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Abstract
In this paper, we define the combinatorial wall-crossing transformation and the gen-
eralized column regularization on partitions and prove that a certain composition of
these two transformations has the same effect on the one-row partition (n). As corol-
laries we explicitly describe the quotients of the partitions which arise in this process.
We also prove that the one-row partition is the unique partition that stays regular at
any step of the wall-crossing transformation.

Keywords Combinatorial wall-crossing · Column regularization · Monotonicity

1 Introduction

Wall-crossing functors appear in the context of infinite-dimensional representations
of complex semisimple Lie algebras, and Beilinson and Ginzburg studied its relation
with translation functors in [2]. More recently, wall-crossing functors have appeared
in the study of quantized symplectic resolutions of singularities as perverse equiv-
alences between different categories of modules; for more details, one can look at
[1,3,12]. These perverse equivalences induce bijections between irreducible objects
in the corresponding derived categories, which are referred to as the combinatorial
wall-crossing. In the classical case of Lie algebra representations, they are related to
the cactus group actions [8,11]. It is called combinatorial wall-crossing because in case
of rational Cherednik algebras of type A, the derived categories are parametrized by
rational numbers, and the bijection among two categories parametrized by consecutive
rational numbers (with denominator bounded above) is like crossing a wall. Our work
is motivated by combinatorial wall-crossing for representations of rational Chered-
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nik algebras in large positive characteristic, where the combinatorial wall-crossing
is given by the extended Mullineux involution due to Losev [12]. This collection of
permutations on the set of partitions is our main object of study.

Based on Kleshchev’s work in [6,10], the irreducible p-modular representations of
the symmetric group Sn are labeled by the p-regular partitions of n; we denote the
irreducible representation corresponding to the p-regular partition λ by ρλ.

Definition 1.1 The Mullineux involution Mp is the involution on the set of p-regular
partitions satisfying

ρλMp = ρλ ⊗ sgn,

where sgn is the sign representation.

There are a few combinatorial ways to define Mp in [6,10], where p is not necessarily
prime, and this is the foundation of our investigation.

In this paper, we study the behavior of one-row partition (n) under composition of
a series of wall-crossing transformations intensively. A strong monotonicity property
motivates a generalized version of column regularization on partitions, which was
originally defined in [9]. The relationship of Mullineux map and the original column
regularization was studied byWalker et al. in [4,5,14,15]. We generalize the definition
of column regularization to two co-prime parameters, which can be understood as
a rational number in the unit interval. This construction leads to the main result of
this paper given in Theorem 3.5, which is that the combinatorial wall-crossing and a
certain composition of generalized column regularization procedures have the same
effect on the one-row partition.

The most important consequence of this result, stated as Theorem 5.4, is that this
one-row partition case is the only case where monotonicity holds at each step of the
composition of the transformations. We were kindly informed by Losev that he has an
alternative proof of Theorem 5.4 using Heisenberg actions and perverse equivalences
while our method is purely combinatorial. Also Theorem 5.4 answers a question by
Bezrukavnikov which is motivated by potential applications to the study of nabla
operators and Haiman’s n! conjecture in [7].

The paper is organized as follows. Section 2 is an overview of preliminaries. The
combinatorial wall-crossing transformation is defined in Sect. 3 and is followed by the
main theorem. Then, in Sect. 4 a description of the quotients of the series of partitions
that arise when we apply the wall-crossing transformation to the one-row partition is
presented and the property of uniqueness of monotonicity is proved in Sect. 5. We end
with an explicit demonstration of the wall-crossing transformation to every partition
of 5, and a general conjecture given by Bezrukavnikov in “Appendix A.”

2 Preliminaries

A partition λ of n ∈ N is a finite tuple of weakly decreasing positive integers λ =
(λ1, . . . , λk) where λ1 ≥ · · · ≥ λk > 0 and |λ| := ∑k

i=1 λi = n. The exponential
version of a partition is λ = (λ

s1
1 , . . . , λ

sk
k ), where the superscript si indicates the
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number of repetitions of the part λi and λ1 > · · · > λk . Denote all partitions by P
and partitions of n by Pn . The Young diagram corresponding to a given partition λ is
the set of unit boxes specified as follows. Fix the x-axis pointing to the south and the
y-axis pointing to the east. Then, the coordinates of the southeast vertices of the boxes
of the diagram are given by:

(i, j) ∈ {N × N | 1 ≤ i, 1 ≤ j ≤ λi }.

We also label by (i, j) the box whose southeast vertex has coordinates (i, j). The
transpose λT of a Young diagram λ is given by:

{(i, j) ∈ N × N | 1 ≤ j, 1 ≤ i ≤ λ j }.

Given a box (i, j) ∈ λ, the arm ai j = ai j (λ) is the set of boxes (i, j ′) ∈ λ with
j < j ′. We use ai j to denote either the above set or the number of elements of the
above set interchangeably. Similarly, the leg li j = li j (λ) is the set of boxes (i ′, j) ∈ λ

with i < i ′. We use li j to denote either the above set or the number of elements of the
above set interchangeably as well. Finally, the hook Hi j = Hi j (λ) is the union of sets
(i, j) ∪ ai j ∪ li j . The number of elements of the hook is also denoted by Hi j and is
equal to 1 + ai j + li j .

Let λ ∈ Pn . A box A ∈ λ is called a removable box of λ if λ\A ∈ Pn−1. A box
B /∈ λ is called an addable box of λ, if λ ∪ B ∈ Pn+1. The rim of λ consists of the
boxes (i, j) ∈ λ such that (i + 1, j + 1) /∈ λ. The boundary of λ is defined to be the
rim of λ̃ where

λ̃ = λ
⋃

(i, j) addable to λ

(i, j).

