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Abstract We prove that the Grothendieck rings of category C(t)
Q over quantum affine

algebras U ′
q(g

(t)) (t = 1, 2) associated with each Dynkin quiver Q of finite type
A2n−1 (resp. Dn+1) are isomorphic to one of the categories CQ over the Lang-
lands dual U ′

q(
Lg(2)) of U ′

q(g
(2)) associated with any twisted adapted class [Q] of

A2n−1 (resp. Dn+1). This results provide simplicity-preserving correspondences on
Langlands duality for finite-dimensional representation of quantum affine algebras,
suggested by Frenkel–Hernandez.
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1 Introduction

Let U ′
q(g

(r)) (r = 2, 3) be the twisted quantum affine algebra (g(r) = A(2)
2n−1,

D(2)
n+1,E

(2)
6 ,D(3)

4 ), and let U ′
q(

Lg(r)) be its untwisted Langlands dual (Lg(r) =
B(1)
n ,C (1)

n ,F (1)
4 ,G(1)

2 ) whose generalized Cartan matrix is the transpose of that of
U ′
q(g

(r)). Let us denote byWq,t (g) the (q, t)-deformedW(g)-algebra associated with
the simple Lie subalgebra g of Lg(r), introduced by Frenkel and Reshetikhin in [8]
(see also [27]). Then it is known that (i) the limit q → exp(π i/r) ofWq,t (g) recovers
the commutative Grothendieck ring of finite-dimensional integrable representations
Cg(r) overU ′

q(g
(r)), and (ii) the limit t → 1 ofWq,t (g) recovers the one of CLg(r) over

U ′
q(

Lg(r)) [7]:

[Cg(r)

] Wq,t (g)exp(π i/r)←q t→1

[CLg(r)

]
(1.1)

Thus, Wq,t (g) interpolates the Grothendieck rings of the categories Cg(r) and CLg(r) .
Since then, the duality between the representations over U ′

q(g
(r)) and U ′

q(
Lg(r)) has

been intensively studied (for example, see [9,10]).We remark that this duality is related
to the geometric Langlands correspondence (see [10, Introduction]).

On the other hand, Hernandez [12] proved that, for the untwisted quantum affine
algebraU ′

q(g
(1)) (g(1) = A(1)

2n−1,D
(1)
n+1,E

(1)
6 ,D(1)

4 ) corresponding toU ′
q(g

(r)), the com-
mutative Grothendieck ring of Cg(1) is isomorphic to the one of Cg(r) :

[Cg(r)

]
�

[Cg(1)

]
(1.2)

Hence, we can expect that the isomorphisms among the Grothendieck groups can be
lifted to equivalences of categories:

CLg(r)

∼ ∼

Cg(1)
∼ Cg(r)

(1.3)

However, there is no satisfactory answer for the reason why such dualities happen.
The goal of paper is to provide new point of view for these dualities through the
categorification theory of quantum groups.

The quiver Hecke algebras Rg, introduced by Khovanov–Lauda [25,26] and
Rouquier [37] independently, categorify the negative part U−

q (g) of quantum groups
Uq(g) for all symmetrizable Kac–Moody algebras g. The categorification for (dual)
PBW-bases and global bases of the integral form U−

A
(g) of U−

q (g) were developed
very actively since the introduction of quiver Hecke algebras. Among them, [3,24,29]
give the categorification theory for (dual) PBW-bases ofU−

A
(g) associated with finite

simple Lie algebra g by using convex orders on the set of positive roots �+.
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On the other hand, Hernandez and Leclerc [14] defined a subcategory C(1)
Q of Cg(1)

for quantum affine algebrasU ′
q(g

(1)) of untwisted affine type ADE , which depends on
the Auslander–Reiten quiver �Q for each Dynkin quiver Q of finite type ADE . They

proved that C(1)
Q categorifies U−

A
(g)∨|q=1, where g is the finite simple Lie subalgebra

of g(1). Furthermore, they provided the categorification theories for the upper global
basis and for the dual PBW-basis associated with Q via certain sets of modules in
C(1)
Q .
For a quantum affine algebra U ′

q(g), the first-named author and his collaborators
constructed the quantum affine Schur–Weyl duality functor F : Rep(R�) → Cg
by observing denominator formulas dV,W (z) of the normalized R-matrices Rnorm

V,W (z)

between good modules V,W ∈ Cg [17,18]. Here R� is the quiver Hecke algebra
determined by Schur–Weyl datum � which depends on the choice of good modules
in Cg (see Sect. 5.3 for details), and we denote by Rep(R�) the category of finite-
dimensional modules over R�. In [18], they construct an exact functor

F (1)
Q : Rep(Rg)

�−→ C(1)
Q sending simples to simples, (1.4)

where g = An or Dn is a finite simple Lie subalgebra of A(1)
n or D(1)

n , and Q is of
type g, respectively. Furthermore, the authors and their collaborators [19] defined the
subcategory C(2)

Q′ of Cg(2) and constructed twisted analogues of (1.4): For any Dynkin
quivers Q and Q′ of type An or Dn , we have

Cg(1) � C(1)
Q Rep(Rg)

F (2)
Q′F (1)

Q

C(2)
Q′ � Cg(2) and [C(1)

Q ]

�

[Rep(Rg)] � U−
A

(g)∨|q=1 �� [C(2)
Q′ ] .

(1.5)

Here g = g = An or Dn . The above result provides the categorification theoretical
interpretation of the similarity between the modules over Cg(1) and Cg(2) , described in
(1.2).

In this paper, we define certain subcategory CQ of C
B(1)
n

and C
C(1)
n

for any twisted
adapted class [Q] of finite type A2n−1 and Dn+1, and prove that (1) Grothendieck
rings [CQ] are isomorphic to [C(t)

Q ] (t = 1, 2) for each Dynkin quiver Q of finite type

A2n−1 and Dn+1, respectively, (2) there exists an exact functor between CQ and C(t)
Q

(t = 1.2) sending simples to simples. To explain our main result, we need to introduce
several notions and previous results.

Let Q be a Dynkin quiver of finite type ADE . By the Gabriel theorem [11], it is
well known that Auslander–Reiten(AR) quiver �Q reflects the representation theory
for the path algebra CQ. Moreover, the vertices of �Q can be identified with �+ and
the convex partial order ≺Q of �+ is represented by the paths in �Q (see [2,11] for
more detail). On the other hand, each commutation class [w̃0] of reduced expressions
for the longest element w0 of a finite Weyl group determines the convex partial order
≺[w̃0] on �+. In particular, each ≺Q coincides with the convex partial order induced
from the commutation class [Q] consisting of all reduced expressions adapted to Q
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and has its unique Coxeter element φQ . Interestingly, all commutation classes {[Q]}
are reflection equivalent and hence can be grouped into one r -cluster point [[Q]].
In [34], the second-named author and Suh introduced the combinatorial AR-quiver
ϒ[w̃0] for every [w̃0] of w0 for any finite type to realize the convex partial order ≺[w̃0]
and studied the combinatorial properties of ϒ[w̃0] of type A.

In the papers [30,31,33], the second-named author proved that important infor-
mation on the representation theories for U ′

q(A
(1)
n ) and U ′

q(D
(1)
n ) is encoded in the

AR-quiver �Q in the following sense:

(1) In [30,31], he proved that the conditions for

Hom(V (�i )x ⊗ V (� j )y, V (�k)z) �= 0, (1.6)

can be interpreted as the coordinates of (α, β, γ ) in some �Q where α + β =
γ ∈ �+ and g is of type A(1)

n and D(1)
n . Here the conditions in (1.6) are referred

as Dorey’s rule for quantum affine algebras of type A(1)
n , D(1)

n , B(1)
n and C (1)

n and
studied by Chari–Pressley [5] by using Coxeter elements and twisted Coxeter
elements.

(2) By using the newly introduced notions on the sequences of positive roots in [33],
he proved that we can read the denominator formulas dk,l(z) for U ′

q(A
(1)
n ) and

U ′
q(D

(1)
n ) from any �Q .

In [35,36], to extend the previous results to quantum affine algebras of type B(1)
n

and C (1)
n , the second-named author and Suh developed the twisted analogues by using

twisted Coxeter elements φ̃ of type A2n−1 and Dn+1 associated with Dynkin diagram
automorphisms

◦
1

◦
2

◦
2n−2
◦

2n−1
◦ −→ ◦

1
◦
2

◦
n−1
◦

n
◦ ,

A2n−1 Bn

◦
n◦

1
◦
2

◦
n−1
◦

n−2 ◦
n+1

−→ ◦
1

◦
2

◦
n−1
◦

n
◦ .

Dn+1 Cn

(1.7)

They characterized the r -cluster point [[Q]] arising from any twisted Coxeter element
φ̃ in terms of Coxeter composition (see Definition 2.8 and [35, Observation 4.1]). We
call the commutation classes [Q] in [[Q]] twisted adapted classes. (Hence the notation
Q in this paper can be understood as the label of the combinatorial AR-quiver ϒ[Q]
for each [Q] in [[Q]].) Moreover, by assigning coordinate system to ϒ[Q] and folding
ϒ[Q], they proved that (1′) Dorey’s rule for quantum affine algebras of type B(1)

n and

C (1)
n can be interpreted as the coordinates of (α, β, γ ) in some folded AR-quiver ϒ̂[Q]

where (α, β) is a [Q]-minimal pair of γ , (2′) we can read the denominator formulas
dk,l(z) for U ′

q(B
(1)
n ) and U ′

q(C
(1)
n ) from any ϒ̂[Q].
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With the previous results at hand, we first introduce the subcategory CQ for
U ′
q(B

(1)
n ) and U ′

q(C
(1)
n ) by considering the coordinates of positive roots in ϒ̂[Q],

where [Q] is a twisted adapted class of type A2n−1 and Dn+1 respectively (Defi-
nition 6.1). Note that CQ can be considered as the smallest tensor subcategory of the
categoryC− in [15] containing fundamental representations VQ(β) (β ∈ �+) in (4.8)
(up to parameter shift). By considering the denominator formulas for U ′

q(B
(1)
n ) (resp.

U ′
q(C

(1)
n )) and the coordinate system of ϒ̂[Q], we can take the Schur–Weyl datum �

for each twisted adapted class [Q] yielding the exact functor

FQ : Rep(Rg) −→ CQ ⊂ Cg

where g is the finite simple Lie algebra of type A2n−1 and Dn+1, and g = B(1)
n

and C (1)
n , respectively (Theorem 6.2). Furthermore, by applying the correspondence

between Dorey’s rule and [Q]-minimal pair, we can prove that the functor FQ sends
simples to simples (Theorem 6.5). Thus, we have Langlands analogues of (1.5):

Cg(2) � C(2)
Q Rep(Rg) FQF (2)

Q

CQ � CLg(2) and [C(2)
Q ]

�

[Rep(Rg)] � U−
A

(g)∨|q=1 �� [CQ] .

