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Abstract We determine all graphs whose adjacency matrices have at most two eigen-
values (multiplicities included) different from ±1 and decide which of these graphs
are determined by their spectrum. This includes the so-called friendship graphs, which
consist of a number of edge-disjoint triangles meeting in one vertex. It turns out that the
friendship graph is determined by its spectrum, except when the number of triangles
equals sixteen.
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1 Introduction

The friendship graph Fk (also called Dutch windmill graph, or k-fan) consists of k
edge-disjoints triangles that meet in one vertex. The famous friendship theorem (see
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Erdős et al. [6] and Wilf [8]) states that these are the only graphs with the property
that every pair of vertices contains a unique common neighbor (neighbors are called
friends in the friendship theorem). Clearly Fk has 2k + 1 vertices and 3k edges, and
F1 = K3. For convenience we shall assume that k ≥ 2. The adjacency matrix Ak of Fk

has spectrum { 1
2 ± 1

2

√
1 + 8k, 1k−1, −1k} (multiplicities are denoted as exponents).

Wang et al. [7] conjectured that Fk is determined by the spectrum of the adjacency
matrix Ak . This conjecture caused some activity on the spectral characterization of Fk .
Das [5] claimed to have a proof, but Abdollahi et al. [1] found a mistake. In addition,
these authors give correct proofs in some special cases. In this paper, we prove that the
conjecture from [7] is true if k �= 16, and show that there is just one counterexample
if k = 16.

Although it has been conjectured by the second author that almost all graphs are
determined by the spectrum of the adjacency matrix, it is very often difficult to prove
the spectral characterization of a given graph (or family of graphs). The spectrum of Ak

has two interesting properties that give much information on the structure of the graph
and bring a possible proof of the mentioned conjecture within reach. The first property
is that the second largest eigenvalue equals 1, and the second smallest eigenvalue is
equal to −1. By eigenvalue interlacing (see for example [2], Sect. 2.5) it follows that
every induced subgraph of a graph cospectral with Fk must have the second largest
eigenvalue at most 1, and the second smallest eigenvalue at least −1. This gives a
considerable reduction on the possible induced subgraphs (see Lemma 3). The second
property is that A2

k − I has rank 2 and is positive semi-definite. This leads to conditions
for the structure of A2

k (see Lemma 2). Because of these observations, we take a more
general approach, and consider all graphs with the mentioned two properties. Thus,
we determine the graphs with only two eigenvalues r and s (r > 1, s < −1) different
from ±1. We shall see that the disconnected ones have all components but one equal
to K2. The connected ones come in three infinite families (one of which contains
the friendship graphs) and seven sporadic graphs. No two non-isomorphic connected
ones have the same spectrum, but a disconnected graph can be cospectral and non-
isomorphic to another one. In particular, one of the sporadic graphs extended with
some isolated edges is cospectral with F16.

2 Basics and tools

We start with a well-known result on equitable partitions (see for example Sect. 2.3
of [2]). Consider a partition P = {V1, . . . , Vm} of the set V = {1, . . . , n}. The
characteristic matrix χP of P is the n ×m matrix whose columns are the characteristic
vectors of V1, . . . , Vm . Consider a symmetric matrix A of order n, with rows and
columns partitioned according to P . The partition of A is equitable if each submatrix
Ai, j formed by the rows of Vi and the columns of Vj has constant row sums qi, j . The
m × m matrix Q = (qi, j ) is called the quotient matrix of A with respect to P .

Lemma 1 The matrix A has the following two kinds of eigenvectors and eigenvalues:

(i) The eigenvectors in the column space of χP ; the corresponding eigenvalues coin-
cide with the eigenvalues of Q.
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(ii) The eigenvectors orthogonal to the columns of χP ; the corresponding eigenvalues
of A remain unchanged if some scalar multiple of the all-one block J is added to
block Ai, j for each i, j ∈ {1, . . . , m}.

The reverse identity matrix of order n is denoted by Rn . Thus R2k is the adjacency
matrix of kK2, the disjoint union of k edges. We illustrate the use of Lemma 1 with
an example. Consider the following partitioned matrix A with quotient matrix Q:

A =
[

J − Ia J
J R2k

]
, Q =

[
a − 1 2k

a 1

]
.

