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Abstract
We prove two explicit formulae for one-part double Hurwitz numbers with completed
3-cycles. We define “combinatorial Hodge integrals” from these numbers in the spirit
of the celebrated ELSV formula. The obtained results imply some explicit formulae
and properties of the combinatorial Hodge integrals.

Keywords Hurwitz numbers · Symmetric groups · Symmetric functions

1 Introduction

1.1 Notation

First of all, let us set up some notations. For a natural number d, a partition μ of
d, denoted by μ � d, is a sequence of non-increasing strictly positive integers μ =
(μ1 ≥ μ2 ≥ · · · ≥ μm) such that d = μ1 + · · · + μm . We call m the length of μ,
denoted by l(μ). Another way of writing μ is μ = (1m1 , 2m2 , . . .)which tells us that i
appear mi times. Define |Aut(μ)| := m1!m2! . . .. If mi = 0, we can choose to write i
or not depending on which choice is convenient in each context. We reserve the Greek
letters for partitions. The set of all partitions of d is denoted by Part(d), and the set
of all partitions is denoted by Part.

For a series f (z) =∑ ai zi , we denote
[
zi
]
f := ai .

1.2 Hurwitz numbers

Hurwitz numbers (in many variants) appeared at the cross-road of many active
directions in contemporary mathematics and mathematical physics, such as the com-
binatorics of symmetric groups and graphs on surfaces, the intersection theory in
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algebraic geometry, tau functions in integrable systems and tropical geometry (see,
for instance [2,6,8,10]).

In their simplest version, given two positive integers d and g, and a partition β

of d, connected (disconnected) single Hurwitz number1 Hg
β count the number of

equivalence classes of branched d-coverings of the Riemann sphere by a connected
(possibly disconnected) Riemann surface of genus g, assuming that one branch point
has branching given by β and all other branch points are simple. Some very interesting
results connect these objects with other areas of mathematics. In particular, single
Hurwitz numbers satisfy KP equations [11], Virasoro constraints [1] and Chekhov–
Eynard–Orantin topological recursion [4].

Further interesting results have been proved and conjectured for other types of
Hurwitz numbers. In this article, we are concerned with double Hurwitz numbers with
completed cycles [13].

Actually, enumerating branched coverings is just one of the possible sources of
Hurwitz numbers. It is known that, equivalently, Hurwitz numbers enumerate permu-
tations with certain properties, ribbon graphs (i.e., graphs on Riemann surfaces) and
tropical graphs (see again [2,6,8,10] and references therein). In particular, the inter-
pretation in terms of permutations leads to the combinatorial definition of Hurwitz
numbers in terms of irreducible characters of the symmetric groups.

In this paper, as it is done in [13], we study Hurwitz numbers starting from a purely
combinatorial definition. Our results are about one-part double Hurwitz numbers with
completed 3-cycles Hg,(2)

(d),β and can be seen as a natural analogue of some well known

results by Goulden et al. [6] about standard double Hurwitz numbers Hg
α,β . They

found the following explicit formulas for one-part double Hurwitz numbers (in this
case connected = disconnected)

Theorem 1.1 [6] Let g ≥ 0 and β � d a partition of d. Then

Hg
(d),β = k!dk−1

[
z2g
]∏

j≥1

(
sinh( j z/2)

j z/2

)c j
(1)

= k!dk−1

22g
∑

λ�g

ξ2λS2λ
|Aut(λ)| . (2)

The notation will be explained later. The analogues for one-part double Hurwitz num-
bers (again, connected = disconnected in this case) with completed 3-cycles, proved
in this article, are

Theorem 1.2 Given g ≥ 0, d > 0, let β be a partition of odd length of d and s be an
integer such that 2s = 2g − 1 + l(β). Then we have:

1 The Riemann–Hurwitz theorem relate d, g and β.
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Hg,(2)
(d),β = s!ds−1

2s

g∑

h=0

(2s − 2h)!
h!(s − h)!12h d

2h
[
z2(g−h)

]∏

i≥1

(
sinh(i z/2)

i z/2

)ci
(3)

= s!ds−1

2s+2g

g∑

h=0

(2s − 2h)!
h!(s − h)!3h d

2h
∑

λ�(g−h)

ξ2λS2λ
|Aut(λ)| . (4)

The reason why our method does not work for Hg,(r)
(d),β with r > 2 is explained in the

remark after Eq. (13).
Let us mention that Hurwitz numbers with completed cycles were shown to be

relative Gromov–Witten invariants of P1 (under some normalization) [12]. It is also
conjectured that there should be an ELSV-like formula for one-part double Hurwitz
numbers with completed cycles [13]. From this point of view, we believe that it is of
a great use to have an efficient formula for computing these numbers.

