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Abstract Let C(d, k) and AC(d, k) be the largest order of a Cayley graph and a
Cayley graph based on an abelian group, respectively, of degree d and diameter k. It is
well known thatC(d, k) ≤ 1+d+d(d−1)+· · ·+d(d−1)k−1 with equality satisfied
if and only if the graph is a Moore graph. However, there is a much better upper bound

for abelian Cayley graph. We have AC(d, 2) ≤ d2
2 + d + 1 and AC(d, k) ≤ dk

k! +
O(dk−1). On the other hand, the best currently lower bounds are C(d, 2) ≥ 0.684d2,
AC(d, 2) ≥ 25

64d
2−2.1d1.525 and AC(d, k) ≥ ( dk )k+O(dk−1) for sufficiently large d.

In this paper, we improve previous results on the degree–diameter problem. We show
that C(d, 2) ≥ 200

289d
2 − 5.4d1.525, AC(d, 2) ≥ 27

64d
2 − 3.9d1.525 and AC(d, k) ≥

( 3
3k−1 )

kdk + O(dk−0.475) for sufficiently large d.
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1 Introduction

In a graph �, the distance d(u, v) from vertex u to vertex v is the length of a shortest
u − v path in �. The largest distance between two vertices in � is the diameter of �.
Let � = (V, E) be a graph of maximum degree d and diameter k. According to the
Moore bound, � has at most 1 + d + d(d − 1) + · · · + d(d − 1)k−1 vertices. When
the order of V equals 1 + d + d(d − 1) + · · · + d(d − 1)k−1, the graph � is called a
Moore graph. Except k = 1 or d ≤ 2, Moore graphs are only possible for d = 3, 7, 57
and k = 2 [5,8]. The graphs corresponding to the first two degrees are the Petersen
graph and the Hoffman–Singleton graph. The existence of a Moore graph with degree
57 and diameter 2 is still open. As there are very few Moore graphs, it is interesting
to ask the following the so-called degree–diameter problem.

Problem 1 Given positive integers d and k, find the largest possible number N (d, k)
of vertices in a graph with maximum degree d and diameter k.

We refer to [11] for a recent survey on the degree–diameter problem.
The Moore bound for diameter two is N (d, 2) ≤ d2 + 1. In [7], Erdős et al.

improved this bound by showing that N (d, 2) ≤ d2 − 1 for d ≥ 4, d �= 7, 57. An
explicit lower bound N (d, 2) ≥ d2 − d + i is given by Brown’s graphs [4] for all d
such that d − 1 is a prime power and i = 2 for d − 1 even and i = 1 for d − 1 odd. A
modification of Brown’s graphs constructed by Širáň et al. [15] gives the lower bound
N (d, 2) ≥ d2 − 2d1.525 for all sufficiently large d. Clearly, this bound asymptotically
approaches the Moore bound.

Let G be a group and S ⊆ G such that S−1 = S and e /∈ S. Here S−1 = {s−1 : s ∈
S}. The Cayley graph �(G, S) has a vertex set G, and two distinct vertices g, h are
adjacent if and only if g−1h ∈ S. Here S is called the generating set. A Cayley graph
is always vertex-transitive and regular, and its valency equals |S|. Then, it is easy to
see that the diameter of a Cayley graph �(G, S) is k if and only if k is the smallest
integer such that all elements in G appear in {�l

i=1si : si ∈ S for l = 1, 2, . . . , k}.
Proposition 1.1 The diameter of a Cayley graph �(G, S) is k if and only if k is the
smallest integer such that all elements in G appear in {�k

i=1si : si ∈ S ∪ {e}}, where
e is the identity of group G.

Since neither the Brown’s graphs nor their modifications are vertex-transitive, it is a
natural question to ask what is the maximum number of vertices of a vertex-transitive
graph or a Cayley graph of diameter k and degree d. We use v(d, k), C(d, k) and
AC(d, k) to denote the largest order of a vertex-transitive graph, a Cayley graph and
an abelian Cayley graph, respectively, of degree d and diameter k. Then, we have
N (d, k) ≥ v(d, k) ≥ C(d, k) ≥ AC(d, k).