The eigenvalues of Q are (a ± √
a2 + 8ak − 4a + 4)/2, so they are also eigenvalues

of A. The other eigenvalues of A remain the same if we subtract J from the blocks
equal to J or J − Ia . Then A and Q become

A′ =
[−Ia O

O R2k

]
, Q′ =

[−1 0
0 1

]
.

The part of the spectrum of A′, which is not in the spectrum of Q′ is {1k−1, −1k+a−1}.
Thus we find that A has spectrum {(a ± √

a2 + 8ak − 4a + 4)/2, 1k−1, −1k+a−1}.
We see that a graph G with adjacency matrix A belongs to the classification. Note that
if a = 1, then G is the friendship graph Fk .

Proposition 1 Let G be a graph with n vertices and adjacency matrix A.

(i) If A has all its eigenvalues equal to ±1, then G = n
2 K2.

(ii) If A has all but one eigenvalue equal to ±1, then G is the disjoint union of
complete graphs with all but one connected components equal to K2.

(iii) If A has just two eigenvalues, r and s (r ≥ s) different from ±1, then r > 1
and s < −1, or G is a disjoint union of complete graphs with two connected
components different from K2.

Proof If A has an eigenvalue s < −1, then the largest eigenvalue of A is greater than
1 (by the Perron–Frobenius theorem); this case is captured by the first option of (i i i).
If A has smallest eigenvalue at least −1, then G is the disjoint union of cliques (see
for example [3]), which leads to the other possibilities. ��
Lemma 2 Suppose r > 1 and s < −1 are the only eigenvalues of G different from
±1.

(i) One connected component of G has all vertex degrees at least 2, and all other
connected components are isomorphic to K2.

(ii) Suppose u and v are distinct vertices with degrees du and dv , and each neighbor
of u is also a neighbor of v. Then dv − du ≥ 3.

Proof (i) Suppose u is a vertex of degree 1. Let v be the neighbor of u, and assume
that v has another neighbor w of degree dw. The 2 × 2 principal submatrix of A2 − I
corresponding to u and w equals
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≈ −
A

λ4 ≈ −1.62
B

λ4 ≈ −1.17
C

λ4 ≈ −1.30
D

λ4 ≈ −1.27
E

λ4 1.47
F

λ4 ≈ −1.24

G
λ2 ≈ 1.26

H
λ2 ≈ 1.51

J
λ2 ≈ 1.34

K
λ2 ≈ 1.73

L
λ2 ≈ 1.26

M
λ2 ≈ 1.36

N
λ2 ≈ 1.25

P
λ2 = 2

Q
λ2 ≈ 1.41

R
λ2 ≈ 1.41

S
λ2 ≈ 1.25

T
λ2 ≈ 1.18

Fig. 1 Forbidden induced subgraphs

S =
[

0 1
1 dw − 1

]
.

We have det S < 0, while A2 − I is positive semi-definite. This is a contradiction
proving that v has degree 1.
(i i) The 2 × 2 principal submatrix of A2 − I corresponding to u and v equals

S =
[

du − 1 du

du dv − 1

]
.

If dv ≤ du + 2, then det S ≤ (du − 1)(du + 1) − d2
u < 0, contradiction. ��

Note that (i i) of Lemma 2 implies that two vertices u and v cannot have the same set
of neighbors.

Define G to be the set of connected graphs with eigenvalues r > 1 and s < −1,
and all other eigenvalues equal to ±1. By the above results, in order to find all graphs
with at most two eigenvalues different from ±1, it suffices to determine G. We start
with a list of forbidden induced subgraphs.

Lemma 3 No graph in G has one of the graphs presented in Fig. 1 is an induced
subgraph.
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Proof Each graph in Fig. 1 has its second largest eigenvalue λ2 strictly greater than
1, or its second smallest eigenvalue λn−1 strictly less than −1. Interlacing completes
the proof. ��

3 Main results

We begin with the description of the graphs in G. The proof will be given in the next
section.