A skew shape λ/μ, where μ ⊂ λ, is the collection of boxes in λ but not in μ. If λ/μ

does not contain any 2×2 squares, then it is called a ribbon. Note that every (i, j) ∈ λ

corresponds to a ribbon of size Hi j containing in the rim of λ.
Fix a number b ∈ N. We will call a Young diagram λ b-regular if there exist no

i ∈ N such that λi = λi+1 = · · · = λi+b−1 > 0. Also for a box A = (i, j) the residue
of A with respect to b, denoted by res A, is the residue class ( j − i) mod b.

Definition 2.1 Given a partition λ and a positive integer b, λ can be uniquely written
as a union of multisets

λ = ν ∪ μ

where each part of ν has multiplicity less than b and each part of μ has multiplicity
being a multiple of b. Denote Regb(λ) = ν as the regular part of λ and the irregular
part Irrb(λ) is defined by μ = b� Irrb(λ), where the operator b � is to repeat each part
of the partition b times. This decomposition is called the b-regular decomposition of
λ.

Next, we define the core and quotient of a partition following [7].

123



52 Journal of Algebraic Combinatorics (2019) 50:49–72

Definition 2.2 A partition λ is a b-core if it does not contain any ribbon of length b.
The b-core Coreb(λ) of any partition λ is the partition that remains after one removes
as many b-ribbons in succession as possible. The result is independent of choices of
removals.

Definition 2.3 For any box A = (i, j) ∈ λ, let B and C be the boxes at the end of
the arm ai j and the leg li j , respectively. Then, Hi j is divisible by b precisely when
res B = k and res C = k + 1 for some k ∈ {0, 1, . . . , b − 1}. Now for some fixed
k the boxes A with res B = k and resC = k + 1 form an “exploded” copy of a
partition which we denote λk . The quotient of a partition λ is defined to be the b-tuple
of partitions, Quotb(λ) = (λ0, λ1, . . . , λb−1).

Example 2.4 Let λ = (6, 5, 3, 3, 2, 1, 1) and b = 4, and the residue of the rim of λ are
labeled in the picture.

2
3
0 1

2 3
0
1 2 3

0 1

After removing the four pieces of 4-ribbons, we obtain Core4(λ) = (4, 1).
Quot4(λ) = ((1), (2, 1),∅,∅), as shown in the above picture.

2.1 Two equivalent definitions of Mullineux transpose

We abbreviate the composition of Mullineux involution (see Definition 1.1) and trans-
pose as Mullineux transpose. Now we define the notion of good and co-good boxes
as well as good and co-good sequence, which will be used to give the construction of
Mullineux transpose with respect to some b ∈ N>1.

Definition 2.5 A good box of residue i where i ∈ {0, 1, . . . , b − 1} of a partition λ is
defined through the following procedure.

First label the boxes on the boundary of λ by their residues. Then, moving from
southwest to northeast, we produce a word bywriting “R” for the removable boxes and
“A” for addable boxes of residue i (ignoring boxes in the boundary of other residues),
thus obtaining a sequence, which is called an RA sequence. Then, we inductively
cancel the consecutive “RA”’s until there is no “RA” appearing. Then, the removable
box of residue i corresponding to first “R” from left is called a good box of residue i .
If there are no “R” in the word after the cancelation, there is no good box of residue i .

Remark 2.6 This definition is equivalent to Kleshchev’s original definition in [10]. It
follows that for each residue i = 0, 1, . . . , b − 1, there is at most one good box and
Kleshchev proved there is always a good box of some residue.
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Definition 2.7 A co-good box of residue i for i ∈ {0, 1, . . . , b − 1} of a partition λ is
defined through the following procedure:

Label the boxes of the boundary of λ by their residue, and for a given residue i , write
its corresponding RA sequence. Then, we cancel the consecutive “AR”’s iteratively
until there is no “AR” appearing. Now the removable box of residue i corresponding
to the first “R” from right is called an co-good box of residue i . (As with good boxes,
for each i ∈ {0, 1, . . . , b −1} there exists at most one co-good box and there is at least
one value of i for which such a box exists.)

Remark 2.8 It is clear from the definitions that if A = (i, j) is a good box for λ with
res A = k mod b, then A′ = ( j, i) is a co-good box for λT with res A′ = −k, and vice
versa.

Definition 2.9 For λ a b-regular partition on n, a sequence (r1, . . . , rn) (mod b) of
residues is called good (resp. co-good) if
λ has a good (resp. co-good) box A1 of residue r1,
λ\A1 has a good (resp. co-good) box A2 of residue r2,
…
λ\⋃n−1

i=1 Ai has a good (resp. co-good) box An of residue rn .
We call the sequence A1, . . . , An as the good (resp. co-good) decomposition

sequence of λ.

Then, we consider theMullineux involutionMb. Throughout the paper, wewill deal
with the composition of Mullineux map with transpose MbT rather than Mb alone.

The following theorem is a reformulation of [13, Theorem 6.42] due to Klechshev
and Brundan, where it gives an combinatorial way to do Mullineux transpose, and
b is not necessarily restricted to be prime. More importantly, it gives an equivalent
definition of Mullineux involution to Definition 1.1.

Theorem 2.10 For any b-regular partition λ, consider the following procedure:

(1) Find a good box A1 for λ, record its residue res A1 = r1 and delete the box from
the partition to obtain a smaller partition λ1. Repeat the above step n times until
we get the empty partition λn = ∅. Then, by construction the sequence (r1, . . . , rn)

is a good sequence of λ.
(2) Start with the empty partition μn = ∅ and at step i add the unique box Bn−i+1 to

the partition μn−i+1 such that Bn−i+1 is a co-good square of μn−i+1 ∪ Bn−i+1
of residue rn−i+1. Such a box can always be found uniquely. Label the resulting
partition by μ = μ1 ∪ B1.