(1.8)

Hence we have

CQ � CLg(2)

Rep(Rg)

FQ

F (2)
Q′F (1)

Q

Cg(1) � C(1)
Q C(2)

Q′ � Cg(2) ,

[CQ]

�� U−
A

(g)∨|q=1

�

��
[C(1)

Q ] � [C(2)
Q′ ].

(1.9)

Our result is closely related to the conjecture of Frenkel–Hernandez in [9, Conjec-
ture 2.2, Conjecture 2.4, Conjecture 3.10]: They conjectured that

For a representation V in Cg(2) , it has a Langlands dual representation LV in CLg(2)

which satisfies the certain properties. In particular, if V is simple, so is LV .

In the following sense, our results provide correspondences related to the conjecture:

For a representation V in C(2)
Q , it corresponds to the representation V̂ in CQ via

the induced functorFQ ◦F (2)
Q

−1
for any [Q] and [Q]. In particular if V is simple,

so is V̂ .

(see Remark 6.9 for more detail)
As an application, we can characterize the sets of modules in CQ categorifying

the upper global basis and the dual PBW-basis associated with [Q] of UA(g)∨|q=1
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(Corollary 6.7). In Sect. 7, we continue the study of [33] about the intersection of
the dual PBW-basis P[w̃0] associated with a commutation class [w̃0] and the upper
global basis B(∞). More precisely, in [33, Corollary 5.24], the second-named author
proved that an element b ∈ P[Q] ∩ B(∞) if and only if b corresponds to a [Q]-simple
sequence m, for any [Q] ∈ [[Q]]. In this paper, we also prove that

an element b ∈ P[Q]∩B(∞) if and only if b corresponds to a [Q]-simple sequence
m, for any [Q] ∈ [[Q]] (Corollary 7.2).
Now we suggest the following conjecture:

Conjecture 1.1 An element b ∈ P[w̃0] ∩ B(∞) if and only if b corresponds to a
[w̃0]-simple sequence m, for any [w̃0] of w0.

In “Appendix,” we propose several conjectures on the dualities among quantum
affine algebras U ′

q(E
(i)
6 ) (i = 1, 2) and U ′

q(F
(1)
4 ) by applying the same framework of

this paper.

2 Cluster points and their AR-quivers with coordinates

Let I be an index set. A symmetrizable Cartan datum is a quintuple (A,P,�,P∨,�∨)

consisting of (a) a symmetrizable generalized Cartan matrix A = (ai j )i, j∈I , (b) a free
abelian group P, called the weight lattice, (c) � = {αi ∈ P | i ∈ I }, called the set of
simple roots, (d)P∨:=Hom(P, Z), called the coweight lattice, (e)�∨ = {hi | i ∈ I } ⊂
P∨, called the set of simple coroots. It satisfies certain conditions : 〈hi , α j 〉 = ai j ,
etc (see [20, §1.1] for precise definition).

The free abelian group Q := ⊕i∈IZαi is called the root lattice. Set Q+ =∑
i∈I Z≥0αi . For b = ∑

i∈I miαi ∈ Q+, we set ht(b) = ∑
i∈I mi .

We denote by Uq(g) the quantum group associated with a symmetrizable Cartan
datum which is generated by ei , fi (i ∈ I ) and qh (h ∈ P∨).

2.1 Foldable r-cluster points

Let us consider the Dynkin diagrams of finite simply laced type, labeled by an index
set I , and their automorphisms ∨. By the Dynkin diagram automorphisms ∨, we can
obtain the Dynkin diagrams of finite type BCFG as orbits of ∨:

Bn (n ≥ 2) ←→ (
A2n−1 : ◦

1
◦
2

◦
2n−2
◦

2n−1
◦ , i∨ = 2n − i

)

(2.1a)

Cn (n ≥ 3) ←→
⎛

⎜
⎝Dn+1 : ◦

n◦
1

◦
2

◦
n−1 ◦

n+1

, i∨ =

⎧
⎪⎨

⎪⎩

i if i ≤ n − 1,

n + 1 if i = n,

n if i = n + 1.

⎞

⎟
⎠

(2.1b)
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F4 ←→
⎛

⎜
⎝E6 :

◦6
◦
1

◦
2

◦
3

◦
4

◦
5

,

⎧
⎪⎨

⎪⎩

1∨ = 5, 5∨ = 1

2∨ = 4, 4∨ = 2,

3∨ = 3, 6∨ = 6

⎞

⎟
⎠ (2.1c)

G2 ←→
⎛

⎜
⎝D4 : ◦

3◦
1

◦
2 ◦

4

,

{
1∨ = 3, 3∨ = 4, 4∨ = 1,

2∨ = 2.

⎞

⎟
⎠ (2.1d)

LetW0 be theWeyl group, generated by simple reflections (si | i ∈ I ) corresponding
to , and w0 the longest element of W0. We denote by ∗, the involution on I defined
by

w0(αi ) = −αi∗ . (2.2)

We also denote by � the set of all roots and by �+ the set of all positive roots.

Definition 2.1 We say that two reduced expressions w̃ = si1si2 · · · si� and w̃′ =
s j1s j2 · · · s j� of w ∈ W0 are commutation equivalent, denoted by w̃ ∼ w̃′, if
s j1s j2 · · · s j� is obtained from si1si2 · · · si� by applying the commutation relations
sksl = sl sk (〈hk, αl〉 = 0). We denote by [w̃] the commutation equivalence class
of w̃.

For each [w̃0], there exists a convex partial order ≺[w̃0] on �+, the set of positive
roots, satisfying the following property (see [33] for details): For α, β ∈ �+ with
α + β ∈ �+, we have either

α ≺[w̃0] α + β ≺[w̃0] β or β ≺[w̃0] α + β ≺[w̃0] α.

Definition 2.2 Fix a Dynkin diagram  of finite type. For an equivalence class [w̃0]
of reduced expression w̃0, we say that i ∈ I is a sink (resp. source) of [w̃0] if there is
a reduced expression w̃′

0 ∈ [w̃0] of w starting with si (resp. ending with si ).

The following proposition is well known (for example, see [24,34]):

Proposition 2.3 For w̃0 = si1si2 · · · siN−1siN , w̃′
0 = si∗Nsi1si2 · · · siN−1 is a reduced

expression of w0 and [w̃′
0] �= [w̃0]. Similarly, w̃′′

0 = si2 · · · siN−1siNsi∗1 is a reduced
expression of w0 and [w̃′′

0 ] �= [w̃0].

Definition 2.4 The right action of the reflection functor ri on [w̃0] is defined by

[w̃0] ri =
{

[(si2 , · · · , siN , si∗)] if there is w̃′
0 = (si , si2 , · · · , siN ) ∈ [w̃0],

[w̃0] otherwise.
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On the other hand, the left right action of the reflection functor ri on [w̃0] is defined
by

ri [w̃0] =
{

[(si∗ , si1 · · · , siN−1)] if there is w̃′
0 = (si1 , · · · , siN−1 , si ) ∈ [w̃0],

[w̃0] otherwise.

Definition 2.5 [34] Let [w̃0] and [w̃′
0] be two commutation classes. We say [w̃0] and

[w̃′
0] are reflection equivalent and write [w̃0] r∼ [w̃′

0] if [w̃′
0] can be obtained from [w̃0]

by a sequence of reflectionmaps. The equivalence class [[w̃0]]:={ [w̃0] | [w̃0] r∼ [w̃′
0] }

with respect to the reflection equivalence relation is called an r-cluster point.

Definition 2.6 [35, Definition 1.8] Fix a Dynkin diagram automorphism ∨ in (2.1).
Let Î := {̂i | i ∈ I } be the orbit classes of I induced by ∨. For an r -cluster point
[[w̃0]] = [[si1 · · · siN]] of w0 and k̂ ∈ Î , define

C∨[[w̃0]](̂k) = |{is | is ∈ k̂, 1 ≤ s ≤ N}| (N = �(w0)).

We call the compositionC∨[[w̃0]] = (
C∨[[w̃0]](̂1), . . . ,C

∨[[w̃0]](| Î |)
)
, the∨-Coxeter compo-

sition of [[w̃0]].
Example 2.7 For w̃0 = s1s2s3s5s4s3s1s2s3s5s4s3s1s2s3 of type A5, we have

C∨[[w̃0]] = (5, 5, 5).

Definition 2.8 [35, Definition 1.10] For an automorphism ∨ and an cluster [[w̃0]] of
type ADE , we say that an r -cluster point [[w̃0]] is ∨-foldable if

C∨[[w̃0]](̂k) = C∨[[w̃0]](̂l) for any k̂, l̂ ∈ Î .

In [35,36], the existence for a ∨-foldable r -cluster point is proved, but we do not
know whether it is unique or not:

Proposition 2.9 [35,36]

(a) A ∨-foldable r-cluster point exists and is denoted by [[Q]].
(b) The number of commutation classes in each [[Q]] is equal to 2|I |−|∨| × |∨ |, where

| ∨ | denotes the order of ∨.
The r -cluster point [[Q]] is called a twisted adapted cluster point, and a class [Q]

in [[Q]] is called a twisted adapted class.
Let σ ∈ GL(C�) be a linear transformation of finite order which preserves �.

Hence, σ preserves � itself and normalizesW0 and soW0 acts by conjugation on the
coset W0σ .
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Definition 2.10

(1) Let {�i1, . . . , �ik } be the all orbits of � in � with respect to σ . For each
r ∈ {1, · · · , k}, choose αir ∈ �ir arbitrarily, and let sir ∈ W0 denote the corre-
sponding reflection. Letw be the product of si1 , . . . , sik in any order. The element
wσ ∈ W0σ of w ∈ W0 thus obtained is called a σ -Coxeter element.

(2) If σ in (1) is ∨ in (2.1a), (2.1b), (2.1c), then σ -Coxeter element is also called a
twisted Coxeter element.

Remark 2.11

(i) For types A2n−1, Dn+1 and E6, [[Q]] are given as follows:

[[Q]] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
2n−2∏

k=0

(s j1s j2s j3 · · · s jn )k∨
�

if  is of type A2n−1,�
n∏

k=0

(s j1s j2s j3 · · · s jn )k∨
�

if  is of type Dn+1,�
8∏

k=0

(s j1s j2s j3s j4)
k∨

�
if  is of type E6,

where
• s j1s j2s j3 · · · s jn is an arbitrary twisted Coxeter element of type A2n−1 [resp.

Dn+1 and E6],
• ∨ is given in (2.1a) (resp. (2.1b) and (2.1c)),
• (s j1 · · · s jn )∨ := s j∨1 · · · s j∨n and (s j1 · · · s jn )k∨ := (· · · ((s j1 · · · s jn )∨)∨ · · · )∨︸ ︷︷ ︸

k -times

.