To conclude, let us summarize some interesting consequences of the explicit for-
mulae above. First, as it is in the case of standard double Hurwitz numbers, Hg,(2)

(d),β

is polynomial in the parts of β (for fixed g and l(β)), with the highest and lowest
degrees being respectively 3g + l(β)−3

2 and g + l(β)−3
2 . Note that the so-called strong

piecewise polynomiality is proven in [13] for all double Hurwitz numbers with com-
pleted cycles. For one-part numbers, piecewise polynomiality becomes polynomiality.
Thus our formula should be viewed as an illustration of this fact through an explicitly
computable case.

Second, single Hurwitz numbers are connected, through the celebrated Ekedahl–
Lando–Shapiro–Vainshtein (ELSV) formula, to Hodge integrals on the Deligne–
Mumford moduli space of stable curves with marked points [3]. A similar connection
between double Hurwitz numbers and integrals of cohomological classes over a (yet
to be defined) moduli space is conjectured in [6] (see also [13] for a similar conjecture
for double Hurwitz numbers with completed cycles). Following what is done in [6]
to support their conjecture, we defined and study “combinatorial Hodge integrals”
[Eq. (24)]. We prove that the lowest degree Hodge integrals satisfy a formula (Propo-
sition 4.2) which is an analogue of the λg-theorem by Faber and Pandharipande [5].
It is also an analogue of [6, Prop. 3.12].

Moreover, these lowest degree combinatorial Hodge integrals, satisfy a (modified)
version of the string and dilaton equations. Assembling them in a generating function
F , we prove that the string and dilaton equations correspond to two linear operators
L−1 and L0 annihilating F and satisfying a Virasoro-like relation. It would be of great
interest to prove that a whole set of Virasoro-like constraints can be obtained.

Finally, we prove a closed formula for the combinatorial Hodge integrals of top
degree.

The paper is organized as follows. Section 2 is devoted to the combinatorial def-
inition of double Hurwitz numbers with completed cycles. Afterward, in Sect. 3, we
state and prove our main result, Theorem 1.2. The corollaries are stated and proved in
the last section.
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2 Double Hurwitz numbers with completed cycles

We follow closely the exposition in [13] that gives a combinatorial definition of double
Hurwitz numbers with completed cycles.

2.1 Shifted symmetric functions

LetQ[x1, . . . , xd ] be the algebra of d-variable polynomials overQ. The shifted action
of the symmetric group Sd (the group of permutations on {1, . . . , d}) on this algebra
is defined by:

σ( f (x1 − 1, . . . , xd − d)) := f (xσ(1) − σ(1), . . . , xσ(d) − σ(d)) (5)

for σ ∈ Sd and for any polynomial written in the variables xi − i . Denote by
Q[x1, . . . , xd ]� the subalgebra of polynomials which are invariant with respect to
this action.

Define the algebra of shifted symmetric functions as the projective limit

�� := lim←− Q[x1, . . . , xd ]�,

where the projective limit is taken in the category of filtered algebras with respect
to the homomorphism which sends the last variable to 0. Concretely, an element
of this algebra is a sequence f = { f (d)}d≥1, f (d) ∈ Q[x1, . . . , xd ]� such that the
polynomials f (d) are of uniformly bounded degree and stable under the restriction
f (d+1)|xd+1=0 = f (d).

2.2 Bases of the algebra of shifted symmetric functions

Definition 2.1 For any positive integer k, define the corresponding shifted symmetric
power sum:

pk(x1, x2, . . .) :=
∞∑

i=1

((

xi − i + 1

2

)k

−
(

−i + 1

2

)k
)

. (6)

In the following, we are only interested in evaluating these functions on partitions.
That is, for a partition λ = (λ1 ≥ λ2 ≥ . . . .), we define pk(λ) := pk(λ1, λ2, . . .). As
usual in symmetric function theory, for any partition μ, define pμ = pμ1 pμ2 . . .

