Uniform column sign-coherence and the existence of maximal green sequences

Peigen Cao ${ }^{1} \cdot$ Fang Li 1

Received: 14 December 2017 / Accepted: 12 November 2018 / Published online: 2 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

In this paper, we prove that each matrix in $M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$ is uniformly column signcoherent (Definition 2.2 (ii)) with respect to any $n \times n$ skew-symmetrizable integer matrix (Corollary 3.3 (ii)). Using such matrices, we introduce the definition of irreducible skew-symmetrizable matrix (Definition 4.1). Based on this, the existence of maximal green sequences for skew-symmetrizable matrices is reduced to the existence of maximal green sequences for irreducible skew-symmetrizable matrices.

Keywords Cluster algebra • Sign-coherence \cdot Maximal green sequence •
Green-to-red sequence
Mathematics Subject Classification 13F60 • 05E40

1 Introduction

C-matrices (respectively, G-matrices) [7] are important research objects in the theory of cluster algebras. It is known that C-matrices (respectively, G-matrices) are column (respectively, row) sign-coherent (see Definition 2.2 (i)). In this paper, we consider the matrices which have the similar property with C-matrices. This property is called uniform column sign-coherence (see Definition 2.2 (ii)). By the definition of uniform column sign-coherence and a result in [9] (see Theorem 2.4 below), we know that I_{n} is uniformly column sign-coherent using the terminology in this paper.

The motivation to consider the uniform column sign-coherence comes from Proposition 3.7. This proposition indicates if some submatrix of a skew-symmetrizable

[^0]matrix B is uniformly column sign-coherent, then there is another non-trivial submatrix of B which is invariant under any particular sequence of mutations (see Proposition 3.7 for details).

It is natural to ask when a matrix is uniformly column sign-coherent. This is actually a hard question. However, we can turn our mind to the other side to think about how to produce new uniformly column sign-coherent matrices from a given one. Theorem 3.2 in this paper is an answer to this. As a corollary, matrices in $M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$ are proved to be uniformly column sign-coherent (Corollary 3.3).

Maximal green sequences are particular sequences of mutations of skewsymmetrizable matrices introduced by Keller [10]. Such particular sequences have numerous applications, including the computations of spectrums of BPS states, Donaldson-Thomas invariants, tilting of hearts in derived categories, and quantum dilogarithm identities.

A very important problem in cluster algebra theory is the existence of maximal green sequences for a given skew-symmetrizable matrix B. Most of the results on this topic have been given on a case-by-case basis, for example, quivers of finite type or acyclic quivers by Brüstle et al. [2], quivers from specific triangulations of various marked surfaces [$1,4,8,11,13$]. Generally, the existence of maximal green sequences is not mutation invariant (see [12]). In some special cases, many other authors proved that the existence of maximal green sequences is mutation invariant, for example, for finite-type quiver by Brüstle et al. [2], and for any quiver Q of finite mutation type by Mills [13]. The authors in [3] proved Rotation Lemma which says that if B admits a maximal green sequence, so does any skew-symmetrizable matrices along this sequence.

Now we give the question that we focus on in this paper. In [12, Theorem 9], Muller proved that if B has a maximal green sequence, so does any principal submatrix of B. Conversely, can we get the information about the existence of maximal green sequences for B from its proper submatrices? Our answer to this question is given in Theorem 4.5, whose proof depends on the uniform column sign-coherence.

Thanks to Theorem 4.5 in this paper and [12, Theorem 9], we reduce the existence of maximal green sequences for skew-symmetrizable matrices to the existence of maximal green sequences for irreducible skew-symmetrizable matrices (Definition 4.1). We also give a characterization for irreducible skew-symmetrizable matrices (Proposition 4.2).

Note that a very special case of Theorem 4.5 has been given in [8, Theorem 3.12]. In detail, the authors proved that if both quivers Q_{1} and Q_{2} have a maximal green sequences, then so does the quiver Q which is a " t-colored" direct sum of quivers Q_{1} and Q_{2}. They believe that this result also holds for any direct sum of Q_{1} and Q_{2} ([8, Remark 3.13]) but they did not have a proof. Theorem 4.5 in this paper actually gives an affirmative answer to this.

This paper is organized as follows: In Sect. 2 some basic definitions are given. In Sect. 3 we give a method to produce uniformly column sign-coherent matrices from a given one (Theorem 3.2). Thus, we prove that each matrix in $M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$ is uniform column sign-coherent (Corollary 3.3). In Sect. 4 we give the definition of irreducible skew-symmetrizable matrices and their characterization. Then we reduce
the existence of maximal green sequences for skew-symmetrizable matrices to the existence of maximal green sequences for irreducible skew-symmetrizable matrices.

2 Preliminaries

Recall that an integer matrix $B_{n \times n}=\left(b_{i j}\right)$ is called skew-symmetrizable if there is a positive integer diagonal matrix S such that $S B$ is skew-symmetric, where S is said to be a skew-symmetrizer of B. In this case, we say that B is S-skew-symmetrizable. For an $(m+n) \times n$ integer matrix $\tilde{B}=\left(b_{i j}\right)$, the square submatrix $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}$ is called the principal part of \tilde{B}. Abusing terminology, we say that \tilde{B} itself is skewsymmetrizable or skew-symmetric if its principal part B is so.
Definition 2.1 Let $\tilde{B}_{(m+n) \times n}=\left(b_{i j}\right)$ be S-skew-symmetrizable, the mutation of \tilde{B} in the direction $k \in\{1,2, \ldots, n\}$ is the $(m+n) \times n$ matrix $\mu_{k}(\tilde{B})=\left(b_{i j}^{\prime}\right)$, where

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j}, & i=k \text { or } j=k \tag{1}\\ b_{i j}+\operatorname{sgn}\left(b_{i k}\right) \max \left(b_{i k} b_{k j}, 0\right), & \text { otherwise }\end{cases}
$$

It is easy to see that $\mu_{k}(\tilde{B})$ is still S-skew-symmetrizable, and $\mu_{k}\left(\mu_{k}(\tilde{B})\right)=\tilde{B}$.
Definition 2.2 (i) For $m, n>0$, an $m \times n$ integer matrix A is called column signcoherent (respectively, row sign-coherent) if any two nonzero entries of A in the same column (respectively, row) have the same sign.
(ii) Let B_{1} be an $n \times n$ skew-symmetrizable matrix, and $B_{2} \in M_{m \times n}(\mathbb{Z})$ be a column sign-coherent matrix. B_{2} is called uniformly column sign-coherent with respect to B_{1} if for any sequence of mutations $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}$, the lower $m \times n$ submatrix of $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\binom{B_{1}}{B_{2}}$ is column sign-coherent.

