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Abstract
In this paper, we prove that each matrix in Mm×n(Z≥0) is uniformly column sign-
coherent (Definition 2.2 (ii)) with respect to any n × n skew-symmetrizable integer
matrix (Corollary 3.3 (ii)). Using such matrices, we introduce the definition of irre-
ducible skew-symmetrizable matrix (Definition 4.1). Based on this, the existence of
maximal green sequences for skew-symmetrizablematrices is reduced to the existence
of maximal green sequences for irreducible skew-symmetrizable matrices.

Keywords Cluster algebra · Sign-coherence · Maximal green sequence ·
Green-to-red sequence
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1 Introduction

C-matrices (respectively, G-matrices) [7] are important research objects in the theory
of cluster algebras. It is known that C-matrices (respectively, G-matrices) are column
(respectively, row) sign-coherent (see Definition 2.2 (i)). In this paper, we consider
the matrices which have the similar property with C-matrices. This property is called
uniform column sign-coherence (see Definition 2.2 (ii)). By the definition of uniform
column sign-coherence and a result in [9] (see Theorem 2.4 below), we know that In
is uniformly column sign-coherent using the terminology in this paper.

The motivation to consider the uniform column sign-coherence comes from Propo-
sition 3.7. This proposition indicates if some submatrix of a skew-symmetrizable
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matrix B is uniformly columnsign-coherent, then there is another non-trivial submatrix
of B which is invariant under any particular sequence ofmutations (see Proposition 3.7
for details).

It is natural to askwhen amatrix is uniformly column sign-coherent. This is actually
a hard question. However, we can turn our mind to the other side to think about how to
produce new uniformly column sign-coherent matrices from a given one. Theorem 3.2
in this paper is an answer to this. As a corollary, matrices in Mm×n(Z≥0) are proved
to be uniformly column sign-coherent (Corollary 3.3).

Maximal green sequences are particular sequences of mutations of skew-
symmetrizable matrices introduced by Keller [10]. Such particular sequences have
numerous applications, including the computations of spectrums of BPS states,
Donaldson–Thomas invariants, tilting of hearts in derived categories, and quantum
dilogarithm identities.

A very important problem in cluster algebra theory is the existence of maximal
green sequences for a given skew-symmetrizable matrix B. Most of the results on this
topic have been given on a case-by-case basis, for example, quivers of finite type or
acyclic quivers by Brüstle et al. [2], quivers from specific triangulations of various
marked surfaces [1,4,8,11,13]. Generally, the existence of maximal green sequences
is not mutation invariant (see [12]). In some special cases, many other authors proved
that the existence of maximal green sequences is mutation invariant, for example,
for finite-type quiver by Brüstle et al. [2], and for any quiver Q of finite mutation
type by Mills [13]. The authors in [3] proved Rotation Lemma which says that if B
admits a maximal green sequence, so does any skew-symmetrizable matrices along
this sequence.

Nowwe give the question that we focus on in this paper. In [12, Theorem 9], Muller
proved that if B has a maximal green sequence, so does any principal submatrix of
B. Conversely, can we get the information about the existence of maximal green
sequences for B from its proper submatrices? Our answer to this question is given in
Theorem 4.5, whose proof depends on the uniform column sign-coherence.

Thanks to Theorem 4.5 in this paper and [12, Theorem 9], we reduce the existence
ofmaximal green sequences for skew-symmetrizablematrices to the existence ofmax-
imal green sequences for irreducible skew-symmetrizable matrices (Definition 4.1).
We also give a characterization for irreducible skew-symmetrizable matrices (Propo-
sition 4.2).

Note that a very special case of Theorem 4.5 has been given in [8, Theorem 3.12].
In detail, the authors proved that if both quivers Q1 and Q2 have a maximal green
sequences, then so does the quiver Q which is a “t-colored” direct sum of quivers Q1
and Q2. They believe that this result also holds for any direct sum of Q1 and Q2 ( [8,
Remark 3.13]) but they did not have a proof. Theorem 4.5 in this paper actually gives
an affirmative answer to this.

This paper is organized as follows: In Sect. 2 some basic definitions are given.
In Sect. 3 we give a method to produce uniformly column sign-coherent matrices
from a given one (Theorem 3.2). Thus, we prove that each matrix in Mm×n(Z≥0) is
uniform column sign-coherent (Corollary 3.3). In Sect. 4 we give the definition of
irreducible skew-symmetrizable matrices and their characterization. Then we reduce
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the existence of maximal green sequences for skew-symmetrizable matrices to the
existence of maximal green sequences for irreducible skew-symmetrizable matrices.

