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Abstract In this paper we study extensions between Cohen–Macaulay modules for
algebras arising in the categorifications of Grassmannian cluster algebras. We prove
that rank 1 modules are periodic, and we give explicit formulas for the computation
of the period based solely on the rim of the rank 1 module in question. We determine
Exti (L I , L J ) for arbitrary rank 1 modules L I and L J . An explicit combinatorial
algorithm is given for the computation of Exti (L I , L J ) when i is odd, and when i
even, we show that Exti (L I , L J ) is cyclic over the centre, and we give an explicit
formula for its computation. At the end of the paper we give a vanishing condition of
Exti (L I , L J ) for any i > 0.

Keywords Grassmannian cluster algebras · Cohen–Macaulay modules · Extension
spaces
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1 Introduction and preliminaries

In his study [7] of the total positivity of the Grassmannian Gr(k, n) of k-planes in Cn ,
Postnikov introduced alternating strand diagrams as collections of n curves in a disk
satisfying certain axioms. Alternating strand diagrams associatedwith the permutation
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i �→ i + k of Zn = {1, 2, . . . , n} (where i + k is taken modulo n if i + k > n) were
used by Scott [8] to show that the homogeneous coordinate ring of Gr(k, n) has the
structure of a cluster algebra, with each such diagram corresponding to a seed whose
(extended) cluster consists of minors (i.e. of Plücker coordinates), where the minors
are labelled by k-subsets of {1, 2, . . . , n}. The diagram both gives the quiver of the
cluster and the minors (cluster variables) contained in it: every alternating region of
the diagram is obtained as a label the k-subset formed by the strands passing to the
right of the region, and the quiver can be read off from the geometry of the strands. Oh
et al. have proved in [6] that every cluster consisting of minors arises in this way, so
there is a bijection between clusters of minors and strand diagrams for the Grassmann
permutation. A categorification of this cluster algebra structure has been obtained by
Geiss et al. [4] via (a subcategory of) the category of finite-dimensional modules over
the preprojective algebra of type An−1.

In [5], Jensen et al. gave a new and extended categorification of this cluster structure
using the maximal Cohen–Macaulay modules [2] over the completion of an algebra
B which is a quotient of the preprojective algebra of type Ãn−1. In particular, a rank
1 Cohen–Macaulay B-module L I is associated with each k-subset I of {1, 2, . . . , n}.

It was shown in [5] that every rigid indecomposable Cohen–Macaulay module for
the abovementioned algebra B has a generic filtration by rank 1modules. This enables
a description of these modules in terms of the so-called profiles, given by collections
of k-subsets that correspond to the rank 1 modules in this filtration. In particular, this
profile determines the class of the module in the Grothendieck group of the category
of Cohen–Macaulay modules. Therefore, rank 1 modules are the building blocks of
the category of Cohen–Macaulay modules, and in order to understand representation-
theoretic invariants for the category of all Cohen–Macaulay modules, we must first
do so for rank 1 modules. Since the algebra B is infinite dimensional, most of the
homological computations are difficult to conduct, but for some problems, it is possible
to give complete answers. Such a problem is the computation of the extension spaces
between rank 1 Cohen–Macaulay modules. To the Grassmannian Gr(k, n) we can
associate a graph Jk,n by drawing a linear graph with nodes 1, . . . , n −1 and attaching
an additional node to the k-th node. The type of the cluster category associated to
Gr(k, n) is finite if and only if this tree is a Dynkin graph. There is a degree function
on the roots of the associated Kac–Moody algebra by taking the coefficient at the
n-th node [5, Sect. 2]. It is an open question raised by Zelevinsky whether the roots
of height m > 1 correspond to Cohen–Macaulay modules obtained as extensions of
m rank 1 modules whose k-subsets are cyclically equivalent. Knowing the extension
spaces between rank 1modules contributes to the understanding of this question. Also,
extension spaces give us a lot of information about parts of theAuslander–Reiten quiver
of the category of Cohen–Macaulay modules involving vertices that correspond to the
rank 1 modules, and in this context, it is crucial to understand the structure of the
syzygies appearing in the projective resolutions of rank 1 Cohen–Macaulay modules.

After some introductory remarks, in the second section of this paper we prove
that rank 1 Cohen–Macaulay modules over the above mentioned completion of the
algebra B are periodic, with periods being even numbers in the case when I is a
disjoint union of more than two intervals. We give an explicit combinatorial formula
for computation of the period of a given rank 1 module L I only in terms of the k-
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subset I , which is called the rim of the rank 1 module L I . In the last section of this
paper, we give an explicit combinatorial description of the Ext-spaces between rank
1 Cohen–Macaulay modules. The description is in terms of a new combinatorial and
geometric construction consisting of a sequence of trapezia given by the rims of rank
1 Cohen–Macaulay modules. An explicit algorithm is constructed for the computation
of the Ext-spaces which turn out to be finite dimensional. Also, we prove directly that
the Ext-functor is commutative for rank 1 modules and that Ext2(L I , L J ), where L I

and L J are rank 1 Cohen–Macaulay modules, is a cyclic module over the centre F[t]
of B. By using the fact that rank 1 modules are periodic, it was proven that for any
i > 0,Exti (L I , L J ) is a finite-dimensional vector space. At the end of the paper, we
give a combinatorial criterion for vanishing of Exti (L I , L J ) for any i > 0.

We follow the exposition from [1] in order to introduce notation and background
results. Let C be a circular graph with vertices C0 = Zn set clockwise around a circle,
and with the set of edges, C1, also labelled by Zn , with edge i joining vertices i − 1
and i . For integers a, b ∈ {1, 2, . . . , n}, we denote by [a, b] the closed cyclic interval
consisting of the elements of the set {a, a +1, . . . , b} reduced modulo n. Consider the
quiver with vertices C0 and, for each edge i ∈ C1, a pair of arrows xi : i − 1 → i and
yi : i → i − 1. Then let B be the quotient of the path algebra (over F, where F = F̄)
of this quiver by the ideal generated by the 2n relations xy = yx and xk = yn−k ,
interpreting x and y as arrows of the form xi , yi appropriately and starting at any
vertex, e.g. when n = 5 we have

•

x1

y1

•
x2

y2

•
x3

y3

•

x4

y4

•x5

y5

5

4

3 2

1

The completion ̂B of B coincides with the quotient of the completed path algebra
of the graph C , i.e. the doubled quiver as above, by the closure of the ideal generated
by the relations above (we view the completed path algebra of the graph C as a
topological algebra via the m-adic topology, where m is the two-sided ideal generated
by the arrows of the quiver, see [3, Sect. 1]). The algebras B and ̂B were introduced
in [5, Sect. 3].

The centre Z of B is the polynomial ringF[t], where t = ∑n
i=1 xi yi . The (maximal)

Cohen–Macaulay B-modules are precisely thosewhich are free as Z -modules. Indeed,
such a module M is given by a representation {Mi : i ∈ C0} of the quiver with each
Mi a free Z -module of the same rank (which is the rank of M , cf. [5, Sect. 3]).

Definition 1.1 [5, Definition 3.5] For any B-module M , if K is the field of fractions
of Z , we can define its rank
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rk(M) = len
(

M ⊗Z K
)

,

noting that B ⊗Z K ∼= Mn(K ), which is a simple algebra.

It is easy to check that the rank is additive on short exact sequences, that rk(M) = 0
for any finite-dimensional B-module (because these are torsion over Z ) and that, for
any Cohen–Macaulay B-module M and every idempotent e j , 1 ≤ j ≤ n,

rkZ (e j M) = rk(M),

so that, in particular, rkZ (M) = nrk(M).

Definition 1.2 [5, Definition 5.1] For any k-subset I of C1, we define a rank 1 B-
module

L I = (Ui , i ∈ C0 ; xi , yi , i ∈ C1)

as follows. For each vertex i ∈ C0, set Ui = F[t] and, for each edge i ∈ C1, set

xi : Ui−1 → Ui to be multiplication by 1 if i ∈ I , and by t if i /∈ I ,
yi : Ui → Ui−1 to be multiplication by t if i ∈ I , and by 1 if i /∈ I .