Remark 2.3 (i) Note that the uniform column sign-coherence of B_{2} is invariant up to permutation of its row vectors, by the equality (1).
(ii) Roughly, the uniform column sign-coherence means that the column signcoherence is invariant after a sequence of mutations.

Given an S-skew-symmetrizable matrix $\tilde{B}=\binom{B}{I_{n}} \in M_{2 n \times n}(\mathbb{Z})$, let $\tilde{B}_{\sigma}=\binom{B_{\sigma}}{C_{\sigma}}$
be the matrix obtained from \tilde{B} by a sequence of mutations $\sigma:=\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}$. Recall that the lower part C_{σ} of \tilde{B}_{σ} is called a C-matrix of B, see [7]. Note that the matrix $\tilde{B}=\binom{B}{I_{n}}$ is used to define cluster algebra with principal coefficients in [7], but we do not talk much about cluster algebra here.
Theorem 2.4 ([9]) Using the above notations, each C-matrix of a skew-symmetrizable matrix B is column sign-coherent.

Remark 2.5 By Definition 2.2, this theorem means that I_{n} is uniformly column signcoherent with respect to the skew-symmetrizable matrix B.

Thanks to Theorem 2.4, one can define the sign functions on the column vectors of a C-matrix of a skew-symmetrizable matrix B. For a sequence of mutations $\sigma:=$ $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}$, denote by $\binom{B_{\sigma}}{C_{\sigma}}:=\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\binom{B}{I_{n}}$. If the entries of j-th column of C_{σ} are all nonnegative (respectively, nonpositive), the sign of the j-th column of C_{σ} is defined as $\varepsilon_{\sigma}(j)=1$ (respectively, $\varepsilon_{\sigma}(j)=-1$).

Definition 2.6 Let C_{σ} be the C-matrix of B given by a sequence of mutations σ, a column index $j \in\{1, \ldots, n\}$ of C_{σ} is called green (respectively, red) if $\varepsilon_{\sigma}(j)=1$ (respectively, $\varepsilon_{\sigma}(j)=-1$).

Note that, by Theorem 2.4, the column index of a C-matrix C_{σ} is either green or red.

Definition 2.7 Let B be a skew-symmetrizable matrix, and $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ be a sequence of column indices of B. Denote by $C_{\sigma_{j}}$ the C-matrix of B given by $\sigma_{j}:=$ $\mu_{k_{j}} \ldots \mu_{k_{2}} \mu_{k_{1}}$.
(i) $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ is called a green-to-red sequence of B if each column index of the C-matrix $C_{\sigma_{s}}$ is red, i.e., $C_{\sigma_{s}} \in M_{n \times n}\left(\mathbb{Z}_{\leq 0}\right)$.
(ii) $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ is called a green sequence of B if k_{i} is green in the C-matrix $C_{\sigma_{i-1}}$ for $i=2,3, \ldots, s$.
(iii) $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ is called maximal green sequence of B if it is both a green sequence and a green-to-red sequence of B.
Example 2.8 Let $B=\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$, and $\mathbf{k}=(2,3,1,2)$.
$\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ \hdashline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \xrightarrow{\mu_{2}}\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\ \hdashline 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right) \xrightarrow{\mu_{3}}\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \\ \hdashline 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1\end{array}\right) \xrightarrow{\mu_{1}}\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \\ \hdashline-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1\end{array}\right) \xrightarrow{\mu_{2}}\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ \hdashline-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$
Hence, $\mathbf{k}=(2,3,1,2)$ is a maximal green sequence of B.

3 Uniform column sign-coherence of $\boldsymbol{B}_{\mathbf{2}}$

In this section, we give a method to produce uniformly column sign-coherent matrices from a known one (Theorem 3.2). Then it is shown that all nonnegative matrices and rank ≤ 1 column sign-coherent matrices are uniformly column sign-coherent (Corollary 3.3 and Corollary 3.4).
Lemma 3.1 Let $P=\left(p_{i j}\right) \in M_{p \times m}\left(\mathbb{Z}_{\geq 0}\right), p, m>0$, and B_{1} be an $n \times n$ skewsymmetrizable matrix. If $B_{2} \in M_{m \times n}(\mathbb{Z})$ is column sign-coherent, then for $1 \leq k \leq n$,

$$
\mu_{k}\left(\left(\begin{array}{cc}
I_{n} & 0 \\
0 & P
\end{array}\right)\binom{B_{1}}{B_{2}}\right)=\mu_{k}\binom{B_{1}}{P B_{2}}=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & P
\end{array}\right) \mu_{k}\binom{B_{1}}{B_{2}} .
$$