Currently, the best known construction of vertex-transitive graphs is the McKay–
Miller–Širáň graph [10], which gives v(d, 2) ≥ 8

9 (d+ 1
2 )

2, for degrees d = 1
2 (3q−1)

such that q ≡ 1 (mod 4) is a prime power. In the same paper the authors have shown
that all these graphs are non-Cayley.

For Cayley graphs, we have the following results. In [14], Šiagiová and Širáň

gave a construction of Cayley graphs of diameter two and of order d2 − O(d
3
2 )

123



J Algebr Comb (2019) 49:135–146 137

for an infinite set of degrees d. Hence, their result for Cayley graphs asymptotically
approaches the Moore bound d2 + 1. Šiagiová and Širáň [13] constructed Cayley
graphs of diameter two and of order 1

2 (d + 1)2 for all degrees d = 2q − 1 where
q is an odd prime power. In [1], Abas proved that C(d, 2) ≥ 1

2d
2 − t for d ≥ 4

even and C(d, 2) ≥ 1
2 (d

2 + d) − t for d ≥ 4 odd, where 0 ≤ t ≤ 8 is an integer
depending on the congruence class of d modulo 8. Recently, Abas [2] showed that
C(d, 2) > 0.684d2 for every integer d ≥ 360756. In this paper, we improve Abas’s
result and show that C(d, 2) ≥ 200

289d
2 − 5.4d1.525 for sufficiently large d.

For Abelian Cayley graphs, we have AC(d, k) ≤ dk
k! + O(dk−1) for d → ∞ and

fixed k [16]. In [6], Dougherty and Faber showed thatAC(d, k) ≥ ( dk )k+O(dk−1) and
asked whether the constant 1/kk can be improved. In this paper, we give an affirmative
answer to this question by showing that AC(d, k) ≥ ( 3

3k−1 )
kdk + O(dk−0.475) for

sufficiently large d. For small diameters, we have better results. Macbeth et al. [9]
showed that AC(d, 2) ≥ 3

8 (d
2 − 4) for d = 4q − 2, where q is an odd prime. This

result was generalized in [15], where it is proved that AC(d, 2) ≥ 3
8d

2 − 1.45d1.525

for any sufficiently large d. Later, Pott and Zhou [12] gave a construction of abelian
Cayley graphs of diameter two and of order 25

64d
2 − 2.1d1.525 for sufficiently large

d from generalized difference sets. In this paper, we improve their result and show
that AC(d, 2) ≥ 27

64d
2 − 3.9d1.525 for sufficiently large d. Other researchers also

considered the largest order of a Cayley graph based on cyclic group and metacyclic
group, see [9,17].

This paper is organized as follows. In Sect. 2, we give a lower bound for C(d, 2).
In Sect. 3, we show lower bounds for AC(d, 2) and AC(d, k).

2 Lower bound for C(d, 2)

The following lemma can be found in [2], which will be used later.

Lemma 2.1 [2] The equations

a1x + b1y = c1,

a2x + b2y = c2

over Zn have a unique solution in Zn if and only if the determinant D =
∣
∣
∣
∣

a1 b1
a2 b2

∣
∣
∣
∣
is

coprime with n.

Now we state our main result.

Theorem 2.2 Let n = 2m, where m is an odd integer. Let G = Zn × Zn × Z2 be a
group with multiplication (i0, i1, i) · ( j0, j1, j) = (i0 + ji , i1 + j1−i , i + j), where
(i0, i1, i), ( j0, j1, j) ∈ Zn × Zn × Z2. If there exists a subset T ⊆ G such that

(1) at least one of {(m, 0, 0), (0,m, 0)} is contained in T ;
(2) if (i, j, 0) ∈ T , then i + j ≡ 1 (mod 2);
(3) (T ∪ T−1) · (T ∪ T−1) ⊇ G,
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then for any odd prime p > 4|T |, there exists a Cayley graph of diameter two, degree
(2|T | + 1− ε − ρ)p − 1, and of order 2p2n2, where ε = |T ∩ {(m, 0, 0), (0,m, 0)}|
and ρ = min{1, |T ∩ {(i, n − i, 1) : i ∈ [0, n − 1]}|}.
Proof Let p be an odd prime with p > 4|T |. Let H = Fp ×Fp ×Zn ×Zn ×Z2 be a
group with multiplication (x0, x1, i0, i1, i) · (y0, y1, j0, j1, j) = (x0 + (−1)i0 yi , x1 +
(−1)i1 y1−i , i0 + ji , i1 + j1−i , i + j), where (x0, x1, i0, i1, i), (y0, y1, j0, j1, j) ∈
Fp × Fp × Zn × Zn × Z2.