Themodule L I can be represented by a lattice diagramLI inwhichU0, U1, U2, . . . ,

Un are represented by columns from left to right (withU0 andUn to be identified). The
vertices in each column correspond to the natural monomial basis of F[t]. The column
corresponding to Ui+1 is displaced half a step vertically downwards (respectively,
upwards) in relation to Ui if i + 1 ∈ I (respectively, i + 1 /∈ I ), and the actions of xi

and yi are shown as diagonal arrows. Note that the k-subset I can then be read off as
the set of labels on the arrows pointing down to the right which are exposed to the top
of the diagram. For example, the lattice picture L{1,4,5} in the case k = 3, n = 8, is
shown in the following picture
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We see from the above picture that the module L I is determined by its upper
boundary, that is by its rim (this is why we refer to the k-subset I as the rim of
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L I ), which is the following directed graph with the leftmost and rightmost vertices
identified:

1 2

3 4

5 6

7

8

Throughout this paper we will identify a rank 1 module L I with its rim from the
above picture. Moreover, most of the time we will omit the arrows in the rim of L I

and represent it as an undirected graph.

Remark 1.3 Note that we represent a rank 1 module L I by drawing its rim in the plane
and identifying the end points of the rim. Unless specified otherwise, we will assume
that the leftmost vertex is the vertex labelled by n, and in this case, most of the time we
will omit labels on the edges of the rim. If one looks at the rim from left to right, then
the number of downward edges in the rim is equal to k (these are the edges labelled
by the elements of I ), and the number of upward edges of the rim is equal to n − k
(these are the edges labelled by the elements that do not belong to I ).

Proposition 1.4 [5, Proposition 5.2] Every rank 1 Cohen–Macaulay B-module is
isomorphic to L I for some unique k-subset I of C1.

Every B-module has a canonical endomorphism given by multiplication by t ∈ Z .
For L I this corresponds to shifting LI one step downwards. Since Z is central,
HomB(M, N ) is a Z -module for arbitrary B-modules M and N . If M, N are free
Z -modules, then so is HomB(M, N ). In particular, for rank 1 Cohen–Macaulay B-
modules L I and L J ,HomB(L I , L J ) is a free module of rank 1 over Z = F[t],
generated by the canonical map given by placing the lattice of L I inside the lattice of
L J as far up as possible so that no part of the rim of L I is strictly above the rim of L J .

One sees explicitly that the algebra B has n indecomposable projective left mod-
ules Pj = Be j , corresponding to the vertex idempotents e j ∈ B, for j ∈ C0. Our
convention is that representations of the quiver correspond to left B-modules. Right
B-modules are representations of the opposite quiver. The projective indecomposable
B-module Pj is the rank 1 module L I , where I = { j + 1, j + 2, . . . , j + k}, so we
represent projective indecomposable modules as in the following picture, where P5 is
pictured (n = 5, k = 3):
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2 Periodicity of rank 1 modules

In this section we prove that all rank 1 Cohen–Macaulay B-modules are periodic, and
we give an explicit formula for the periods of these modules in terms of their rims.

If L I is a rank 1 module corresponding to a rim I , then there is an epimorphism π

⊕

u∈U

Pu
π−→ L I

where U = {u /∈ I |u + 1 ∈ I }, given by the canonical maps from Pu to L I , for every
u ∈ U , i.e. the maps that map Pu to L I by placing the rim of Pu inside the L I as far up
as possible so that no parts of the rim of Pu are strictly above the rim of L I . In other
words, π is determined by the projective indecomposable modules that correspond to
the peaks of the rim of L I . The rank of the module ⊕u∈U Pu is equal to the number of
the peaks of the rim of L I . Note that no projective module of rank less than the rank
of ⊕u∈U Pu can map surjectively onto L I . Since the rank is additive on short exact
sequences, we have that the rank of the kernel of the epimorphism π , denote it by r ,
is one less than the number of peaks of the rim, that is, if there are r + 1 peaks on the
rim of L I , then the rank of the kernel of π is r .

Denote the kernel of π by Ω(L I ). To determine a projective module P of the
smallest possible rank that can be mapped epimorphically onto Ω(L I ) we look at the
following picture, where only parts of the lattice of the module L I are drawn. The
kernel of π corresponds to the parts of the lattice LI that are on or below the dashed
line. This area corresponds to the part of L I that is covered by at least two different
projective indecomposable modules Pu from the set U . For example, the dot that is
singled out below the dashed line in the picture represents an element of L I that is
covered by both P10 and P8.
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It follows that the module P that maps onto Ω(L I ) is determined by the low points
of the rim of L I . We call these points the valleys of the rim I . It is clear that there
are as many low points on the rim as there are peaks. Hence, P is a module of rank
r + 1 isomorphic to the direct sum

⊕

v∈V Pv, where V = {v ∈ I |v + 1 /∈ I }. Note
that no projective module of rank less than the rank of ⊕v∈V Pv can map surjectively
onto Ω(L I ).

Again, because the rank is additive on short exact sequences, it follows that the
kernel of an epimorphism from ⊕v∈V Pv onto Ω(L I ) is a rank 1 module. This means
that there is a k-subset of {1, 2, . . . , n}, denoted by I 2, such that this kernel, denoted by
Ω2(L I ), is isomorphic to L I 2 , i.e.Ω

2(L I ) ∼= L I 2 . Note thatΩ
2(L I ) has no projective

summands since it is an indecomposable module of rank 1. Also, since Ω2(L I ) is a
module of rank 1, it is easy to show that Ω2(L I ) is a superfluous submodule of the
module ⊕v∈V Pv , so ⊕v∈V Pv is the projective cover of Ω1(L I ).

Using the same arguments as above, a projective module of the smallest possible
rank that maps surjectively onto Ω2(L I ) ∼= L I 2 is a module of rank r + 1, and the
kernel of the corresponding epimorphism, denoted by Ω3(L I ), is a rank r module.
Furthermore, the kernel of the epimorphism from a projective module of the smallest
possible rank ontoΩ3(L I ) is a rank 1module, denoted byΩ4(L I ), and it is isomorphic
to L I 4 for some k-subset I 4 of {1, 2, . . . , n}. If we continue this construction of a
projective resolution of L I , every other kernel will be a rank 1 module.

Since there are only finitely many rank 1 modules (they are in bijection with k-
subsets of {1, 2, . . . , n}), we must have that the above projective resolution of L I is
periodic. That is, for some indices a and b, a 	= b, it holds that Ωa(L I ) ∼= Ωb(L I ),
with Ωa(L I ) denoting the ath syzygy of L I . In fact, we are going to prove a stronger
statement that for some index t , we have that Ω t (L I ) ∼= L I . The rest of this section
is devoted to determining the minimal such index t .

Obviously, whenΩ1(L I ) is of rank greater than 1, t must be an even number. Thus,
we have to consider separately the case when Ω1(L I ) is a rank 1 module, because
in this case in each step of the minimal projective resolution we get kernels that are
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rank 1 modules, so it can happen that in an odd number of steps we get a kernel that
is isomorphic to L I , as we will see in the upcoming example.

Example 2.1 Let n = 6, k = 4, and I = {1, 2, 4, 5}. In this case, the number of peaks
on the rim of L I is equal to 2. For every i,Ω i (L I ) is a rank 1 module.

The rims of the rank 1 modules Ω i (L I ), for i = 1, 2, 3, are depicted with different
types of lines in the following picture, with the dashed rim representing the rim of
Ω1(L I ), the thin lined rim representing the rim of Ω2(L I ), and the dotted rim repre-
senting the rim of Ω3(L I ). We see from the picture that Ω3(L I ) ∼= L I , and that the
period of L I is 3.

1

2 3 4

5 6

Before moving on to the general case when Ω(L I ) is a module of rank 1, let us
introduce some of the notation used in this section.

If I is a k-subset of {1, 2, . . . , n} that has r + 1 peaks when viewed as the rim of
L I , then I can be written as a disjoint union of r + 1 segments A1, A2, . . . , Ar+1,
where Ai = [ai , bi ], and ai+1 − bi > 1, for all i . We can also assume without loss of
generality that a1 = 1, because we can always assume that 0 is one of the peaks of the
rim I , by renumbering if necessary. The size of the segment Ai is denoted by di , and
the difference ai+1 − bi − 1 is denoted by li . If one considers the rim of the module
L I , it is clear that the numbers di (respectively li ) represent the sizes of downward
slopes (respectively upward slopes) of the rim, when looked at from left to right. Also,
∑

di = k, and
∑

li = n − k.

