n = 3 variables which are of the types III, IV, V, VI and
VII in example 3.2 (ii) in [6] (see Remark 6.10 for the types I and II).

In fact, in all these cases the set M of each elementary divisor satisfies even the
stronger conditions in Remark 6.6 (ii).

Proof First consider the cycle type. Recall Lemma 4.1, and especially formula (4.5)
for Dw. It implies that all elementary divisors except one have the divisor d/γ , and
the last one has the divisor d/γ − 1 if n is odd, and it has the divisor 1 if n is
even. These divisors satisfy by Lemma 6.8 the conditions in Remark 6.6 (ii).

Next consider the chain type. Recall corollary 4.3 and especially formula (4.17)
for Dw. It implies that any elementary divisor satisfies the conditions in Lemma 6.8.
Therefore it satisfies the conditions in Remark 6.6 (ii).

Now consider the case n = 2. By example 3.2 (i) in [6], there are three types.
Type III is a cycle type. Type II is a chain type. They are treated above. Type I is the
tensor product of two A-type singularities, it is called Fermat type. In general, the
tensor product is difficult to deal with, but this case is fairly easy. Here the weights are
(w1, w2) = ( 1

t1
, 1
t2

), and Dw is

Dw = (t1 − 1)(t2 − 1)

= gcd(t1, t2)lcm(t1,t2) − t1 − t2 + 1.

The elementary divisors are as follows.

For k ≤ gcd(t1, t2) − 2 : div gk = lcm(t1,t2),

for k = gcd(t1, t2) − 1 : div gk = lcm(t1,t2) − gcd(t1,t2) + 1,

for k = gcd(t1, t2) : div gk = lcm(t1,t2) − t1 − t2 + gcd(t1,t2).

The divisors in the first two cases satisfy the conditions in Lemma 6.8 and therefore
the conditions in Remark 6.6 (ii).

Consider the divisor div gk in the third case. Suppose that t1 � |t2 and t2 � |t1, because
else div gk = 0. The set M ⊆ N with div gk = ∑

m∈M �m is

M = {m ∈ N |m|lcm(t1, t2),m � |t1,m � |t2}.

Obviously, its graph is a directed graph with root lcm(t1, t2). This gives the first
condition inRemark6.6 (ii). For the second condition,wedistinguish the following two
cases. Write t̃ j = 2−m(t j ,2) · t j , so that t j = 2m(t j ,2) · t̃ j . Suppose m(t1, 2) ≥ m(t2, 2).
Then t̃2 � |̃t1 and lcm(t1, t2) = 2m(t1,2) · lcm(̃t1, t̃2).

1st case, t̃1 � |̃t2: Then the set {2r · lcm(̃t1, t̃2) | 0 ≤ r ≤ m(t1, 2)} is a subset of M
and is a chain of 2-edges which connects all 2-planes.

2nd case, t̃1 |̃t2: Then m(t1, 2) > m(t2, 2). Then the set {2r · t̃2 |m(t2, 2) + 1 ≤ r ≤
m(t1, 2)} is a subset of M and is a chain of 2-edges which connects all 2-planes.

Now consider the case n = 3. By example 3.2 (ii) in [6], there are seven types.
Type V is a chain type, and type VII is a cycle type. They are treated above. The types
III, IV and VI will be treated in a similar way as the type I for n = 2.
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Type III for n = 3: weights w = ( 1
t1

, s2
t2

, s3
t3

) with

w j = 1 − w1

a j
, t j = t1 · α j with α j = a j

gcd(a j , t1 − 1)
for j = 2, 3,

for some a2, a3 ∈ N. Write α̃ := lcm(α2, α3). Then

Dw =
(
1

s1
t1 − 1

) (
1

s2
t2 − 1

) (
1

s3
t3 − 1

)

= (t1 − 1)

(
t1 · gcd(α2, α3)

s2 · s3 t1α̃ − 1

s2
t2 − 1

s3
t3 + 1

)

= r1t1α̃ − r2t2 − r3t3 + t1 − 1

with r1 = t1(t1 − 1) gcd(α2, α3)

s2s3
, r2 = t1 − 1

s2
, r3 = t1 − 1

s3
.