Let ω be a primitive element of Fp and ai = ωi . Since at least one of
{(m, 0, 0), (0,m, 0)} is contained in T , without loss of generality, we assume
(m, 0, 0) ∈ T . If ρ = 1, then suppose (iz, n − iz, 1) ∈ T . We divide T into five
subsets: T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5, where

T1 = {(m, 0, 0)},
T2 = {(iz, n − iz, 1)},
T3 = {(0,m, 0)} ∩ T,

T4 = {(i, j, 0) : (i, j, 0)∈T, (i, j, 0) �= (m, 0, 0), (0,m, 0)} = {(ti , si , 0) : i ∈[1, l]},
T5 = {(i, j, 1) : (i, j, 1) ∈ T, (i, j, 1) �= (iz, n − iz, 1)} = {(ui , vi , 1) : i ∈ [1, k]}.

Define

X1 = {A(x) = (x, a1x,m, 0, 0) : x ∈ Fp},
X2 = {B(x) = (x,−x, iz, n − iz, 1) : x ∈ Fp},
X3 = {C(x) = (x, 0, 0,m, 0) : (0,m, 0) ∈ T, x ∈ Fp},
X4 = {Di (x) = (x, ai+1x, ti , si , 0) : x ∈ Fp, i ∈ [1, l]},
X5 = {Ei (x) = (x, ai+l+1x, ui , vi , 1) : x ∈ Fp, i ∈ [1, k]},
X = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5.

Note that ti + si ≡ 1 (mod 2) and m is odd, then we can compute to get that

X−1
1 = {A(x)−1 = (x,−a1x,m, 0, 0) : x ∈ Fp},

X−1
2 = X2,

X−1
3 = X3,

X−1
4 = {Di (x)

−1 = ((−1)ti+1x, (−1)ti ai+1x,−ti ,−si , 0) : x ∈ Fp, i ∈[1, l]},
X−1
5 = {Ei (x)

−1 = ((−1)vi+1al+i+1x, (−1)ui+1x,−vi ,−ui , 1) : x ∈ Fp, i ∈ [1, k]}.

Note that (0, a1 · 0,m, 0, 0) = (0,−a1 · 0,m, 0, 0), then |X ∪ X−1| = (2|T | + 1 −
ε − ρ)p − 1.

We can compute to get that A(x) · A(y) = (x − y, a1x + a1y, 0, 0, 0). Since the

determinant

∣
∣
∣
∣

1 −1
a1 a1

∣
∣
∣
∣
= 2a1 is coprime with p, then for any (u, v) ∈ Fp × Fp, there

is x, y ∈ Fp × Fp such that (x − y, a1x + a1y) = (u, v).
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We can also compute to get the following equations.