Example 2.2 Continuing the previous example, we have that I is the union I =
{1, 2} ∪ {4, 5}, and r + 1 = 2. There are two downward slopes, both of length 2, i.e.
d1 = d2 = 2, and there are two upward slopes, both of length 1, i.e. l1 = l2 = 1.

We will start by dealing with the case when rkΩ(L I ) = 1, i.e. the case when we
have only two peaks on the rim of L I . In this situation, there are positive integers
d1, d2, l1, l2, such that

I = A1 ∪ A2 = {1, 2, . . . , d1} ∪ {d1 + l1 + 1, d1 + l1 + 2, . . . , d1 + l1 + d2}.
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A part of the lattice of L I is drawn in the following picture (note that the actual
lengths of the downward and upward slopes of the rim of L I are d1 and d2 for the
downward slopes, and l1 and l2 for the upward slopes).

l2

l1

l1

l2

1

d1 d1 + l1 + 1

n

The projective cover of L I is P0 ⊕ Pd1+l1 . The kernel of the projective cover
is a rank 1 module whose rim is given by reading off its peaks from the rim of
L I , that is, by reading off the valleys of the rim of L I , and it is depicted by the
dashed line in the above picture. By looking at the above picture, we see that the
rim of Ω1(L I ) has its peaks at d1 and d1 + l1 + d2. Thus, Ω1(L I ) ∼= L I 1 , where
I 1 = {1 − l2, 2 − l2, . . . , d1 − l2} ∪ {d1 + 1, d1 + 2, . . . , d1 + d2}, with the addition
being modulo n. The rim of Ω1(L I ), drawn by the dashed line in the above picture, is
obtained from the rim of L I by taking for its peaks the valleys of the rim of L I , and by
shifting the upward slopes of the rim of L I to the right, meaning that the upward slope
that started at the i th valley (reading from left to right) of the rim of L I now starts at the
end of the (i + 1)th downward slope in the rim of Ω(L I ), as in the above picture. We
obtained that I 1 = A1

1∪A1
2 = {1−l2, 2−l2, . . . , d1−l2}∪{d1+1, d1+2, . . . , d1+d2}

and that the gap (the length of the upward slope) between A1
1, which is a set of size

d1, and A1
2, which is a set of size d2, is l2.

If we now compute the projective cover of L I 1 , by using the same arguments we
get that the kernel of this projective cover, Ω2(L I ), is isomorphic to L I 2 , where
I 2 = A2

1 ∪ A2
2 = {1 − l2 − l1, 2 − l2 − l1, . . . , d1 − l2 − l1} ∪ {d1 + 1 − l2, d1 +

2 − l2, . . . , d1 + d2 − l2}. The rim of L I 2 is drawn by the thick line in the above
picture. Using that l1 + l2 = n − k and adding modulo n, we get that I 2 = {1 +
k, 2 + k, . . . , d1 + k} ∪ {d1 + l1 + 1 + k, d1 + l1 + 2 + k, . . . , d1 + d2 + l1 + k},
and the gap between A2

1 and A2
2 is l1. Repeating this procedure, we get an explicit

description of the kernels appearing in the minimal projective resolution of L I , i.e.
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we get Ωm(L I ) ∼= L I m , where I m = Am
1 ∪ Am

2 . After even number of steps 2t , we
get that Ω2t (L I ) ∼= L I 2t , where

I 2t = {1 + tk, 2 + tk, . . . , d1 + tk} ∪ {d1 + l1 + 1 + tk, . . . , d1 + d2 + l1 + tk},

and the gap between A2t
1 and A2t

2 is l1. After odd number of steps we get that
Ω2t+1(L I ) ∼= L I 2t+1 , where

I 2t+1 = {1 − l2 + tk, 2 − l2 + tk, . . . , d1 − l2 + tk}
∪ {d1 + 1 + tk, d1 + 2 + tk, . . . , d1 + d2 + tk},

and the gap between A2t+1
1 and A2t+1

2 is l2.

Theorem 2.3 Let L I be a rank 1 module whose rim I has two peaks, and let Ωm(L I )

be as above. It holds that L I ∼= Ω2n/(n,k)(L I ). The minimal projective resolution of
L I is periodic with period dividing 2n/(n, k).

Proof Keeping the notation from the above discussion, if we set t = n/(n, k), then
A1 = A2t

1 , A2 = A2t
2 , i.e. I = I 2t . This means that L I ∼= Ω2n/(n,k)(L I ). ��

We will now proceed by giving the explicit formula for the period of a rank 1
module whose rim has two peaks. We are looking for a minimal index m such that
I m = I .

If d1 	= d2 and l1 	= l2, then m has to be an even number in order for the upward
slopes to be in the correct order. The condition A1 = Am

1 is equivalent to the condition
km/2 ≡ 0 mod n which we get from the requirement that the smallest elements of
A1 and Am

1 are equal. Hence, in this case m = 2t , where t is the minimal positive
integer such that kt ≡ 0 mod n, i.e.

m = 2n/(n, k), (2.1)

with (n, k) being the greatest common divisor of n and k. If (n, k) = 1, then we obtain
2n, which is the upper bound from the previous theorem.

If d1 = d2 and l1 	= l2, then, in the general case, m could either be even or odd. If
m is even, then as in the previous case it is equal to 2n/(n, k). If m = 2t + 1 is odd,
then the gap between Am

1 and Am
2 is l2, forcing that Am

2 = A1 and Am
1 = A2. This is

equivalent to saying that d1 + 1 + tk ≡ 1 mod n, hence m = 2t + 1, where t is the
minimal positive integer such that d1 + tk ≡ 0 mod n. Therefore, in this case

m = min{2n/(n, k), 2min{t | d1 + tk ≡ 0 mod n} + 1}. (2.2)

If d1 	= d2 and l1 = l2, then, in the general case, m could either be even or odd,
since the gaps between Ai

1 and Ai
2 are in the right order for every i . In this case it must

be Am
1 = A1. This condition is equivalent to the condition 1 ≡ 1 + tk mod n when

m = 2t is even, and 1 + tk − l2 ≡ 1 when m = 2t + 1 is odd. Therefore, in this case

m = min{2n/(n, k), 2min{t | tk − l2 ≡ 0 mod n} + 1}. (2.3)
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We are left with the most complicated case when d1 = d2 and l1 = l2. Again, m
could be either even or odd, but also, it can either be that A1 = Am

1 and A1 = Am
2 ,

because the gaps will be in the right order, and Am
1 could be each of the sets A1 and

A2. If A1 = Am
1 , then 1+ tk − l2 ≡ 1 mod n when m = 2t + 1 is odd, and 1+ tk ≡ 1

mod n when m = 2t is even. If A2 = Am
1 , then d1 + 1 + tk ≡ 1 mod n when

m = 2t + 1 is odd, and 1+ d1 + l1 + tk ≡ 1 mod n when m = 2t is even. Hence, in
this case m is a divisor of 2n/(n, k) given by

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2n/(n, k),

2min{t | tk − l2 ≡ 0 mod n} + 1,
2min{t | d1 + tk ≡ 0 mod n} + 1,
2min{t | d1 + l1 + tk ≡ 0 mod n}.

(2.4)

We summarize our results in the following theorem.

Theorem 2.4 Let L I be a rank 1 Cohen–Macaulay module, and let d1, d2 and l1, l2
be as above. Depending on whether d1 = d2 or not, and l1 = l2 or not, the period of
the module L I is given by Eqs. (2.1), (2.2), (2.3) and (2.4).

This completes our determination of the periods for the rank 1 Cohen–Macaulay
modules whose rims have only two peaks. For four different cases studied above, in
general, we have four different formulas for computation of the period of a given rank
1 module.