2 Preliminaries

Recall that an integer matrix Bn×n = (bi j ) is called skew-symmetrizable if there is
a positive integer diagonal matrix S such that SB is skew-symmetric, where S is said
to be a skew-symmetrizer of B. In this case, we say that B is S-skew-symmetrizable.
For an (m + n) × n integer matrix B̃ = (bi j ), the square submatrix B = (bi j )1≤i, j≤n

is called the principal part of B̃. Abusing terminology, we say that B̃ itself is skew-
symmetrizable or skew-symmetric if its principal part B is so.

Definition 2.1 Let B̃(m+n)×n = (bi j ) be S-skew-symmetrizable, the mutation of B̃ in
the direction k ∈ {1, 2, . . . , n} is the (m + n) × n matrix μk(B̃) = (b′

i j ), where

b′
i j =

{
−bi j , i = k or j = k;
bi j + sgn(bik)max(bikbk j , 0), otherwise.

(1)

It is easy to see that μk(B̃) is still S-skew-symmetrizable, and μk(μk(B̃)) = B̃.

Definition 2.2 (i) For m, n > 0, an m × n integer matrix A is called column sign-
coherent (respectively, row sign-coherent) if any two nonzero entries of A in the
same column (respectively, row) have the same sign.

(ii) Let B1 be an n × n skew-symmetrizable matrix, and B2 ∈ Mm×n(Z) be a column
sign-coherent matrix. B2 is called uniformly column sign-coherent with respect
to B1 if for any sequence of mutations μks . . . μk2μk1 , the lower m × n submatrix

of μks . . . μk2μk1

(
B1
B2

)
is column sign-coherent.

Remark 2.3 (i) Note that the uniform column sign-coherence of B2 is invariant up to
permutation of its row vectors, by the equality (1).

(ii) Roughly, the uniform column sign-coherence means that the column sign-
coherence is invariant after a sequence of mutations.

Given an S-skew-symmetrizable matrix B̃ =
(
B
In

)
∈ M2n×n(Z), let B̃σ =

(
Bσ

Cσ

)
be the matrix obtained from B̃ by a sequence of mutations σ := μks . . . μk2μk1 . Recall
that the lower part Cσ of B̃σ is called a C-matrix of B, see [7]. Note that the matrix

B̃ =
(
B
In

)
is used to define cluster algebra with principal coefficients in [7], but we

do not talk much about cluster algebra here.

Theorem 2.4 ([9])Using the above notations, each C-matrix of a skew-symmetrizable
matrix B is column sign-coherent.

Remark 2.5 By Definition 2.2, this theorem means that In is uniformly column sign-
coherent with respect to the skew-symmetrizable matrix B.
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Thanks to Theorem 2.4, one can define the sign functions on the column vectors
of a C-matrix of a skew-symmetrizable matrix B. For a sequence of mutations σ :=
μks . . . μk2μk1 , denote by

(
Bσ

Cσ

)
:= μks . . . μk2μk1

(
B
In

)
. If the entries of j-th column

of Cσ are all nonnegative (respectively, nonpositive), the sign of the j-th column of
Cσ is defined as εσ ( j) = 1 (respectively, εσ ( j) = −1).

Definition 2.6 Let Cσ be the C-matrix of B given by a sequence of mutations σ , a
column index j ∈ {1, . . . , n} of Cσ is called green (respectively, red) if εσ ( j) = 1
(respectively, εσ ( j) = −1).

Note that, by Theorem 2.4, the column index of a C-matrix Cσ is either green or
red.

Definition 2.7 Let B be a skew-symmetrizable matrix, and k = (k1, . . . , ks) be a
sequence of column indices of B. Denote by Cσ j the C-matrix of B given by σ j :=
μk j . . . μk2μk1 .

(i) k = (k1, . . . , ks) is called a green-to-red sequence of B if each column index of
the C-matrix Cσs is red, i.e., Cσs ∈ Mn×n(Z≤0).

(ii) k = (k1, . . . , ks) is called a green sequence of B if ki is green in the C-matrix
Cσi−1 for i = 2, 3, . . . , s.

(iii) k = (k1, . . . , ks) is called maximal green sequence of B if it is both a green
sequence and a green-to-red sequence of B.

Example 2.8 Let B =
⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠, and k = (2, 3, 1, 2).