The functions {pμ,μ ∈ Part} form a basis of ��. Another basis is defined as
follows. For partitions λ andμ of d, let χλ

μ be the irreducible character of Sd associated
with λ evaluated atμ (or more precisely, at a permutation of typeμ), dim λ = χλ

(1n) be
the dimension of the irreducible representation, and Per(μ) be the set of permutations
of Sn whose cycle structure is described by μ.
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Definition 2.2 For two partitions λ and μ of d, define

fμ(λ) := |Per(μ)| χλ
μ

dim(λ)
. (7)

Kerov and Olshanski [9] proved that:

Proposition 2.1 The functions { fμ,μ ∈ Part} are shifted symmetric functions, and
form a basis of ��.

2.3 Completed cycles

LetQSd be the group algebra of Sd overQ, i.e., the algebra of formal linear sum with
rational coefficients of elements of Sd . Let ZQSd be the center of this algebra, which is
the subalgebra containing elements that commute with every element ofQSd . Finally,
define

Z :=
∞⊕

d=0

ZQSd .

It is well known that a basis of Z can be constructed as follows. For a partition μ, let

Cμ :=
∑

g∈Per(μ)

g.

Then {Cμ,μ ∈ Part} form a basis of Z . Therefore we have the linear isomorphism

φ : Z → ��

Cμ �→ fμ. (8)

Definition 2.3 For any partition μ, the completed μ-conjugacy class Cμ is defined as
Cμ := φ−1(pμ)/

∏
μi !.2 Of special interest are the completed cycles (r) := C (r), r ∈

N. 3

2.4 Double Hurwitz numbers with completed cycles

From now on, we shall follow the notation of Goulden et al. [6], so that the readers
can compare our result with theirs easily. Let α and β be two partitions of a number d,
whose lengths are m and n respectively. Let g, r and s be three nonnegative integers
such that rs = 2g − 2 + m + n.

Definition 2.4 Disconnected double Hurwitz numbers with completed (r + 1)-cycles
are defined as:

2 This normalization, following [14], is different from that of [12].
3 Recall that (r) denotes the 1-part partition of r .
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Hg,(r)
α,β := 1

∏
αi
∏

β j

∑

λ�d
χλ

α

(
pr+1(λ)

(r + 1)!
)s

χλ
β . (9)

We often omit the superscript (r) if it is fixed in advance. Since the completed 2-
cycle is equal to the ordinary 2-cycle, the numbers Hg,(1)

α,β are just the ordinary double
Hurwitz numbers.

We are mostly interested in the dependence of Hg,(r)
α,β on (the parts of) α and β,

given fixed g, r , l(α) and l(β). The numbers obtained in the case m = 1, i.e., α = (d)

are called one-part double numbers. In this case, the sum is simplified a lot, and we
can get an explicit and compact formula for r = 2.

2.5 Combinatorial interpretation

In [14, Sec. 2.2], the authors give a combinatorial interpretation of singleHurwitz num-
bers with completed cycles. We can naturally generalize their construction for double
numbers as follows. Let α and β be two partitions of d. A (g, r , α, β)-factorization
fac(g, r , α, β) is a factorization in Sd of the following form:

h1 . . . hsg1g2 = 1, (10)

where rs = 2g − 2 + l(α) + l(β), g ∈ Z+, g1 ∈ Per(α), g2 ∈ Per(β), and each
hi ∈ Sd appears in (r + 1) with a coefficient ci 	= 0. The weight of this factorization
is defined as

w(fac) :=
s∏

i=1

ci .

Proposition 2.2 We have the following equality:

∑

fac ∈{(g,r ,α,β)−factorizations}
w(fac) = d!

|Aut(α)||Aut(β)|H
g,(r)
α,β . (11)

3 Explicit formula for one-part double Hurwitz numbers with
completed 3-cycles

We now consider the case r = 2. Let β be a partition of d of odd length n. Let
s = g + n−1

2 . We write β in three ways, each of which is convenient in each specific
context:

(β1, β2, . . .) = (1n12n2 . . .
) = (�n� . . . qnq

)
. (12)

Here � and q are the smallest and greatest numbers appearing in β. If a number i does
not appear in β, ni = 0. Let ci = ni for i ≥ 2 and c1 = n1−1.We have

∑
i ci = n−1

and
∑

ici = d − 1.
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We can easily compute that:

p3
((

d − k, 1k
))

=
(

d − k − 1

2

)3

−
(

−k − 1

2

)3

= 3d

((

k − d − 1

2

)2

+ d2

12

)

.