Example 2.5 In Example 2.1 we had n = 6, k = 4 and a rank 1 Cohen–Macaulay
module L I with the rim I = {1, 2, 4, 5}, and d1 = d2 = 2 and l1 = l2 = 1. In this
case the period of L I is given by Eq. (2.4). For t = 1, we have that d1 + kt ≡ 0
mod 6, meaning that the period of the module L I is 3.

Example 2.6 Let n = 6, k = 3 and I = {1, 2, 5}. In this case we have that d1 =
2 	= d2 = 1, l1 = 2 	= l2 = 1. Since k = 3, it follows that the period of L I is
m = 2n/(n, k) = 4. The rims of Ω i (L I ) are depicted in different types of lines in
the following picture, with thick dashed line representing the rim of Ω4(L I ), which
is isomorphic to L I .

123



976 J Algebr Comb (2017) 45:965–1000

1

2 3

54 6

We now assume that I is such that the rim of L I has three or more peaks, and we
set rkΩ(L I ) = r > 1.

From the above discussion we have that every other kernel in the above constructed
projective resolution of L I is a rank 1 module. If I is a disjoint union of segments
A1, A2, . . . , Ar+1, then we assume that Ai has di elements and that the gap between
Ai and Ai+1 is of size li . Also, we can assume without loss of generality that the
smallest element in A1 is 1, i.e. A1 = {1, 2, . . . , d1}, A2 = {d1 + l1 + 1, . . . , d1 +
l1 + d2}, . . . , Ar+1 = {∑r

i=1 di + ∑r
i=1 li + 1, . . . ,

∑r
i=1 di + ∑r

i=1 li + dr+1}.
A projective presentation of L I is

⊕

v∈V

Pv
D−→

⊕

u∈U

Pu → L I → 0,

where U = {u /∈ I : u + 1 ∈ I } and V = {v ∈ I : v + 1 /∈ I }. Note that U and V are
disjoint sets with the same number of elements, which alternate in the cyclic order.
This number is r +1, where r = rkΩ(L I ) andΩ(L I ) = im D is the first syzygy. The
(r + 1) × (r + 1) matrix D = (dvu) has only nonzero entries when u, v are adjacent
in U ∪ V . More precisely,

dvu =

⎧

⎪

⎨

⎪

⎩

xv−u when u precedes v,

−yu−v when u follows v,

0 otherwise.

(2.5)

Here, x and y should be interpreted as xi and y j for appropriate indices i and j .
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Thus, we can assume that the matrix D is supported on just two cyclic diagonals.
Hence, it is of the following form (with omitted entries all equal to zero):

⎛

⎜

⎜

⎜

⎝

• •
• •

. . .
. . .

• •

⎞

⎟

⎟

⎟

⎠

.

Note that the lower cyclic diagonal contains the top right entry of the matrix.
We proceed by computing the kernel of the above mentioned map D from the

projective resolution of L I . We know that this kernel is a rank 1 module. If I =
{a1, a2, . . . , ah}, then we set I + k = {a1 + k, a2 + k, . . . , ah + k}.
Proposition 2.7 The rim of the second syzygy of L I is the rim I shifted by k, that is,
the rim of Ω2(L I ) is I + k.

Proof If we fix a valley v of the rim I , then the elements of the module Pv , where Pv

is a summand of
⊕

v∈V Pv , are mapped by the map D to two projective modules Puvl

and Puvr , where uvl denotes the peak that is to the left of v and uvr denotes the peak
that is to the right of the valley v. So for a given peak u, only two Pvs are mapped to
Pu .

For example, if we look at the rim from the following picture, for P10, only P9 and
P12 are mapped into P10. So the parts of P12 that are potentially in the kernel of D
are the ones lying on or below the thick dotted line corresponding to P9 in the below
picture. Also, P12 is mapped into P13 so the same has to hold with respect to P14,
the only parts of P12 that are candidates for the kernel are the ones on or below the
thin dotted line corresponding to P14, i.e. the parts below both thick dotted line and
thin dotted line. But not everything below the thin dotted line is a candidate for the
kernel since the only legitimate candidates from P14 are the ones below the black thin
line corresponding to P2, and so on. We conclude that we obtain the kernel of D by
reading off its rim from the rim of I by taking all the elements that are below the rims
of all projective indecomposable modules Pv, v ∈ V (in other words, that belong to
the intersection of all projective indecomposable modules), i.e. below all lines in the
following picture.
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Now, the rim of the area below all rims of the projective indecomposable modules
corresponding to the valleys of I is nothing but the rim I shifted by k to the right
(or by n − k to the left). This rim is depicted by the thick black line. To see this, we
notice that for each valley v of the rim I , in order to draw a corresponding projective
indecomposable module we draw a line to the right of v of size k, and a line to the left
of the size n − k. If we only observe lines that we draw to the right (or to the left) of
the valleys, it is obvious that we end up with the rim that is the same as the initial rim
I , only shifted to the right by k (or to the left by n − k). ��
Remark 2.8 As a submodule of

⊕

v∈V Pv,Ω
2(L I ) is given as a diagonally embedded

copy, withΩ2(L I ) seen as a submodule of each Pv by a canonical injective map given
by placing the rim of Ω2(L I ) inside the Pv as high as possible.

As in the case when r = 1, we have that Ω2(L I ) ∼= L I 2 , where I 2 is a union of
the following sets (with addition modulo n):
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A2
1 = {1 + k, 2 + k, . . . , d1 + k},

A2
2 = {d1 + l1 + 1 + k, d1 + l1 + 2 + k, . . . , d1 + l1 + d2 + k},

...

A2
r+1 =

{

r
∑

i=1

di +
r

∑

i=1

li + 1 + k, . . . ,

r
∑

i=1

di +
r

∑

i=1

li + dr+1 + k

}

.

We obtained I 2 from I by adding k to each element in a given segment. In other
words, just as in the case when r = 1, we obtain I 2 from I by shifting the rim to the
right by k.

If we repeat this procedure, after 2t steps we have that Ω2t (L I ) ∼= L I 2t , where I 2t

is the union of the following sets:

A2t
1 = {1 + kt, . . . , d1 + kt},

A2t
2 = {d1 + l1 + 1 + kt, d1 + l1 + 2 + kt, . . . , d1 + l1 + d2 + kt},

...

A2t
r+1 =

{

r
∑

i=1

di +
r

∑

i=1

li + 1 + kt, . . . ,
r

∑

i=1

di +
r

∑

i=1

li + dr+1 + kt

}

.

Theorem 2.9 Let L I be a rank 1 module whose rim has three or more peaks. Then
Ω2n/(n,k)(L I ) ∼= L I , i.e. L I is a periodic module with period being an even number
dividing 2n/(n, k). Moreover, the period m is given by

m = 2min

{

t | ∃c ∈ [1, r + 1] s.t. dc+i = d1+i , lc+i = l1+i (for i ∈ 0, r),

and kt ≡
c−1
∑

i=1

(di + li ) mod n

}

. (2.6)

Proof We are looking for a minimal positive integer m = 2t such that I 2t = I .
Looking at I 2 we see that the gap between A2

i and A2
i+1 is li , and in the general case,

the gap between A2t
i and A2t

i+1 is li . In order to have I 2t = I , it must hold that there
is some c ∈ {1, 2, . . . , n} such that A2t

1+i = Ac+i , for i = 0, r , i.e. we must have
equality of segments, and also we must have gaps between segments in the right order,
i.e. it must hold that lc+i = l1+i , for i = 0, r . In other words, if (l1, l2, . . . , lr+1) is an
(r + 1)-tuple of upward segment lengths, after an appropriate cyclic permutation of
this tuple it must be that (l1, l2, . . . , lr+1) = (lc, lc+1, . . . , lc+r ). The same holds for
downward segments. The above conditions are equivalent to the conditions

Ac+i = A2t
1+i , lc+i = l1+i (i = 0, r),

or to the conditions

Ac = A2t
1 , dc+i = d1+i , lc+i = l1+i (i = 0, r).
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The equality of sets Ac = A2t
1 holds if d1 = dc and 1 + kt ≡ ∑c−1

i=1 (di + li ) + 1
mod n.