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 −1
−1 0 1
1 −1 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

μ2−→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 −1
0 1 0
1 0 0
0 −1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

μ3−→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 1
0 −1 0
1 0 0
0 0 −1
0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

μ1−→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0
−1 0 1
0 −1 0

−1 0 0
0 0 −1
0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

μ2−→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 1
1 0 −1

−1 1 0
−1 0 0
0 0 −1
0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence, k = (2, 3, 1, 2) is a maximal green sequence of B.

3 Uniform column sign-coherence of B2

In this section, we give a method to produce uniformly column sign-coherent matrices
from a known one (Theorem 3.2). Then it is shown that all nonnegative matrices
and rank ≤ 1 column sign-coherent matrices are uniformly column sign-coherent
(Corollary 3.3 and Corollary 3.4).

Lemma 3.1 Let P = (pi j ) ∈ Mp×m(Z≥0), p,m > 0, and B1 be an n × n skew-
symmetrizable matrix. If B2 ∈ Mm×n(Z) is column sign-coherent, then for 1 ≤ k ≤ n,

μk

((
In 0
0 P

) (
B1
B2

))
= μk

(
B1
PB2

)
=

(
In 0
0 P

)
μk

(
B1
B2

)
.
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Proof Denote by

(
B1
B2

)
= (bi j ), μk

(
B1
B2

)
= (b′

i j ),

(
B1
PB2

)
= (ai j ), μk

(
B1
PB2

)
=

(a′
i j ). Clearly, the principal parts of μk

(
B1
PB2

)
and

(
In 0
0 P

)
μk

(
B1
B2

)
are equal. It

suffices to show the lower parts of μk

(
B1
PB2

)
and

(
In 0
0 P

)
μk

(
B1
B2

)
are equal. We

know that for i > n, ai j = ∑m
l=1 pilbn+l, j . By Eq. (1), for i > n,

a′
i j = ai j + sgn(aik)max(aikbk j , 0) =

m∑
l=1

pilbn+l, j

+ sgn

(
m∑
l=1

pilbn+l,k

)
max

(
m∑
l=1

pilbn+l,kbk j , 0

)
.

Because B2 is column sign-coherent and P ∈ Mp×m(Z≥0), we know that
(pil1bn+l1,k)(pil2bn+l2,k) ≥ 0, 1 ≤ l1, l2 ≤ m. Thus, if pil1bn+l1,k �= 0, then
sgn(pil1bn+l1,k) = sgn(

∑m
l=1 pilbn+l,k). So

a′
i j =

m∑
l=1

pilbn+l, j + sgn

(
m∑
l=1

pilbn+l,k

)
max

(
m∑
l=1

pilbn+l,kbk j , 0

)

=
m∑
l=1

pilbn+l, j +
m∑
l=1

sgn(pilbn+l,k)max(pilbn+l,kbk j , 0)

=
m∑
l=1

pil(bn+l, j + sgn(bn+l,k)max(bn+l,kbk j , 0)),

=
m∑
l=1

pilb
′
n+l, j .

Then the result follows. �	
Theorem 3.2 Let P ∈ Mp×m(Z≥0) for p,m > 0, and B1 be an n × n skew-
symmetrizable matrix. If B2 ∈ Mm×n(Z) is uniformly column sign-coherent with
respect to B1, then so is PB2.

Proof For any sequence of mutations μks . . . μk2μk1 , the lower part of μks . . .

μk2μk1

(
B1
B2

)
is column sign-coherent, by the uniform column sign-coherence of B2

with respect to B1. Clearly, the lower part of

(
In 0
0 P

)
μks . . . μk2μk1

(
B1
B2

)
is also

column sign-coherent. By Lemma 3.1, we have

μks . . . μk2μk1

((
In 0
0 P

) (
B1
B2

))
=

(
In 0
0 P

)
μks . . . μk2μk1

(
B1
B2

)
.
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So the lower part of μks . . . μk2μk1

((
In 0
0 P

) (
B1
B2

))
is also column sign-coherent.

Thus, PB2 is uniformly column sign-coherent with respect to B1. �	
Corollary 3.3 Let B1 be an n × n skew-symmetrizable matrix. Then any matrix P ∈
Mm×n(Z≥0) is uniformly column sign-coherent with respect to B1.

Proof By Remark 2.5, In is uniformly column sign-coherent with respect to B1. Then
the result follows from Theorem 3.2 since P = P In . �	
Corollary 3.4 Let B1 be an n × n skew-symmetrizable matrix, and B2 be an m × n
column sign-coherent integer matrix. If rank(B2) ≤ 1, then B2 is uniformly column
sign-coherent with respect to B1.