(13)

Remark The fact that p3
((
d − k, 1k

))
has the form a(k+b)2+c, where a, b, c do not

depend on k (but on d of course) turns out to be crucial for our method. Unfortunately,
pr+1((d − k, 1k)) for r ≥ 3 do not have the form a(k + b)r + c , so we do not get a
compact formula by the same strategy.

Lemma 3.1 We have the following irreducible character evaluation:

χ
(d−k,1k )
β = (−1)k

[
zk
]
(1 + z + · · · + z�−1)(1 − z�)n�−1

∏

i≥�+1

(1 − zi )ni

= (−1)k
[
zk
]∏

i≥1

(1 − zi )ci

= (−1)k
�−1∑

h=0

n�−1∑

j�=0

n�+1∑

j�+1=0

. . .

nq∑

jq=0

(−1)
∑

i≥l ji

(
n� − 1

j�

)(
n�+1

j�+1

)

. . .

(
nq
jq

)

δk,h+∑q
i=� i ji

. (14)

here δx,y := 1 if x = y, and 0 otherwise. This lemma is well known and can be derived
from the Murnaghan–Nakayama rule. See, for instance, [6, p. 59].

For j ≥ 1, let ξ2 j = [x2 j ] log(sinh x/x) and

S2 j =
∑

k≥1

k2 j ck = −1 +
∑

k≥1

k2 j nk = −1 +
∑

k≥1

βk
2 j ,

i.e., S2 j is a power sum for the partition, shifted by 1. For a partition λ , let ξλ =
ξλ1ξλ2 . . . and Sλ = Sλ1 Sλ2 . . . and 2λ = (2λ1, 2λ2, . . .).

Lemma 3.2 The following formula holds true:

[
z2k
]∏

i≥1

(
sinh(i z/2)

i z/2

)ci
= 2−2k

∑

λ�k

ξ2λS2λ
|Aut(λ)| . (15)

Proof We have

∏

i≥1

(
sinh(i x)

i x

)ci
= exp

⎛

⎝
∑

i≥1

ci
∑

j≥1

ξ2 j i
2 j x2 j

⎞

⎠ = exp

⎛

⎝
∑

j≥1

ξ2 j S2 j x
2 j

⎞

⎠

=
∑

λ

ξ2λS2λ
|Aut(λ)| x

2|λ|.

123



314 Journal of Algebraic Combinatorics (2018) 48:307–323

The proof is finished upon setting x = z/2. 
�
Lemma 3.3 Let Sp(k, x) :=∑k−1

h=0(h + x)p. Then

Sp(k, x) =
[
z p

p!
]

exz
(
1 + ez + · · · + e(k−1)z

)
. (16)

Proof Indeed,

∞∑

p=0

Sp(k, x)
z p

p! =
k−1∑

h=0

ez(h+x) = ezx
(
1 + ez + · · · + e(k−1)z

)
.


�
We can now prove our main Theorem:

Theorem 1.2 Given g ≥ 0, d > 0, let β be a partition of odd length of d and s be an
integer such that 2s = 2g − 1 + l(β). Then we have:

Hg,(2)
(d),β = s!ds−1

2s

g∑

h=0

(2s − 2h)!
h!(s − h)!12h d

2h
[
z2(g−h)

]∏

i≥1

(
sinh(i z/2)

i z/2

)ci
(17)

= s!ds−1

2s+2g

g∑

h=0

(2s − 2h)!
h!(s − h)!3h d

2h
∑

λ�(g−h)

ξ2λS2λ
|Aut(λ)| . (18)

Proof By definition:

Hg,(2)
(d),β = 1

d
∏

β j

∑

λ�d
χλ

(d)

(
p3(λ)

6

)s

χλ
β . (19)

It is well known that χλ
(d) = 0 except for λ = (d − k, 1k), k = 0, . . . , d − 1, in which

case it is equal to (−1)k . So we have:

Hg,(2)
(d),β = ds−1

2s
∏

β j

d−1∑

k=0

((

k − d − 1

2

)2

+ d2

12

)s

(−1)kχ(d−k,1k)
β

= ds−1

2s
∏

β j

[
t s

s!
] d−1∑

k=0

exp

{

t

((

k − d − 1

2

)2

+ d2

12

)}

(−1)kχ(d−k,1k)
β

= s!ds−1

2s
∏

β j

[
t s
]
exp

(
td2

12

) d−1∑

k=0

exp

{

t

(

k − d − 1

2

)2
}

(−1)kχ(d−k,1k)
β .
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We treat the sum separately now:

A =
d−1∑

k=0

exp

{

t

(

k − d − 1

2

)2
}

(−1)kχ(d−k,1k )
β

=
�−1∑

h=0

n�−1∑

j�=0

n�+1∑

j�+1=0

. . .

nq∑

jq=0

exp

⎧
⎪⎨

⎪⎩
t

⎛

⎝h +
∑

i≥�

i ji − d − 1

2

⎞

⎠

2
⎫
⎪⎬

⎪⎭

× (−1)
∑

i≥l ji

(
n� − 1

j�

)(
n�+1

j�+1

)

. . .