We notice here that if we take t = n/(n, k), and c = 1, then we have dc+i = d1+i

and lc+i = l1+i for all i , and kt ≡ 0 mod n, i.e. A2n
1+i = A1+i for all i , and

I = I 2n/(n,k). Thus, the upper bound for the period m is 2n/(n, k). It is clear that the
period must be even, because every other syzygy is a rank 1 module. ��

As a corollary to the previous theorem, we immediately get a well-known result.

Corollary 2.10 The algebra B has infinite global dimension.

Example 2.11 Let n = 15, k = 7, and I = {1, 2, 4, 9, 11, 12, 14}. Since I = {1, 2}∪
{4}∪{9}∪{11, 12}∪{14}, we have that r +1 = 5, and that the (r +1)-tuples of lengths
of downward and upward slopes are (2, 1, 1, 2, 1) and (1, 4, 1, 1, 1) respectively. Since
the only c for which d1 = dc is either 1 or 4, we either have Am

1 = A1 or Am
1 = A4.

Since the cyclic tuple of upward lengths starting at A4 is (1, 1, 1, 4, 1) which is not
equal to (1, 4, 1, 1, 1), it must be the case that Am

1 = A1. By the previous theorem
it must be that 7t ∼= 0 mod 15. We are left to find the smallest t such that kt ∼= 0
mod n, which is obviously 15 since (15, 7) = 1. It follows that the period m of L I is
30, which is the upper bound 2n from the previous theorem.

1

2 3 4 5

6

7

8 9 10 11

12 13 14 15

Example 2.12 Let n = 8, k = 4 and I = {1, 3, 5, 7}. In this case r = 3. From the
below picture it is obvious that Ω2(L I ) ∼= L I , i.e. the period of L I is m = 2, which
is the lower bound from the previous theorem, i.e. the minimal possible value for the
period of a rank 1 module.
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Example 2.13 Let n = 12, k = 8, and I = {1, 2, 4, 5, 7, 8, 10, 11}. Since I =
{1, 2}∪{4, 5}∪{7, 8}∪{10, 11}, we have that r +1 = 4, and that the (r +1)-tuples of
lengths of downward and upward slopes are (2, 2, 2, 2) and (1, 1, 1, 1). Since di = d j

for all i, j , we have that Am
1 could be any of the Ai .

1

2 3 4

5 6 7

8 9 10

11 12

Since the cyclic tuple of upward lengths starting at any Ai is (1, 1, 1, 1), the gaps
between segments of I are in the right order for any Ωm(L). The only condition from
Eq. (2.6) from the previous theorem to be fulfilled is that Am

1 = Ac for some c, i.e.
that

8t ≡
c−1
∑

i=1

(di + li ) mod 12.

From di + li = 3 we have
∑c−1

i=1 (di + li ) = 3(c − 1). Thus, if A2t
1 = Ac, it must be

8t ≡ 3(c − 1) mod 12.
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If t = 1, then 8 	≡ 3(c − 1) mod 12, for all c. If t = 2, then 16 	≡ 3(c − 1)mod 12,
for all c. If t = 3, then 24 ≡ 3(c − 1)mod 12, for c = 1. Thus, we conclude that the
period of the module L I is 6.

3 Extensions between rank 1 modules

In this section we compute all (higher) extensions Exti (L I , L J ), as a module over the
centre F[t], for arbitrary rank 1 Cohen–Macaulay B-modules L I and L J . We give
a combinatorial description and an algorithm for computation of extension spaces
between rank 1 Cohen–Macaulay modules by using only combinatorics of the rims I
and J .

We again use a projective presentation of L I

⊕

v∈V

Pv
D−→

⊕

u∈U

Pu → L I → 0,

where U = {u /∈ I : u + 1 ∈ I } and V = {v ∈ I : v + 1 /∈ I }. Recall that the matrix
D = (dvu) has only nonzero entries when u, v are adjacent in U ∪ V (when ordered
cyclically) and that

dvu =

⎧

⎪

⎨

⎪

⎩

xv−u when u precedes v,

−yu−v when u follows v,

0 otherwise.

(3.7)

As in [5], applying Hom(−, L J ) yields

⊕

u∈U

Hom(Pu, L J )

⊕

v∈V

Hom(Pv, L J )

Hom(Ω(L I ), L J )

0

Ext1(L I , L J ) 0

D∗

where matrix D∗ = (d∗
vu) is given by

d∗
vu =

⎧

⎪

⎨

⎪

⎩

ta a = #[u, v) \ J,when u precedes v,

−tb b = #J ∩ [v, u),when u follows v,

0 otherwise.

(3.8)

Note that the exponents of the monomials in the matrix D∗ measure the offsets
between the valleys of the rim I from the rim J , that is the offset from the canonical
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position on the rim J of a given valley of the rim I when the corresponding projective
indecomposable module is mapped canonically into L J . This is the same as the sum
of the sizes of the upward slopes (resp. downward slopes) of the rim J between u and
v (resp. v and u) if u precedes v (resp. if v precedes u). If this number is 0, then the
rims I and J have the same tendencies between u and v (both rims are either upward
or downward sloping), and in this case the corresponding entry of the matrix D∗ is 1
or −1.

Also, since Hom(Ω(L I ), L J ) is a free module of rank r over the centre, and im D∗
is also a rank r submodule of a free F[t]-module

⊕

v∈V

Hom(Pv, L J ), we are left to

compute invariant factors of D∗ to determine generators of a free submodule im D∗
of

⊕

v∈V

Hom(Pv, L J ).

Before proceeding, we note that the leading coefficient of the monomial d∗
uv is 1 if

u is to the left of v in the cyclic ordering drawn in the plane; otherwise, it is −1.
Now we introduce a new combinatorial structure, consisting of a sequence of

trapezia, that will enable us to describe extension spaces between rank 1 Cohen–
Macaulay modules purely in terms of their rims.

Let us draw the rims of L I and L J one below the other, with the rim of L I above.
It does not matter how far apart vertically we draw the rims, but we demand that the
rim of L J is strictly below the lowest point of the rim of L I .

1 2 3 4 5

6

7

8 9 10 11

12 13 14

15

We assume without loss of generality that 0 ∈ I , but 1 ∈ J \ I . If we remove all
the segments from both rims that are parallel and draw vertical lines connecting the
corresponding end points of the remaining segments of I and J , we see that we are
left with a collection of trapezia.
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If a trapezium has a shorter base edge on its left (right) side, then we call this trapezium
a left (right) trapezium. We proceed by writing down a word containing letters L and
R as follows: looking at the diagram of trapezia, and reading from left to right we
write a letter L whenever we have a left trapezium and R whenever we have a right
trapezium. In the above example, we get the word wI,J : L L RL RL R.

Since I 	= J , we can always assume, after cyclically permuting elements of
{1, 2, . . . , n} if necessary, that the first letter is L and that the last letter is R. The
following step is to reduce the word wI,J by replacing multiple consecutive occur-
rences of L (resp. R) by a single L (resp. R). What we are left with is a word of the
form L RL RL RL R . . . L R = (L R)s . Let us call s the rank of the reduced word wI,J .

If in the above diagram we treat consecutive trapezia of the same orientation as a
single trapezium, then we can see the above diagram as a collection of “boxes”, with
box being a single pair consisting of one left trapezium and one right trapezium. The
number s denotes the number of boxes for the rims I and J . If we ignore the parts of
the rims of I and J that have the same tendency, then what we are left with is the two
rims with always different tendencies (in other words, we have a sequence of boxes),
and these rims are symmetric in the sense that one is a reflection of the other with
respect to the horizontal line between them.

Our aim is to describe extension spaces between rank 1 Cohen–Macaulay modules
by using combinatorics of the corresponding rims. As a module over the centre F[t],
it turns out that the extension space between rank 1 Cohen–Macaulay modules L I and
L J is a torsion module isomorphic to a direct sum of the cyclic modules which are
computed directly from the rims I and J . Our main result states.

Theorem 3.1 Let L I and L J be rank 1 Cohen–Macaulay modules. Then, as modules
over the centre F[t],

Ext1(L I , L J ) ∼= F[t]/(th1) × F[t]/(th2) × · · · × F[t]/(ths−1),
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where s is equal to the number of L R trapezia for the rims I and J (s is the rank of
the word wI,J ), and th1, . . . , ths−1 are the invariant factors of the matrix D∗ given by
(3.8), with hi ≥ 0 and hi ≤ hi+1.