Note that s1s2s3 · · · sn is a twisted Coxeter element of type A2n−1, Dn+1 and E6.
(ii) For types D4, [[Q]] with respect to (2.1d) is given as follows:

[[Q]] =
�

5∏

k=0

(s2s1)
k∨

�

Example 2.12

(i) For ∨ in (2.1a), the Coxeter composition of a foldable cluster is

C∨
[[Q]] = (2n − 1, . . . , 2n − 1︸ ︷︷ ︸

n-times

).

(ii) For ∨ in (2.1b), the Coxeter composition of a foldable cluster is

C∨
[[Q]] = (n + 1, . . . , n + 1︸ ︷︷ ︸

n-times

).

(iii) For ∨ in (2.1c), the Coxeter composition of a foldable cluster is C∨
[[Q]] =

(9, 9, 9, 9).
(iv) For ∨ in (2.1d), the Coxeter composition of a foldable cluster is C∨

[[Q]] = (6, 6).

123



410 J Algebr Comb (2019) 49:401–435

2.2 Adapted cluster point and Auslander–Reiten quiver

Let Q be a Dynkin quiver by orienting edges of a Dynkin diagram  of type ADE .
We say that a vertex i in Q is a source (resp. sink) if and only if there are only exiting
arrows out of it (resp. entering arrows into it). For a source (resp. sink) i , if i is a sink
or source, si Q denotes the quiver obtained by Q by reversing the arrows incident with
i . We say that a reduced expression w̃ = si1si2 · · · si�(w)

of w ∈ W0 is adapted to Q if
ik is a sink of the quiver sik−1 · · · si2si1Q for all 1 ≤ k ≤ �(w).

The followings are well known:

Theorem 2.13

(1) Any reduced word w̃0 of w0 is adapted to at most one Dynkin quiver Q.
(2) For each Dynkin quiver Q, there is a reduced word w̃0 of w0 adapted to Q.

Moreover, any reduced word w̃′
0 in [w̃0] is adapted to Q, and the commutation

equivalence class [w̃0] is uniquely determined by Q. We denote by [Q] of the
commutation equivalence class [w̃0].

(3) For every commutation class [Q], there exists a unique Coxeter elementφQ which
is a product of all simple reflections and adapted to Q.

(4) For every Coxeter element φ, there exists a unique Dynkin quiver Q such that
φ = φQ.

(5) All commutation classes {[Q]} are reflection equivalent and form the r-cluster
point [[Q]], called the adapted cluster point. The number of commutation classes
in [[Q]] is 2|I |−1.

Remark 2.14 For the Dynkin diagram automorphism of A2n−1 in (2.1a), of Dn+1 in
(2.1b) and of E6 in (2.1c), the number of commutation classes of each [[Q]] and the
one of each [[Q]] are the same and are equal to 22n−2, 2n and 25, respectively.

Let �(φQ) be the subset of �+ determined by φQ = si1si2 · · · sin with |I | = n:

�(φQ) =
{
β

φQ
1 = αi1 , β

φQ
2 = si1(αi2), . . . , β

φQ
n = si1 · · · sin−1(αin )

}
.

The height function ξ on Q is an integer-valued map ξ : Q → Z satisfying
ξ( j) = ξ(i) + 1 when i → j in Q.

The Auslander–Reiten quiver (AR-quiver) �Q associated with Q is a quiver with
coordinates in I × Z defined as follows [14, §2.2]: Construct an injective map �Q :
�+ → I × Z in an inductive way

(i) �Q(β
φQ
k ) := (ik, ξ(ik)).

(ii) If �Q(β) is already assigned as (i, p) and φQ(β) ∈ �+, then �Q(φQ(β)) =
(i, p − 2).

The AR-quiver �Q is a quiver whose vertices consist of Im(�Q) (� �+) and arrows
(i, p) → ( j, q) are assigned when i and j are adjacent in  and p − q = −1.
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Example 2.15 The AR-quiver �Q associated with •
1

•
2

•
3

•
4
of type A4

with the height function such that ξ(1) = 0 is given as follows:

(i, p) −4 −3 −2 −1 0 1

1 [2, 4] [1]

2 [2, 3] [1, 4]

3 [2] [1, 3] [3, 4]

4 [1, 2] [3] [4]

Here [a, b] (1 ≤ a, b ≤ 4) stands for the positive root
∑b

k=a αk of �+
A4
.

Interestingly,�Q can be understood as a visualization of≺Q := ≺[Q] and is closely
related to the commutation class [Q]:
Theorem 2.16 [2,34]

(1) α ≺Q β if and only if there exists a path from β to α inside of �Q.
(2) By reading the residues (i.e., i for (i, p)) of vertices in a way compatible with

arrows, we can obtain all reduced expressions w̃0 ∈ [Q].
In Example 2.15, we can get a reduced expression w̃0 in [Q] as follows:

w̃0 = s4s1s3s2s4s1s3s2s4s3

2.3 Relationship between [[Q]] and [[Q]]

In this subsection, we briefly recall the relationship between [[Q]] and [[Q]] studied
in [35,36]. We shall first consider a Dynkin quiver Q of type A and w̃0 = si1si2 · · · siN
in [Q].
Theorem 2.17 [35] For w̃0 = si1si2 · · · siN ∈ [Q] of type A2n−2, we can obtain two
distinct twisted adapted classes [Q>], [Q<] ∈ [[Q]] of type A2n−1 as follows:

(1) For each pair (ik, il) such that {ik, il} = {n − 1, n} and i j /∈ {n − 1, n} for any
j with k < j < l, we replace subexpression sik sik+1 · · · sil with si+k

snsi+k+1
· · · si+l

where i+ = i + 1 if i > n − 1 and i+ = i otherwise.
(2) For the smallest index (resp. the largest index) it with it ∈ {n − 1, n}, we replace

sit with snsi+t (resp. si+t sn).

Then the resulted reduced expression w̃>
0 (resp. w̃<

0 ) is a reduced expression whose
commutation class [Q>] (resp. [Q<]) is well defined and twisted adapted. Conversely,
each commutation class in [[Q]] can be obtained in this way and [Q] �= [Q′] if
Q �= Q′.

By the work of [34], the combinatorial AR-quivers ϒ[Q>] and ϒ[Q<] of Q in
Example 2.15 can be understood as realization of the convex partial orders ≺[Q>] and
≺[Q<]:
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(i, p) −4 − 7
2 −3 − 5

2 −2 − 3
2 −1 − 1

2 0 1
2 1

1 • •
2 • •
3 � � � � �
4 • • •
5 • • •

(i, p) − 9
2 −4 − 7

2 −3 − 5
2 −2 − 3

2 −1 − 1
2 0 1

2 1

1 • •
2 • •
3 � � � � �
4 • • •
5 • • •

(2.3)

For each new vertex, denoted by � above, we can assign its coordinate in I × Z/2
in a canonical way. By [34], we can obtain all reduced expressions w̃0 ∈ [Q>] (resp.
[Q<]) by reading it in a compatible way with arrows: For instances, we have

• s5s3s1s4s3s2s5s3s1s4s3s2s5s3s4 ∈ [Q>].
• s5s4s1s3s2s3s5s4s1s3s2s3s5s4s3 ∈ [Q<].
In Dn+1 case, we can get two distinct commutation classes [Q←n] and [Q←n+1] ∈

[[Q]] from �Q of type An :

Theorem 2.18 [36]

(1) For a given �Q, consider the copy �
�
Q of �Q by turning upside down.

(2) By putting �
�
Q to the left of �Q, we have new quiver inside of I × Z by assigning

arrows to vertices (i, p) and ( j, q) ∈ �
�
Q � �Q, (i, p) → ( j, q) such that i, j

are adjacent in Q and q − p = 1.
(3) For vertices whose residues are n, we change their residues as n, n+1, n, n+1...

(resp. n + 1, n, n + 1, n...) from the right-most one.

Then the resulted quiver coincides with the combinatorial quiver ϒ[Q←n ] (resp.
ϒ[Q←n+1]) of type Dn+1 introduced in [34,36]. Thus, we can obtain all reduced expres-
sions w̃0 ∈ [Q←n] (resp. [Q←n+1])by reading it. Conversely, each commutation class
in [[Q]] can be obtained in this way and [Q] �= [Q′] if Q �= Q′.

Example 2.19 For better explanation of the above theorem, we now give examples by
using �Q in Example 2.15: For the �Q , �

�
Q can be described as follows:

�
�
Q =

1 • • •
2 • • •
3 • •
4 • •

�Q =
1 • •
2 • •
3 • • •
4 • • •

By putting �
�
Q to the left of �Q , we have new quiver as follows:

(i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 • • • • •
2 • • • • •
3 • • • • •
4 • • • • •
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Now we can get ϒ[Q←n ] and ϒ[Q←n+1] as follows:

ϒ[Q←n ] =

(i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 • • • • •
2 • • • • •
3 • • • • •
4 � � �
5 ∗ ∗

ϒ[Q←n+1] =

(i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 • • • • •
2 • • • • •
3 • • • • •
4 � �
5 ∗ ∗ ∗

One can easily notice that we can assign a coordinate to each vertex in a canonical
way.

2.4 Folded AR-quivers

Now we can define a folded AR-quiver ϒ̂[Q] associated with the commutation class
[Q] in [[Q]] of type A2n−1 and Dn+1 by folding ϒ[Q] [35,36]:

(i) ([Q] of type A2n−1) By replacing coordinate�Q(β) = (i, p/2) of β inϒ[Q] with
�̂[Q](β) = (̂i, p) ∈ Î × Z, we have new quiver ϒ̂[Q] with folded coordinates,
which is isomorphic to ϒ[Q] as quivers.

(ii) ([Q] of type Dn+1) By replacing coordinate �(β) = (i, p) of β in ϒ[Q] with
�̂[Q](β) = (̂i, p) ∈ Î × Z, we have new quiver ϒ̂[Q] with folded coordinates.

We call ϒ̂[Q] the folded AR-quiver associated with [Q] and �̂[Q](β) = (̂i, p) the
folded coordinate of β with respect to [Q].

Example 2.20 From (2.3) and Example 2.19, we can obtain folded AR-quivers ϒ̂[Q]
as follows:

(1) [Q] of type A5 cases:

(̂i, p) −8 −7 −6 −5 −4 −3 −2 −1 0 1 2

1 • • • • •

2 • • • • •
3 � � � � �

(̂i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2

1 • • • • •

2 • • • • •
3 � � � � �
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(2) [Q] of type D5 cases:

(̂i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 • • • • •
2 • • • • •
3 • • • • •
4 � ∗ � ∗ �

(̂i, p) −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 • • • • •
2 • • • • •
3 • • • • •
4 ∗ � ∗ � ∗

3 Positive root systems

In this section, we recall main results of [33,35,36], which investigated the positive
root systems by using newly introduced notions and (combinatorial) AR-quivers. The
results will be used in later sections.