A(x) · B(y) = (x − y, a1x − y,m + iz, n − iz, 1),

A(x) · C(y) = (x − y, a1x,m,m, 0),

A(x) · Di (y) = (x − y, a1x + ai+1y,m + ti , si , 0),

A(x) · Ei (y) = (x − y, a1x + ai+l+1y,m + ui , vi , 1),

A(x) · Di (y)
−1 = (x − (−1)ti+1y, a1x

+ (−1)ti ai+1y,m − ti ,−si , 0),

A(x) · Ei (y)
−1 = (x − (−1)vi+1al+i+1y, a1x

+ (−1)ui+1y,m − vi ,−ui , 1),

B(x) · A(y) = (x + (−1)iz a1y,−x

+ (−1)n−iz y, iz,m + n − iz, 1),

B(x) · C(y) = (x,−x + (−1)n−iz y, iz + m, n − iz, 1),

B(x) · Di (y) = (x + (−1)iz ai+1y,−x + (−1)n−iz y, iz
+ si , n − iz + ti , 1),

B(x) · Ei (y) = (x + (−1)iz ai+l+1y,−x + (−1)n−iz y, iz
+ vi , n − iz + ui , 0),

B(x) · Di (y)
−1 = (x + (−1)iz+ti ai+1y,−x

+ (−1)n−iz+ti+1y, iz − si , n − iz − ti , 1),

B(x) · Ei (y)
−1 = (x + (−1)iz+ui+1y,−x

+ (−1)n−iz+vi+1al+i+1y, iz − ui , n − iz − vi , 0),

C(x) · B(y) = (x + y, y, iz,m + n − iz, 1),

C(x) · Di (y) = (x + y,−ai+1y, ti ,m + si , 0),

C(x) · Ei (y) = (x + y,−ai+l+1y, ui ,m + vi , 1),

C(x) · Di (y)
−1 = (x + (−1)ti+1y, (−1)ti+1ai+1y,

− ti ,m − si , 0),

C(x) · Ei (y)
−1 = (x + (−1)vi+1al+i+1y,

(−1)ui y,−vi ,m − ui , 1),

Di (x) · B(y) = (x + (−1)ti y, ai+1x + (−1)si (−y), ti
+ iz, si + n − iz, 1),

Di (x) · Dj (y) = (x + (−1)ti y, ai+1x

+ (−1)si a j+1y, ti + t j , si + s j , 0),

Di (x) · E j (y) = (x + (−1)ti y, ai+1x

+ (−1)si a j+l+1y, ti + u j , si + v j , 1),
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Di (x) · Dj (y)
−1 = (x + (−1)ti+t j+1y, ai+1x

+ (−1)si+t j a j+1y, ti − t j , si − s j , 0), i �= j,

Di (x) · E j (y)
−1 = (x + (−1)ti+v j+1al+i+1y, ai+1x

+ (−1)si+u j+1y, ti − v j , si − u j , 1),

Ei (x) · A(y) = (x + (−1)ui a1y, ai+l+1x

+ (−1)vi y, ui , vi + m, 1),

Ei (x) · B(y) = (x + (−1)ui (−y), ai+l+1x + (−1)vi y, ui
+ n − iz, vi + iz, 0),

Ei (x) · C(y) = (x, ai+l+1x + (−1)vi y, ui + m, vi , 1),

Ei (x) · Dj (y) = (x + (−1)ui a j+1y, ai+l+1x

+ (−1)vi y, ui + s j , vi + t j , 1),

Ei (x) · E j (y) = (x + (−1)ui a j+l+1y, ai+l+1x

+ (−1)vi y, ui + v j , vi + u j , 0),

Ei (x) · Dj (y)
−1 = (x + (−1)ui+t j a j+1y, ai+l+1x

+ (−1)vi+t j+1y, ui − s j , vi − t j , 1),

Ei (x) · E j (y)
−1 = (x + (−1)ui+u j+1y, ai+l+1x

+ (−1)vi+v j+1al+ j+1y, ui − u j , vi − v j , 0), i �= j,

Di (x)
−1 · B(y) = ((−1)ti+1x + (−1)ti y, (−1)ti ai+1x

+ (−1)si (−y),−ti + iz,−si + n − iz, 1),

Di (x)
−1 · E j (y) = ((−1)ti+1x + (−1)ti y, (−1)ti ai+1x

+ (−1)si a j+l+1y,−ti + u j ,−si + v j , 1),

Di (x)
−1 · Dj (y)

−1 = ((−1)ti+1x + (−1)ti+t j+1y, (−1)ti ai+1x

+ (−1)si+t j a j+1y,−ti − t j ,−si − s j , 0),

Di (x)
−1 · E j (y)