Proof Denote by $\binom{B_{1}}{B_{2}}=\left(b_{i j}\right), \mu_{k}\binom{B_{1}}{B_{2}}=\left(b_{i j}^{\prime}\right),\left(\begin{array}{c}B_{1} \\ P \\ B_{2}\end{array}\right)=\left(a_{i j}\right), \mu_{k}\left(\begin{array}{c}B_{1} \\ P \\ B_{2}\end{array}\right)=$ $\left(a_{i j}^{\prime}\right)$. Clearly, the principal parts of $\mu_{k}\binom{B_{1}}{P B_{2}}$ and $\left(\begin{array}{cc}I_{n} & 0 \\ 0 & P\end{array}\right) \mu_{k}\binom{B_{1}}{B_{2}}$ are equal. It suffices to show the lower parts of $\mu_{k}\left(\begin{array}{c}B_{1} \\ P\end{array} B_{2}\right)$ and $\left(\begin{array}{cc}I_{n} & 0 \\ 0 & P\end{array}\right) \mu_{k}\binom{B_{1}}{B_{2}}$ are equal. We know that for $i>n, a_{i j}=\sum_{l=1}^{m} p_{i l} b_{n+l, j}$. By Eq. (1), for $i>n$,

$$
\begin{aligned}
a_{i j}^{\prime}= & a_{i j}+\operatorname{sgn}\left(a_{i k}\right) \max \left(a_{i k} b_{k j}, 0\right)=\sum_{l=1}^{m} p_{i l} b_{n+l, j} \\
& +\operatorname{sgn}\left(\sum_{l=1}^{m} p_{i l} b_{n+l, k}\right) \max \left(\sum_{l=1}^{m} p_{i l} b_{n+l, k} b_{k j}, 0\right) .
\end{aligned}
$$

Because B_{2} is column sign-coherent and $P \in M_{p \times m}\left(\mathbb{Z}_{\geq 0}\right)$, we know that $\left(p_{i l_{1}} b_{n+l_{1}, k}\right)\left(p_{i l_{2}} b_{n+l_{2}, k}\right) \geq 0,1 \leq l_{1}, l_{2} \leq m$. Thus, if $p_{i l_{1}} b_{n+l_{1}, k} \neq 0$, then $\operatorname{sgn}\left(p_{i l_{1}} b_{n+l_{1}, k}\right)=\operatorname{sgn}\left(\sum_{l=1}^{m} p_{i l} b_{n+l, k}\right)$. So

$$
\begin{aligned}
a_{i j}^{\prime} & =\sum_{l=1}^{m} p_{i l} b_{n+l, j}+\operatorname{sgn}\left(\sum_{l=1}^{m} p_{i l} b_{n+l, k}\right) \max \left(\sum_{l=1}^{m} p_{i l} b_{n+l, k} b_{k j}, 0\right) \\
& =\sum_{l=1}^{m} p_{i l} b_{n+l, j}+\sum_{l=1}^{m} \operatorname{sgn}\left(p_{i l} b_{n+l, k}\right) \max \left(p_{i l} b_{n+l, k} b_{k j}, 0\right) \\
& =\sum_{l=1}^{m} p_{i l}\left(b_{n+l, j}+\operatorname{sgn}\left(b_{n+l, k}\right) \max \left(b_{n+l, k} b_{k j}, 0\right)\right), \\
& =\sum_{l=1}^{m} p_{i l} b_{n+l, j}^{\prime} .
\end{aligned}
$$

Then the result follows.
Theorem 3.2 Let $P \in M_{p \times m}\left(\mathbb{Z}_{\geq 0}\right)$ for $p, m>0$, and B_{1} be an $n \times n$ skewsymmetrizable matrix. If $B_{2} \in M_{m \times n}(\mathbb{Z})$ is uniformly column sign-coherent with respect to B_{1}, then so is $P B_{2}$.

Proof For any sequence of mutations $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}$, the lower part of $\mu_{k_{s}} \ldots$ $\mu_{k_{2}} \mu_{k_{1}}\binom{B_{1}}{B_{2}}$ is column sign-coherent, by the uniform column sign-coherence of B_{2} with respect to B_{1}. Clearly, the lower part of $\left(\begin{array}{cc}I_{n} & 0 \\ 0 & P\end{array}\right) \mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\binom{B_{1}}{B_{2}}$ is also column sign-coherent. By Lemma 3.1, we have

$$
\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\left(\left(\begin{array}{cc}
I_{n} & 0 \\
0 & P
\end{array}\right)\binom{B_{1}}{B_{2}}\right)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & P
\end{array}\right) \mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\binom{B_{1}}{B_{2}} .
$$

So the lower part of $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}\left(\left(\begin{array}{cc}I_{n} & 0 \\ 0 & P\end{array}\right)\binom{B_{1}}{B_{2}}\right)$ is also column sign-coherent. Thus, $P B_{2}$ is uniformly column sign-coherent with respect to B_{1}.

Corollary 3.3 Let B_{1} be an $n \times n$ skew-symmetrizable matrix. Then any matrix $P \in$ $M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$ is uniformly column sign-coherent with respect to B_{1}.

Proof By Remark 2.5, I_{n} is uniformly column sign-coherent with respect to B_{1}. Then the result follows from Theorem 3.2 since $P=P I_{n}$.

Corollary 3.4 Let B_{1} be an $n \times n$ skew-symmetrizable matrix, and B_{2} be an $m \times n$ column sign-coherent integer matrix. If $\operatorname{rank}\left(B_{2}\right) \leq 1$, then B_{2} is uniformly column sign-coherent with respect to B_{1}.

Proof Because rank $\left(B_{2}\right) \leq 1, B_{2}$ has the form of

$$
B_{2}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \alpha
$$

where α is a row vector and $c_{1}, c_{2}, \ldots, c_{m} \in \mathbb{Q}$. Because B_{2} is column sign-coherent, we can assume that $c_{1}, c_{2}, \ldots, c_{m} \geq 0$. Clearly, α is uniformly column sign-coherent with respect to B_{1}. Then by Theorem 3.2, B_{2} is uniformly column sign-coherent with respect to B_{1}.

By the two corollaries, we can construct many matrices which are uniformly column sign-coherent with respect to a given skew-symmetrizable matrix. Now we give an example showing that there does exist a matrix which is column sign-coherent but not uniformly column sign-coherent.

Example 3.5

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
\hdashline 2 & -1 \\
1 & -2
\end{array}\right) \xrightarrow{\mu_{1}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
\hdashline-2 & 1 \\
-1 & -1
\end{array}\right) .
$$

It can be seen that $\left(\begin{array}{ll}2 & -1 \\ 1 & -2\end{array}\right)$ is column sign-coherent but it is not uniformly column sign-coherent with respect to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
It is natural to consider the following problem.
Problem 3.6 For a given skew-symmetrizable matrix B_{1}, which matrices are uniformly column sign-coherent with respect to B_{1} ?