In the coming proof of this result, we give an algorithm for the computation of the
numbers hi using only rims I and J .

If we look at the above matrix D∗, we see that it is of the following form (rows are
indexed by the valleys of I , with the first valley being v1, which we can assume to be
0; columns are indexed by the peaks of I , with u1 being the first peak; note that v1
precedes u1):

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−ta1 tbp

tb1 −ta2

tb2 −ta3

. . .

−tap−1

tbp−1 −tap

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Here, the only nonzero entries are on the main diagonal and on the lower (cyclic)
subdiagonal (which contains the top right entry d∗

1,p). There are only two nonzero
entries in each column and row. Both of these entries are monomials, i.e. ai , bi ≥ 0,
and their exponents are given by the sums of the sizes of the lateral sides of the
corresponding trapezia that appear in a given interval [u, v] or [v, u]. Note that ai = 0
(resp. bi = 0) if and only if there are no left (resp. right) trapezia in the above diagram
between the points vi and ui (resp. ui and vi+1). Thus, the i th column has nonzero
entries equal to −1 and 1 if and only if there are no left trapezia to the left of ui , and
no right trapezia to the right of ui . In other words, this happens if and only if I and J
have the same tendency between vi and ui , and between ui and vi+1.

We note here that there can only be left trapezia present between vi and ui since
the rim of I has only upward tendency. Analogously, there can be only right trapezia
between ui and vi+1 since the tendency of I is downwards. If there are multiple left
trapezia between vi and ui , then we regard them as a single trapezium with an offset
given by the sum of offsets of those left trapezia. The same goes for multiple right
trapezia. So we regard every peak as having at most one left, and at most one right
trapezium next to it. This corresponds to the previously mentioned reduction step of
the word wI,J . Here, reduced letters come from the same peak.

In what follows, we will compute the invariant factors of the matrix D∗, i.e. we
will find a diagonal matrix that is equivalent over F[t] to the matrix D∗. Let us now
assume that a part of the matrix D∗ is given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

tbi−2 −tai−1

tbi−1 −1
tbi −tai+1

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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In other words, for a peak ui there are no trapezia to its left. Now, we perform
elementary transformations of the matrix D∗ to obtain an equivalent matrix. If we
multiply the i th column by tbi−1 and add it to the column i − 1, and then multiply the
i th row with tbi and add it to the (i + 1)th row, we get that the matrix D∗ is equivalent
to the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

tbi−2 −tai−1

0 −1
tbi +bi−1 0 −tai+1

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The i th row and column have only one nonzero entry, so after appropriate swaps of
rows and columns, and multiplication by−1, we have that the matrix D∗ is equivalent
to the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
...

tbi−2 −tai−1

tbi +bi−1 −tai+1

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We note that this operation of finding an equivalent matrix corresponds to reducing
two right triangles, which come from two consecutive peaks, to a single R in the word
wI,J , and that the sum of exponents bi + bi−1 corresponds to the sum of lateral sides
(offsets) of two consecutive right trapezia. This is because ai = 0 means that there
is no left trapezium in the word wI,J coming from the peak ui , so we are left with
potentially two consecutive right trapezia, one coming from ui−1 and one from ui .

Analogously, if for a peak ui there are no trapezia to its right, then a part of D∗ is

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

tbi−1 −tai

1 −tai+1

tbi+1

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

After elementary transformations over F[t] we get that D∗ is equivalent to the
matrix
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
...

tbi−1 −tai +ai+1

tbi+1 −tai+2

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We note that this operation of finding an equivalent matrix corresponds to reducing
two left triangles to a single L in thewordwI,J , and that the sum of exponents ai +ai+1
corresponds to the sum of lateral sides (offsets) of two consecutive left trapezia. This
is because bi = 0 means that there is no right trapezium in the wordwI,J coming from
the peak ui , so we are left with potentially two consecutive left trapezia, one coming
from ui−1 and one from ui .

Remark 3.2 If we combine the previous two cases, i.e. if we have that in one column
of D we have that the nonzero entries are −1 and 1, we get that the matrix D∗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

tbi−1 −1
1 −tai+1

tbi+1

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is equivalent to the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
...

tbi−1 −tai+1

tbi+1 −tai+2

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

meaning that we could just remove the column i , and continue to workwith the smaller
matrix.

If we continue to apply these elementary transformations to the matrix D∗, we
eventually end up with a matrix of the form
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D1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
−ta1 tbs

tb1 −ta2

tb2
. . .

tbs−2 −tas−1

tbs−1 −tas

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where s is equal to the number of the L R boxes for the rims I and J , and ai , bi > 0.
This follows from the fact that the elementary transformations that we did on D∗
correspond to the above mentioned reduction steps on the word wI,J .

Let E be the s × s submatrix of D1 consisting of the last s rows and columns of D1.
Since im D∗ is a free submodule of corank 1 of the free module

⊕

v∈V Hom(Pv, L J ),
it follows that D∗ is also a matrix of corank 1, and that E is a matrix of corank 1. There
is a linear combination over F[t] of columns of D∗ that is equal to zero. Moreover, at
least one of the coefficients in this linear combination is equal to 1 (these are precisely
the coefficients of the columns corresponding to the peaks that are placed on the rim
of J when L I is canonically mapped into L J , see Remark 3.6 below).

We can assume that this column is the last column, after possibly cyclically per-
muting the columns. Therefore, D∗ is equivalent to the matrix of the form

D1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
−ta1 0
tb1 −ta2

tb2
. . .

tbs−2 −tas−1

tbs−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Let h be min{a j , b j | j = 1, 2, . . . , s −1}. Let us assume that h = ai . If i > 1, then
by multiplying the i th column of E by tbi−1−ai and adding to the (i − 1)th column,
and then multiplying the i th row by tbi −ai and adding this row to the (i + 1)th row
we get that E is equivalent to the matrix (we also do the necessary swaps of rows and
columns and multiplication by −1):

123



J Algebr Comb (2017) 45:965–1000 989

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

tai

−ta1 0
tb1 −ta2

tb2
. . .

−tai−1

tbi−1+bi −ai −tai+1

tbi+1

. . .

−tas−2

tbs−2 −tas−1

tbs−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If i = 1, then simply by multiplying the first row by tb1−a1 and adding it to the
second row we obtain a matrix of the above form.

If h = bi for some i , then by using the analogous elementary transformations (e.g.
if i = s − 1, then we simply multiply the last row by tas−1−bs−1 and add to the row
above), we obtain that E is equivalent to the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

tbi

−ta1 0
tb1 −ta2

tb2
. . .

−tai−1

tbi−1 −tai+1+ai −bi

tbi+1

. . .

−tas−2

tbs−2 −tas−1

tbs−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By repeating these steps, we finally get that D∗ is equivalent to the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
th1

. . .

ths−1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 0 < h1 ≤ h2 ≤ · · · ≤ hs−1.
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Now, since Ext1(L I , L J ) is isomorphic to the quotient of a free module of rank r
by a free submodule of the same rank generated by invariant factors of the matrix D∗,
that is by 1, . . . , 1, th1 , . . . , ths−1 , we have that

Ext1(L I , L J ) ∼= F[t]r/F[t] × · · · × F[t] × th1F[t] × · · · × ths−1F[t]
∼= F[t]/(th1) × · · · × F[t]/(ths−1),

where h1 ≤ h2 ≤ · · · ≤ hs−1. Recall that r + 1 is the number of peaks of the rim I .
This proves Theorem 3.1!

Corollary 3.3 If I 	= J , then Ext1(L I , L J ) = 0 if and only if the number of L R
boxes is equal to 1.

Remark 3.4 The case when the number of L R boxes is 1 is exactly the noncrossing
case from [5, Proposition 5.6], because existence of exactly one box means that I and
J are noncrossing.

Let us assume that the exponents ai and bi of the matrix D∗ are given. If we denote
by IF(D∗) the set of exponents of the invariant factors of the matrix D∗, then the
following algorithm computes IF(D∗).