Then, μ = λMbT.

Example 2.11 Consider λ = (5, 4, 2) and b = 4. We label the boxes in λ and their
residues as follows:

A11 A9 A8 A6 A1

A10 A7 A5 A4

A3 A2

0 1 2 3 0

3 0 1 2

2 3
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By Definition 2.5, we decompose λ as

A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11,

with good sequence (0, 3, 2, 2, 1, 3, 0, 2, 1, 3, 0).

B11 B9 B3 B2

B10 B7

B8 B6

B5 B4

B1

0 1 2 3

3 0

2 3

1 2

0

Using Definition 2.7 and the same sequence (0, 3, 2, 2, 1, 3, 0, 2, 1, 3, 0) as a co-
good sequence, partition (4, 2, 2, 2, 1) can be rebuild using the co-good decomposition
sequence

B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11.

Hence, by Theorem 2.10, (5, 4, 2)M4T = (4, 2, 2, 2, 1).

Bessenrodt, Olsson and Xu introduced in [5] another equivalent definition of
Mullineux transpose in the following way, which is used in Sect. 5 of the monotonicity
properties.

First, we define the b-rim of a b-regular partition and the operator I of removing
the b-rim.

Definition 2.12 For a b-regular partition λ, the b-rim of λ is defined to be a subset
of the rim consisting of the following pieces. Each piece, except possibly the last
one, contains b boxes. We choose the first b boxes from the rim, beginning with the
rightmost box of the first row and moving southwestwards. If the last box of this piece
is chosen from the i0-th row of λ, thenwe choose the second piece of b boxes beginning
with the rightmost box of the next row i0 + 1. Continue this procedure until we reach
the last piece ending in the last row. Define λI to be the partition obtained from λ by
removing its b-rim.

Next we define an operator J for a b-regular partition λ.

Definition 2.13 Given λ = (λ1, . . . , λk), if λI = (μ1, . . . , μk), where some of the μi

in the end are allowed to be zero, and φ(λ) = |λ| − |λI|, define

λJ := (μ1 + 1, . . . , μk−1 + 1, μk + δ)

where

δ =
{
0 if b � φ(λ)

1 if b | φ(λ)
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Finally, the operator Xb for a b-regular partition λ is defined as λXb := ( j1, . . . , jl),
where

ji = |λJi−1 | − |λJi |.

Proposition 2.14 ([5, Proposition 3.6]) For any b-regular partition λ, we have

λXb = λMbT.

We extend the definition ofMullineux transpose to all partitions using the b-regular
decomposition in Definition 2.1 as follows.

Definition 2.15 The extended Mullineux transpose transformation Wb : P → P is
defined to be

λWb := (νMb ∪ b�μT)T

where λ = ν ∪b�μ is the b-regular decomposition. In particular, if λ is b-regular, then
λWb = λMbT.

The following lemma is some basic properties of a core.

Lemma 2.16 Let λ be a b-core, then

(1) λT is also a b-core;
(2) The b-rim and the rim of λ coincide;
(3) Given any residue in {0, 1, . . . , b − 1}, the RA sequence of this residue contains

only A’s or R’s.

Proof (1) and (2) are straightforward from the definition of a core.
(3)

A

R

R

A

If the RA sequence contains · · ·A · · · · · ·R · · · or · · ·R · · · · · ·A · · · , then the spe-
cific hook corresponding to these addable and removable boxes has length divisible
by b, which contradicts λ be a b-core. ��
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2.2 Column regularization

For an arbitrary partition λ, [9] defined b-regularization of λ as sliding the boxes of
λ upwards on all ladders of slope − 1

p−1 , and denote the resulting partition by λregb ,

which is b-regular. And column regularization λcolregb is defined to be ((λT)regb )T.
This is a special case of our generalized column regularization with two parameters.

Definition 2.17 For two co-prime nonnegative integers 0 < a < b, we define a partial
transformation colrega,b : P → P as follows.

For any partition λ (identifying as a set of integer points in the plane), ladders are
defined as lines

Lc : y + b − a

a
x = c

a

with c ∈ Z, and identify Lc with the set of integer points on it. Denote L+
c = Lc ∩

{(x, y)|x > 0, y > 0}. For each c ∈ Z, if λ ∩ L+
c �= ∅, slide those boxes in the

intersection down the ladder L+
c to the bottom. The resulting set of boxes is λcolrega,b ,

which may form a partition or not.

Remark 2.18 To avoid confusion with the usual picture in mind, we restate the fact
which is alreadymentioned in Sect. 2 that our x-axis is pointing southwards and y-axis
is pointing eastwards. This is because we need to be consistent with the notion of the
coordinate of a box in the partition, where the first coordinate is the corresponding row
index and the second being the column index. And this convention is used throughout
the paper.

In fact, sliding a box on a ladder with parameter a, b is to slide it ta spaces down
and t(b − a) spaces to the left, where t ∈ N>0.

Remark 2.19 The previous definition satisfies λcolregb = λcolreg1,b .

Example 2.20 (3, 2, 2, 1)colreg2,3 = (2, 2, 2, 1, 1) where box C slides to where B is
and box B slides down to the position A, as shown in the picture.