In the following proposition, we give a characterization for those matrices which are uniformly column sign-coherent with respect to B_{1}.

Proposition 3.7 Let $B=\left(\begin{array}{ll}B_{1} & B_{3} \\ B_{2} & B_{4}\end{array}\right)$ be a skew-symmetrizable matrix with $B_{1} \in M_{n}(\mathbb{Z})$ and $B_{4} \in M_{m}(\mathbb{Z}), m>0$. Then B_{2} is uniformly column sign-coherent with respect to B_{1} if and only if B_{4} is invariant under any sequence of mutations $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}$ with $1 \leq k_{i} \leq n, i=1,2, \ldots, s$.

Proof Let $B=\left(b_{i j}\right)$, and $\mu_{k}(B)=\left(b_{i j}^{\prime}\right), 1 \leq k \leq n$. We know for any i, j,

$$
b_{i j}^{\prime}=b_{i j}+\operatorname{sgn}\left(b_{i k}\right) \max \left(b_{i k} b_{k j}, 0\right)
$$

Then $b_{i j}^{\prime}=b_{i j}$ if and only if $b_{i k} b_{k j} \leq 0$, and then if and only if $b_{i k} b_{j k} \geq 0$ because either $b_{k j} b_{j k}<0$ or $b_{k j}=b_{j k}=0$ holds.

So B_{4} is invariant under the mutation $\mu_{k}(B)=\left(b_{i j}^{\prime}\right), 1 \leq k \leq n$ if and only if $b_{i j}^{\prime}=b_{i j}$ for $n+1 \leq i, j \leq n+m$, and then if and only if $b_{i k} b_{j k} \geq 0$ for $n+1 \leq i, j \leq n+m, 1 \leq k \leq n$, which means that B_{2} is column sign-coherent. The result follows.

4 The existence of maximal green sequences

Based on the discussion about uniform column sign-coherence, in this section, we reduce the existence of maximal green sequences for skew-symmetrizable matrices to the existence of maximal green sequences for irreducible skew-symmetrizable matrices.

4.1 Irreducible skew-symmetrizable matrices

In this subsection, we give the definition of irreducible skew-symmetrizable matrices and their characterization.

Let $B=\left(b_{i j}\right)_{n \times n}$ be a matrix, and n_{1}, n_{2} be two positive integers. For $1 \leq i_{1}<$ $\cdots<i_{n_{2}} \leq n$ and $1 \leq j_{1}<\cdots<j_{n_{1}} \leq n$, denote by $B_{j_{1}, \ldots, j_{n_{1}}}^{i_{1}, \ldots, i_{n_{2}}}$ the submatrix of B with entries $b_{i j}$, where $i=i_{1}, \ldots, i_{n_{2}}$ and $j=j_{1}, \ldots, j_{n_{1}}$. If $n_{2}<n$ or $n_{1}<n$, the corresponding submatrix $B_{j_{1}, \ldots, j_{n_{1}}}^{i_{1}, \ldots, i_{n_{2}}}$ is a proper submatrix of B. If $n_{2}=n_{1}$ and $\left\{i_{1}, \ldots, i_{n_{2}}\right\}=\left\{j_{1}, \ldots, j_{n_{1}}\right\}$, the corresponding submatrix is a principal submatrix of B. Clearly, any principal submatrix of a skew-symmetrizable matrix is still skewsymmetrizable.

Definition 4.1 A skew-symmetrizable matrix $B=\left(b_{i j}\right)_{n \times n}$ is called reducible, if B has a proper submatrix $B_{j_{1}, \ldots, j_{n_{1}}}^{i_{1}, \ldots, i_{n_{2}}}$ satisfying
(i) $B_{j_{1}, \ldots, j_{n_{1}}}^{i_{1}, \ldots, i_{n_{2}}}$ is a nonnegative matrix, i.e., $B_{j_{1}, \ldots, j_{n_{1}}}^{i_{1}, \ldots, i_{n_{2}}} \in M_{n_{2} \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$.
(ii) $\left\{i_{1}, \ldots, i_{n_{2}}\right\} \cup\left\{j_{1}, \ldots, j_{n_{1}}\right\}=\{1,2, \ldots, n\}$ and $\left\{i_{1}, \ldots, i_{n_{2}}\right\} \cap\left\{j_{1}, \ldots, j_{n_{1}}\right\}=\phi$.

Otherwise, B is said to be irreducible if such proper submatrix does not exist.

Clearly, B is reducible if and only if up to renumbering the row-column indices of B, B can be written as a block matrix as follows

$$
B=\left(\begin{array}{ll}
B_{1} & B_{3} \\
B_{2} & B_{4}
\end{array}\right)
$$

with $B_{1} \in M_{n_{1}}(\mathbb{Z})$ and $B_{4} \in M_{n_{2}}(\mathbb{Z})$ such that the proper submatrix B_{2} of B is a nonnegative matrix, i.e., $B_{2} \in M_{n_{2} \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$.

In the skew-symmetric case the definition of irreducibility for quiver version has been given in [8].

For a skew-symmetrizable matrix B, we can encode the sign pattern of entries of B by the quiver $\Gamma(B)$ with the vertices $1,2, \ldots, n$ and the arrows $i \rightarrow j$ for $b_{i j}>0$. We call $\Gamma(B)$ the underlying quiver of B. If $\Gamma(B)$ is an acyclic quiver, then B is said to be acyclic. If $\Gamma(B)$ is a connected quiver, then B is said to be connected. Clearly, if B is an irreducible skew-symmetrizable matrix, then it must be connected.

For a quiver Q, if there exists a path from a vertex a to a vertex b, then a is said to be a predecessor of b, and b is said to be a successor of a. For a vertex a in Q, denote by $M(a), N(a)$ the set of predecessors of a and the set of successors of a, respectively. By viewing a vertex a as a trivial path from a to a, we know that $a \in M(a) \cap N(a)$.