−1 = ((−1)ti+1x

+ (−1)ti+v j+1al+ j+1y, (−1)ti ai+1x

+ (−1)si+u j+1y,−ti − v j ,−si − u j , 1),

Ei (x)
−1 · A(y) = ((−1)vi+1al+i+1x

+ (−1)vi a1y, (−1)ui+1x + (−1)ui y,−vi ,

− ui + m, 1),

Ei (x)
−1 · B(y) = ((−1)vi+1al+i+1x

+ (−1)vi (−y), (−1)ui+1x

+ (−1)ui y,−vi + n − iz,−ui + iz, 0),

Ei (x)
−1 · C(y) = ((−1)vi+1al+i+1x, (−1)ui+1x

+ (−1)ui y,−vi + m,−ui , 1),
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Ei (x)
−1 · Dj (y) = ((−1)vi+1al+i+1x

+ (−1)vi a j+1y, (−1)ui+1x

+ (−1)ui y,−vi + s j ,−ui + t j , 1),

Ei (x)
−1 · E j (y) = ((−1)vi+1al+i+1x

+ (−1)vi a j+l+1y, (−1)ui+1x

+ (−1)ui y,−vi + v j ,−ui + u j , 0), i �= j,

Ei (x)
−1 · Dj (y)

−1 = ((−1)vi+1al+i+1x

+ (−1)vi+t j a j+1y, (−1)ui+1x

+ (−1)ui+t j+1y,−vi − s j ,−ui − t j , 1),

Ei (x)
−1 · E j (y)

−1 = ((−1)vi+1al+i+1x

+ (−1)vi+u j+1y, (−1)ui+1x

+ (−1)ui+v j+1al+ j+1y,−vi − u j ,−ui − v j , 0).

Since p > 4|T |, then from the choice of ai and Lemma 2.1, we have (X ∪ X−1) · (X ∪
X−1) ⊇ H . Hence, the result follows. 
�

By taking a special group G and a set T in Theorem 2.2, we have the following
corollary.

Corollary 2.3 Let p > 36 be an odd prime and d = 17p − 1. Then, there exists a
Cayley graph of diameter two, degree d, and of order 200

289 (d + 1)2.

Proof LetG = Z10×Z10×Z2 be a group with multiplication (i0, i1, i) ·( j0, j1, j) =
(i0 + ji , i1 + j1−i , i + j), where (i0, i1, i), ( j0, j1, j) ∈ Z10 × Z10 × Z2. Let T =
{(5, 0, 0), (0, 0, 1), (1, 0, 1), (5, 0, 1), (1, 3, 1), (1, 7, 1), (5, 2, 1), (3, 2, 0), (4, 1, 0)}.
Then, it is easy to check that T satisfies the conditions in Theorem 2.2. Hence, for odd
prime p > 36, there exists a Cayley graph of diameter two, degree 17p − 1, and of
order 200p2. 
�
Corollary 2.4 For sufficiently large degree d,

C(d, 2) ≥ 200

289
d2 − 5.4d1.525.

Proof Let p > 36 be an odd prime. Let T (H, resp.) be the defining set (group, resp.)
of the Cayley graph in Corollary 2.3. Then, |T | = 17p − 1 and the graph has 200p2

vertices.
For any integer d ∈ [17p − 1, 200p2 − 1], we can choose and add (d − |T |)

elements in H to T to get a new set T ′ such that |T ′| = d and T ′ = T ′−1. Clearly the
Cayley graph �(H, T ′) is still of diameter 2.

Now we fix d, which is sufficiently large. Let b = d
17 + 1

17 . By [3], there is a prime
p such that b − b0.525 ≤ p ≤ b. Hence, we can take this p and construct the Cayley
graph �(H, T ′) such that |T ′| = d and

|H | = 200p2 ≥ 200(b − b0.525)2
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> 200(b2 − 2b1.525)

> 200

(

d2

289
− 2

(
d

17

)1.525
)

>
200

289
d2 − 5.4d1.525.


�

3 Lower bounds for AC(d, k)

In this section, we consider abelian Cayley graphs. We will give two constructions of
abelian Cayley graphs, which improve the lower bounds for AC(d, 2) and AC(d, k).

3.1 AC(d, 2)

Theorem 3.1 Let q be a primepowerwith q ≥ 13andd = 24q−2. Then, AC(d, 2) ≥
27
64 (d + 2)2.