Proof Because rank(B2) ≤ 1, B2 has the form of

B2 =
⎛
⎜⎝
c1
...

cn

⎞
⎟⎠ α,

where α is a row vector and c1, c2, . . . , cm ∈ Q. Because B2 is column sign-coherent,
we can assume that c1, c2, . . . , cm ≥ 0. Clearly, α is uniformly column sign-coherent
with respect to B1. Then by Theorem 3.2, B2 is uniformly column sign-coherent with
respect to B1. �	

By the two corollaries, we can constructmanymatriceswhich are uniformly column
sign-coherent with respect to a given skew-symmetrizable matrix. Now we give an
example showing that there does exist a matrix which is column sign-coherent but not
uniformly column sign-coherent.

Example 3.5

⎛
⎜⎜⎝

0 1
−1 0
2 −1
1 −2

⎞
⎟⎟⎠ μ1−→

⎛
⎜⎜⎝

0 −1
1 0

−2 1
−1 −1

⎞
⎟⎟⎠ .

It can be seen that

(
2 −1
1 −2

)
is column sign-coherent but it is not uniformly column

sign-coherent with respect to

(
0 1

−1 0

)
.

It is natural to consider the following problem.

Problem 3.6 For a given skew-symmetrizablematrix B1, whichmatrices are uniformly
column sign-coherent with respect to B1?

In the following proposition, we give a characterization for those matrices which are
uniformly column sign-coherent with respect to B1.
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Proposition 3.7 Let B =
(
B1 B3
B2 B4

)
be a skew-symmetrizablematrix with B1 ∈ Mn(Z)

and B4 ∈ Mm(Z), m > 0. Then B2 is uniformly column sign-coherent with respect to
B1 if and only if B4 is invariant under any sequence of mutations μks . . . μk2μk1 with
1 ≤ ki ≤ n, i = 1, 2, . . . , s.

Proof Let B = (bi j ), and μk(B) = (b′
i j ), 1 ≤ k ≤ n. We know for any i, j ,

b′
i j = bi j + sgn(bik)max(bikbk j , 0).

Then b′
i j = bi j if and only if bikbk j ≤ 0, and then if and only if bikb jk ≥ 0 because

either bkj b jk < 0 or bkj = b jk = 0 holds.
So B4 is invariant under the mutation μk(B) = (b′

i j ), 1 ≤ k ≤ n if and only
if b′

i j = bi j for n + 1 ≤ i, j ≤ n + m, and then if and only if bikb jk ≥ 0 for
n + 1 ≤ i, j ≤ n +m, 1 ≤ k ≤ n, which means that B2 is column sign-coherent. The
result follows. �	

4 The existence of maximal green sequences

Based on the discussion about uniform column sign-coherence, in this section, we
reduce the existence of maximal green sequences for skew-symmetrizable matrices to
the existence of maximal green sequences for irreducible skew-symmetrizable matri-
ces.

4.1 Irreducible skew-symmetrizable matrices

In this subsection, we give the definition of irreducible skew-symmetrizable matrices
and their characterization.

Let B = (bi j )n×n be a matrix, and n1, n2 be two positive integers. For 1 ≤ i1 <

· · · < in2 ≤ n and 1 ≤ j1 < · · · < jn1 ≤ n, denote by B
i1,...,in2
j1,..., jn1

the submatrix of
B with entries bi j , where i = i1, . . . , in2 and j = j1, . . . , jn1 . If n2 < n or n1 < n,

the corresponding submatrix B
i1,...,in2
j1,..., jn1

is a proper submatrix of B. If n2 = n1 and
{i1, . . . , in2} = { j1, . . . , jn1}, the corresponding submatrix is a principal submatrix
of B. Clearly, any principal submatrix of a skew-symmetrizable matrix is still skew-
symmetrizable.

Definition 4.1 A skew-symmetrizable matrix B = (bi j )n×n is called reducible, if B

has a proper submatrix B
i1,...,in2
j1,..., jn1

satisfying

(i) B
i1,...,in2
j1,..., jn1

is a nonnegative matrix, i.e., B
i1,...,in2
j1,..., jn1

∈ Mn2×n1(Z≥0).
(ii) {i1, . . . , in2}∪{ j1, . . . , jn1} = {1, 2, . . . , n} and {i1, . . . , in2}∩{ j1, . . . , jn1} = φ.