Theorem 1 The adjacency matrices and spectra of the graphs in G are as follows:

(i)

[
O J − Im

J − Im O

]
(m ≥ 3) with spectrum

{±(m − 1), 1m−1, −1m−1
}
,

(ii)

[
J − Ia J

J R2k

]
(a ≥ 1, k ≥ 2) with spectrum

{
a
2 ± 1

2

√
a2 + 8ak − 4a + 4,

1k−1, −1a+k−1
}
,

(iii)

[
R2� J
J R2m

]
(� ≥ m ≥ 2) with spectrum

{
1 ± 2

√
�m, 1�+m−2, −1�+m

}
,

(iv)

[
O N

N
 O

]
where N =

[
1 1

1 I4

]
, or N =

[
J − I3 J

O J − I3

]
with spectra{±3, 14, −14

}
, and

{±4, 15, −15
}
, respectively,

(v)

⎡
⎣ J − Ia J 1

J J − Ib 0
1
 0
 0

⎤
⎦ where (a, b) = (6, 5), (4, 6), or (3, 8) with spectra

{
4 ± 2

√
10, 11, −19

}
,

{
(7 ± √

129)/2, 11, −18
}

,
{

4 ± √
37, 11, −19

}
,

respectively,

(vi)

⎡
⎣ J − Ia J O

J O J − Im

O J − Im O

⎤
⎦ where (a, m) = (3, 5) or (4, 4) with spectra

{
(1 ± √

129)/2, 15, −16
}

,
{

1 ± 2
√

7, 14, −16
}

, respectively.

We see that G contains three infinite families and seven sporadic graphs. From the
given spectra it follows straightforwardly that

Corollary 1 No two graphs in G are cospectral.

Theorem 2 Suppose G and G ′ are non-isomorphic cospectral graphs with at most
two eigenvalues different from ±1. Then G = H + αK2 and G ′ = H ′ + α′K2, where
H and H ′ are one of the following pairs of graphs in G:

• Both H and H ′ are of type (i i i) with parameters (�, m) and (�′, m′), where �m =
�′m′,

• One is of type (i i i) with �, m ≥ 2, and the other of type (i i) with a = 2 and
k = �m,

• One is of type (iv) and the other one of type (i) with m = 4, or 5, respectively,
• One is of type (i i) with (a, k) = (1, 16) or (2, 7), and the other of type (vi) with

(a, m) = (3, 5), or (4, 4), respectively.
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Proof The disjoint union of complete graphs in known to be determined by its spectrum
(see [3]). So, by Proposition 1 and Lemma 2(i), G and G ′ must have the described
form. Next observe that H and H ′ share the eigenvalues r > 1 and s < −1. Using
this we easily find the given possibilities for H and H ′. ��.

By taking α = 0 in Theorem 2, we find the graphs in G having a non-isomorphic
cospectral mate.

Corollary 2 A graph G ∈ G is determined by its spectrum, unless G is one of the
following

• G is of type (i i) and (a, k) = (1, 16) or (2, 7),
• G is of type (i i) with a = 2 and k a composite number,
• G is of type (i i i) and �m has a divisor strictly between � and m,
• G is of type (iv).

Thus we have that the friendship graph Fk , which is Case (i i) with a = 1, is determined
by its spectrum, except when k = 16. The friendship graph F16 is cospectral with
G + 10K2, where G ∈ G is of type (vi) with (a, m) = (3, 5).

4 The proof

Here we give the proof of Theorem 1.
In all cases we see that the corresponding quotient matrix has two eigenvalues

different from ±1 and with Lemma 1 it straightforwardly follows that the remaining
eigenvalues of the graph are all equal to ±1. So all graphs of Theorem 1 are in G.

Van Dam and Spence [4] classified all bipartite graphs with four distinct eigenvalues.
Their Proposition 8 gives the bipartite graphs in G, described in (i) and (iv).

In the remainder of the proof, it is assumed that G ∈ G is not bipartite. We define
C to be a clique in G with maximum size. By Lemma 3 (graphs A and N) G contains
no induced odd cycles of length five or more, therefore |C | ≥ 3. If there are more than
one cliques of maximum size, we choose one for which the number of outgoing edges
is minimal. The following lemma is the key to our approach.

Lemma 4 The vertex set of C can be partitioned into two nonempty subsets X and Y
(say), such that the neighborhood of any vertex outside C intersects C in X, Y , or ∅.