Proof Let w be a primitive element in F243 and T = {w22i : i ∈ [0, 10]}. Then, it is
easy to check that

T ∪ (−T ) ∪ {± x ± y : x, y ∈ T, x �= y} ∪ {0} = F243.

Let G = Fq × Fq × F243 be an abelian group with multiplication (x0, x1, i) ·
(y0, y1, j) = (x0 + y0, x1 + y1, i + j), where x0, x1, y0, y1 ∈ Fq and i, j ∈ F243. For
a ∈ Fq , let Da = {(x, ax) : x ∈ Fq}. Then, Da + Db = Fq × Fq for a �= b. Denote
T = {t1, t2, . . . , t11} and Fq = {a1, a2, . . . , aq}. Define

D = (

(Da12 , 0) ∪ (Da13, 0)
)

11
⋃

i=1

(

(Dai , ti ) ∪ (Dai ,−ti )
) \{(0, 0, 0)}.

Then, we can compute to get the following equations.

(Da12 , 0) + (Da13, 0) = Fq × Fq × {0},
(Da12 , 0) + (Dai ,±ti ) = Fq × Fq × {±ti },
(Dai ,±ti ) + (Daj ,±t j ) = Fq × Fq × {±ti ± t j } for i �= j.

Hence, (D ∪ {(0, 0, 0)}) + (D ∪ {(0, 0, 0)}) covers all the elements in G. Note that
|D| = 24q − 2 and |G| = 243q2. We have

AC(d, 2) ≥ 27

64
(d + 2)2.


�
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Corollary 3.2 For sufficiently large degree d,

AC(d, 2) ≥ 27

64
d2 − 3.9d1.525.

Proof Let p ≥ 13 be an odd prime. Let T (G, resp.) be the defining set (group, resp.)
of the Cayley graph in Theorem 3.1. Then, |T | = 24p − 2 and the graph has 243p2

vertices.
For any integer d ∈ [24p − 2, 243p2 − 1], we can choose and add (d − |T |)

elements in G to T to get a new set T ′ such that |T ′| = d and T ′ = T ′−1. Clearly the
Cayley graph �(G, T ′) is still of diameter 2.

Now we fix d, which is sufficiently large. Let b = d
24 + 1

12 . By [3], there is a prime
p such that b − b0.525 ≤ p ≤ b. Hence, we can take this p and construct the Cayley
graph �(G, T ′) such that |T ′| = d and

|G| = 243p2 ≥ 243(b − b0.525)2

> 243(b2 − 2b1.525)

> 243

(

d2

576
− 2

(
d

24

)1.525
)

>
27

64
d2 − 3.9d1.525.


�

3.2 AC(d, k)

In this subsection, we consider the case AC(d, k). We first prove a lower bound for
AC(d, 4).

Theorem 3.3 Let q be a prime power and d = 11q−5. Then, AC(d, 4) ≥ ( 3
11 )

4(d+
5)3(d − 6).

Proof Let H = F
∗
q × (Fq)

3 × (Z3)
4 be an abelian group with multiplication

(x, x0, x1, x2, i0, i1, i2, i3) ·(y, y0, y1, y2, j0, j1, j2, j3) = (xy, x0+ y0, x1+ y1, x2+
y2, i0 + j0, i1 + j1, i2 + j2, i3 + j3), where x, y ∈ F

∗
q , x0, x1, x2, y0, y1, y2 ∈ Fq and

i0, i1, i2, i3, j0, j1, j2, j3 ∈ Z3. Let

A = {a(x) = (x, x, 0, 0, 1, 0, 0, 0) : x ∈ F
∗
q }, B = {b(x) = (x, 0, x, 0, 0, 1, 0, 0) : x ∈ F

∗
q },

C = {c(x) = (x, 0, 0, x, 0, 0, 1, 0) : x ∈ F
∗
q }, D = {d(x) = (x, 0, 0, 0, 0, 0, 0, 1) : x ∈ F

∗
q },

E = {e(x) = (1, x, 0, 0, 0, 0, 0, 0) : x ∈ F
∗
q }, F = { f (x) = (1, 0, x, 0, 0, 0, 0, 0) : x ∈ F