(
nq
jq

)

. (Lemma3.1)

We expand the exponential and sum over h first :

A =
nl−1∑

j�=0

n�+1∑

j�+1=0

. . .

nq∑

jq=0

(−1)
∑

i≥� ji

(
n� − 1

j�

)(
n�+1

j�+1

)

. . .

(
nq
jq

) ∞∑

p=0

t p

p!
�−1∑

h=0

⎛

⎝h +
∑

i≥�

i ji − d − 1

2

⎞

⎠

2p

=
∞∑

p=0

(2p)!t p
p!

[
z2p
] (

1 + ez + · · · + e(�−1)z
)
e− (d−1)z

2 ×

×
n�−1∑

j�=0

n�+1∑

j�+1=0

. . .

nq∑

jq=0

ez
∑

i≥� i ji (−1)
∑

i≥� ji

(
n� − 1

jl

)(
n�+1

j�+1

)

. . .

(
nq
jq

)

(Lemma3.3)

=
∞∑

p=0

(2p)!t p
p!

[
z2p
]
e− (d−1)z

2

(
1 + ez + · · · + e(�−1)z

)

(
1 − e�z

)n�−1 ∏

i≥�+1

(
1 − eiz

)ni

=
∞∑

p=0

(2p)!t p
p!

[
z2p
]
e− (d−1)z

2
∏

i≥1

(
1 − eiz

)ci
.

Finally we get:

Hg,(2)
(d),β = s!ds−1

2s
∏

β j

[
t s
]
exp

(
td2

12

) ∞∑

p=0

(2p)!t p
p!

[
z2p
]
e− (d−1)z

2
∏

i≥1

(
1 − eiz

)ci
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= s!ds−1

2s
[
t s
]
exp

(
td2

12

) ∞∑

p=0

(2p)!t p
p!

[
z2p−n+1

]∏

i≥1

(
sinh(i z/2)

i z/2

)ci

= s!ds−1

2s

s∑

h=0

(2s − 2h)!
h!(s − h)!12h d

2h
[
z2s−2h−n+1

]∏

i≥1

(
sinh(i z/2)

i z/2

)ci
.

To pass from the first to the second line, we write 1 − eiz = −2eiz/2 sinh(i z/2) and
use

∑
i ci = n − 1,

∑
i ici = d − 1 and

∏
i i

ci = ∏
β j . There is also the factor

(−1)
∑

ci = (−1)n−1 = 1 since n is odd.
Note that 2s = 2g− 1+ n, so we are taking the coefficient of z2(g−h). Because the

lowest degree of the series in z is 0, the summing index h actually runs from 0 to g.
Finally, we get:

Hg,(2)
(d),β = s!ds−1

2s

g∑

h=0

(2s − 2h)!
h!(s − h)!12h d

2h
[
z2(g−h)

]∏

i≥1

(
sinh(i z/2)

i z/2

)ci
.

Using Lemma 3.2, we obtain the second equation of Theorem 1.2. 
�

4 Some corollaries

Our formula is explicit and computationally efficient. We observe a strong similarity
with the case of ordinary one-part double Hurwitz numbers. Consequently, as in [6],
we prove some fairly important implications.

4.1 Strong polynomiality

Our formula gives immediately the strong polynomialty of 1-part double Hurwitz
numbers with completed 3-cycles. In fact, double Hurwitz numbers with completed
cycles of any size satisfy the strong piecewise polynomiality, i.e., they are piecewise
polynomial with the highest and lowest orders respectively (r + 1)s + 1−m − n and
(r + 1)s + 1 − m − n − 2g. This is proved in [13]. For one-part numbers, piecewise
polynomiality becomes polynomiality. Our formula should be viewed as an illustration
of this fact through an explicitly computable case.