3.1 Notions

For a reduced expression w̃0 = si1si2 · · · siN of w0, there exists the convex total order
<w̃0 on �+ defined as follows:

β
w̃0
k <w̃0 β

w̃0
l if and only if k < l,

where β
w̃0
k := si1 · · · sik−1(αik ).

With the convex total order <w̃0 , we identify m = (m1,m2, . . . ,mN) ∈ ZN≥0 with

mw̃0
∈ (Z≥0)

|�+|,

whose coordinate atβw̃0
k ismk . For a sequencem, we setwt(m) = ∑N

i=1 miβ
w̃0
i ∈ Q+.

Definition 3.1 [29,33] We define the partial orders<b
w̃0

and≺b[w̃0] on ZN≥0 as follows:

(i) <b
w̃0

is the bi-lexicographical partial order induced by<w̃0 . Namely,m <b
w̃0

m′ if
there exist j and k (1 ≤ j ≤ k ≤ N) such thatms = m′

s for 1 ≤ s < j ,m j < m′
j

and ms = m′
s for k < s ≤ N, mk < m′

k .
(ii) For sequencesm andm′,m ≺b[w̃0] m

′ if and only if wt(m) = wt(m′) and n <b
w̃′
0
n′

for all w̃′
0 ∈ [w̃0], where n and n′ are sequences such that nw̃′

0
= mw̃0

and

n′
w̃′
0

= mw̃0
.

We call a sequence m a pair if |m| :=∑N
i=1 mi = 2 and mi ≤ 1 for 1 ≤ i ≤ N. We

mainly use the notation p for a pair. We also write p as (β
w̃0
i1

, β
w̃0
i2

) or (i1, i2) where
p
i1

= p
i2

= 1 and i1 ≤ i2.

Definition 3.2 [33]

(i) A pair p is called [w̃0]-simple if there exists no sequence m ∈ ZN≥0 satisfying
m ≺b[w̃0] p.
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(ii) A sequencem = (m1,m2, . . . ,mN) ∈ ZN≥0 is called [w̃0]-simple ifm = (mkβ
w̃0
k )

for some 1 ≤ k ≤ N or any pair (i1, i2) such that mi1 ,mi2 > 0 is a [w̃0]-simple
pair.

Definition 3.3 [29,33] For a given [w̃0]-simple sequence s = (s1, . . . , sN) ∈ ZN≥0,

we say that a sequence m ∈ ZN≥0 is called a [w̃0]-minimal sequence of s if m satisfies
the following properties:

s ≺b
w̃0

m and there exists no sequence m′ ∈ ZN≥0 such that s ≺b[w̃0] m
′ ≺b[w̃0] m.

Definition 3.4 [33] The [w̃0]-distance of a sequence m, denoted by dist[w̃0](m), is
the largest integer k ≥ 0 such that there exists a family of sequences {m(i)}0≤i≤k

satisfying

m(0) ≺b[w̃0] · · · ≺b[w̃0] m
(k) = m.

Note that m(0) should be [w̃0]-simple.

Definition 3.5 [33] For a pair p, the [w̃0]-socle of p, denoted by soc[w̃0](p), is a
[w̃0]-simple sequence s satisfying s �b[w̃0] p if such an s exists uniquely.

3.2 Socles, minimal pairs and folded distance polynomial

Proposition 3.6 [3, Lemma 2.6] For γ ∈ �+ \ � and any w̃0 of w0, a [w̃0]-minimal
sequence of γ is indeed a pair (α, β) for some α, β ∈ �+ such that α + β = γ .

Theorem 3.7 [35,36] For any [Q] ∈ [[Q]] and any pair p, we have the followings :
(1) soc[Q](p) is well defined.
(2) dist[Q](p) ≤ 2. In particular, if dist[Q](p) = 2, there exist a unique m and a

unique chain of length 3 such that

soc[Q](p) ≺b
[Q] m ≺b

[Q] p.

(3) If dist[Q](p) = 1, then p is a [Q]-minimal pair of soc[Q](p).

For the involutions ∨ in (2.1a) and (2.1b), we can identify Î , the orbit space of ∨,
with {1, 2, . . . , n} and the order of ∨ is equal to d̂ := 2. The following propositions
tell the characterization of the positions of minimal pairs for γ ∈ �+ inside of ϒ̂[Q].

Proposition 3.8 [35, Proposition 7.8] Let us fix [Q] ∈ [[Q]] of finite type A2n−1.
For α, β, γ ∈ �+ with �̂[Q](α) = (i, p), �̂[Q](β) = ( j, q) �̂[Q](γ ) = (k, r) and
α + β = γ , (α, β) is a [Q]-minimal pair of γ if and only if one of the following
conditions holds :
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) � := max(i, j, k) ≤ n − 1, i + j + k = 2� and

(
q − r

2
,
p − r

2

)
=

⎧
⎪⎨

⎪⎩

( − i, j
)
, if � = k,

(
i − (2n − 1), j

)
, if � = i,

( − i, 2n − 1 − j
)
, if � = j.

(ii) s := min(i, j, k) ≤ n − 1, the others are the same as n and

(q − r, p − r) =

⎧
⎪⎨

⎪⎩

( − 2(n − 1 − k) + 1, 2(n − 1 − k) − 1), if s = k,
( − 4i − 4, 2(n − 1 − i) − 1), if s = i,
( − 2(n − 1 − j) + 1, 4 j + 4), if s = j.

(3.1)

Proposition 3.9 [36, Corollary 8.26] Let us fix [Q] ∈ [[Q]] of finite type Dn+1.
For α, β, γ ∈ �+ with �̂[Q](α) = (i, p), �̂[Q](β) = ( j, q) �̂[Q](γ ) = (k, r) and
α + β = γ , (α, β) is a [Q]-minimal pair of γ if and only if one of the following
conditions holds :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

� := max(i, j, k) ≤ n, i + j + k = 2� and

(q − r, p − r) =

⎧
⎪⎨

⎪⎩

( − i, j
)
, if � = k,

(
i − (2n + 2), j

)
, if � = i,

( − i, 2n + 2 − j
)
, if � = j.

(3.2)

Definition 3.10 [35, Definition 8.7] For a folded AR-quiver ϒ̂[Q], indices k̂, l̂ ∈ Î
and an integer t ∈ Z≥1, we define the subset �[Q](̂k, l̂)[t] of �+ × �+ as follows:

A pair (α, β) is contained in �[Q](̂k, l̂)[t] if α ≺[Q] β or β ≺[Q] α and

{�̂[Q](α), �̂[Q](β)} = {(̂k, a), (̂l, b)} such that |a − b| = t.

Proposition 3.11 [35,36] For any (α(1), β(1)), (α(2), β(2)) ∈ �[Q](̂k, l̂)[t], we have

dist[Q](α(1), β(1)) = dist[Q](α(2), β(2)).

Thus, the notion

o[Q]
t (̂k, l̂) := dist[Q](α, β) for any (α, β) ∈ �[Q](̂k, l̂)[t]

is well defined.

Definition 3.12 [35, Definition 8.9] For k̂, l̂ ∈ Î and a folded AR-quiver ϒ̂[Q], we
define a polynomial D̂[Q]

k̂ ,̂l
(z) ∈ k[z] as follows: Let q be an indeterminate, q d̂s = q2s =

q and o[Q]
t (̂k, l̂) := �o[Q]

t (̂k, l̂)/̂d�.
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(i) When [Q] is of type A2n−1, D̂
[Q]
k̂ ,̂l

(z) := ∏
t∈Z≥0

(z − (−1)k̂+̂l(qs)t )o
[Q ]
t (̂k ,̂l).

(ii) When [Q] is of type Dn+1, D̂
[Q]
k̂ ,̂l

(z) := ∏
t∈Z≥0

(z − (−qs)t )o
[Q ]
t (̂k ,̂l).

Proposition 3.13 [35,36] For k̂, l̂ ∈ Î and any twisted adapted classes [Q] and [Q′]
in [[Q]], we have

D̂[Q]
k̂ ,̂l

(z) = D̂[Q′]
k̂ ,̂l

(z).

From the above proposition, we can define D̂k̂ ,̂l(z) for [[Q]] in a natural way and
call it the folded distance polynomial at k̂ and l̂.

4 Quantum affine algebras, denominator formulas and Dorey’s rule

4.1 Quantum affine algebras

Let A be a generalized Cartan matrix of affine type, i.e., A is positive semi-definite of
corank 1. We choose 0 ∈ I :={0, 1, . . . , n} as the leftmost vertices in the tables in [16,
pages 54, 55] except A(2)

2n -case in which we take the longest simple root as α0. We set
I0 := I \ {0}. We denote by δ :=∑

i∈I diαi the imaginary root and by c = ∑
i∈I ci hi

the center. We have d0 = 1.
For an affine Cartan datum (A,P,�,P∨,�∨), we denote by g the affine Kac–

Moody algebra, g0 the subalgebra generated by {ei , fi , hi | i ∈ I0}, by Uq(g) and
Uq(g0) the corresponding quantum groups. We denote by U ′

q(g) the subalgebra of
Uq(g) generated by {ei , fi , q±hi | i ∈ I }. We mainly deal with U ′

q(g) which is called
the quantum affine algebra.

We say that a U ′
q(g)-module M is integrable if

(i) it is P/Zδ-graded,

M = ⊕

λ∈P/Zδ

Mλ where Mλ = {u ∈ M | qhi u = q〈hi ,λ〉u for all i ∈ I },

(ii) for all i ∈ I , ei and fi act on M locally nilpotently.

We denote by Cg the category of finite-dimensional integrableU ′
q(g)-modules. For

the rest of this paper, we take the algebraic closure of C(q) in ∪m>0C((q1/m)) as the
base field k of U ′

q(g)-modules. A simple module M in Cg contains a nonzero vector
u of weight λ ∈ Pcl := P/Zδ such that

• 〈c, λ〉 = 0 and 〈hi , λ〉 ≥ 0 for all i ∈ I0,
• all the weights of M are contained in λ − ∑

i∈I0 Z≥0cl(αi ),

where cl : P → Pcl. Such a λ is unique, and u is unique up to a constant multiple. We
call λ the dominant extremal weight of M and u the dominant extremal weight vector
of M .

For M ∈ Cg and x ∈ k×, let Mx be the U ′
q(g)-module with the actions of ei , fi

replaced with xδi0ei , x−δi0 fi , respectively.
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For each i ∈ I0, we set

�i := gcd(c0, ci )
−1cl(c0�i − ci�0) ∈ Pcl.