Proposition 4.2 Let $B=\left(b_{i j}\right)_{n \times n}$ be a connected skew-symmetrizable matrix. Then B is irreducible if and only if each arrow of the quiver $\Gamma(B)$ is in some oriented cycle.

Proof Suppose that B is reducible, then B can be written as a block matrix

$$
B=\left(\begin{array}{ll}
B_{1} & B_{3} \\
B_{2} & B_{4}
\end{array}\right)
$$

with $B_{1} \in M_{n_{1}}(\mathbb{Z})$ and $B_{4} \in M_{n_{2}}(\mathbb{Z})$ such that the proper submatrix $B_{2} \in$ $M_{n_{2} \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$, up to renumbering the row-column indices of B. Since B is connected, B_{2} cannot be a zero matrix. So there exist $i>n_{1}, j \leq n_{1}$ such that $b_{i j} \neq 0$. In fact $b_{i j}>0$, since $B_{2} \in M_{n_{2} \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$. We know that the arrow $i \rightarrow j$ is not in any oriented cycle of $\Gamma(B)$, because $B_{2} \in M_{n_{2} \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$.

Suppose that there exists an arrow $i \rightarrow j$ is not in any oriented cycle of $\Gamma(B)$. We know that i cannot be a successor of j, i.e., $i \notin N(j)$. Let n_{1} be the number of elements of $N(j)$. Clearly, $1 \leq n_{1} \leq n-1$. We can renumber the row-column indices of B such that the elements of $N(j)$ are indexed by $1,2, \ldots, n_{1} . B$ can be written as a block matrix

$$
B=\left(\begin{array}{ll}
B_{1} & B_{3} \\
B_{2} & B_{4}
\end{array}\right)
$$

We claim that $B_{2} \in M_{\left(n-n_{1}\right) \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$. Otherwise, there exists $k_{1}>n_{1}$ and $k_{2} \leq n_{1}$, i.e., $k_{1} \notin N(j), k_{2} \in N(j)$ such that $b_{k_{1} k_{2}}<0$. Thus, k_{1} is a successor of k_{2}, so is a successor of j, by $k_{2} \in N(j)$. This contradicts $k_{1} \notin N(j)$. So $B_{2} \in M_{\left(n-n_{1}\right) \times n_{1}}\left(\mathbb{Z}_{\geq 0}\right)$ and B is reducible. The proof is finished.

Example 4.3 Let $B=\left(\begin{array}{ccc}0 & 1 & -1 \\ -2 & 0 & 2 \\ 2 & -2 & 0\end{array}\right)$. It is a skew-symmetrizable matrix with skewsymmetrizer $S=\operatorname{diag}\{2,1,1\}$. The underlying quiver $\Gamma(B)$ is as follows.

Since any arrow of $\Gamma(B)$ is in an oriented cycle, B is irreducible.

4.2 Reduction of the existence of maximal green sequences

In this subsection, we reduce the existence of maximal green sequences for skewsymmetrizable matrices to the existence of maximal green sequences for irreducible skew-symmetrizable matrices.

Lemma 4.4 Let B be a skew-symmetrizable matrix and $\sigma_{s+1}:=\left(k_{1}, \ldots, k_{s+1}\right)$ be a sequence of column indices of B. Denote by $\tilde{B}_{\sigma_{i}}=\binom{B_{\sigma_{i}}}{C_{\sigma_{i}}}:=\mu_{k_{i}} \ldots \mu_{k_{2}} \mu_{k_{1}}\binom{B}{I_{n}}$, $i=1, \ldots, s+1$. If k_{s+1} is a green column index of $C_{\sigma_{s}}$, then any green column index j of $C_{\sigma_{s}}$, with $j \neq k_{s+1}$, must be green in $C_{\sigma_{s+1}}$.

Proof The proof is the same as that of Lemma 2.16 of [2]. For the convenience of readers, we give the proof here.

Because j and k_{s+1} are green column indices of $C_{\sigma_{s}}$, we know that $\left(C_{\sigma_{s}}\right)_{i j} \geq 0$ and $\left(C_{\sigma_{s}}\right)_{i k_{s+1}} \geq 0$. By the definition of mutation, we have

$$
\begin{aligned}
\left(C_{\sigma_{s+1}}\right)_{i j} & =\left(C_{\sigma_{s}}\right)_{i j}+\operatorname{sgn}\left(\left(C_{\sigma_{s}}\right)_{i k_{s+1}}\right) \max \left(\left(C_{\sigma_{s}}\right)_{i k_{s+1}}\left(C_{\sigma_{s}}\right)_{k_{s+1} j}, 0\right) \\
& \geq\left(C_{\sigma_{s}}\right)_{i j} \geq 0 .
\end{aligned}
$$

So, j is green in $C_{\sigma_{s+1}}$.
Theorem 4.5 (Direct sum formula) Let $B=\left(\begin{array}{ll}B_{1} & B_{3} \\ B_{2} & B_{4}\end{array}\right)=\left(b_{i j}\right)$ be a skewsymmetrizable matrix with $B_{1} \in M_{n}(\mathbb{Z})$ and $B_{4} \in M_{m}(\mathbb{Z})$, and $\tilde{\mathbf{k}}$ be a sequence $\tilde{\mathbf{k}}=\left(k_{1}, \ldots, k_{s}, k_{s+1}, \ldots, k_{s+p}\right)$, with $1 \leq k_{i} \leq n$, and $n+1 \leq k_{j} \leq m+n$ for $i=1, \ldots, s$, and $j=s+1, \ldots, s+p$. If B_{2} is a matrix in $M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$, then $\tilde{\mathbf{k}}$ is a maximal green sequence of B if and only if $\mathbf{k}:=\left(k_{1}, \ldots, k_{s}\right)$ (respectively, $\mathbf{j}:=\left(k_{s+1}, \ldots, k_{s+p}\right)$) is a maximal green sequence of B_{1} (respectively, $\left.B_{4}\right)$.