∗
q },

G = {g(x) = (1, 0, 0, x, 0, 0, 0, 0) : x ∈ F
∗
q },

a = (1, 0, 0, 0, 1, 0, 0, 0), b = (1, 0, 0, 0, 0, 1, 0, 0),
c = (1, 0, 0, 0, 0, 0, 1, 0).
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It can be computed to get that

A−1 = {a(x)−1 = (x−1, −x, 0, 0,−1, 0, 0, 0) : x ∈ F
∗
q }, B−1 = {b(x)−1 = (x−1, 0, −x, 0, 0,−1, 0, 0) : x ∈ F

∗
q },

C−1 = {c(x)−1 = (x−1, 0, 0, −x, 0, 0,−1, 0) : x ∈ F
∗
q }, D−1 = {d(x)−1 = (x−1, 0, 0, 0, 0, 0, 0,−1) : x ∈ F

∗
q },

E−1 = E, F−1 = F,

G−1 = G,

a−1 = (1, 0, 0, 0, −1, 0, 0, 0), b−1 = (1, 0, 0, 0, 0, −1, 0, 0),
c−1 = (1, 0, 0, 0, 0, 0, −1, 0).

Define T ′ = A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G ∪ {a, b, c} and T = T ′ ∪ T ′−1. Then,
|T | = 11q − 5.

It is easy to compute to get that

a(x)a(y)−1 f (z)g(w) = (xy−1, x − y, z, w, 0, 0, 0, 0),

d(x)d(y)−1 f (z)g(w) = (xy−1, 0, z, w, 0, 0, 0, 0),

e(x) f (y)g(z) = (1, x, y, z, 0, 0, 0, 0),

and {(xy−1, x − y, z, w, 0, 0, 0, 0) : x, y ∈ F
∗
q , z, w ∈ Fq} ∪ {(xy−1, 0, z, w, 0, 0,

0, 0) : x, y ∈ F
∗
q , z, w ∈ Fq} ∪ {(1, x, y, z, 0, 0, 0, 0) : x, y, z ∈ Fq} =

F
∗
q × Fq × Fq × Fq × {0} × {0} × {0} × {0}.
Wecando similar discussions, then (T∪{(1, 0, 0, 0, 0, 0, 0, 0)})·(T∪{(1, 0, 0, 0, 0,

0, 0, 0)}) · (T ∪ {(1, 0, 0, 0, 0, 0, 0, 0)}) · (T ∪ {(1, 0, 0, 0, 0, 0, 0, 0)}) ⊇ H follows
from the following equations and replace the elements of the left-hand side of equations
to their inverse.