Then there exists a unique simple U ′
q(g)-module V (�i ) in Cg with its dominant

extremal weight �i and its dominant extremal weight vector u�i , called the funda-
mental representation of weight �i , satisfying certain conditions (see [1, §1.3] for
more detail). Moreover, there exist the left dual V (�i )

∗ and the right dual ∗V (�i ) of
V (�i ) with the following U ′

q(g)-homomorphisms

V (�i )
∗ ⊗ V (�i )

tr−→ k and V (�i ) ⊗ ∗V (�i )
tr−→ k. (4.1)

We have

V (�i )
∗ � V (�i∗)(p∗)−1 , ∗V (�i ) � V (�i∗)p∗ with p∗ :=(−1)〈ρ∨,δ〉q〈c,ρ〉. (4.2)

Here ρ is defined by 〈hi , ρ〉 = 1, ρ∨ is defined by 〈ρ∨, αi 〉 = 1 and i∗ is the involution
of I0 defined in (2.2).

For k ∈ Z and V (�i )x , we denote by

V (�i )
k∗
x :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V (�i )x if k = 0,

(· · · ((V (�i )x )∗)∗ · · · )∗︸ ︷︷ ︸
k-times

if k > 0,

∗(· · · ∗(∗(︸ ︷︷ ︸
−k-times

V (�i )x )) · · · ) if k < 0.

We say that a U ′
q(g)-module M is good if it has a bar involution, a crystal basis

with simple crystal graph, and a global basis (see [23] for the precise definition). For
instance, V (�i ) is a good module for every i ∈ I .

4.2 Denominator formulas and folded distance polynomials

For a good module M and N , there exists a U ′
q(g)-homomorphism

Rnorm
M,N : MzM ⊗ MzN → k(zM , zN ) ⊗k[z±1

M ,z±1
N ] NzN ⊗ MzM

such that

Rnorm
M,N ◦ zM = zM ◦ Rnorm

M,N , Rnorm
M,N ◦ zN = zN ◦ Rnorm

M,N and Rnorm
M,N (uM ⊗ uN ) = uN ⊗ uM ,

where uM (resp. uN ) is the dominant extremal weight vector of M (resp. N ).
The denominator dM,N of Rnorm

M,N is the unique nonzero monic polynomial d(u) ∈
k[u] of the smallest degree such that

123



J Algebr Comb (2019) 49:401–435 419

dM,N (zN/zM )Rnorm
M,N (MzM ⊗ NzN ) ⊂ NzN ⊗ MzM . (4.3)

Theorem 4.1 [1,4,23]

(1) For good modules M1 and M2, the zeroes of dM1,M2(z) belong toC[[q1/m]] q1/m
for some m ∈ Z>0.

(2) V (�i )ai ⊗ V (� j )a j is simple if and only if

di, j (z) := dV (�i ),V (� j )(z)

does not vanish at z = ai/a j nor a j/ai .
(3) Let M be a finite-dimensional simple integrable U ′

q(g)-module M. Then, there
exists a finite sequence

((i1, a1), . . . , (il , al)) in (I0 × k×)l

such that dik ,ik′ (ak′/ak) �= 0 for 1 ≤ k < k′ ≤ l and M is isomorphic to the head

of
⊗l

i=1 V (�ik )ak . Moreover, such a sequence ((i1, a1), . . . , (il , al)) is unique
up to permutation.

(4) dk,l(z) = dl,k(z) = dk∗,l∗(z) = dl∗,k∗(z) for k, l ∈ I0.

The denominator formulas between fundamental representations are calculated
in [1,6,18,32] for all classical quantum affine algebras (see [32, Appendix A]). In
this paper, we will focus on the denominator formulas for U ′

q(B
(1)
n ) and U ′

q(C
(1)
n ):

Proposition 4.2 [1,32]

dB
(1)
n

k,l (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(k,l)∏

s=1

(
z − (−q)|k−l|+2s)(z + (−q)2n−k−l−1+2s) 1 ≤ k, l ≤ n − 1,

k∏

s=1

(
z − (−1)n+kq2n−2k−1+4s

s
)

1 ≤ k ≤ n − 1, l = n,

n∏

s=1

(
z − (qs)

4s−2) k = l = n.

(4.4a)

dC
(1)
n

k,l (z) =
min(k,l,n−k,n−l)∏

s=1

(
z − (−qs)

|k−l|+2s)
min(k,l)∏

i=1

(
z − (−qs)

2n+2−k−l+2s) (4.4b)

The following theorem tells that we can read dB(1)
n

k,l (z) from any ϒ̂[Q] of type A2n−1

and dC
(1)
n

k,l (z) from any ϒ̂[Q] of type Dn+1:

Theorem 4.3 [35,36] For any k, l ∈ Î , we have

dB(1)
n

k,l (z) = D̂k,l(z) × (z − q2n−1)δk,l where [[Q]] is of type A2n−1, (4.5a)

dC
(1)
n

k,l (z) = D̂k,l(z) × (z − qn+1)δk,l where [[Q]] is of type Dn+1. (4.5b)
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4.3 Dorey’s rule and minimal pairs

The morphisms in

HomU ′
q (g)

(
V (�i )a ⊗ V (� j )b, V (�k)c

)
for i, j, k ∈ I0 and a, b, c ∈ k×

are studied by [5,18,32,39] and called Dorey’s type morphisms. In [30,31], the con-
dition of non-vanishing of the above Hom space are interpreted the positions of
α, β, γ ∈ �+ in �Q where (α, β) is a pair for γ and g is of type A(1)

n or D(1)
n .

Theorem 4.4 [5, Theorem 8.1, Theorem 8.2] For g(1) = B(1)
n or C (1)

n , let (i, x),
( j, y), (k, z) ∈ I0 × k×. Then

HomU ′
q (g(1))

(
V (� j )y ⊗ V (�i )x , V (�k)z

) �= 0

if and only if one of the following conditions holds :
(1) When g(1) = B(1)

n , the conditions are given as follows :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) � := max(i, j, k) ≤ n − 1, i + j + k = 2� and

(y/z, x/z) =

⎧
⎪⎨

⎪⎩

(
(−1) j+kq−i , (−1)i+kq j

)
, if � = k,

(
(−1) j+kqi−(2n−1), (−1)i+kq j

)
, if � = i,

(
(−1) j+kq−i , (−1)i+kq2n−1− j

)
, if � = j.

(ii) s := min(i, j, k) ≤ n − 1, the others are the same as n and

(y/z, x/z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
(−1)n+kq−2(n−1−k)+1

s , (−1)n+1+kq2(n−1−k)−1
s

)
, if s = k,

(
q−4i−4
s , (−1)i+nq2(n−1−i)−1

s

)
, if s = i,

(
(−1) j+nq−2(n−1− j)+1

s , q4 j+4
s

)
, if s = j.

(4.6)

(2) When g(1) = C (1)
n , the conditions are given as follows :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

� := max(i, j, k) ≤ n, i + j + k = 2� and

(y/z, x/z) =

⎧
⎪⎨

⎪⎩

(
(−qs)−i , (−qs) j

)
, if � = k,

(
(−qs)i−(2n+2), (−qs) j

)
, if � = i,

(
(−qs)−i , (−qs)2n+2− j

)
, if � = j.

(4.7)

Definition 4.5 [35,36] For any [Q] ∈ [[Q]] and any positive root β ∈ �+ of type
A2n−1 or Dn+1, we set the U ′

q(g
(1))-module (g(1) = B(1)

n or C (1)
n ) VQ(β) defined as

follows : For �̂Q(β) = (i, p), we define
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VQ(β) :=
{
V (�i )(−1)i (qs )p if g(1) = B(1)

n ,

V (�i )(−qs )p if g(1) = C (1)
n .

(4.8)

By Proposition 3.8, Proposition 3.8 and Theorem 4.4, we have the following:

Theorem 4.6 [35,36] Let (i, x), ( j, y), (k, z) ∈ I0 × k×. Then

HomU ′
q (g(1))

(
V (� j )y ⊗ V (�i )x , V (�k)z

) �= 0 for g(1) = B(1)
n ( resp. C (1)

n )

if and only if there exists a twisted adapted class [Q] of type A2n−1 (resp. Dn+1) and
α, β, γ ∈ �+

A2n−1
(resp. �+

Dn+1
) such that

(1) (α, β) is a [Q]-minimal pair of γ ,
(2) V (� j )y = VQ(β)a, V (�i )x = VQ(α)a, V (�k)z = VQ(γ )a for some a ∈ k×.

5 Categorifications and Schur–Weyl dualities

In this section, we review the categorifications of quantum groups via quiver Hecke
algebras andquantumaffineHecke algebras and the generalized quantumaffineSchur–
Weyl dualities between them introduced in [17].

5.1 Categorifications via modules over quiver Hecke algebras

For a given symmetrizable Cartan datum (A,P,�,P∨,�∨), we choose a polynomial
Qi j (u, v) ∈ k[u, v] for i, j ∈ I which is of the form

Qi j (u, v) = δ(i �= j)
∑

(p,q)∈Z2≥0
p(αi |αi )+q(α j |α j )=−2(αi |α j )

ti, j;p,qu pvq (5.1)

with the condition on ti, j;p,q ∈ k as follows:

ti, j;p,q = t j,i;q,p and ti, j :−ai j ,0 ∈ k×.

Thus, we have Qi, j (u, v) = Q j,i (v, u).
For n ∈ Z≥0 and b ∈ Q+ such that ht(b) = n, we set

I b = {
ν = (ν1, . . . , νn) ∈ I n | αν1 + · · · + ανn = β

}
.

For b ∈ Q+, we denote by R(b) the quiver Hecke algebra at b associated with
(A,P,�,P∨,�∨) and (Qi, j )i, j∈I . It is a Z-graded k-algebra generated by the gen-
erators {e(ν)}ν∈Ib , {xk}1≤k≤ht(b), {τm}1≤m<ht(b) with the certain defining relations
(see [30, Definition 2.7] for the relations).

Let Rep(R(b)) be the category consisting of finite-dimensional graded R(b)-
modules and [Rep(R(b))]be theGrothendieckgroupofRep(R(b)). Then [Rep(R(b))]
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has a natural Z[q±1]-module structure induced by the grading shift. In this paper, we
often ignore grading shifts.

For M ∈ Rep(R(a)) and N ∈ Rep(R(b)), we denote by M ◦ N the convolution
product of M and N . Then Rep(R) := ⊕

b∈Q+
Rep(R(b)) has a monoidal category

structure by the convolution product and itsGrothendieck group [Rep(R)] has a natural
Z[q±1]-algebra structure induced by the convolution product ◦ and the grading shift
functor q.

For M ∈ Rep(b) and Mk ∈ Rep(bk) (1 ≤ k ≤ n), we denote by

M◦0 := k, M◦r =
r

︷ ︸︸ ︷
M ◦ · · · ◦ M,

n◦
k=1

Mk = M1 ◦ · · · ◦ Mn .