A

B

C

�⇒

B

C

However, after applying colreg2,3 to (3, 2, 2), it is not a partition any more. The
box C slides to where B is, B slides to position A, and F slides to position E , shown
in the picture below.
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A

B

C

F

E

�⇒

B

C

F

3 Two series of transformations and themain theorem

We first define the combinatorial wall-crossing transformation due to Bezrukavnikov
and Losev. For λ being a partition of n, consider the Farey sequence Fn which is a
set of reduced fractions between 0 and 1 with denominator at most n. Each a

b ∈ Fn

is called a wall. Every two consecutive elements ai
bi

and ai+1
bi+1

(reduced fractions) of

this sequence define an interval I =
[

ai
bi

,
ai+1
bi+1

]
⊂ [0, 1]. We define the wall-crossing

transformation at the wall a
b ∈ Fn , where a

b is reduced, to be the extended Mullineux
transpose Wb : P → P given in Definition 2.15. Now we compose them in the
following way:

Definition 3.1 Fix a positive integer n. We define a collection of maps BI : Pn → Pn

where I are all intervals whose endpoints are consecutive rational numbers in Fn .
For the first interval, B[

0, 1n

](λ) = λ for every λ ∈ P . Inductively, suppose we

already defined BI where I =
[

ai−1
bi−1

,
ai
bi

]
. Suppose the next interval is I ′ =

[
ai
bi

,
ai+1
bi+1

]
,

we define BI ′(λ) := BI (λ)Wbi . Also we define an integer function DI (λ) := bi ·
| Irrbi (BI (λ))| when I =

[
ai−1
bi−1

,
ai
bi

]
.

Remark 3.2 For each interval I , BI : Pn → Pn is a bijection.

In fact, we can consider the process of starting with any λ in
[
0, 1

n

]
and do a series

of wall-crossing transformations Wb, then {BI (λ)}I gives a series of partitions, one
in each interval, and one is obtained from the previous one by crossing a wall via
combinatorial wall-crossing.

Moreover, consider another procedure where we begin with λ in the first interval,
and cross the wall a

b ∈ Fn by performing the generalized column regularization
colrega,b to the partition in the previous interval.Wedenote the corresponding partition
in I by B̃I (λ). Since colregai ,bi

is only a partial transformation, at the moment we
cannot guarantee the validity of doing such a process throughout the unit interval. But
fortunately, we have the following lemma which guarantees B̃I (λ) is well defined.

Lemma 3.3 If we start with any partition λ of n, at each step of the second procedure
(performing generalized column regularization), we have B̃I (λ) ∈ Pn. In particular,

B̃[
n−1

n ,1
](λ) = (1n).
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Proof Suppose at some step of the process, B̃I (λ) /∈ Pn . Denote I ′ =
[

a′
b′ , a

b

]
to be

the previous interval. First of all I ′ cannot be the first interval
[
0, 1

n

]
since by Remark

2.19 and [9], λcolregb = λcolreg1,b is always well defined.
Then, there is a box A = (i, j) ∈ B̃I (λ), but the box on top of it B = (i − 1, j) /∈

B̃I (λ). This situation happens only when A comes from some A ∈ B̃I ′(λ) with
Slope(A, A) = − b−a

a . Also B ∈ B̃I ′(λ) and slides down to some B ∈ B̃I (λ) with
Slope(B, B) = − b−a

a .
Next we know

max
�∈B̃I ′ (λ)

a�
l� + 1

<
b′ − a′

a′ .

This is immediate from the definition of column regularization, where we perform
colregck ,dk

in order to the initial partition λ, with c1
d1

= 1
n < · · · < cm

dm
= a′

b′ . After
each colregck ,dk

, the ratio of arm length and leg length plus onemust be strictly smaller

than dk−ck
ck

because all the possible shallower slopes are removed in previous steps.
Hence, the inequality is true since m ≥ 1.

Therefore, A and B are removable boxes and A and B are addable boxes in B̃I ′(λ).
If not, then we are able to find some removable box C southeast to A (resp. B)
and some addable C northwest to A (resp. B) such that −Slope(C, C) > b−a

a , i.e.,

−Slope(C, C) ≥ b′−a′
a′ , which is a contradiction. Say A and A correspond to a box

with arm length t(b − a) and leg length ta − 1; B and B correspond to a box with
arm length t ′(b − a) and leg length t ′a − 1.

B

B

A

A

But now we have

−Slope(A, B) = t(b − a) + t ′(b − a)

ta + t ′a − 1
>

b − a

a
.

Hence, A and B correspond to a box in B̃I ′(λ) with the ratio of arm and leg plus one
larger or equal to b′−a′

a′ , which contradicts the above inequality.
Using similar argument as above, when we arrive at the last interval

[ n−1
n , 1

]
, all

possible slopes are removed except the steepest slope 0; hence, B̃[
n−1

n ,1
](λ) = (1n).

��
In Step 1 of the proof of Theorem 3.5, we provide a simpler proof to Lemma 3.3 in

case of λ = (n). What we are going to present is that when λ is the one-row partition
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Table 1 n = 7, starting with (n)

Intervals
[
0, 1

7

] [
1
7 , 1

5

] [
1
5 , 1

3

] [
1
3 , 1

2

] [
1
2 , 2

3

] [
2
3 , 4

5

] [
4
5 , 6

7

] [
6
7 , 1

]

Partitions (7) (6, 1) (5, 2) (4, 2, 1) (3, 2, 12) (22, 13) (2, 15) (17)

(n), the above two procedures have the same effect. For simplicity, from now on, we
will denote

λI := BI ((n)),

λ̃I := B̃I ((n)).

Example 3.4 In case of n = 7, the Farey sequence is

1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,

and we start with (7) in
[
0, 1

7

]
.

Then, either of the above two procedures give the same sequence of partitions
in each interval, as given in Table 1 (for simplicity, if the partitions in consecutive
intervals are the same, we just write them once by pointing out the union of those
small intervals):

Now for the combinatorial wall-crossing operation, we denote the endpoints where
the partition is not identical in the consecutive two intervals (sharing the endpoints) by
p0 = 0 < p1 < · · · < ps , and call them breaks for the combinatorial wall-crossing.
And denote λk to be the partition in

[
pk−1, pk

]
. Similarly, we denote q0 = 0 < q1 <

· · · <, qt to be the breaks of column regularization. And let λ̃k be the partition in
[qk−1, qk] under a series of column regularization.