Otherwise, B is said to be irreducible if such proper submatrix does not exist.
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Clearly, B is reducible if and only if up to renumbering the row–column indices of B,
B can be written as a block matrix as follows

B =
(
B1 B3
B2 B4

)

with B1 ∈ Mn1(Z) and B4 ∈ Mn2(Z) such that the proper submatrix B2 of B is a
nonnegative matrix, i.e., B2 ∈ Mn2×n1(Z≥0).

In the skew-symmetric case the definition of irreducibility for quiver version has
been given in [8].

For a skew-symmetrizable matrix B, we can encode the sign pattern of entries of
B by the quiver �(B) with the vertices 1, 2, . . . , n and the arrows i → j for bi j > 0.
We call �(B) the underlying quiver of B. If �(B) is an acyclic quiver, then B is said
to be acyclic. If �(B) is a connected quiver, then B is said to be connected. Clearly,
if B is an irreducible skew-symmetrizable matrix, then it must be connected.

For a quiver Q, if there exists a path from a vertex a to a vertex b, then a is said to
be a predecessor of b, and b is said to be a successor of a. For a vertex a in Q, denote
by M(a), N (a) the set of predecessors of a and the set of successors of a, respectively.
By viewing a vertex a as a trivial path from a to a, we know that a ∈ M(a) ∩ N (a).

Proposition 4.2 Let B = (bi j )n×n be a connected skew-symmetrizable matrix. Then
B is irreducible if and only if each arrow of the quiver �(B) is in some oriented cycle.

Proof Suppose that B is reducible, then B can be written as a block matrix

B =
(
B1 B3
B2 B4

)

with B1 ∈ Mn1(Z) and B4 ∈ Mn2(Z) such that the proper submatrix B2 ∈
Mn2×n1(Z≥0), up to renumbering the row–column indices of B. Since B is connected,
B2 cannot be a zero matrix. So there exist i > n1, j ≤ n1 such that bi j �= 0. In fact
bi j > 0, since B2 ∈ Mn2×n1(Z≥0). We know that the arrow i → j is not in any
oriented cycle of �(B), because B2 ∈ Mn2×n1(Z≥0).

Suppose that there exists an arrow i → j is not in any oriented cycle of �(B).
We know that i cannot be a successor of j , i.e., i /∈ N ( j). Let n1 be the number of
elements of N ( j). Clearly, 1 ≤ n1 ≤ n−1.We can renumber the row–column indices
of B such that the elements of N ( j) are indexed by 1, 2, . . . , n1. B can be written as
a block matrix

B =
(
B1 B3
B2 B4

)
.

Weclaim that B2 ∈ M(n−n1)×n1(Z≥0). Otherwise, there exists k1 > n1 and k2 ≤ n1,
i.e., k1 /∈ N ( j), k2 ∈ N ( j) such that bk1k2 < 0. Thus, k1 is a successor of k2, so is a
successor of j , by k2 ∈ N ( j). This contradicts k1 /∈ N ( j). So B2 ∈ M(n−n1)×n1(Z≥0)

and B is reducible. The proof is finished. �	
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Example 4.3 Let B =
⎛
⎝ 0 1 −1

−2 0 2
2 −2 0

⎞
⎠. It is a skew-symmetrizable matrix with skew-

symmetrizer S = diag{2, 1, 1}. The underlying quiver �(B) is as follows.

1

2 3

Since any arrow of �(B) is in an oriented cycle, B is irreducible.

4.2 Reduction of the existence of maximal green sequences

In this subsection, we reduce the existence of maximal green sequences for skew-
symmetrizable matrices to the existence of maximal green sequences for irreducible
skew-symmetrizable matrices.

Lemma 4.4 Let B be a skew-symmetrizable matrix and σs+1 := (k1, . . . , ks+1) be a

sequence of column indices of B. Denote by B̃σi =
(
Bσi

Cσi

)
:= μki . . . μk2μk1

(
B
In

)
,

i = 1, . . . , s + 1. If ks+1 is a green column index of Cσs , then any green column index
j of Cσs , with j �= ks+1, must be green in Cσs+1 .

Proof The proof is the same as that of Lemma 2.16 of [2]. For the convenience of
readers, we give the proof here.

Because j and ks+1 are green column indices of Cσs , we know that (Cσs )i j ≥ 0
and (Cσs )iks+1 ≥ 0. By the definition of mutation, we have

(Cσs+1)i j = (Cσs )i j + sgn((Cσs )iks+1)max((Cσs )iks+1(Cσs )ks+1 j , 0)

≥ (Cσs )i j ≥ 0.