The quiver Hecke algebras, a vast generalization of affine Hecke algebras of type
A, were introduced independently by Khovanov and Lauda [25], and Rouquier [37]
to provide a categorification of quantum groups:

Theorem 5.1 [25,37] For a given symmetrizable Cartan datum, let U−
A

(g)∨ (A =
Z[q±1]) the dual of the integral form of the negative part of quantum groups Uq(g)

and let R be the quiver Hecke algebra related to the datum. Then we have

U−
A

(g)∨ � [Rep(R)]. (5.2)

Definition 5.2 We say that the quiver Hecke algebra R is symmetric ifA is symmetric
and Qi j (u, v) is a polynomial in u − v for all i, j ∈ I .

Theorem 5.3 [38,40] Assume that the quiver Hecke algebra R is symmetric and the
base fieldk is of characteristic zero. Then under the isomorphism (5.2) inTheorem5.1,
the upper global basis of U−

A
(g)∨ corresponds to the set of the isomorphism classes

of self-dual simple R-modules.

Theorem 5.4 [24,29,33]Forafinite-dimensional simpleLie algebrag, the dualPBW-
basis of U−

A
(g)∨ associated with [w̃0] is categorified in the following sense: for each

β ∈ �+, there exists a simple R(β)-module S[w̃0](β) such that

(1) S[w̃0](β)◦r is simple for any r ∈ Z≥0,
(2) for eachm ∈ ZN≥0, set S[w̃0](m):=S[w̃0](β1)

◦m1 ◦· · ·◦S[w̃0](βN)◦mN . Then the set

{S[w̃0](m) |m ∈ ZN≥0} corresponds to the dual PBW-basis under the isomorphism
in (5.2) (up to a grading shifts),

(3) for each simple module M ∈ Rep(R), there exists a unique m ∈ ZN≥0 such that
hd(S[w̃0](m)) � M and hd(S[w̃0](m)) � hd(S[w̃0](m′)) if and only if m = m′.

5.2 Categorifications via modules over untwisted quantum affine algebras

Definition 5.5 [13,14,21] Fix any [Q] ∈ [[Q]] of finite type An or Dn , and any
positive root β ∈ �+ with �Q(β) = (i, p).
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(i) We set the U ′
q(g

(1))-module (g(1) = A(1)
n , D(1)

n ) V (1)
Q (β) defined as follows :

V (1)
Q (β) := V (�i )(−q)p .

(ii) We set the U ′
q(g

(2))-module (g(2) = A(2)
n , D(2)

n ) V (2)
Q (β) defined as follows :

V (2)
Q (β) := V (�i� )((−q)p)� ,

where

(i�, ((−q)p)�) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i, (−q)p) if g(2) = A(2)
n and 1 ≤ i ≤

⌊
n + 1

2

⌋
,

(n + 1 − i, (−1)n(−q)p) if g(2) = A(2)
n and

⌊
n + 1

2

⌋
≤ i ≤ n,

(i, (
√−1)n−i (−q)p) if g(2) = D(2)

n and 1 ≤ i ≤ n − 2,

(n − 1, (−1)i (−q)p) if g(2) = D(2)
n and n − 1 ≤ i ≤ n.

(5.3)

(1) We define the smallest abelian full subcategory C(t)
Q (t = 1, 2) of Cg(t) such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains V (t)

Q (β) for all β ∈ �+.
(2) We define the smallest abelian full subcategory C(t)

Z
(t = 1, 2) of Cg(t) such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains V (t)

Q (β)k∗ for all β ∈ �+ and all k ∈ Z.

Note that the definition C(t)
Z

does not depend on the choice of Q and its height function.

Theorem 5.6 [14,21]We have a ring isomorphism given as follows : For any Q and
Q′,

[
C(1)
Q

]
� U−

A
(g)∨|q=1 �

[
C(2)
Q′
]
, (5.4)

where
[
C(t)
Q

]
denotes the Grothendieck ring of C(t)

Q (t = 1, 2).

Theorem 5.7 [14,21] Let Q be a Dynkin quiver of finite type An, Dn (t = 1, 2) and
En (t = 1). Then the dual PBW-basis associated with [Q] and the upper global basis
of U−

A
(g)∨ are categorified by the modules over U ′

q(g
(t)) in the following sense :

(1) The set of all simple modules in C(t)
Q corresponds to the upper global basis of

U−
A

(g)∨|q=1.

(2) For each m ∈ ZN≥0, define the U
′
q(g)-module V (t)

Q (m) by V (t)
Q (β1)

⊗m1 ⊗ · · · ⊗
V (t)
Q (βN)⊗mN . Then the set {V (t)

Q (m) | m ∈ ZN≥0} corresponds to the dual PBW-
basis under the isomorphism in (5.4).
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(3) For each simple module M ∈ C(t)
Q , there exists a unique m ∈ ZN≥0 such that

hd(V (t)
Q (m)) � M and hd(V (t)

Q (m)) � hd(V (t)
Q (m′)) if and only if m = m′.

5.3 Generalized quantum affine Schur–Weyl dualities

In this subsection, we briefly review the generalized quantum affine Schur–Weyl dual-
ity which was studied in [17,18,20,21].

Let S be an index set. A Schur–Weyl datum � is a quintuple

(U ′
q(g), J, X, s, {Vs}s∈S)

consisting of (a) a quantum affine algebra U ′
q(g), (b) an index set J , (c) two maps

X : J → k×, s : J → S, (d) a family of good U ′
q(g)-modules {Vs} indexed by S.

For a given �, we define a quiver �� = (��
0 , ��

1 ) in the following way : (i)
��
0 = J , (ii) for i, j ∈ J , we assign di j many arrows from i to j , where di j is the

order of the zero of dVs(i),Vs( j) (z2/z1) at X ( j)/X (i).We call�� the Schur–Weyl quiver
associated with �.

For a Schur–Weyl quiver ��, we have

• a symmetric Cartan matrix A� = (a�
i j )i, j∈J by

a�
i j = 2 if i = j, a�

i j = −di j − d j i if i �= j, (5.5)

• the set of polynomials (Q�
i, j (u, v))i, j∈J

Q�
i, j (u, v) = (u − v)di j (v − u)d j i if i �= j.

Wedenote by R� the symmetric quiver Hecke algebra associated with (Q�
i, j (u, v)).

Theorem 5.8 [17] For a given �, there exists a functor

F : Rep(R�) → Cg.

Moreover, F satisfies the following properties :
(1) F is a tensor functor; that is, there exist U ′

q(g)-module isomorphisms

F(R�(0)) � k and F(M1 ◦ M2) � F(M1) ⊗ F(M2)

for any M1, M2 ∈ Rep(R�).
(2) If the underlying graph of �� is a Dynkin diagram of finite type ADE, then F

is exact and R� is isomorphic to the quiver Hecke algebra associated with g of
finite type ADE.

We call the functor F the generalized quantum affine Schur–Weyl duality functor.
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Theorem 5.9 [18,21] Let U ′
q(g

(t)) be a quantum affine algebra of type A(t)
n (resp.

D(t)
n ) and let Q be a Dynkin quiver of finite type An (resp. Dn) for t = 1, 2. Take J

and S as the set of simple roots � associated with Q. We define two maps

s : � → {V (�i ) | i ∈ I0} and X : � → k×

as follows : for α ∈ � with �Q(α) = (i, p), we define

s(α) =
{
V (�i ) if g(1) = A(1)

n or D(1)
n ,

V (�i� ) if g(2) = A(2)
n or D(2)

n ,
X (α) =

{
(−q)p if g(1) = A(1)

n or D(1)
n ,

((−q)p)� if g(2) = A(2)
n or D(2)

n .

Then we have the followings :
(1) The underlying graph of �� coincides with the one of Q. Hence, the functor

F (t)
Q : Rep(R�) → C(t)

Q (t = 1, 2)

in Theorem 5.8 is exact.
(2) The functor F (t)

Q induces a bijection from the set of the isomorphism classes

of simple objects of Rep(R�) to that of C(t)
Q . In particular, F (t)

Q sends SQ(β) :=
S[Q](β) to V (t)

Q (β).Moreover, the induced bijection between the set of the isomor-

phism classes of simple objects of C(1)
Q and that of C(2)

Q preserves the dimensions.

(3) The functors F (1)
Q and F (2)

Q induce the ring isomorphisms in (5.4).

6 Isomorphism between Grothendieck rings

In this section, we first introduce subcategories CQ and CZ of C
B(1)
n

or C
C(1)
n
.

Definition 6.1 [15,35,36] (see also [21, Section 4.1])

(i) Let us define C B(1)
n

Q (resp. C C(1)
n

Q ) as the smallest abelian full subcategory of C
B(1)
n

(resp. C
C(1)
n
) such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains VQ(β) for all β ∈ �+

A2n−1
(resp. �+

Dn+1
).

(ii) Let us define C B(1)
n

Z
(resp. C C(1)

n
Z

) as the smallest abelian full subcategory of C
B(1)
n

(resp. C
C(1)
n

)) such that
(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains VQ(β)k∗ for all k ∈ Z and all β ∈ �+

A2n−1
(resp. �+

Dn+1
).

We sometimes omit the superscript B(1)
n or C (1)

n if there is no risk of confusion.

Note that the definition CZ does not depend on the choice of [Q] in [[Q]].
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Theorem 6.2

(1) There exists an exact functor FQ : Rep(RA2n−1) → CQ ⊂ C
B(1)
n

for any [Q] of
type A2n−1.

(2) There exists an exact functor FQ : Rep(RDn+1) → CQ ⊂ C
C(1)
n

for any [Q] of
type Dn+1.

Proof (1) For the construction of a functor, we need to take a Schur–Weyl datum �.
(i) Take J and S as the set of simple roots � of �+

A2n−1
. (ii) Define two maps

s : � → {V (�i ) | i ∈ I0} and X : � → k×

as follows : For α ∈ � with �̂(α) = (i, p), we define

s(α) = V (�i ) and X (α) = (−1)i q p
s .

Then we can conclude that the underlying graph of Schur–Weyl quiver �� coincides
with the Dynkin diagram  of A2n−1, since

• dist[Q](αi , α j ) =
{
1 if i and j are adjacent in ,

0 otherwise,

• dB(1)
n

k,l (z) = D̂k,l(z) × (z − q2n−1)δk,l (Theorem 4.3),

• dB(1)
n

k,l (z) has only roots of order 1.

Thus, our assertion follows from (2) of Theorem 5.8.
(2) The assertion can be proved by the same argument of (1) with the two maps s

and X given as follows : For α ∈ � with �̂(α) = (i, p), we define

s(α) = V (�i ) and X (α) = (−qs)
p. ��

Theorem 6.3 For any [Q] of [[Q]] and γ ∈ �+
A2n−1

(resp. γ ∈ �+
Dn+1

), we have

FQ(SQ(γ )) � VQ(γ ).