Theorem 3.5 (Main result of the paper) Using the above notation, we have

(1) s = t and

pk = qk = min
(i, j)∈λk

li j + 1

Hi j
= max

(i, j)∈λk+1

li j

Hi j
.

(2) λk = λ̃k for all k, i.e., the two operations are exactly the same when we start with
the row partition (n).

Before proving Theorem 3.5, we state the following result from [5].

Proposition 3.6 ([5]) For a b-regular partition, λMbT = λ if and only if λ is a b-core.
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Proof of Theorem 3.5 First of all, by direct computation,

(n)colreg1,n = (n)MnT = (n − 1, 1);
1

n
= min

(i, j)∈(n)

li j + 1

Hi j
= max

(i, j)∈(n−1,1)

li j

Hi j

when n ≥ 2. Then, we induct on k and suppose that until pk = qk , the two operations
are exactly the same and the breaks satisfy the property in the theorem. In particular,
λk+1 = λ̃k+1 and

pk = qk = max
(i, j)∈λk+1

li j

Hi j
= ak

bk
.

In the meantime, we induct on the fact that λk is bk-regular.
Then, we need to prove the following two claims:

• For any reduced fraction a
b satisfying

max
(i, j)∈λk+1

li j

Hi j
<

a

b
< min

(i, j)∈λk+1

li j + 1

Hi j
, (*)

there is

λ
MbT
k+1 = λ

colrega,b
k+1 = λk+1.

• Let

ak+1

bk+1
= min

(i, j)∈λk+1

li j + 1

Hi j

be the reduced fraction. If ak+1
bk+1

= 1, then the process is ended; otherwise, λk+1 is
bk+1-regular and

λ
Wbk+1
k+1 = λ

Mbk+1T
k+1 = λ

colregak+1,bk+1
k+1 �= λk+1.

For the part of λ
MbT
k+1 = λk+1 in the first claim, with a, b satisfying (*), we know

that it suffices to prove λk+1 is a b-core by Proposition 3.6.
Now suppose ∃(i0, j0) ∈ λk+1, such that Hi0, j0 = k0b, where k0 ∈ Z>0, then

li0, j0

k0b
= li0, j0

Hi0, j0
≤ max

(i, j)∈λk+1

li j

Hi j
<

a

b
< min

(i, j)∈λk+1

li j + 1

Hi j
≤ li0, j0 + 1

Hi0, j0
= li0, j0 + 1

k0b

hence,

k0a − 1 < li0, j0 < k0a
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and this leads to a contradiction since li0, j0 ∈ Z. Therefore, λk+1 is a b-core, when

max
(i, j)∈λk+1

li j

Hi j
<

a

b
< min

(i, j)∈λk+1

li j + 1

Hi j
.

In order to show that λ
colrega,b
k+1 = λk+1, with a, b satisfying (*), suppose there exists

a ladder

Lc : y + b − a

a
x = c

a

such that

L+
c ∩ λk+1 �= ∅

and the boxes in the intersection do not lie at the bottom of L+
c , we do the following

operations. Find A ∈ L+
c ∩ λk+1, B ∈ L+

c \λk+1 and A is above B. Then, pick A′
which is a removable box and southeast to A and an addable box B ′ that is northwest
to B, as shown in the picture.

B

B ′

A′

A

The following inequality holds:

b − a

a
= −Slope(A, B) ≤ −Slope(A′, B ′) ≤ max

(i, j)∈λk+1

ai j

li j + 1

i.e.,

a

b
≥ 1

1 + max(i, j)∈λk+1

ai j
li j +1

= min
(i, j)∈λk+1

li j + 1

Hi j

which is a contradiction to (*). Hence, we obtain λ
colrega,b
k+1 = λk+1.

The second claim is equivalent to saying ak+1
bk+1

= min(i, j)∈λk+1

li j +1
Hi j

(reduced) is
exactly the next break pk+1 = qk+1, both for column regularization and Mullineux
transpose operation. Suppose ak+1

bk+1
�= 1 and we prove the second claim via the follow-

ing steps.
Step 1.
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Since

bk+1 − ak+1

ak+1
= max

(i, j)∈λk+1

ai j

li j + 1
,

we know when doing colregak+1,bk+1 to λk+1, we can use the exactly same procedure
as above and find out A = A′ is a removable box and B = B ′ is an addable box.
This is saying on any ladders which are not full, we are sliding those removable

boxes to addable boxes, which indicates λ
colregak+1,bk+1
k+1 is a partition. Moreover, since

λ
colregak+1,bk+1
k+1 �= λk+1, we know λ̃k+2 = λ

colregak+1,bk+1
k+1 and qk < qk+1 = ak+1

bk+1
≤

pk+1. ��

Remark 3.7 For any ladder Lc which are not full in λk+1, the boxes in Lc ∩ λk+1
always lie above the boxes in Lc\λk+1.

If there is a box in Lc\λk+1 that lies above a box in Lc ∩ λk+1, then there is a hook
of length divisible by bk+1 whose endpoint of leg and the box directly right to the
endpoint of arm are on the same ladder, as shown in the picture. Suppose this hook
has length Hi, j = tbk+1, then we have ai j = t(bk+1 − ak+1) − 1 and li j = tak+1.
Therefore,

li j

Hi j
= ak+1

bk+1
≤ max

(u,v)∈λk+1

luv

Huv

= qk < qk+1 = ak+1

bk+1
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which is a contradiction.
Step 2.

Claim 3.8

qk+1 = ak+1

bk+1
= max

(i, j)∈˜λk+2

li j

Hi j
.