IF(D∗) := {}, H0 := {a1, . . . , ar+1, b1, . . . , br+1}

i := 1, m := r + 1 (m is the maximal index in Hi )
REPEAT

hi := min Hi−1, I F(D∗) = I F(D∗) ∪ {hi }

CASE 1: hi = a j for some j

If j > 1, then Hi = Hi−1 \ {a j , b j , b j−1}, b j−1 = b j−1 + b j − a j

Hi = Hi ∪ {b j−1}.
If j = 1, then Hi = Hi−1 \ {a j , b j , bm}, bm = bm + b j − a j ,

Hi = Hi ∪ {bm}.

i = i + 1, m = m − 1
Re-enumerate indices of elements of Hi , that is, for q > j, aq becomes
aq−1, and bq becomes bq−1.
CASE 2: hi = b j for some j

If j < m, then Hi = Hi−1 \ {a j , b j , a j+1}, a j+1 = a j+1 + a j − b j ,

Hi = Hi ∪ {a j+1}.
If j = m, then Hi = Hi−1 \ {a j , b j , a1}, a1 = a1 + a j − b j ,

Hi = Hi ∪ {a1}.

i = i + 1, m = m − 1
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Re-enumerate indices of elements of Hi , that is, for q > j, aq becomes
aq−1, and bq becomes bq−1.

UNTIL i = r + 1

Example 3.5 Let us continue with the example from the beginning of this section.
The lengths of the lateral sides of the left trapezia are: 1, 0, 2, 1, 1. The lengths of the
lateral sides of the right trapezia are: 0, 0, 1, 2, 2. Therefore, the matrix D∗ is equal
to:

⎛

⎜

⎜

⎜

⎜

⎝

−t 0 0 0 t2

1 −1 0 0 0
0 1 −t2 0 0
0 0 t −t 0
0 0 0 t2 −t

⎞

⎟

⎟

⎟

⎟

⎠

ByRemark 3.2 we can ignore the second column, i.e. D∗ is equivalent to thematrix

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 −t 0 0 t2

0 1 −t2 0 0
0 0 t −t 0
0 0 0 t2 −t

⎞

⎟

⎟

⎟

⎟

⎠

Now we multiply the second column by t2, add it to the third column, then multiply
the third row by t and add it to the second row, swap the appropriate rows and columns
to obtain the matrix

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 −t3 0 t2

0 0 t −t 0
0 0 0 t2 −t

⎞

⎟

⎟

⎟

⎟

⎠

We are left with monomials of positive exponent. We choose a monomial with the
smallest exponent, say the one in the bottom right corner. Multiply the last column by
t , add it to the fourth column, then multiply the last row by t and add it to the third
row. After row and column swaps we obtain the matrix

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 t 0 0
0 0 0 −t3 t3

0 0 0 t −t

⎞

⎟

⎟

⎟

⎟

⎠

It is now obvious that the last two columns are linearly dependent, and that the final
matrix we obtain is
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⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 t 0 0
0 0 0 t 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

Thus, the free submodule of rank r = 4 module is isomorphic to

F[t] × F[t] × t F[t] × t F[t].

Hence, it follows that

Ext1(L I , L J ) ∼= F[t] × F[t] × F[t] × F[t]/F[t] × F[t] × tF[t] × tF[t],

that is,

Ext1(L I , L J ) ∼= F[t]/(t) × F[t]/(t).

Remark 3.6 In this example, we postponed the determination of which column is
linearly dependent of the other columns till the very end of our transformations. This
is more practical than doing it at the beginning of the computation because it can
happen that it is not so obvious how to choose the appropriate column just by using
the matrix D∗. One can say precisely which column is linearly dependent by looking
at the rims I and J . It is a column that corresponds to a peak of the rim I that ends up
being placed on the rim J , when the lattice of L I is placed inside the lattice of L J as
far up as possible, when L I is canonically mapped into L J . In this example those are
the third and the fourth column. If ci denotes the i th column, then

t2c1 + t2c2 + c3 + c4 + tc5 = 0.

The exponents in this linear combination come from the offsets of the peaks of I
from the rim J as seen from the following picture. The offset of u1 from the rim
is 2, of u2 is also 2, etc. Let us explain what we mean by this offset. The space
Hom(Pu1 , L J ) ∼= F[t] is generated over F[t] by the canonical map fu1,J that maps
Pu1 into L J by placing the peak u1 onto the rim of J . The offset equal to 2 means
that the homomorphism in question is given by t2 fu1,J . Now, if ai is the offset of
the peak ui , then the map tai fui ,J is mapped under D∗ to a map where the linear
coefficient of fvi+1,J is the negative of the linear coefficient of fvi+1,J as a summand
of D∗(tai+1 fui+1,J ). Added together they give 0. By taking f = ⊕tai fui ,J , we have
that D∗( f ) = 0. Moreover, the only maps that are mapped to 0 by D∗ are multiples
of this f . Hence, the image of D∗ is a free module of rank r .

Also, we remark that even though we only used transformations on the columns
that are not the last column, our transformations are valid for the last column as well.
One can always think of columns being cyclically reordered so that the last column is
now somewhere in the middle of the matrix.
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1 2 3 4 5

6

7

8 9 10 11

12 13 14

15

Theorem 3.7 If L I and L J are rank 1 modules, then, as F[t]-modules

Ext1(L I , L J ) ∼= Ext1(L J , L I ).

Proof Let us draw the rims of L I and L J one below the other, with the rim of L I

above, and with an additional copy of the rim of L I below the rim of L J . We also
draw the trapeziawe used to determine the extensions between the two rank 1modules,
with the upper trapezia used to compute Ext1(L I , L J ) and lower trapezia to compute
Ext1(L J , L I ).

For every left (resp. right) trapezium in the upper part of the below picture there is
the corresponding right (resp. left) trapezium in the lower part of the picture. In other
words, whenever I and J have different tendencies, it is also true for J and I . Thus,
the word consisting of Ls and Rs in the lower case is obtained from the word in the
upper case by changing Rs to Ls, and Ls to Rs. Moreover, the corresponding trapezia
are of the same lateral size, because they share a lateral side. So, after the initial step
of reducing multiple Ls and Rs to single Ls and Rs, when computing Ext1(L I , L J )

we get a block diagonal matrix with certain number of 1s on the main diagonal and a
matrix A in the lower right corner.
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1 2 3 4 5

6

7

8 9 10 11

12 13 14

15

If we enumerate the valleys of the rim J in such a way that the first valley is the
valley to the right of 0, then the corresponding matrix, obtained after the initial step
of reducing multiple Ls and Rs to single Ls and Rs when computing Ext1(L J , L I ),
is a block diagonal matrix with certain number of 1s on the main diagonal and with
matrix −At in the lower right corner. Since A and −At have the same set of invariant
factors, it follows that Ext1(L I , L J ) ∼= Ext1(L J , L I ). ��

We now compute higher extensions for rank 1 Cohen–Macaulay modules. After
showing how to compute higher extensions of odd degree, we prove that the even
degree extensions are cyclic F[t]-modules, and we show how to combinatorially com-
pute generators of these cyclic modules. In the end we give a combinatorial criterion
for vanishing of higher extension spaces between rank 1 modules.

From the first section we know that the rank 1 modules are periodic, and moreover,
for a given rim I , every even syzygy in a minimal projective resolution of L I is a rank
1 module. This immediately gives us the following statement.

Proposition 3.8 Let L I and L J be rank 1modules and k a positive integer. Then there
exist positive integers h1, h2, . . . , hs−1, such that hi ≤ hi+1, and, as modules over
the centre F[t],
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Ext2k+1(L I , L J ) ∼= F[t]/(th1) × F[t]/(th2) × · · · × F[t]/(ths−1),

where s is equal to the number of L R trapezia for the rims of Ω2k(L I ) and L J .

Proof From the dimension shift formula, we have that

Ext2k+1(L I , L J ) ∼= Ext1(Ω2k(L I ), J ).