Corollary 4.1 Hg,(2)
(d),β , for fixed g and n, is a polynomial of the parts of β and satisfies

the strong polynomiality property, i.e., it is polynomial in β1, β2, . . . with highest and
lowest degrees, respectively, 3g + n−3

2 and g + n−3
2

4.2 Connection with intersection theory onmoduli spaces and“the �g theorem”

The connected single Hurwitz number H̃ g
β is defined to be the number of weighted

equivalence classes of degree d branched covers of CP1 by a connected Riemann
surface of genus g, with p + 1 branch points, of which p are simple, and one has
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branching given by β. Due to the Riemann–Hurwitz formula, we have p = 2g − 2+
d + n, where n = l(β). The celebrated ELSV formula [3] connects these numbers
with integrals on the moduli space of stable curves:

H̃ g
β = C(g, β)

∫

Mg,n

1 − λ1 + λ2 − · · · + (−1)gλg

(1 − β1ψ1) . . . (1 − βnψn)
, (20)

where

C(g, β) = p!
Aut(β)

n∏

i=1

β
βi
i

βi ! , (21)

and Mg,n is the moduli space of stable curves of genus g with n marked points.
λi is a certain codimension i cohomology class, and ψi is a certain codimension 1
cohomology class on Mg,n . The factors 1/(1 − βiψi ) are understood as

1/(1 − βiψi ) = 1 + β1ψi + β2
1ψ

2
i + · · ·

Although the series are infinite, by the definition of the integral, only a finite number
of terms do contribute. Therefore, Eq. (20) means that Pg

n (β) := H̃ g
β /C(g, β) is

polynomial in β1, . . . , βn and the (linear) Hodge integrals are given by:

〈τb1 . . . τbnλk〉g :=
∫

Mg,n

ψ
b1
1 . . . ψbn

n λk = (−1)k
[
β
b1
1 . . . βbn

n

]
Pg
n (β) . (22)

Another ELSV formula has been found for the so-called orbifold Hurwitz numbers,
i.e., double Hurwitz numbers with α = (a, a, . . . , a) by Johnson, Pandharipande and
Tseng [7]. It is an important and challenging problem to find other ELSV formulas.
An important clue is the (piecewise) polynomiality of Hurwitz numbers.

In [13], the authors conjecture that for every r ≥ 1, there exist moduli spaces X (r)
g,n

of complex dimension 2g(r + 1) + n − 1 such that we have the following ELSV
formula:

Hg,(r)
(d),β = s!

d

∫

Xg,n

1 − �2 + �4 − · · · + (−1)g�2g

(1 − β1�1) . . . (1 − βn�n)
, (23)

where we fix the degrees of the rational cohomology classes �2k ∈ H4rk
(
X (r)
g,n

)
and

�i ∈ H2r
(
X (r)
g,n

)
.

A similar conjecture was previously made by Goulden et al. [6] for ordinary double
Hurwitz numbers, i.e., the case r = 1. To support their conjecture, they made a
thorough combinatorial study and found many similarity between the “combinatorial
Hodge integrals” and the “genuine” ones defined by Eq. (22) .
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Following them, let us define the combinatorial Hodge integral for b1, . . . , bn ≥ 0
and 0 ≤ k ≤ g:

〈〈τb1 . . . τbn�2k〉〉g := (−1)k
[
β
b1
1 . . . βbn

n

]
⎛

⎝d
Hg,(2)

(d),β

s!

⎞

⎠

= (−1)k
[
β
b1
1 . . . βbn

n

]
⎛

⎝d
Hg,(2)

(d),β
(
g + n−1

2

)!

⎞

⎠ . (24)

We use the double brackets just to remind the readers that the conjectural moduli
space has not been found, and do not keep the superscript (2) to save space. This
“intersection number” vanishes unless b1 + · · · + bn + 2k = 3g + n−1

2 . The order of
this integral is defined to be b1 + · · · + bn .