Denote all the sliding boxes in doing colregak+1,bk+1 to λk+1 by A1, . . . , Al , and each

A j slides to A j . Let λ̃ := λk+1\{A1, . . . , Al} = λ̃k+2\{A1, . . . , Al}.
By construction, we know that ∃(i0, j0) ∈ λ̃k+2, and we have

li0, j0

Hi0, j0
= ak+1

bk+1
≤ max

(i, j)∈˜λk+2

li j

Hi j
.

In addition, for (i, j) ∈ λ̃ ⊂ λ̃k+2, we have:

ai j (λ̃k+2) + 1

li j (λ̃k+2)
≥ ai j (λk+1)

li j (λk+1) + 1

and hence

li j (λ̃k+2)

Hi j (λ̃k+2)
≤ li j (λk+1) + 1

Hi j (λk+1)

max
(i, j)∈λ̃

li j (λ̃k+2)

Hi j (λ̃k+2)
≤ min

(i, j)∈λ̃

li j (λk+1) + 1

Hi j (λk+1)
= min

(i, j)∈λk+1

li j + 1

Hi j
= qk+1 = ak+1

bk+1
.

The first equality is due to the fact that ∀(i, j) ∈ {A1, . . . , Al}, there is li j (λk+1)+1
Hi j (λk+1)

= 1.
Then,

max
(i, j)∈˜λk+2

li j

Hi j
= max{ max

(i, j)∈λ̃

li j (λ̃k+2)

Hi j (λ̃k+2)
, max
(i, j)∈{A1,...,Al }

li j (λ̃k+2)

Hi j (λ̃k+2)
= 0} = ak+1

bk+1
.

Step 3.

Claim 3.9 λ̃ is a bk+1-core.

If ∃(ĩ0, j̃0) ∈ λ̃, such that Hĩ0, j̃0
= k̃0bk+1, then

lĩ0, j̃0

k̃0bk+1
≤ max

(i, j)∈λ̃

li j

Hi j
< max

(i, j)∈˜λk+2

li j

Hi j
= ak+1

bk+1
= min

(i, j)∈λk+1

li j + 1

Hi j
< min

(i, j)∈λ̃

li j + 1

Hi j

≤ lĩ0, j̃0
+ 1

k̃0bk+1
.
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Here, the first “<” is because the arms in λ̃ are the same as the corresponding one
in λ̃k+2, but legs may be the same or decrease by 1. The second “<” is because the
legs in λ̃ are the same as the corresponding one in λk+1, but arms may be the same
or decrease by 1. They are strict inequalities since we already removed those sliding
boxes to obtain λ̃.

The above inequalities simplify to lĩ0, j̃0
< k̃0ak+1 < lĩ0, j̃0

+ 1, which is a contra-
diction.

Step 4.

Claim 3.10 A1, . . . , Al lies on the same ladder.

First of all, since gcd(ak+1, bk+1) = 1, the integer boxes on ladder Lc : y+ bk+1
ak+1

x =
c

ak+1
have the same residue because y − x = c−bk+1x

ak+1
and consecutive integer boxes

on it has x-coordinates differ by ak+1. Hence, we will call the residue of a ladder to
be the residue of any integer box on it.

Without loss of generality, say A1 ∈ Lc0 . We suppose there exists some A j ∈ Lc1
where c1 �= c0.

Firstly, if Lc0 and Lc1 have the same residue, all possible integer boxes in Lc0 and
Lc1 will lie on a grid with rectangles of size a × (b − a). From Remark 3.7, we know
in L+

c0 ∩ λk+1 are removable boxes and appear on top of addable boxes L+
c0\λk+1, as

shown in the picture where the black line is Lc0 and black boxes are in λ and red ones
are not.

Lc0

Lc1 (c1 > c0)

Lc1 (c1 < c0)

Using the definition of addable and removable boxes, we know any box on the grid
and southeast to L+

c0 is not in λk+1 and any box on the grid and northwest to L+
c0 is

in λk+1. This indicates when c1 < c0, L+
c1 will be full and when c1 > c0, L+

c1 will be
empty, i.e., L+

c1 ∩ λk+1 = ∅. In either case, there will be no A j in Lc1 .
Then, we are left with the case when Lc0 and Lc1 have different residues. If the

distance dist(Lc0 , Lc1) >
a(b−a)√

a2+(b−a)2
, then the same reasoning as above will show
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that Lc1 is either empty or full, which is not possible. If dist(Lc0 , Lc1) <
a(b−a)√

a2+(b−a)2
,

without loss of generality, we also assume c1 > c0 find E ∈ Lc1 ∩ λk+1, and F ∈
Lc0\λk+1 where E is above F . This is always possible since c1 > c0 and both
ladders contain boxes both in and not in λk+1. From Step 1, E is removable and F is
addable. Now the hook in λk+1 corresponding to E and F will break the inequality
bk+1−ak+1

ak+1
≥ ai j

li j +1 .

F

E

Lc1

Lc0

Nowwe arrived at the conclusion that A1, . . . , Al are on the same ladder.We denote
this special ladder Lk+1∗ from now on.

Step 5.
Let us now prove λk+1 is bk+1-regular. If not, there is a box (i1, j1) ∈ λk+1 with

the corresponding hook being a strip of length bk+1 in the rim. Then, we have

li1, j1

Hi1, j1
= bk+1 − 1

bk+1
≤ max

(i, j)∈λk+1

li j

Hi j
= pk = qk <

ak+1

bk+1
.

This contradicts our assumption that ak+1
bk+1

�= 1 and hence λk+1 is bk+1-regular.

We will now construct λ
Mbk+1T
k+1 by decomposing λk+1 into a good box sequence

and build them back using the same sequence as co-good decomposition sequence as
stated in Theorem 2.10.