Proof Let $\tilde{B}=\left(\begin{array}{cc}B_{1} & B_{3} \\ B_{2} & B_{4} \\ I_{n} & 0 \\ 0 & I_{m}\end{array}\right)$ and $B_{\sigma_{i}}=\mu_{k_{i}} \ldots \mu_{k_{2}} \mu_{k_{1}}(\tilde{B}), i=1, \ldots, s, s+1, \ldots, s+$ p. By $B_{2} \in M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$ and Corollary 3.3, we know that $\left(\begin{array}{c}B_{2} \\ I_{n} \\ 0\end{array}\right)$ is uniformly column sign-coherent with respect to B_{1}. By the same argument in Proposition 3.7, we know that the submatrix $\left(\begin{array}{c}B_{4} \\ 0 \\ I_{m}\end{array}\right)$ of \tilde{B} is invariant under the sequence of mutations $\mu_{k_{s}} \ldots \mu_{k_{2}} \mu_{k_{1}}, 1 \leq k_{i} \leq n$ for $i=1,2, \ldots, s$. So for $i \leq s$ the matrix $B_{\sigma_{i}}$ has the form of

$$
B_{\sigma_{i}}=\left(\begin{array}{cc}
B_{1 ; \sigma_{i}} & B_{3 ; \sigma_{i}} \tag{2}\\
B_{2 ; \sigma_{i}} & B_{4} \\
C_{1 ; \sigma_{i}} & 0 \\
0 & I_{m}
\end{array}\right)
$$

$" \Longleftarrow ":$ Because $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ is a maximal green sequence of B_{1}, we know that $C_{1 ; \sigma_{s}} \in M_{n \times n}\left(\mathbb{Z}_{\leq 0}\right)$. Thus, by the uniform column sign-coherence of $\left(\begin{array}{c}B_{2} \\ I_{n} \\ 0\end{array}\right)$ with respect to B_{1}, we know that $\left(\begin{array}{c}B_{2 ; \sigma_{s}} \\ C_{1 ; \sigma_{s}} \\ 0\end{array}\right) \in M_{(2 m+n) \times n}\left(\mathbb{Z}_{\leq 0}\right)$. By $B_{2 ; \sigma_{s}} \in M_{m \times n}\left(\mathbb{Z}_{\leq 0}\right)$ and that the principal part of $B_{\sigma_{s}}$ is skew-symmetrizable, we can know $B_{3 ; \sigma_{s}} \in$ $M_{n \times m}\left(\mathbb{Z}_{\geq 0}\right)$. Then by Corollary 3.3, we know that $\left(\begin{array}{c}B_{3 ; \sigma_{s}} \\ 0 \\ I_{m}\end{array}\right) \in M_{(2 n+m) \times m}\left(\mathbb{Z}_{\geq 0}\right)$ is uniformly column sign-coherent with respect to B_{4}. By the same argument in Proposition 3.7 again, we know that the submatrix $\left(\begin{array}{c}B_{1 ; \sigma_{s}} \\ C_{1 ; \sigma_{s}} \\ 0\end{array}\right)$ of $B_{\sigma_{s}}$ is invariant under the sequences of mutations $\mu_{k_{s+p}} \ldots \mu_{k_{s+2}} \mu_{k_{s+1}}\left(B_{\sigma_{s}}\right), n+1 \leq k_{i} \leq n+m$ for $i=s+1, \ldots, s+p$. So for $i \geq s+1$, the matrix $B_{\sigma_{i}}$ has the form of

$$
B_{\sigma_{i}}=\left(\begin{array}{cc}
B_{1 ; \sigma_{s}} & B_{3 ; \sigma_{i}} \\
B_{2 ; \sigma_{i}} & B_{4 ; \sigma_{i}} \\
C_{1 ; \sigma_{s}} & 0 \\
0 & C_{4 ; \sigma_{i}}
\end{array}\right)
$$

Because $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{p}\right)$ is a maximal green sequence of B_{4}, we know that $C_{4 ; \sigma_{s+p}} \in M_{m \times m}\left(\mathbb{Z}_{\leq 0}\right)$. Thus, the lower part of $B_{\sigma_{s+p}}$ is $\left(\begin{array}{cc}C_{1 ; \sigma_{s}} & 0 \\ 0 & C_{4 ; \sigma_{s+p}}\end{array}\right) \in$
$M_{(m+n) \times(m+n)}\left(\mathbb{Z}_{\leq 0}\right)$. It can be seen that $\tilde{\mathbf{k}}=(\mathbf{k}, \mathbf{j})$ is a green sequence of B, so it is maximal.
$" \Longrightarrow "$ By (2), $B_{\sigma_{s}}=\left(\begin{array}{cc}B_{1 ; \sigma_{s}} & B_{3 ; \sigma_{s}} \\ B_{2 ; \sigma_{s}} & B_{4} \\ C_{1 ; \sigma_{s}} & 0 \\ 0 & I_{m}\end{array}\right)$. Clearly, $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ is a green sequence of B_{1} and $\mathbf{j}=\left(k_{s+1}, \ldots, k_{s+p}\right)$ is a maximal green sequence of B_{4}.

We claim that each $l \in\{1,2, \ldots, n\}$ is red in $C_{1 ; \sigma_{s}}$, i.e., $C_{1 ; \sigma_{s}} \in M_{n \times n}\left(\mathbb{Z}_{\leq 0}\right)$, and thus, $\mathbf{k}=\left(k_{1}, \ldots, k_{s}\right)$ is a maximal green sequence of B_{1}. Otherwise, there will exist a $l_{0} \in\{1,2, \ldots, n\}$ which is green in $C_{1 ; \sigma_{s}}$. Thus, l_{0} is green in $\left(\begin{array}{cc}C_{1 ; \sigma_{s}} & 0 \\ 0 & I_{m}\end{array}\right)$ the lower part of $B_{\sigma_{s}}$. By Lemma 4.4 and $l_{0} \leq n<k_{s+i}, i=1,2, \ldots, p$, we know that l_{0} will remain green in $\left(\begin{array}{ll}C_{1 ; \sigma_{s+p}} & C_{3 ; \sigma_{s+p}} \\ C_{2 ; \sigma_{s+p}} & C_{4 ; \sigma_{s+p}}\end{array}\right)$ the lower part of $B_{\sigma_{s+p}}$. It is impossible since $\left(k_{1}, \ldots, k_{s}, k_{s+1}, \ldots, k_{s+p}\right)$ is a maximal green sequence of B.