So, j is green in Cσs+1 . �	

Theorem 4.5 (Direct sum formula) Let B =
(
B1 B3
B2 B4

)
= (bi j ) be a skew-

symmetrizable matrix with B1 ∈ Mn(Z) and B4 ∈ Mm(Z), and k̃ be a sequence
k̃ = (k1, . . . , ks, ks+1, . . . , ks+p), with 1 ≤ ki ≤ n, and n + 1 ≤ k j ≤ m + n
for i = 1, . . . , s, and j = s + 1, . . . , s + p. If B2 is a matrix in Mm×n(Z≥0), then
k̃ is a maximal green sequence of B if and only if k := (k1, . . . , ks) (respectively,
j := (ks+1, . . . , ks+p)) is a maximal green sequence of B1 (respectively, B4).
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Proof Let B̃ =

⎛
⎜⎜⎝
B1 B3
B2 B4
In 0
0 Im

⎞
⎟⎟⎠ and Bσi = μki . . . μk2μk1(B̃), i = 1, . . . , s, s+1, . . . , s+

p. By B2 ∈ Mm×n(Z≥0) and Corollary 3.3, we know that

⎛
⎝B2
In
0

⎞
⎠ is uniformly col-

umn sign-coherent with respect to B1. By the same argument in Proposition 3.7, we

know that the submatrix

⎛
⎝B4

0
Im

⎞
⎠ of B̃ is invariant under the sequence of mutations

μks . . . μk2μk1 , 1 ≤ ki ≤ n for i = 1, 2, . . . , s. So for i ≤ s the matrix Bσi has the
form of

Bσi =

⎛
⎜⎜⎝
B1;σi B3;σi
B2;σi B4
C1;σi 0
0 Im

⎞
⎟⎟⎠ . (2)

“ ⇐
′′: Because k = (k1, k2, . . . , ks) is a maximal green sequence of B1, we know

thatC1;σs ∈ Mn×n(Z≤0). Thus, by the uniform column sign-coherence of

⎛
⎝B2
In
0

⎞
⎠with

respect to B1, we know that

⎛
⎝B2;σs
C1;σs
0

⎞
⎠ ∈ M(2m+n)×n(Z≤0). By B2;σs ∈ Mm×n(Z≤0)

and that the principal part of Bσs is skew-symmetrizable, we can know B3;σs ∈

Mn×m(Z≥0). Then by Corollary 3.3, we know that

⎛
⎝B3;σs

0
Im

⎞
⎠ ∈ M(2n+m)×m(Z≥0)

is uniformly column sign-coherent with respect to B4. By the same argument in

Proposition 3.7 again, we know that the submatrix

⎛
⎝B1;σs
C1;σs
0

⎞
⎠ of Bσs is invariant under

the sequences of mutations μks+p . . . μks+2μks+1(Bσs ), n + 1 ≤ ki ≤ n + m for
i = s + 1, . . . , s + p. So for i ≥ s + 1, the matrix Bσi has the form of

Bσi =

⎛
⎜⎜⎝
B1;σs B3;σi
B2;σi B4;σi
C1;σs 0
0 C4;σi

⎞
⎟⎟⎠ .

Because j = ( j1, j2, . . . , jp) is a maximal green sequence of B4, we know that

C4;σs+p ∈ Mm×m(Z≤0). Thus, the lower part of Bσs+p is

(
C1;σs 0
0 C4;σs+p

)
∈
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M(m+n)×(m+n)(Z≤0). It can be seen that k̃ = (k, j) is a green sequence of B, so
it is maximal.

“ 
⇒′′ By (2), Bσs =

⎛
⎜⎜⎝
B1;σs B3;σs
B2;σs B4
C1;σs 0
0 Im

⎞
⎟⎟⎠ . Clearly, k = (k1, . . . , ks) is a green

sequence of B1 and j = (ks+1, . . . , ks+p) is a maximal green sequence of B4.
We claim that each l ∈ {1, 2, . . . , n} is red in C1;σs , i.e., C1;σs ∈ Mn×n(Z≤0), and

thus, k = (k1, . . . , ks) is a maximal green sequence of B1. Otherwise, there will exist

a l0 ∈ {1, 2, . . . , n} which is green in C1;σs . Thus, l0 is green in
(
C1;σs 0
0 Im

)
the lower

part of Bσs . By Lemma 4.4 and l0 ≤ n < ks+i , i = 1, 2, . . . , p, we know that l0

will remain green in

(
C1;σs+p C3;σs+p

C2;σs+p C4;σs+p

)
the lower part of Bσs+p . It is impossible since

(k1, . . . , ks, ks+1, . . . , ks+p) is a maximal green sequence of B. �	
When B is skew-symmetric and B2 is a matrix over {0, 1}, the above theorem has

been actually given in [8, Theorem 3.12]. The authors of [8] believe that the result
also holds for B2 ∈ Mm×n(Z≥0), but they did not have a proof. In fact, we have given
the proof for this in the skew-symmetrizable case.