Assume the integer boxes on Lk+1,+∗ is labeled by A1, . . . , Am in order from north-
east to southwest. Then, from Remark 3.7, the first l are exactly our A1, . . . , Al , and
the rest Al+1, . . . , Am are addable boxes. Definition 2.5 of good box indicates Al is a
good box of λk+1 and Al−1 is a good box of λk+1\Al and it continues. Sowe get a good
decomposition sequence of λk+1: Al , . . . , A1, G1, . . . , Gn−l , where G1, . . . , Gn−l is
a good decomposition sequence for the bk+1-core λ̃.

Since λ̃ is a bk+1-core, G1, . . . , Gn−l is also a co-good decomposition sequence
by Proposition 3.6. Afterward, we put A1 to Am , since by definition, Am is co-good
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in λ̃ ∪ Am . Then, we put A j to position Am+1− j in order since A j is co-good in
λ̃ ∪ Am ∪ · · · ∪ A j .

Hence, λ
Mbk+1T
k+1 = λ̃ ∪ Am ∪ · · · ∪ Am+1−l , and this is exactly sliding A1, . . . , Al

in order to the bottom of Lk+1,+∗ , so λ
Mbk+1T
k+1 = λ

colregak+1,bk+1
k+1 .

Corollary 3.11 The partition in the last interval [ n−1
n , 1] is exactly the column (1n).

Proof In characteristic 2, sign representation is exactly the trivial representation;
hence, λM2 = λ for every 2-regular partition λ. Also,

(λT)colregb-a,b = (λcolrega,b)T,

which is direct by Definition 2.17. Hence, the sequence of partitions are symmetric

via transpose at 1
2 . So λ[ n−1

n ,1] = λ̃[ n−1
n ,1] = (n)T = (1n). ��

4 Detailed descriptions of the sequence of partitions

From the constructions in Sect. 3, we know the sequence λI is a series of decreasing
partitions starting from the row (n) and ending at the column (1n). In this section, we
provide more details to the partitions λk’s.

Corollary 4.1 The bk-quotient of λk is Quotbk
(λk) = (∅, . . . ,∅, (hh1

2 ),∅, . . . ,∅),

where the only nonempty entry is a rectangle. Here h1 = |Lk,+∗ ∩ λk | and h2 =
|Lk,+∗ \λk | and the rectangle appears at the ( jk + 1)-th entry where jk is the residue
of Lk∗.

Moreover, the bk-quotient of λk+1 is Quotbk
(λk+1) = (∅, . . . ,∅, (hh2

1 ),∅, . . . ,∅),
where the rectangle appears at the jk-th entry.

In addition, the bk-core of λk+1 and λk are the same.

Proof From [6], Corebk (λk+1) = Corebk (λk) since λk+1 = λ
MbkT
k .

Denote Quotbk
(λk+1) = (νk,0, . . . , νk,bk−1) from Definition 2.3. νk,s is exactly

the exploded boxes (i, j) with corresponding hook divisible by bk and the residue
of the box at the end of the arm has residue s. Let Hi j = tbk , and since ak

bk
=

min(i, j)∈λk

li j +1
Hi j

> max(i, j)∈λk

li j
Hi j

, we have:

li j

Hi j
<

ak

bk
≤ li j + 1

Hi j
,

and hence, we get li j = tak − 1 and ai j = t(bk − ak).
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This is exactly saying the endpoint of the arm of (i, j) and the box directly underneath
the endpoint of the leg of (i, j) are on Lk,+∗ . Hence, νk,s0 = (hh1

2 ) where s0 is the

residue of Lk∗, h1 = |Lk,+∗ ∩ λk | and h2 = |Lk,+∗ \λk | and all other entries in the
quotient are ∅.

Now consider λk+1 = λ
MbkT
k and denote the bk-quotient of it by (ξk,0, . . . , ξk,bk−1).

From Theorem 3.5, we have

ak

bk
= max

(i, j)∈λk+1

li j

Hi j
< min

(i, j)∈λk+1

li j + 1

Hi j
.

When (i ′, j ′) ∈ λk+1 satisfies Hi j = t ′bk , we have the following inequality:

li ′ j ′

t ′bk
≤ ak

bk
<

li ′ j ′ + 1

t ′bk
,
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and this simplifies to li ′ j ′ = t ′ak and ai ′ j ′ = t ′(bk −ak)−1. This indicates the endpoint
of the leg of (i ′, j ′) and the box directly right to the endpoint of the arm of (i ′, j ′) are
both on Lk,+∗ . Therefore, ξk,s0−1 = (hh2

1 ) and all other entries in the bk-quotient of
λk+1 are empty partitions. ��

5 Uniqueness of monotonicity

From the proof of Theorem 3.5, we have already seen that λI = BI ((n)) is b-regular
if the right endpoint of I has denominator b. Now we will show that (n) is the unique
partition that always stays regular under the series of combinatorial wall-crossings.

Lemma 5.1 Given a b-regular partition λ, if b | φ(λ) where φ(λ) = |λ| − |λI|, then

j1 = |λ| − |λJ| ≤ λ1 − 1.

Proof j1 = |λ| − |λJ|, where |λJ| = |λ| − |λI| + k since δ = 1 as in Definition 2.13.
But since the b-rim is a subset of the rim, |λJ| ≥ |λ|− (k +λ1 −1)+k = |λ|−λ1 +1.
Substituting back, we immediately obtain the required inequality. ��
Lemma 5.2 Given a b-regular partition λ, if b | H11, then j1 ≤ λ1 − 1.