We are going to evaluate the lowest order terms, i.e., the terms with k = g. In [5],
Faber and Pandharipande proved the λg conjecture:

〈τb1 . . . τbnλg〉g = cg

(
2g − 3 + n

b1, . . . , bn

)

. (25)

By computing 〈τ 2g−2
1 λg〉g , they found

cg = 22g−1 − 1

22g−1(2g)! |B2g|,

where B2g is a Bernoulli number (B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .).
In analogy with this theorem, the following combinatorial version is proved in [6,
Prop. 3.12]:4

〈〈τb1 . . . τbn�2g〉〉r=1
g = cg

(
2g − 3 + n

b1, . . . , bn

)

. (26)

Here, thanks to Theorem 1.2, we can also easily evaluate 〈〈τb1 . . . τbn�2g〉〉g .
Proposition 4.2 For b1+· · ·+bn = g+ n−1

2 , the lowest combinatorial Hodge integral
is given by:

〈〈τb1 . . . τbn�2g〉〉g =
(

g + n−1
2

b1, . . . , bn

)

Cg,n, (27)

with

Cg,n = (2g + n − 1)! (22g−1 − 1
)

(2g)! (g + n−1
2

)!23g+ n−3
2

|B2g|. (28)

Proof First, we extract the lowest term in the polynomial dHg,(2)
(d),β /s! . This means

simply taking only the h = 0 term in the sum (4), and then taking the constant term

4 Their symbol 〈〈.〉〉r=1
g is defined just like in Eq. (24), with a different normalization [6, Eq. 25].
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of S2λ, which is (−1)l(λ), in the sum over all partitions λ of g. The result is:

(2s)!ds
s!2s+2g

∑

λ�g

(−1)l(λ)ξ2λ

|Aut(λ)| = (2g + n − 1)!dg+ n−1
2

(
g + n−1

2

)!23g+ n−1
2

∑

λ�g

(−1)l(λ)ξ2λ

|Aut(λ)| .

Then we compute the coefficient of β
b1
1 . . . β

bn
n to get the lowest combinatorial Hodge

integral:

〈〈τb1 . . . τbn�2g〉〉g = (−1)g
(

g + n−1
2

b1, . . . , bn

)
(2g + n − 1)!

(
g + n−1

2

)!23g+ n−1
2

∑

λ�g

(−1)l(λ)ξ2λ

|Aut(λ)| .

(29)

On the other hand, using (3), we compute:

〈〈τg�2g〉〉g = (−1)g
[
dg
] dH(d),(d)

g!
= (−1)g

[
dg
] dg(2g)!

2gg!
[
z2g
] z/2

sinh z/2

sinh dz/2

dz/2

= (2g)!
g!2g (−1)g

[
z2g
] z/2

sinh z/2

= 22g−1 − 1

g!23g−1 |B2g|. (30)

Comparing (29) and (30), we deduce
∑

λ�g
(−1)l(λ)ξ2λ|Aut(λ)| and get the desired claim. 
�

We observe a strong similarity with the results quoted above.

4.3 Dilaton and string equations

Goulden et al. [6, Prop. 3.10] proved that their combinatorial Hodge integrals for
ordinary double Hurwitz numbers satisfy the string and dilation equations. Here we
prove that the lowest terms satisfy the (modified) string and dilaton equations for every
genus g. The situation for higher terms is not clear to us.

Proposition 4.3 String equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1+· · ·+
bn = g + n+1

2 :

〈〈τ 20 τb1 . . . τbn�2g〉〉g = (2g + n)

n∑

i=1

〈〈τb1 . . . τbi−1τbi−1τbi+1 . . . τbn�2g〉〉g. (31)
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Dilaton equation: For g ≥ 0, n ≥ 1, n odd, b1, . . . , bn ≥ 0, b1 +· · ·+ bn = g+ n−1
2

(minus here is not a misprint):

〈〈τ0τ1τb1 . . . τbn�2g〉〉g = (2g + n)

(

g + n + 1

2

)

〈〈τb1 . . . τbn�2g〉〉g. (32)

Here we assume that 〈〈.〉〉=0 if there is some τ<0 inside.

Proof For the string equation:

〈〈τ 20 τb1 . . . τbn�2g〉〉g =
(

g + n+1
2

b1, . . . , bn

)

Cg,n+1

=
(
g + n−1

2

)!(b1 + · · · + bn)

b1! . . . bn ! Cg,n
(2g + n + 1)(2g + n)

2
(
g + n+1

2

)

= (2g + n)

n∑

i=1

〈〈τb1 . . . τbi−1τbi−1τbi+1 . . . τbn�2g〉〉g.

For the dilaton equation:

〈〈τ0τ1τb1 . . . τbn�2g〉〉g =
(

g + n+1
2

0, 1, b1, . . . , b2s+1

)

Cg,n+1

=
(

g + n−1
2

b1, . . . , bn

)

Cg,n(2g + n)

(

g + n + 1

2

)

= (2g + n)

(

g + n + 1

2

)

〈〈τb1 . . . τbn�2g〉〉g.