When B is skew-symmetric and B_{2} is a matrix over $\{0,1\}$, the above theorem has been actually given in [8, Theorem 3.12]. The authors of [8] believe that the result also holds for $B_{2} \in M_{m \times n}\left(\mathbb{Z}_{\geq 0}\right)$, but they did not have a proof. In fact, we have given the proof for this in the skew-symmetrizable case.

Remark 4.6 Note that the " $\Longleftarrow " ~ p a r t ~ o f ~ t h e ~ p r o o f ~ o f ~ t h e ~ a b o v e ~ t h e o r e m ~ a l s o ~ h o l d s ~$ if we replace maximal green sequences with green-to-red sequences, and the proof is identical. We are thankful to Fan Qin for pointing out this.

Example 4.7 Let $B=\left(\begin{array}{cc}0 & -2 \\ 3 & 0\end{array}\right)$. Here $B_{1}=0=B_{4}, B_{2}=3 \geq 0$. The column index set of B_{1} is $\{1\}$, and the column index set of B_{4} is $\{2\}$. It is known that (1) is a maximal green sequence of B_{1} and (2) is a maximal green sequence of B_{4}. Then by Theorem 4.5, $(1,2)$ is a maximal green sequence of B. Indeed,

$$
\left(\begin{array}{cc}
0 & -2 \\
3 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \xrightarrow{\mu_{1}}\left(\begin{array}{cc}
0 & 2 \\
-3 & 0 \\
\hdashline-1 & 0 \\
0 & 1
\end{array}\right) \xrightarrow{\mu_{2}}\left(\begin{array}{cc}
0 & -2 \\
3 & 0 \\
\hdashline-1 & 0 \\
0 & -1
\end{array}\right) .
$$

Example 4.8 Let $B=\left(\begin{array}{ccc:cc}0 & 1 & -1 & -2 & -2 \\ -1 & 0 & 1 & 0 & -4 \\ 1 & -1 & 0 & -3 & 0 \\ \hdashline 2 & 0 & 3 & 0 & -2 \\ 1 & 2 & 0 & 1 & 0\end{array}\right)=\left(\begin{array}{ll}B_{1} & B_{3} \\ B_{2} & B_{4}\end{array}\right)$ where B_{1} is of order 3×3
and B_{4} is of order 2×2. Clearly, B is skew-symmetrizable with skew-symmetrizer $S=\operatorname{diag}\{1,1,1,1,2\}$ and $B_{2} \in M_{2 \times 3}\left(\mathbb{Z}_{\geq 0}\right)$. The column index set of B_{1} is $\{1,2,3\}$, and the column index set of B_{4} is $\{4,5\}$. By Example 2.8 (respectively, Example 4.7), $(2,3,1,2)$ (respectively, $(4,5)$) is a maximal green sequence of B_{1} (respectively, B_{4}). Then by Theorem $4.5,(2,3,1,2,4,5)$ is a maximal green sequence of B. Indeed,

$$
\begin{aligned}
& \tilde{B}:=\left(\begin{array}{ccc:cc}
0 & 1 & -1 & -2 & -2 \\
-1 & 0 & 1 & 0 & -4 \\
1 & -1 & 0 & -3 & 0 \\
\hdashline 2 & 0 & 3 & 0 & -2 \\
1 & 2 & 0 & 1 & 0 \\
\hdashline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\mu_{2}}\left(\begin{array}{ccc:cc}
0 & -1 & 0 & -2 & -2 \\
1 & 0 & -1 & 0 & 4 \\
0 & 1 & 0 & -3 & -4 \\
2 & 0 & 3 & 0 & -2 \\
1 & -2 & 2 & 1 & 0 \\
\hdashline 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\mu_{3}}\left(\begin{array}{ccc:cc}
0 & -1 & 0 & -2 & -2 \\
1 & 0 & 1 & -3 & 0 \\
0 & -1 & 0 & 3 & 4 \\
2 & 3 & -3 & 0 & -2 \\
1 & 0 & -2 & 1 & 0 \\
\hdashline 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\mu_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:cc}
0 & -1 & 1 & -2 & -2 \\
1 & 0 & -1 & -3 & 0 \\
-1 & 1 & 0 & 0 & -4 \\
\hdashline 2 & 3 & 0 & 0 & -2 \\
1 & 0 & 2 & 1 & 0 \\
\hdashline-1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

Denote by $\tilde{B}^{\prime}=\mu_{2} \mu_{1} \mu_{3} \mu_{2}(\tilde{B})$. It is can be seen that the submatrix $\tilde{B}_{4,5}^{4,5,6,7,8,9,10}$ of \tilde{B} is invariant along the mutation sequence $(2,3,1,2)$ and the submatrix $\tilde{B}_{1,2,3}^{\prime, 2,3,6,7,8,9,10}$ of \tilde{B}^{\prime} is invariant along the mutation sequence $(4,5)$.

The following lemma is the skew-symmetrizable version of [12, Theorem 9, Theorem 17] about induced subquivers. Although corresponding result in [12] was verified for the situation of quivers, or say, in skew-symmetric case, the method of its proof can be naturally extended to the skew-symmetrizable case.

Lemma 4.9 Let B be a skew-symmetrizable matrix. If B admits a maximal green sequence (respectively, green-to-red sequence), then any principal submatrix of B also has a maximal green sequence (respectively, green-to-red sequence).