Proof We shall prove our assertion by an induction on ht(γ ). For γ with ht(γ ) = 1,
our assertion follows from [17, Proposition 3.2.2]. Now we assume that ht(γ ) ≥ 2.
Note that there exists a minimal pair (α, β) of γ . By [29, Theorem 3.1], we have a
six-term exact sequence of R(γ )-modules

0 −→ SQ(γ )
t−→ SQ(α) ◦ SQ(β)

r−→ SQ(β) ◦ SQ(α)
s−→ SQ(γ ) → 0.

Applying the functorFQ , we have an exact sequence ofU ′
q(g)-modules by the induc-

tion hypothesis

0 −→ FQ (SQ (γ ))
FQ (t)−−−−−→ VQ (α) ⊗ VQ (β)

FQ (r)−→ VQ (β) ⊗ VQ (α)
FQ (s)−→ FQ (SQ (γ )) → 0.
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On the other hand, Theorem 4.6 tells that VQ(β) ⊗ VQ(α) is not simple.
We have then FQ(SQ(γ )) �= 0. Indeed, if it vanished, we would have

VQ(α) ⊗ VQ(β) � VQ(β) ⊗ VQ(α),

which implies that VQ(α) ⊗ VQ(β) is simple by [19, Corollary 3.16].
Hence, FQ(SQ(γ )) is the image of a nonzero homomorphism

FQ(t ◦ s) : VQ(β) ⊗ VQ(α) → VQ(α) ⊗ VQ(β).

Thus, [19] and the quantum affine version of [22, Proposition 3.2.9] imply that
FQ(SQ(β)) is the simple head of VQ(β) ⊗ VQ(α) which coincides with VQ(γ ).

��

Lemma 6.4 Let β, γ ∈ �+. If Rnorm
VQ (α),VQ (β)(z) has a pole at z = 1, then β ≺[Q] α.

Proof We shall prove this for [Q] of type A2n−1, since the remained case can be
proved in a similar way. Set �̂[Q](α) = (i, a) and �̂[Q](β) = ( j, b), where i, j ∈ Î .

By Theorem 4.1, a > b and (−1)i− j qa−b
s is a root of dB(1)

n
i, j (z). Then our assertion

follows from the facts that dB(1)
n

i, j (z) has only roots of order 1 [see (4.4a)] and (4.5a).

Theorem 6.5 The functor FQ sends a simple module to a simple module. Moreover,
the functor FQ induces a bijection from the set of simple modules in Rep(R) to the
set of simple modules in CQ .

Proof By [29, Theorem 3.1], every simple module M in Rep(R) is isomorphic to the
image of the homomorphism

rm : SQ(m) → SQ(
←
m) := N◦

k=1
SQ(βr−k+1)

◦mr−k+1 (6.1)

for a unique m ∈ ZN≥0. Here SQ(β) := S[Q](β). Moreover, we have (see also [33])

[SQ(m)] ∈ [Im(rm)] +
∑

m′≺b
Q m

Z≥0[Im(rm′)]. (6.2)

Applying the functor FQ on (6.1), we have

VQ(m) := r⊗
k=1

VQ(βk)
⊗mk

FQ (rm )

VQ(
←
m) := ⊗r

k=1VQ(βr−k+1)
⊗mr−k+1 .

Now we shall prove that Im
(FQ(rm)

) � FQ
(
Im(rm)

)
is simple and isomorphic to

hd(VQ(m)).
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If m is a unit vector, then our claim follows from Theorem 6.3. Assume that m
is not a unit vector. By Lemma 6.4, [17, Theorem 2.2.1 (ii)] tells that VQ(m) has a

simple head which is equal to the image of any nonzero map from VQ(m) to VQ(
←
m).

Thus, it is enough to show that FQ(rm) is nonzero.

By the induction hypothesis on≺b
Q , every composition factor of Ker

(FQ(rm)
)
is of

the form hd(VQ(m′)) for somem′ ≺b
Q m. By [17, Theorem 2.2.1 (iii)], hd(VQ(m)) is

isomorphic to hd(VQ(m′)) if and only ifm′ = m. Thus, we conclude that hd(VQ(m))

cannot appear as a composition factor of Ker
(FQ(rm)

)
, which yields that FQ(rm) is

nonzero. ��
Thus, for any [Q], [Q′] and [Q], we have the following diagrams :

CQ ⊂ C
B(1)
n

Rep(RA2n−1)

FQ

F (2)
Q′F (1)

Q

C
A(1)
2n−1

⊃ C(1)
Q C(2)

Q′ ⊂C
A(2)
2n−1

,

CQ ⊂ C
C(1)
n

Rep(RDn+1)

FQ

F (2)
Q′F (1)

Q

C
D(1)
n+1

⊃ C(1)
Q C(2)

Q′ ⊂C
D(2)
n+1

(6.3)

Corollary 6.6 Let g = A2n−1 or Dn+1. For any [Q] ∈ [[Q]], there exists an isomor-
phism between [CQ] and U−

A
(g)∨|q=1 induced by FQ :

[FQ] : [CQ] � U−
A

(g)∨|q=1. (6.4)

Hence, we have isomorphisms which extend (5.4) :

[CQ]

�� U−
A

(g)∨|q=1

�

��
[C(1)

Q ] � [C(2)
Q′ ]

(6.5)

Now we have a [Q]-analogue of Theorem 5.7:

Corollary 6.7 A dual PBW-basis associated with [Q] and the upper global basis of
U−
A

(g)∨ are categorified by the modules over U ′
q(g) in the following sense :

(1) The set of all simple modules in CQ corresponds to the upper global basis of
U−
A

(g)∨|q=1 and hence the set of all simple modules in Rep(Rg).
(2) The set {VQ(m) | m ∈ ZN≥0} corresponds to the dual PBW-basis under the

isomorphism in (6.4).
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(3) For each simple module M ∈ CQ , there exists a unique m ∈ ZN≥0 such that
hd(VQ(m)) � M and hd(VQ(m)) � hd(VQ(m′)) if and only if m = m′.

Corollary 6.8 For any [Q] and [Q] of type A2n−1 (resp. Dn+1), the ring isomorphism

φ
(t)
Q,Q := [FQ

] ◦ [F (t)
Q

]−1 : [C(t)
Q ] ∼−→ [CQ] (t = 1, 2)

sends simples to simples, bijectively.

Remark 6.9 In [9], Frenkel and Hernandez conjectured that, for a module V in Cg(r)

(r = 2, 3), there exists a Langlands dual LV in CLg(r) whose characters satisfy certain
properties. Here U ′

q(
Lg(r)) denotes the quantum affine algebra whose generalized

Cartan matrix is a transpose the one of U ′
q(g

(r)). They proved the conjecture when V
is a Kirillov-Reshetikhin module. On the other hand, Corollary 6.8 tells that, for any

module V in CQ , there exists the corresponding V̂ in CQ via FQ ◦ F (2)
Q

−1
, which

depends on the choice of [Q] ∈ [[Q]]. Here, g(r) is of type A(2)
2n−1 or D

(2)
n+1. Moreover,

each V̂ is simplewhen V is simple,which is also related to the conjecture on preserving
simplicity.

Corollary 6.10 For any [Q] and [Q] of type A2n−1 (resp. Dn+1), the ring isomor-
phism φ

(t)
Q,Q sends [V (t)

Q (αi )] to [VQ(αi )] for each simple root αi .

Proof For any i ∈ I , the 1-dimensional module L(i) is the unique simple module
over R(αi ). Thus, our assertion follows from [17, Proposition 3.2.2]. ��

Nowwe have a conjecture which can be understood as a Langlands analogue of [21,
Conjecture 5.7] :
Conjecture 6.11 The functor FQ : Rep(R) → CQ is an equivalence of categories.

7 Simple head and socle

In this section, we study the simple head and socle of SQ(α) ◦ SQ(β) and VQ(α) ◦
VQ(β) which has been studied in many context (see [19,28,33]). Since the Dorey’s
rule can be interpreted as the conditions that a fundamental representation appears as
the simple head of tensor product of two fundamental representations, the results in
this section can be considered as a generalization of Dorey’s rule and its application.

Theorem 7.1 A pair p = (α, β) is [w̃0]-simple if and only if SQ(α) ◦ SQ(β) and
VQ(α) ◦ VQ(β) are simple.

Proof Only if part is an immediate consequence of [33, Theorem 5.10] (see also [29,
Theorem 3.1]). Assume that dist[Q](p) > 0. Then there exists m such that m ≺b

[Q] p
and there exists no m′ such that

m ≺b
[Q] m

′ ≺b
[Q] p.
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Furthermore, by [35, Theorem 6.16] and [36, Theorem 8.12], m satisfies one of the
following conditions :
(1) if m = α + β, p is a minimal pair of α + β.
(2) if (a) α + β /∈ �+, (b) dist[Q](α, β) = 2 and (c) [Q] is of type A2n−1, m is a

triple (μ, ν, η) such that
(i) μ + ν ∈ �+, (μ, ν) is a [Q]-minimal pair of μ + ν and α − μ, β − ν ∈ �+,
(ii) η is not comparable to μ and ν with respect to ≺[Q],
(iii) η = (α − μ) + (β − ν) and ((α − μ), (β − ν)) is a [Q]-minimal pair for η,
(iv) (α − μ,μ), (ν, β − ν) are [Q]-minimal pairs for α and β respectively,

(3) if α + β /∈ �+ and it does not satisfy one of (b) and (c) in (2), then m is a pair
(α′, β ′) and either (i) α′ − α, β − β ′ ∈ �+ or (ii) α − α′, β ′ − β ∈ �+ such that
(i∗) (α′ − α, α) is a minimal pair for α or (ii∗) (β ′ − β, β) is a minimal pair for
β.

(see [35, Remark 6.23] and [36, Remark 8.19] also). Thus, our assertion for m =
α + β holds by [29, Theorem 3.1]. For the case when m is a pair, we have a nonzero
composition of homomorphisms

(i) SQ(α′) ◦ SQ(β ′) � SQ(α) ◦ SQ(α′ − α) ◦ SQ(β ′) � SQ(α) ◦ SQ(β) or
(ii) SQ(α′) ◦ SQ(β ′) � SQ(α′) ◦ SQ(β ′ − β) ◦ SQ(β) � SQ(α) ◦ SQ(β),

by [19, Corollary 3.11]. For the casewhenm is a triple, we have a nonzero composition

SQ(μ) ◦ SQ(ν) ◦ SQ(η) � SQ(μ) ◦ SQ(η) ◦ SQ(ν)

� SQ(μ) ◦ SQ(α − μ) ◦ SQ(β − ν) ◦ SQ(ν) � SQ(μ) ◦ SQ(α − μ) ◦ SQ(β).

and hence a desired nonzero composition

SQ(μ) ◦ SQ(ν) ◦ SQ(η) → SQ(μ) ◦ SQ(α − μ) ◦ SQ(β) � SQ(α) ◦ SQ(β)

by [19, Corollary 3.11]. Hence, our assertion follows from the fact that the heads of
SQ(m) and SQ(α) ◦ SQ(β) are distinct. Our assertion for VQ(α) ◦ VQ(β) can be
obtained by applying the functor FQ . ��
Corollary 7.2 For m ∈ ZN≥0,

SQ(m) and VQ(m) are simple if and only if m is [Q]-simple.