�
Let us consider the following generating function:

F :=
∑

n≥1

1

n!
∑

b1,...,bn≥0

〈〈τb1 . . . τbn�2g〉〉g tb1 . . . tbn
(2g + n − 2)!! (33)

Then the string and dilaton equations can be written as follows:

(

− ∂2

∂t20
+

∞∑

i=0

ti+1
∂

∂ti

)

F := L−1F = 0 (34)

(

− ∂2

∂t0∂t1
+ 1 +

∞∑

i=0

i ti
∂

∂ti

)

F := L0F = 0 (35)

It is easy to check that
[
L0, L−1

] = L−1. They look like two lowest Virasoro con-
straints. It would be interesting to investigate whether we have higher Virasoro-like
constraints as well. And of course, it would be of great interest to investigate string
and dilaton equations for higher order integrals, i.e., for �2k with k < g.
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4.4 Explicit formulae for top degree terms

We show how to compute the top degree terms 〈〈τb1 . . . τbn 〉〉g := 〈〈τb1 . . . τbn�0〉〉g .
We need to prepare some notation. For a partition μ, let Pμ be the power sum and
mμ be the monomial symmetric function. For any partition λ, we have the following
expansion (in the vector space of symmetric polynomials)

Pλ =
∑

μ�|λ|
Rλμmμ. (36)

One can show that Rλμ is the number of ordered partitions5 π = (A1, . . . , Al(μ)

)
of the

set {1, . . . , l(λ)} such that for 1 ≤ j ≤ l(μ):

μ j =
∑

i∈A j

λi .

For 2 j ≤ b1 + · · · + bn , denote

D2 j (b) := {(a1, . . . , an) , ai even, ai ≤ bi , a1 + · · · + an = 2 j} .

For a vector a, denote Pa the associated partition, i.e., the rearrangement of the com-
ponents of a in non-decreasing order.

Proposition 4.4 For b1, . . . , bn ≥ 0, b1 + · · · + bn = 3g + n−1
2 , we have:

〈〈τb1 . . . τbn 〉〉g = 1

23g+ n−1
2

g∑

h=0

(2s − 2h)!
h!(s − h)!3h

∑

λ�(g−h)

∑

a∈D2g−2h(b)

ξ2λR2λ,Pa

|Aut(λ)|
(

g + n−1
2 + 2h

b1 − a1, . . . , bn − an

)

. (37)

Proof First, we need to extract the highest degree term in dHg
(d),β/s!. The result is:

T T g
n = ds

2s+2g

g∑

h=0

(2s − 2h)!
h!(s − h)!3h d

2h
∑

λ�(g−h)

ξ2λP2λ
|Aut(λ)| , (38)

Then as usual, we compute the coefficient of β
b1
1 . . . β

bn
n to obtain 〈〈τb1 . . . τbn 〉〉g .

Using the obvious fact that
[
xd11 xd22 . . .

]
mμ(x) = 1 if μ = Pd and 0 otherwise, we

obtain the desired claim. 
�
In particular, for g = 1:

5 Do not confuse partitions of a number and partitions of a set.
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Corollary 4.5 For n ≥ 1, b1, . . . , bn ≥ 0 and b1 + · · · + bn = n+5
2 :

〈〈τb1 . . . τbn 〉〉1 = (n + 1)!
3 × 2

n+7
2

[
1

n

( n+5
2

b1, . . . , bn

)

+
n∑

i=1

( n+1
2

b1, . . . , bi−1, bi − 2, bi+1, . . . , bn

)]

, (39)

where
( n+1

2
b1,...,bi−1,bi−2,bi+1,...,bn

) = 0 if bi − 2 < 0.

One can compare this formula with the Hodge integrals over M1,n which can be
found, for instance, in [10, Prop. 4.6.11]:

Proposition 4.6 For d1 + · · · dn = n, we have:

〈τd1 . . . τdn 〉 :=
∫

Mg,n

ψ
d1
1 . . . ψdn

n

= 1

24

(
n

d1 . . . dn

)(

1 −
n∑

i=2

(i − 2)!(n − i)!
n! ei (d1, . . . , dn)

)

, (40)

where ei is the i th elementary symmetric function:

ei (d1, . . . , dn) =
∑

j1<...< ji

d j1 . . . d ji .
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