From the first section we know that Ω2k(L I ) is a rank 1 module and the statement
follows from Theorem 3.1. ��

We are left to compute even degree extensions between rank 1 modules. If we want
to compute Ext2(L I , L J ), it is sufficient to compute Ext1(Ω(L I ), L J ). Applying
Hom(−, L J ) to the projective presentation of Ω(L I )

⊕

w∈W

Pw F
⊕

v∈V

Pv D
Ω(L I ) (3.9)

yields

⊕

v∈V

Hom(Pv, L J )

⊕

w∈W

Hom(Pw, L J )

Hom(Ω2(L I ), L J )

0

Ext1(Ω(L I ), L J ) 0

F∗

Here, W is the set of the peaks of the second syzygy of L I . From the previous section,
we know that W = U + k, where U = {u1, u2, . . . , ur } is the set of the cyclically
ordered peaks of the rim I . Let V = {v1, v2, . . . , vr } be the set of cyclically ordered
valleys of the rim I . We say that u is to the left of v if in the cyclic ordering of
{1, 2, . . . , n}, the interval (u, v] does not have more than k elements. Otherwise, we
say that u is to the right of v. We assume that u1 is to the right of v1, and that ur is to
the left of v1.

Theorem 3.9 Let L I and L J be rank 1 modules and m a positive integer. There exists
a nonnegative integer a, such that, as F[t]-modules,

Ext2m(L I , L J ) ∼= F[t]/(ta).

Proof Using the dimension shift formula again, we have that

Ext2m(L I , L J ) ∼= Ext2(Ω2m−2(L I ), J ).
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Since Ω2k−2(L I ) is a rank 1 module, we are left to prove the statement for
Ext2(L I , L J ). Since Ext2(L I , L J ) ∼= Hom(Ω2(L I ), L J ) it follows that the
space Ext2m(L I , L J ) is isomorphic to F[t]/(p(t)) for some polynomial p(t), as
Hom(Ω2(L I ), L J ) is a rank 1 module, and Hom(Ω2(L I ), L J ) is its quotient by
a free submodule. We now prove that this polynomial p(t) is a monomial. If we want
to compute Ext2(L I , L J ), it is sufficient to compute Ext1(Ω(L I ), L J ).

From the above diagram we know that im F∗ is a free module isomorphic to a
submodule of Hom(Ω2(L I ), L J ). Hence, the matrix of F∗ is a matrix of rank 1 over
F[t]. Since the map F∗ is given by the maps from Pw to L J , which are given by
multiplication by t l for some exponent l, the matrix of F∗ consists of the monomials.
Because it is a matrix of rank 1, it follows that there is a column such that every
other column is a multiple of that column. To find the invariant factor of this matrix,
it remains to find a monomial with the smallest exponent from that column. This
exponent gives us the integer a. ��
Corollary 3.10 For the integer a from the previous theorem, we have

a = min
u∈U,v∈V

{auv},

where

auv =
{

#J ∩ (u − (n − k), v] + #I ∩ (v, u], if u is to the right of v;
#(u, v] \ I + #(v, u + k] \ J, if u is to the left of v.

Proof Let us first note thatW = I +k and label thematrix of F∗ with pairs (u, v) rather
thanwith pairs (w, v)with u corresponding to the element u+k = w (w = u−(n−k))
of W .

The numbers under the minimum function are the offsets of a given peak of
Ω2(L I ) from its canonical position when mapped into L J , that is, they give us
monomials tauv in the matrix F∗ given by (3.9). Continuing with the example where
I = {1, 2, 4, 9, 11, 12, 14} and J = {1, 2, 4, 6, 7, 10, 13}, in the following picture
(note that in the below picture the dashed and the thick black rim intersect between
nodes 7 and 10, and that the dashed and thin black rim intersect between nodes 0 and
2)
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5

u − (n − k)

v

w

where we have a copy of Ω2(L I ) placed inside of P9 canonically (by placing the rim
ofΩ2(L I ) as far up inside the rim of P9 as possible), and with P9 mapped canonically
into L J . The number a13,9, with 13 corresponding to w = 13 − (n − k), measures
the vertical distance between the node labelled by w on the thin black rim of Ω2(L I )

and the node labelled by 5 on the thick black rim of L J . This distance is equal to the
sum of the vertical distance between the node w and the dashed rim of P9, and the
vertical distance between the dashed rim of P9 and the node 5 of the rim of L J . The
vertical distance between the node w and the dashed rim of Pv is equal to the number
of elements in the set I ∩ (v, u] if u is to the right of v, and it is equal to the number
of elements in the set (u, v] \ I if u is to the left of v. The vertical distance between
the dashed rim of Pv and the node labelled by w = u − k of the thick black rim of L J

is equal to the number of elements in the set J ∩ (u − (n − k), v] if u is to the right of
v, and it is equal to the number of elements in the set (v, u + k] \ J if u is to the left
of v. ��
Remark 3.11 Let r + 1 be the number of peaks of the rim I , i.e. assume that F∗ is a
matrix of the format (r +1)× (r +1). From the proof of the previous corollary we see
that in order to compute the smallest exponent a for the entries of F∗, it is sufficient
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to compute entries of one column and one row, which means that we have to compute
at most 2r + 1 entries of the matrix F∗ determined by (3.9). We pick an arbitrary
row, compute its entries, and choose the minimal one. Then we compute entries of the
column that contains that minimal entry. Then the exponent a is the minimal entry
from that column. ��
Theorem 3.12 Let I, U, V, W and J be as before. Then Ext2(L I , L J ) = 0 if and
only if there exists vi ∈ V such that

#J ∩ (ui − (n − k), vi ] = 0 or #J ∩ (vi , ui−1 + k] = k − (vi − ui−1).

Proof From the proof of the previous theorem and corollary we know that
Ext2(L I , L J ) = 0 if and only if there is an element of the matrix of F∗ that is equal
to 1. This happens only if for some ui ∈ U and v j ∈ V the number au j ,vi is zero.
For a given u j and vi , recalling the picture from the proof of the previous corollary,
au j ,vi = 0 if and only if both vertical distances at a given node u j − (n − k) between
the rim of Pvi and the rim of L J , and between the rim of Pvi and the rim of Ω2(L I )

inside the rim of Pvi are equal to 0. Obviously, this can not happen if u j − (n − k) is
a node on the rim of Ω2(L I ) that is not on the rim of Pvi at the same time, as in the
case of the pictured node w in the picture from the proof of the previous corollary. In
this case, the vertical distance between w on the rim of Ω2(L I ) and u − (n − k) = w

on the rim of Pvi is strictly positive, so au j ,vi > 0 in this case. We conclude that if
au j ,vi = 0, it must be that u j − (n − k) is on both the rim of Ω2(L I ) and the rim of
Pvi . So for a given vi , the only candidates u j for au j ,vi to be 0 are ui , which is to the
right of vi , with the corresponding node ui − (n − k) on both rims of Ω2(L I ) and
Pvi , and ui−1, which is to the left of vi , with the corresponding node ui−1 + k on both
rims of Ω2(L I ) and Pvi .

For these two nodes ui − (n − k) and ui−1 + k, in order for the vertical distance
between the rim of Pv and the rim of L J to be equal to zero at the node ui − (n − k)

(resp. ui−1+k), it has to be that the rim J has the same tendency between ui − (n −k)

and vi (resp. between vi and ui−1 + k) as the rim of Pvi . This means that it must be
that #J ∩ (ui − (n − k), vi ] = 0 (resp. #J ∩ (vi , ui−1 + k] = k − (vi − ui−1). ��
Remark 3.13 Combined with Corollary 3.3 and periodicity of rank 1 modules, the
previous theorem gives us a combinatorial criterion for vanishing of Exti (L I , L J ) for
arbitrary i > 0, and for any rank 1 modules L I and L J . This criterion is given purely
in terms of the rims I and J .

Example 3.14 Take I = {1, 2, 4, 9, 11, 12, 14} as in the proof of the previous corol-
lary, and take for J to be the set {1, 2, 10, 12, 13, 14, 15}.
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w

From the above picture, we read off that a10,9 = 0 (note that in this picture the dashed
and the thick black rim intersect between nodes 2 and 10 and that the dashed and thin
black rim intersect between nodes 0 and 2). It follows that the corresponding element
in the matrix of F∗ is equal to 1 and that Ext2(L I , L J ) = 0. Note that in this case
Ext1(L I , L J ) 	= 0 because the number of L R trapezia for the rims I and J is 2.
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