Suppose (without loss of generality) that r2 ≤ r3. The elementary divisors gk are as
follows:

For 1 ≤ k ≤ r1 − r2 − r3 : div gk = t1α̃,

for k = r1 − r2 − r3 + 1 : div gk = t1α̃ − t1 gcd(α2,α3)

+t1 − 1,

for r1 − r2 − r3 + 2 ≤ k ≤ r1 − r3 : div gk = t1α̃ − t1 gcd(α2,α3),

for r1 − r3 + 1 ≤ k ≤ r1 − r2 : div gk = t1α̃ − t3 ,

for r1 − r2 + 1 ≤ k ≤ r1 : div gk = t1α̃ − t2 − t3

+t1 gcd(α2,α3).

The divisors in the first four cases satisfy the conditions in Lemma 6.8 and therefore
the conditions in Remark 6.6 (ii). The divisors in the fifth case are of the same type as
the divisor in the third case in type I for n = 2.

Type IV for n = 3 is a sum of a 1 variable Fermat type and a 2 variable cycle type.
The weights are w = ( 1

t1
, s2
t2

, s3
t3

) with

γ = gcd(a2 − 1, a2a3 − 1) = gcd(a3 − 1, a2a3 − 1),

t2 = t3 = a2a3 − 1

γ
, s2 = a3 − 1

γ
, s3 = a2 − 1

γ

for some a2, a3 ∈ N≥2, by Lemma 4.1. Write t̃ := gcd(t1, t2). Again by Lemma 4.1,
Dw is the product

Dw = (t1 − 1)(γt2 + 1)

= γ t̃lcm(t1,t2) − γt2 + t1 − 1.
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The elementary divisors gk are as follows:

For 1 ≤ k ≤ γ (̃t − 1) : div gk = lcm(t1,t2),

for k = γ (̃t − 1) + 1 : div gk = lcm(t1,t2) − t2 + t̃ − 1,

for γ (̃t − 1) + 2 ≤ k ≤ γ t̃ : div gk = lcm(t1,t2) − t2 ,

for k = γ t̃ + 1 : div gk = t1 − t̃ .

All these divisors satisfy the conditions in Lemma 6.8 and therefore the conditions in
Remark 6.6 (ii).

Type VI for n = 3 consists of a cycle such that one of its vertices is the root of a 2
variable chain. The weights are w = ( s1t1

, s2
t2

, s3
t3

) with

γ = gcd(a2 − 1, a1a2 − 1) = gcd(a1 − 1, a1a2 − 1), t1 = t2 = a1a2 − 1

γ
,

t3 = t1 · α for some α ∈ N, s1 = a2 − 1

γ
, s2 = a1 − 1

γ
,

for some a1, a2 ∈ N≥2. By Lemma 4.1, Dw is the product

Dw = (γt1 + 1)

(
1

s3
t3 − 1

)

= rt3 − γt1 − 1 with r = γ t1 + 1

s3
.

Observe r ≥ γ + 1, because r − γ − 1 is the coefficient of [1] in Dw. The elementary
divisors gk are as follows:

For 1 ≤ k ≤ r − γ − 1 : div gk = t3 ,

for k = r − γ : div gk = t3 − 1,

for r − γ + 1 ≤ k ≤ r : div gk = t3 − t1 .

All these divisors satisfy the conditions in Lemma 6.8 and therefore the conditions in
Remark 6.6 (ii). ��

Remark 6.10 In example 3.2 (ii) in [6], i.e., for n = 3, type I is the Fermat type with
w = ( 1

t1
, 1
t2

, 1
t3
), and type II is the sum of a 1 variable Fermat type and 2 variable chain

type, so w = ( 1
t1

, 1
t2

, s3
t3

) with s3
t3

= 1−w2
a3

and a3 ≥ 2. In both cases, a similar ansatz
as in the Proof of Theorem 6.9 leads to an unpleasant multitude of different subcases.
Examples 6.7 (i)+(ii) show that in special cases of both types, some elementary divisor
does not satisfy the conditions in Remark 6.6 (ii). It does not seemworth to try to prove
Conjecture 6.3 in this way.
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