Theorem 4.10 Let B be a skew-symmetrizable matrix. Then B has a maximal green sequence (respectively, green-to-red sequence) if and only if any irreducible principal submatrix of B has a maximal green sequence (respectively, green-to-red sequence).

Proof It follows from Lemma 4.9, Theorem 4.5 and Remark 4.6.
Remark 4.11 By the above theorem, we can give our explanation of the existence of maximal green sequences for acyclic skew-symmetrizable matrices. Because any irreducible principal submatrix of an acyclic skew-symmetrizable matrix B is only a

Fig. 1 Markov quiver
1×1 zero matrix, and it always has a maximal green sequence, we then know that by Theorem 4.10 any acyclic skew-symmetrizable matrix admits a maximal green sequence.

By Theorem 4.10, we reduce the existence of maximal green sequences (respectively, green-to-red sequences) for skew-symmetrizable matrices to the existence of maximal green sequences (respectively, green-to-red sequences) for irreducible skewsymmetrizable matrices B, i.e., those B whose all arrows of $\Gamma(B)$ are in oriented cycles, by Proposition 4.2. So it is natural to ask that

Problem 4.12 Which irreducible skew-symmetrizable matrices admit maximal green sequences (respectively, green-to-red sequences)?

Note that the existence of green-to-red sequences is mutation invariant [12] and acyclic skew-symmetrizable matrices always have a green-to-red sequences (Remark 4.11). So the irreducible skew-symmetrizable matrices which are mutation equivalent to acyclic matrices always admit a green-to-red sequences.

It is known that the existence of maximal green sequences for quivers of finite type, or quivers of finite mutation type is mutation invariant (see [2,8,13]). So the existence of maximal green sequences for irreducible subquivers of a quiver of finite type, or quivers of finite mutation type has a clear answer from these references.

In [2,12], the authors have shown that the Markov quiver (Fig. 1) has no maximal green sequence. This is an example of irreducible quiver with no maximal green sequence. More generally, the authors in [2, Proposition 8.1] proved that if a quiver Q has a non-degenerate potential such that the corresponding quiver is Jacobi-infinite, then Q has no maximal green sequences.

4.3 An application

There are two ways to understand Theorem 4.5, i.e., the direct sum formula. On the one hand, by direct sum formula, we can reduce the existence of maximal green sequences for skew-symmetrizable matrices to the existence of maximal green sequences for irreducible cases (Theorem 4.10). On the other hand, by direct sum formula, we can use the known irreducible matrices which have maximal green sequences to construct more matrices which have maximal green sequences. The existence of maximal green sequence for many of these matrices is not known previously. This is the value of our direct sum formulas. In this subsection, we will talk about the second understanding in detail.

Let $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ be a set of irreducible skew-symmetrizable matrices, denote by $\left\langle B_{\lambda}: \lambda \in \Lambda\right\rangle$ the set of skew-symmetrizable matrices whose irreducible principal
submatrices are all contained in the set $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$. The following corollary follows directly from Theorem 4.10.

Corollary 4.13 If each B_{λ} in $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ has a maximal green sequence, so does any skew-symmetrizable matrix in $\left\langle B_{\lambda}: \lambda \in \Lambda\right\rangle$.

The existence of maximal green sequences for quivers (or say skew-symmetric matrices) of finite type or from surfaces has a clear answer (see [2,13]). Now we use Corollary 4.13 to give many skew-symmetric matrices which are not of finite type or from surfaces but each of them admits a maximal green sequence.

Let $B=\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$, which is irreducible. By Example 2.8, $\mathbf{k}=(2,3,1,2)$ is a maximal green sequence of B. It is known that any skew-symmetric matrix from a surface has entries $\pm 2, \pm 1,0$ (see [5]), and any skew-symmetric matrix of finite type has entries $\pm 1,0$ (see [6]). Thus, $\langle B\rangle$ contains many matrices which are not of finite type or from surface. For example, $\left(\begin{array}{cc}B & m I_{3} \\ -m I_{3} & B\end{array}\right) \in\langle B\rangle$ is not of finite type or from surface for $m \geq 3$. By Corollary 4.13, we can get each of such matrices has a maximal green sequence. The existence of maximal green sequences for such matrices is not clear previously.

Acknowledgements This project is supported by the National Natural Science Foundation of China (Nos. 11671350 and 11571173) and the Zhejiang Provincial Natural Science Foundation of China (No. LY18A010032).

References

1. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: BPS quivers and spectra of complete $N=2$ quantum field theories. Comm. Math. Phys. 323, 1185-1227 (2013)
2. Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. 2014(16), 4547-4586 (2014)
3. Brüstle, T., Hermes, S., Igusa, K., Todorov, G.: Semi-invariant pictures and two conjectures on maximal green sequences. J. Algebra 473, 80-109 (2017)
4. Bucher, E., Mills, M.R.: Maximal green sequences for cluster algebras associated with the n-torus with arbitrary punctures. J. Algebraic Combin. 47(3), 345-356 (2018)
5. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83-146 (2008)
6. Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63-121 (2003)
7. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143, 112-164 (2007)
8. Garver, A., Musiker, G.: On maximal green sequences for type A quiver. J. Algebraic Combin. 45(2), 553-599 (2017)
9. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Amer. Math. Soc. 31, 497-608 (2018)
10. Keller, B.: On cluster theory and quantum dilogarithm identities. Representations of Algebras and Related Topics, EMS Series OF Congress Report, pp. 85-116. European Mathematical Society, Zürich (2011)
11. Ladkani, S.: On Cluster Algebras from once Punctured Closed Surfaces. arXiv:1310.4454
12. Muller, G.: The existence of a maximal green sequence is not invariant under quiver mutation. Electron. J. Combin. 23(2), 1-23 (2016). (Paper 2.47)
13. Mills, M.R.: Maximal green sequences for quivers of finite mutation type. Adv. Math. 319, 182-210 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Fang Li
 fangli@zju.edu.cn
 Peigen Cao
 peigencao@126.com
 1 Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou 310027, Zhejiang, People's Republic of China