Remark 4.6 Note that the “ ⇐
′′ part of the proof of the above theorem also holds
if we replace maximal green sequences with green-to-red sequences, and the proof is
identical. We are thankful to Fan Qin for pointing out this.

Example 4.7 Let B =
(
0 −2
3 0

)
. Here B1 = 0 = B4, B2 = 3 ≥ 0. The column

index set of B1 is {1}, and the column index set of B4 is {2}. It is known that (1) is a
maximal green sequence of B1 and (2) is a maximal green sequence of B4. Then by
Theorem 4.5, (1, 2) is a maximal green sequence of B. Indeed,

⎛
⎜⎜⎝
0 −2
3 0
1 0
0 1

⎞
⎟⎟⎠ μ1−→

⎛
⎜⎜⎝

0 2
−3 0
−1 0
0 1

⎞
⎟⎟⎠ μ2−→

⎛
⎜⎜⎝

0 −2
3 0

−1 0
0 −1

⎞
⎟⎟⎠ .

Example 4.8 Let B =

⎛
⎜⎜⎜⎜⎝

0 1 −1 −2 −2
−1 0 1 0 −4
1 −1 0 −3 0
2 0 3 0 −2
1 2 0 1 0

⎞
⎟⎟⎟⎟⎠ =

(
B1 B3
B2 B4

)
where B1 is of order 3×3

and B4 is of order 2 × 2. Clearly, B is skew-symmetrizable with skew-symmetrizer
S = diag{1, 1, 1, 1, 2} and B2 ∈ M2×3(Z≥0). The column index set of B1 is {1, 2, 3},
and the column index set of B4 is {4, 5}. By Example 2.8 (respectively, Example 4.7),
(2, 3, 1, 2) (respectively, (4, 5)) is a maximal green sequence of B1 (respectively, B4).
Then by Theorem 4.5, (2, 3, 1, 2, 4, 5) is a maximal green sequence of B. Indeed,
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B̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 −2 −2
−1 0 1 0 −4
1 −1 0 −3 0
2 0 3 0 −2
1 2 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ2−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 −2 −2
1 0 −1 0 4
0 1 0 −3 −4
2 0 3 0 −2
1 −2 2 1 0
1 0 0 0 0
0 −1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ3−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 −2 −2
1 0 1 −3 0
0 −1 0 3 4
2 3 −3 0 −2
1 0 −2 1 0
1 0 0 0 0
0 0 −1 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ1−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 2
−1 0 1 −3 0
0 −1 0 3 4

−2 3 −3 0 −2
−1 0 −2 1 0
−1 0 0 0 0
0 0 −1 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ2−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 2 2
1 0 −1 3 0

−1 1 0 0 4
−2 −3 0 0 −2
−1 0 −2 1 0
−1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ4−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −2 2
1 0 −1 −3 0

−1 1 0 0 4
2 3 0 0 2

−1 0 −2 −1 0
−1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ5−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −2 −2
1 0 −1 −3 0

−1 1 0 0 −4
2 3 0 0 −2
1 0 2 1 0

−1 0 0 0 0
0 0 −1 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote by B̃ ′ = μ2μ1μ3μ2(B̃). It is can be seen that the submatrix B̃4,5,6,7,8,9,10
4,5

of B̃ is invariant along the mutation sequence (2, 3, 1, 2) and the submatrix

B̃ ′1,2,3,6,7,8,9,10
1,2,3 of B̃ ′ is invariant along the mutation sequence (4, 5).
The following lemma is the skew-symmetrizable version of [12, Theorem 9, Theo-

rem 17] about induced subquivers. Although corresponding result in [12] was verified
for the situation of quivers, or say, in skew-symmetric case, the method of its proof
can be naturally extended to the skew-symmetrizable case.