Proof It is an immediate consequence of Theorem 7.1.

Lemma 7.3 Let U ′
q(g) be a quantum affine algebra and let V and W be good U ′

q(g)-
modules. If the normalized R-matrix Rnorm

V,W (z) has a simple pole at z = a for some
a ∈ k×, then we have

Im
(
(z − a)Rnorm

V,W |z=a
) = Ker

(
Rnorm
W,V |z=a

)
.

Moreover, the tensor product V ⊗ Wa is of length 2.
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Proof The first assertion follows from the fact :
Let A(z) and B(z) be n×n-matrices with entries in rational functions in z. Assume
that A(z) and B(z) have no poles at z = a. If A(z)B(z) = (z− a)id, then we have
ImA(a) = KerB(a).

Recall that Ker
(
Rnorm
W,V |z=a

)
is simple. By [19, Theorem 3.2], Im

(
(z−a)Rnorm

V,W |z=a
)

is also simple. Hence, we conclude that V ⊗Wa is of composition length 2 by the first
assertion. ��
Theorem 7.4 For a pair p = (α, β) with dist[Q](p) > 0, the composition length
of VQ(α) ◦ VQ(β) is 2 and the composition series of VQ(α) ◦ VQ(β) consists of its
distinct head and socle. In particular,

(1) if dist[Q](p) = 1, soc(VQ(α) ◦ VQ(β)) � VQ(soc[Q](α, β)),
(2) if dist[Q](p) = 2, soc(VQ(α) ◦ VQ(β)) � hd(VQ(m)) where m is a unique

sequence such that

soc[Q](p) ≺b
[Q] m ≺b

[Q] p.

The same assertions for SQ(α) ◦ SQ(β) hold.

Proof By Theorem 7.1, Lemma 7.3 and the fact that dB(1)
n

k,l (z) and dC
(1)
n

k,l (z) have only
roots of order 1, VQ(α) ◦ VQ(β) has composition length 2 if distQ(α, β) �= 0. If
dist[Q](p) = 1, then socQ(p) is a unique sequence such that socQ(p) ≺b

[Q] p and
VQ(socQ(p)) is simple. Thus, by the previous proof, there exists a nonzero homo-
morphism

VQ(socQ(p)) −→ VQ(p).

Hence, VQ(socQ(p)) � soc(VQ(p)) by [19, Theorem 3.2]. For distQ(p) = 2, we
have a nonzero homomorphism

VQ(m) −→ VQ(p)

where m is the unique sequence such that socQ(p) ≺b
[Q] m ≺b

[Q] p. Thus, our last
assertion follows since

• VQ(p) has composition length 2,
• VQ(p) and VQ(m) have distinct heads.

Our assertions for SQ(p) can be obtained by applying the functor FQ . ��

Appendix: Exceptional doubly laced type

In this appendix, we discuss the exceptional doubly laced type analogue of our main
results and give several conjectures on it. We first recall the ∨-foldable cluster point
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[[Q]] of E6 associated with ∨ in (2.1c) and the twisted Coxeter element s1s2s6s3 [35,
Appendix] :

[[Q]] = [[w̃0]] where w̃0 =
8∏

k=0

(s1s2s6s3)
k∨.

Here,

(s j1 · · · s jn )∨ := s j∨1 · · · s j∨n and (s j1 · · · s jn )k∨ := (· · · ((s j1 · · · s jn )∨)∨ · · · )∨︸ ︷︷ ︸
k -times

. (7.1)

Note that the number of distinct commutation classes in [[Q]] is 32 [35, Appendix].
Now, we assign the coordinates of ϒ[w̃0] in the following way (see also [33,

Appendix]) :

(i, p) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
(
001
110

) (
011
101

) (
112
111

) (
010
000

) (
100
000

)

2
(
001
100

) (
012
211

) (
123
212

) (
122
111

) (
110
000

)

3
(
001
000

) (
001
101

) (
011
100

) (
012
111

) (
112
211

) (
122
101

) (
011
111

) (
111
110

) (
111
001

)

6
(
001
001

) (
000
100

) (
011
000

) (
001
111

) (
111
100

) (
011
001

) (
000
110

) (
111
000

) (
000
001

)

4
(
012
101

) (
123
211

) (
122
211

) (
111
111

)

5
(
112
101

) (
011
110

) (
111
101

) (
000
010

)

((
a1a2a3
a4a5a6

)

:= ∑6
i=1 aiαi

)
. Then the quiver ϒ[w̃0] is foldable in the sense that there

exists no (i, p) and ( j, q) ∈ ϒ[w̃0] such that i∨ = j and p = q. Hence, we can fold
in a canonical way :

(̂i, p) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 := 1̂
(
001
110

) (
112
101

) (
011
101

) (
011
110

) (
112
111

) (
111
101

) (
010
000

) (
000
010

) (
100
000

)

2 := 2̂
(
001
100

) (
012
101

) (
012
211

) (
123
211

) (
123
212

) (
122
211

) (
122
111

) (
111
111

) (
110
000

)

3 := 3̂
(
001
000

) (
001
101

) (
011
100

) (
012
111

) (
112
211

) (
122
101

) (
011
111

) (
111
110

) (
111
001

)

4 := 6̂
(
001
001

) (
000
100

) (
011
000

) (
001
111

) (
111
100

) (
011
001

) (
000
110

) (
111
000

) (
000
001

)

Thus, ϒ̂[w̃0] is well defined.
Furthermore, the action of reflection maps on [[Q]] is well described by the datum

of F4 in the following sense (see also [35, Algorithm 7.6], [36, Algorithm 7.15]) :

 : ◦
1

◦
2

◦
3

◦
4
of type F4
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(In [15, §6.7], they took that α1 and α2 are short simple roots which is reversed to our
convention.)

Let us denote by (i) D = diag(di | 1 ≤ i ≤ 4) the diagonal matrix which diago-
nalizes the Cartan matrix A of type F4, (ii) d̂ = lcm(di | 1 ≤ i ≤ 4) = 2, (iii) αi a
sink of ϒ̂[w̃0] and (iv) h∨ = 9 the dual Coxeter number of type F4. Now the algorithm
obtaining ϒ̂[w̃0]ri from ϒ̂[w̃0] can be described as follows :
(A1) Remove the vertex (i, p) corresponding (αi ) and arrows entering into (i, p) in

ϒ̂[w̃0].
(A2) Add the vertex (i, p − d̂× h∨) and arrows to all vertices whose coordinates are

( j, p − d̂ × h∨ + min(di , d j )) ∈ ϒ̂[w̃0], where j is adjacent to i in .
(A3) Label the vertex (i, p − d̂× h∨) with αi and change the labels β to si (β) for all

β ∈ ϒ̂[w̃0] \ {αi }.
For example ϒ̂[w̃0]r1 can be depicted as follows :

(̂i, p) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
(
100
000

) (
001
110

) (
012
101

) (
111
101

) (
111
110

) (
012
111

) (
011
101

) (
110
000

) (
000
010

)

2
(
001
100

) (
112
101

) (
112
211

) (
123
211

) (
123
212

) (
122
211

) (
122
111

) (
011
111

) (
010
000

)

3
(
001
000

) (
001
101

) (
111
100

) (
112
111

) (
012
211

) (
122
101

) (
111
111

) (
011
110

) (
011
001

)

4
(
001
001

) (
000
100

) (
111
000

) (
001
111

) (
011
100

) (
111
001

) (
000
110

) (
011
000

) (
000
001

)

By applying the results in [35,36], one can check that the folded distance poly-
nomials Dk,l(z) are well defined on [[Q]] and have natural conjectural formulas for

d
F (1)
4

k,l (z) as follows : Set q2s = q.

d
F (1)
4

1,1 (z) =
(
z − q4s

) (
z − q10s

) (
z − q12s

) (
z − q18s

)
,

d
F (1)
4

1,2 (z) =
(
z + q6s

) (
z + q8s

) (
z + q10s

) (
z + q12s

) (
z + q14s

) (
z + q16s

)
,

d
F (1)
4

1,3 (z) =
(
z − q7s

) (
z − q9s

) (
z − q13s

) (
z − q15s

)
,

d
F (1)
4

1,4 (z) =
(
z + q8s

) (
z + q14s

)
,

d
F (1)
4

2,2 (z) =
(
z − q4s

) (
z − q6s

) (
z − q8s

)2 (
z − q10s

)2 (
z − q12s

)2 (
z − q14s

)2 (
z − q16s

) (
z − q18s

)
,

d
F (1)
4

2,3 (z) =
(
z + q5s

) (
z + q7s

) (
z + q9s

) (
z + q11s

)2 (
z + q13s

) (
z + q15s

) (
z + q17s

)
,

d
F (1)
4

2,4 (z) =
(
z − q6s

) (
z − q10s

) (
z − q12s

) (
z − q16s

)
,

d
F (1)
4

3,3 (z) =
(
z − q2s

) (
z − q6s

) (
z − q8s

) (
z − q10s

) (
z − q12s

) (
z − q16s

) (
z − q18s

)
,

d
F (1)
4

3,4 (z) =
(
z + q3s

) (
z + q7s

) (
z + q11s

) (
z + q13s

) (
z + q17s

)
,

d
F (1)
4

4,4 (z) =
(
z − q2s

) (
z − q8s

) (
z − q12s

) (
z − q18s

)
.
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Now we can define VQ(β), for each β ∈ �+
E6

and [Q] ∈ [[Q]] naturally.
Definition 7.5

(1) We define the smallest abelian full subcategory CQ inside C
F (1)
4

such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains VQ(β) for all β ∈ �+

E6
.

(2) We define the smallest abelian full subcategory CZ inside C
F (1)
4

such that

(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains VQ(β)k∗ for all k ∈ Z and all β ∈ �+

E6
.

Recall the subcategories C(1)
Q of C

E (1)
6

in [14], C(2)
Q of C

E (2)
6

in [33, Arxiv version

1]. Now we can naturally expect that all results in this paper can be extended to C(t)
Q

(t = 1, 2), CQ , U−
A

(E6)
∨ and VQ(m), etc.
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