a(x)e(y) f (z)g(w) = (x, x + y, z, w, 1, 0, 0, 0), b(x)e(y) f (z)g(w) = (x, y, x + z, w, 0, 1, 0, 0),
c(x)e(y) f (z)g(w) = (x, y, z, x + w, 0, 0, 1, 0), d(x)e(y) f (z)g(w) = (x, y, z, w, 0, 0, 0, 1),
a(x)b(y)e(z)g(w) = (xy, x + z, y, w, 1, 1, 0, 0), a(x)b · e(y)g(z) = (x, x + y, 0, z, 1, 1, 0, 0),
a(x)c(y) f (z)g(w) = (xy, x, z, y + w, 1, 0, 1, 0), a · c(x) f (y)g(z) = (x, 0, y, x + z, 1, 0, 1, 0),
a(x)d(y) f (z)g(w) = (xy, x, z, w, 1, 0, 0, 1), a · d(x) f (y)g(z) = (x, 0, y, z, 1, 0, 0, 1),
b(x)c(y)e(z)g(w) = (xy, z, x, y + w, 0, 1, 1, 0), b · c(x)e(y)g(z) = (x, y, 0, z, 0, 1, 1, 0),
b(x)d(y)e(z)g(w) = (xy, z, x, w, 0, 1, 0, 1), b · d(x)e(y)g(z) = (x, y, 0, z, 0, 1, 0, 1),
c(x)d(y)e(z) f (w) = (xy, z, w, x, 0, 0, 1, 1), c · d(x)e(y) f (z) = (x, y, z, 0, 0, 0, 1, 1),
a(x)b(y)c(z)g(w) = (xyz, x, y, z + w, 1, 1, 1, 0), a · b(x)c(y)g(z) = (xy, 0, x, y + z, 1, 1, 1, 0),
a(x)b · c(y)g(z) = (xy, x, 0, y + z, 1, 1, 1, 0), a · b · c(x)g(y) = (x, 0, 0, x + y, 1, 1, 1, 0),
a(x)b(y)d(z)g(w) = (xyz, x, y, w, 1, 1, 0, 1), a · b(x)d(y)g(z) = (xy, 0, x, z, 1, 1, 0, 1),
a(x)b · d(y)g(z) = (xy, x, 0, z, 1, 1, 0, 1), a · b · d(x)g(y) = (x, 0, 0, y, 1, 1, 0, 1),
a(x)c(y)d(z) f (w) = (xyz, x, w, y, 1, 0, 1, 1), a · c(x)d(y) f (z) = (xy, 0, z, x, 1, 0, 1, 1),
a(x)c · d(y) f (z) = (xy, x, z, 0, 1, 0, 1, 1), a · c · d(x) f (y) = (x, 0, y, 0, 1, 0, 1, 1),
b(x)c(y)d(z)e(w) = (xyz, w, x, y, 0, 1, 1, 1), b · c(x)d(y)e(z) = (xy, z, 0, x, 0, 1, 1, 1),
b(x)c · d(y)e(z) = (xy, z, x, 0, 0, 1, 1, 1), b · c · d(x)e(y) = (x, y, 0, 0, 0, 1, 1, 1),
a(x)b(y)c(z)d(w) = (xyzw, x, y, z, 1, 1, 1, 1), a · b(x)c(y)d(z) = (xyz, 0, x, y, 1, 1, 1, 1),
a(x)b · c(y)d(z) = (xyz, x, 0, y, 1, 1, 1, 1), a(x)b(y)c · d(z) = (xyz, x, y, 0, 1, 1, 1, 1),
a(x)b · c · d(y) = (xy, x, 0, 0, 1, 1, 1, 1), a · b(x)c · d(y) = (xy, 0, x, 0, 1, 1, 1, 1),
a · b · c(x)d(y) = (xy, 0, 0, x, 1, 1, 1, 1), a · b · c · d(x) = (x, 0, 0, 0, 1, 1, 1, 1).


�
The following theorem is a generalization of Theorem 3.3, and the discussion is

similar as that of Theorem 3.3; we skip the proof.
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Theorem 3.4 Let q be a prime power, k be an integer and d = (3k − 1)q − k − 1.
Then, AC(d, k) ≥ ( 3

3k−1 )
k(d + k + 1)k−1(d − 2k + 2).

Corollary 3.5 For sufficiently large degree d,

AC(d, k) ≥
(

3

3k − 1

)k

dk + O(dk−0.475).

Proof Let p be an odd prime. Let T, (G, resp.) be the defining set (group, resp.) of
the Cayley graph in Theorem 3.4. Then, |T | = (3k − 1)p − k − 1 and the graph has
3k pk−1(p − 1) vertices.

For any integer d ∈ [(3k−1)p−k−1, 3k pk−1(p−1)−1], we can choose and add
(d − |T |) elements in G to T to get a new set T ′ such that |T ′| = d and T ′ = T ′−1.
Clearly the Cayley graph �(G, T ′) is still of diameter k.

Now we fix d, which is sufficiently large. Let b = d
3k−1 + k+1

3k−1 . By [3], there is a

prime p such that b − b0.525 ≤ p ≤ b. Hence, we can take this p and construct the
Cayley graph �(G, T ′) such that |T ′| = d and

|G| = 3k pk−1(p − 1) ≥ 3k(b − b0.525)k−1(b − b0.525 − 1)

> 3kbk + O(bk−0.475)

> 3k
(

d

3k − 1
+ k + 1

3k − 1

)k

+ O

((
d

3k − 1
+ k + 1

3k − 1

)k−0.475
)

>

(
3

3k − 1

)k

dk + O(dk−0.475).
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