Proof If |C | = n−1 the result is obvious. So assume 3 ≤ |C | ≤ n−2. Take vertices x
and y outside C , and let X and Y consist of the neighbors of x and y in C , respectively.
Note that X and Y are proper subsets of C , since otherwise C is not maximal. Suppose
that X ∩Y �= ∅ but X �⊂ Y . Then there exist vertices u ∈ X ∩Y and v ∈ X \Y . Let w be
a vertex in C \ X . Then the subgraph induced by {u, v, w, x, y} is a forbidden subgraph
D, E, or F. Therefore, if X and Y are not disjoint, then X ⊂ Y , and analogously Y ⊂ X .
Thus X ∩ Y �= ∅ implies X = Y . If X ∩ Y = ∅, assume there exist vertices u ∈ X ,
v ∈ Y , and z ∈ C \ (X ∪ Y ), then {z, u, v, x, y} induces a forbidden subgraph B or C.
This implies that if X and Y are disjoint and both nonempty, then X ∪ Y = C . ��

Let�X and�Y denote the set of vertices outside C adjacent to X and Y , respectively.
The set of vertices not adjacent to any vertex of C will be denoted by �. Some of
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these sets may be empty, but clearly �X or �Y is nonempty (otherwise G would be
disconnected or complete). We choose �X �= ∅ and distinguish three cases: (1) both
�Y and � are empty, (2) only � is empty, and (3) � is nonempty. For convenience
we define a = |X |, b = |Y |, and c = |C | = a + b.

4.1 �Y and � are empty

Assume b = 1. Then �X contains no edges, because C is maximal. The vertex v ∈
C\X and a vertex in �X are nonadjacent with the same neighbors, which is impossible
by Lemma 2(i i). Therefore b ≥ 2. Choose two vertices u and v from Y , and choose
w ∈ X . Suppose x ∈ �X has two neighbors y and z in �X , then {u, v, w, x, y, z}
induces graph J or {v,w, x, y, z} induces graph D from Fig. 1, therefore, any vertex
x ∈ �X has at most one neighbor in �X . By Lemma 2(i i), it is not possible that
x ∈ �X has one neighbor in �X and y ∈ �X has no neighbor in �X . We conclude
that either all vertices of �X have exactly one neighbor in �X , or �X contains no
edges. In the first case G has the following adjacency matrix A with quotient matrix
Q:

A =
⎡
⎣ J − Ia J J

J J − Ib O
J O Rn−c

⎤
⎦ , Q =

⎡
⎣ a − 1 b n − c

a b − 1 0
a 0 1

⎤
⎦ .

Computing det(Q + I ) and det(Q − I ) shows that Q has no eigenvalue −1, and Q
has an eigenvalue 1 if and only if b = 2. In case b = 2 we can rewrite A as

A =
[

J − Ia J
J R2k

]

with k ≥ 2. Thus we obtain the graphs of Case (i i).
If �X has no edges and at least two vertices, then these two vertices have the same

neighbors, contradiction. So |�X | = 1 and we find

A =
⎡
⎣ J − Ia J 1

J J − Ib 0
1
 0
 0

⎤
⎦ , Q =

⎡
⎣ a − 1 b 1

a b − 1 0
a 0 0

⎤
⎦ .

The quotient matrix Q has no eigenvalue −1 and an eigenvalue 1 if and only if
(a, b) = (6, 5), (4, 6), or (3, 8), which leads to Case (v).

4.2 �X and �Y are nonempty, and � is empty

Claim 1 a ≤ 2 or b ≤ 2.

Proof Suppose a ≥ b ≥ 3 and suppose {x, y} is an edge in �Y . Let u, v, and w be
three distinct vertices in X , and choose z ∈ Y . Then {u, v, w, x, y, z} induces graph J
from Lemma 3. So �Y contains no edges. Similarly �X has no edges. Now forbidden
subgraph S from Lemma 3 implies that a vertex in �X is adjacent to all, or all but one
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vertices in �Y (and vice versa). Let x be a vertex in �X and suppose x is adjacent
to all vertices of �Y . Suppose y is another vertex in �X . Then, by Lemma 2(i i), y
has fewer than |�Y | − 2 neighbors in �Y , contradiction. Similarly, if |�Y | ≥ 2 each
vertex in �Y is adjacent to all but one vertices of �X . This implies that the subgraph
induced by �X ∪ �Y is K2 or a complete bipartite graph with the edges of a perfect
matching deleted. So we find two possible block structures and quotient matrices for
A:

A =

⎡
⎢⎢⎣

J − Ia J 1 0
J J − Ib 0 1

1
 0
 0 1
0
 1
 1 0

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣

a − 1 b 1 0
a b − 1 0 1
a 0 0 1
0 b 1 0

⎤
⎥⎥⎦ ,

or

A=

⎡
⎢⎢⎣

J − Ia J J O
J J − Ib O J
J O O J − Im

O J J − Im O

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣

a − 1 b m 0
a b − 1 0 m
a 0 0 m − 1
0 b m − 1 0

⎤
⎥⎥⎦ ,

where m = |�X | = |�Y |. In the former case, Q has eigenvalue 1 with multiplic-
ity 1 for (a, b) ∈ {(4, 4), (6, 3)}, but none of the other 3 eigenvalues are equal
to ±1. In the latter case, Q has eigenvalue 1 with multiplicity 1 for (a, b, m) ∈
{(3, 3, 8), (4, 3, 7), (4, 4, 6), (6, 6, 5), (8, 5, 5)}, but none of the other 3 eigenvalues
are equal to ±1. For any other a, b, and m, neither quotient matrix has any eigen-
value equal to ±1 (this follows straightforwardly by solving det(Q + I ) = 0 and
det(Q − I ) = 0). Therefore, the corresponding graphs are not in G. ��
Claim 2 a = b = 2.

Proof First assume a > b = 1. Then �X contains no edges, because otherwise C
would not be maximal. Consider u ∈ Y and x ∈ �X . Then x is adjacent to all vertices
in �Y , since otherwise interchanging u and x would give another maximal clique of
size c with fewer outgoing edges. This implies that u and x have the same neighbors,
contradiction.

Next assume a > b = 2. We see that a ≥ 3 implies that �Y contains no edges,
otherwise G contains forbidden graph J. Take a vertex u ∈ X and a vertex x ∈ �X .
If y and z are distinct vertices in �X both adjacent to x , then the graph induced by
{u, x, y, z} ∪ Y is a forbidden subgraph (equal to J or containing D) of Lemma 3.
Therefore �X contains no intersecting edges. Like before, forbidden graph S implies
that every vertex in �X is adjacent to all, or all vertices but one in �Y . Consider a
vertex x ∈ �X with no neighbors in �X and a vertex y ∈ Y . The neighborhood of x is
contained in that of y, but dy ≤ dx + 2, which contradicts Lemma 2(i i). We conclude
that the graph induced by �X is a disjoint union of edges. Suppose {x, y} is an edge in
�X . Then both x and y are adjacent to all vertices of �Y , since otherwise interchanging
{x, y} with Y would give another clique in G of size c with fewer outgoing edges.
Thus, every vertex of �X is adjacent to every vertex of �Y .
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Applying Lemma 2(i i) to two vertices in �Y yields a contradiction, thus |�Y | = 1.
We find the following A and Q:

A =
⎡
⎣ J − Ia J 0

J R2m 1
0
 1
 0

⎤
⎦ , Q =

⎡
⎣ a − 1 2m 0

a 1 1
0 2m 0

⎤
⎦ .

It follows straightforwardly that Q has no eigenvalue equal to ±1. This is a contra-
diction, and we conclude that a = b = 2. ��

We have a = b = 2. By the same argument as above it follows that �X only
contains disjoint edges. Forbidden graphs H and S imply that every vertex of �X is
adjacent to all, or all vertices but one of �Y . Then, as before, a vertex in �X with
no neighbors in �X and a vertex in Y violate Lemma 2(i i), so �X induces a disjoint
union of edges. Thus, every vertex of �X must be adjacent to every vertex of �Y . The
same holds if X and Y are interchanged. Thus we can conclude that A is as follows:

A =
[

R2� J
J R2m

]

with �, m ≥ 2, where 2� = |�X | + 2 and 2m = |�Y | + 2. This leads to Case (i i i). ��

4.3 � is not empty

Since G is connected there exists an edge {x, z} with z ∈ � and x ∈ �X , or x ∈ �Y .
Assume x ∈ �X , take u ∈ X , and let y be a neighbor of z different from x . If y ∈ �Y ,
then the neighbor v ∈ Y of y together with u, x , y, and z induce a forbidden subgraph
A or B from Lemma 3. Thus, y �∈ �Y which means y ∈ �X ∪ �.

Assume that |Y | ≥ 2. Let v and w be distinct vertices in Y . If y ∈ �X , then
{u, v, w, x, y, z} induces a forbidden subgraph of type G or H. If y ∈ �, then
{u, v, w, x, y, z} induces a forbidden subgraph of type K or M. Therefore |Y | = 1.

Consider the set Y ′ = Y ∪ �X and let Z be the set of vertices which are not in X
or Y ′. Then |Y ′| ≥ 2, since Y and �X are nonempty, and Y ′ contains no edges, since
otherwise C would not be maximal. Therefore X, Y ′, and Z give the following block
structure of A:

A =
⎡
⎣ J − Ia J O

J O N
O N
 M

⎤
⎦ .