Lemma 4.9 Let B be a skew-symmetrizable matrix. If B admits a maximal green
sequence (respectively, green-to-red sequence), then any principal submatrix of B
also has a maximal green sequence (respectively, green-to-red sequence).

Theorem 4.10 Let B be a skew-symmetrizable matrix. Then B has a maximal green
sequence (respectively, green-to-red sequence) if and only if any irreducible principal
submatrix of B has a maximal green sequence (respectively, green- to-red sequence).

Proof It follows from Lemma 4.9, Theorem 4.5 and Remark 4.6. �	
Remark 4.11 By the above theorem, we can give our explanation of the existence
of maximal green sequences for acyclic skew-symmetrizable matrices. Because any
irreducible principal submatrix of an acyclic skew-symmetrizable matrix B is only a
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1

2 3
Fig. 1 Markov quiver

1 × 1 zero matrix, and it always has a maximal green sequence, we then know that
by Theorem 4.10 any acyclic skew-symmetrizable matrix admits a maximal green
sequence.

By Theorem 4.10, we reduce the existence of maximal green sequences (respec-
tively, green-to-red sequences) for skew-symmetrizable matrices to the existence of
maximal green sequences (respectively, green-to-red sequences) for irreducible skew-
symmetrizable matrices B, i.e., those B whose all arrows of �(B) are in oriented
cycles, by Proposition 4.2. So it is natural to ask that

Problem 4.12 Which irreducible skew-symmetrizable matrices admit maximal green
sequences (respectively, green-to-red sequences)?

Note that the existence of green-to-red sequences is mutation invariant [12]
and acyclic skew-symmetrizable matrices always have a green-to-red sequences
(Remark 4.11). So the irreducible skew-symmetrizable matrices which are mutation
equivalent to acyclic matrices always admit a green-to-red sequences.

It is known that the existence of maximal green sequences for quivers of finite type,
or quivers of finite mutation type is mutation invariant (see [2,8,13]). So the existence
of maximal green sequences for irreducible subquivers of a quiver of finite type, or
quivers of finite mutation type has a clear answer from these references.

In [2,12], the authors have shown that the Markov quiver (Fig. 1) has no maximal
green sequence. This is an example of irreducible quiver with no maximal green
sequence. More generally, the authors in [2, Proposition 8.1] proved that if a quiver Q
has a non-degenerate potential such that the corresponding quiver is Jacobi-infinite,
then Q has no maximal green sequences.

4.3 An application

There are twoways to understand Theorem 4.5, i.e., the direct sum formula. On the one
hand, by direct sum formula, we can reduce the existence of maximal green sequences
for skew-symmetrizable matrices to the existence of maximal green sequences for
irreducible cases (Theorem 4.10). On the other hand, by direct sum formula, we can
use the known irreducible matrices which have maximal green sequences to construct
more matrices which have maximal green sequences. The existence of maximal green
sequence for many of these matrices is not known previously. This is the value of our
direct sum formulas. In this subsection, we will talk about the second understanding
in detail.

Let {Bλ : λ ∈ �} be a set of irreducible skew-symmetrizable matrices, denote by
〈Bλ : λ ∈ �〉 the set of skew-symmetrizable matrices whose irreducible principal
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submatrices are all contained in the set {Bλ : λ ∈ �}. The following corollary follows
directly from Theorem 4.10.

Corollary 4.13 If each Bλ in {Bλ : λ ∈ �} has a maximal green sequence, so does any
skew-symmetrizable matrix in 〈Bλ : λ ∈ �〉.

The existence of maximal green sequences for quivers (or say skew-symmetric
matrices) of finite type or from surfaces has a clear answer (see [2,13]). Now we use
Corollary 4.13 to give many skew-symmetric matrices which are not of finite type or
from surfaces but each of them admits a maximal green sequence.

Let B =
⎛
⎝ 0 1 −1

−1 0 1
1 −1 0

⎞
⎠, which is irreducible. By Example 2.8, k = (2, 3, 1, 2) is

a maximal green sequence of B. It is known that any skew-symmetric matrix from a
surface has entries ±2,±1, 0 (see [5]), and any skew-symmetric matrix of finite type
has entries ±1, 0 (see [6]). Thus, 〈B〉 contains many matrices which are not of finite

type or from surface. For example,

(
B mI3

−mI3 B

)
∈ 〈B〉 is not of finite type or from

surface form ≥ 3. By Corollary 4.13, we can get each of such matrices has a maximal
green sequence. The existence of maximal green sequences for such matrices is not
clear previously.
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