Proof The condition b | H11 implies that the number of boxes in the rim is divisible by
b. If b | φ(λ), then we are done from Lemma 5.1. If b � φ(λ), then since the b-rim is
not divisible by b, it is strictly smaller than the rim so |λJ| > |λ|−(k+λ1−1)+(k−1).
Substituting to the formula giving j1, we get the desired inequality. ��
Proposition 5.3 Begin with any partition λ of n and perform the wall-crossing trans-
formation, as long as the partition stays regular, it will hold that

l11
H11

>
a

b

in the partition exactly after we cross the wall a
b ∈ Fn.

Proof We prove this property by induction. For any partition λ of n, l11 ≥ 1 and
H11 ≤ n, hence in λ we have l11

H11
> 1

n .
Assume that we have two consecutive terms of the Farey sequence a

b < c
d .We know

by induction that the partition immediately before we cross c
d satisfies l11

H11
> a

b . Now
since two consecutive elements in the Farey sequence give two consecutive slopes in
an n × n square in the cartesian grid, it must hold that l11

H11
≥ c

d . If the inequality
is strict, then we are done. If this is an equality, then d | H11, so by Lemma 5.2,
a′
11 + 1 = j1 ≤ λ1 − 1 = a11. Also the fact that Mullineux transpose respects the
partial order [5, Corollary 4.4] implies that the number of rows of λMdT is at least as
much as the number of rows of λ. Thus, after crossing c

d ,

l ′11
H ′
11

− l11
H11

= l ′11(a11 + 1) − l11(a′
11 + 1)

H ′
11H11

> 0

123



Journal of Algebraic Combinatorics (2019) 50:49–72 69

which implies the desired strict inequality. ��
Theorem 5.4 The row partition (n) is the unique partition of n that stays regular after
any step of the combinatorial wall-crossing transformation. For any other partition

λ of n, there exists an interval I =
[

ai
bi

,
ai+1
bi+1

]
in [0, 1] defined by the Farey sequence

such that BI (λ) is not bi+1-regular.

Proof Suppose there is a partition λ �= (n) of n that stays regular after any step
of the combinatorial wall-crossing transformation, consider μ = B[

n−1
n ,1

](λ). By

Proposition 5.3, we have that in μ, l11
H11

> n−1
n , which is equivalent to a11+1

l11
< 1

n−1 .
But this inequality happens if and only if μ = (1n). But by Remark 3.2 and Corollary
3.11, we know λ = (n), which is a contradiction.
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to us and continuous discussions and help throughout the whole process. Also, the authors are grateful to
Ivan Losev and to Galyna Dobrovolska for many discussions and to Seth Shelley-Abrahamson for useful
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Appendix A. Example of n = 5 and a general conjecture

In this appendix, we denote BI and DI in Definition 3.1 as B2
I and D2

I , respectively,
and define another series of transformations as follows.

Definition A.1 We define a collection of maps B1
I : Pn → Pn where I are intervals

with endpoints being consecutive terms in Fn as follows. First of all, B1[
0, 1n

](λ) = λ is

the identity map. Inductively, suppose we defined B1
I where I =

[
ai−1
bi−1

,
ai
bi

]
. Then, for

the adjacent interval I ′ =
[

ai
bi

,
ai+1
bi+1

]
, we define B1

I ′(λ) = μ∪biν
T and D1

I (λ) = bi ·|ν|.
Here, μ and ν come from the unique decomposition B1

I (λ) = μ ∪ biν where μ has
no parts divisible by bi and biν is multiplying each part of ν by bi .

Farey sequence of n = 5 is

1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
.

Nowwe perform the two algorithms as in Definitions 3.1 and A.1 to all partitions of
5 and calculate the corresponding number function D1

I and D2
I , respectively, indicating

the row and column irregular sizes, respectively. The results are given in Tables 2 and 3.
The following conjecture is due to Bezrukavnikov:

Conjecture A.2 (Bezrukavnikov) D1
I (λ) = D2

I (λ
T) for every partition λ of n and

interval I with endpoints consecutive entries in Farey sequence of n.

Remark A.3 The monotonicity of case (n) in the second algorithm is direct if the
conjecture is true since B1

I ((1
n)) = 1n for every interval I and D1

I ((1
n)) = 0. Hence,

D2
I ((n)) = 0, which is exactly saying B2

I ((n)) = λI is always regular corresponding
to the denominator of the right endpoint of I .
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Ta
bl
e
2

T
he

fir
st
al
go

ri
th
m
,n

=
5

In
te
rv
al

[0,
1 5
]

[1 5
,
1 4
]

[1 4
,
1 3
]

[1 3
,
2 5
]

[2 5
,
1 2
]

[1 2
,
3 5
]

[3 5
,
2 3
]

[2 3
,
3 4
]

[3 4
,
4 5
]

[4 5
,
1]

B
1 I

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

(5
)

D
1 I

5
0

0
5

0
5

0
0

5
–

B
1 I

(4
,
1)

(4
,
1)

(4
,
1)

(4
,
1)

(4
,
1)

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

D
1 I

0
4

0
0

4
0

0
0

0
–

B
1 I

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

(3
,
2)

D
1 I

0
0

3
0

2
0

3
0

0
–

B
1 I

(3
,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)
(3

,
12

)

D
1 I

0
0

3
0

0
0

3
0

0
–

B
1 I

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

(2
2
,
1)

(4
,
1)

(4
,
1)

(4
,
1)

(4
,
1)

(4
,
1)

D
1 I

0
0

0
0

4
0

0
4

0
–

B
1 I

(2
,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)
(2

,
13

)

D
1 I

0
0

0
0

2
0

0
0

0
–

B
1 I

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

(1
5
)

D
1 I

0
0

0
0

0
0

0
0

0
–
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Ta
bl
e
3

T
he

se
co
nd

al
go

ri
th
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