Take three vertices u ∈ X , x ∈ Y ′, and y ∈ Y ′ with degrees du , dx and dy , respectively.
Assume dx ≤ dy , and consider the corresponding 3×3 principal submatrix S of A2− I .
Then

S =
⎡
⎣ du − 1 a − 1 a − 1

a − 1 dx − 1 dxy

a − 1 dxy dy − 1

⎤
⎦ ,

123



896 J Algebr Comb (2015) 41:887–897

where dxy is the number of common neighbors of x and y. Write S = (a − 1)J + S′,
then

S′ =
[

du − a 0

0 T

]
with T =

[
dx − a dxy − a + 1

dxy − a + 1 dy − a

]
.

Note that du > a, and dx , dy ≥ a. Forbidden graphs H and T imply that y has at most
two neighbors in Z that are not neighbors of x . More precisely, if y has two adjacent
neighbors that are not neighbors of x , then these two neighbors of y together with x, y
and two vertices in X induce forbidden subgraph H. Otherwise, if y has three neighbors
that are not neighbors of x , then these three neighbors of y form an independent set
and together with x, y and two vertices in X , induce forbidden subgraph T. Thus,
dx ≤ dy ≤ dxy + 2 ≤ dx + 2.

If T is positive definite, then so are S′ and S, which contradicts rank S ≤ 2.
Therefore det T = (dx − a)(dy − a) − (dxy − a + 1)2 ≤ 0. If dx = dxy then
dy ≥ dx + 3 (by Lemma 2(i i)), contradiction. Also if dx ≥ dxy + 1, then det T > 0
unless dx = dy = dxy + 1. We conclude that dx = dy = dxy + 1, and we find the
following two possible structures for N :

N = [ O J − I J ] , or N = [ O I J ].

Suppose a vertex z ∈ Z has two neighbors x and y in Z . Take three vertices u, v, and
w in C . Then {u, v, w, x, y, z} induces or contains a forbidden subgraph G, H, J, K,
L, M, P, Q, C, or D from Lemma 3. So a vertex x ∈ Z has at most one neighbor in Z ,
and since all vertices have degree at least two, z is adjacent to a vertex of Y ′, hence
N = [ J − I J ] or N = [ I J ]. Partition Z = Z1 ∪ Z2 according to the structure on
N , so that the vertices in Z2 are adjacent to all vertices of Y ′.

Suppose {y, z} is an edge in Z , and suppose there is a vertex x ∈ Y ′ adjacent to y
but not to z. Take u ∈ X and let v ∈ Y ′ be a neighbor of z. Then {u, v, x, y, z} induces
a forbidden subgraph A or B. So y and z have the same set of neighbors in Y ′, and
hence y, z ∈ Z2. Take w ∈ Z1. Then w has no neighbor in Z , and hence has at least
two neighbors in Y ′ so N = [ J−I J ]. If w ∈ Z1 and z ∈ Z2, then every neighbor of
w is also a neighbor of z, but the degrees of z and w differ by two. This is impossible
by Lemma 2(i i). Clearly |Z1| = |Y ′| so Z1 is not empty. The conclusion is that Z2 is
empty and we find the following A and Q:

A =
⎡
⎣ J − Ia J O

J O J − Im

O J − Im O

⎤
⎦ , Q =

⎡
⎣ a − 1 m 0

a 0 m − 1
0 m − 1 0

⎤
⎦ ,

where m = |Y ′| = |Z |. The matrix Q has all three eigenvalues unequal to ±1, except
when (a, m) equals (4, 4) or (3, 5). This leads to Case (vi). ��
Acknowledgments The work of the first and third author was partially supported by National Security
Agency grant H98230-13-1-0267.

123



J Algebr Comb (2015) 41:887–897 897

References

1. Abdollahi, A., Janbaz, S., Oboudi, M.R.: Graphs cospectral with a friendship graph or its complement.
Trans. Comb. 2, 37–52 (2013)

2. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012)
3. van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl.

373, 241–272 (2003)
4. van Dam, E.R., Spence, E.: Combinatorial designs with two singular values-I: uniform multiplicative

designs. J. Comb. Theory A 107, 127–142 (2004)
5. Das, K.C.: Proof of conjectures on adjacency eigenvalues of graphs. Discr. Math. 313, 19–25 (2013)
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