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Abstract A configuration of the lit-only σ -game on a graph � is an assignment of
one of two states, on or off, to each vertex of �. Given a configuration, a move of the
lit-only σ -game on � allows the player to choose an on vertex s of � and change the
states of all neighbors of s. Given an integer k, the underlying graph � is said to be
k-lit if for any configuration, the number of on vertices can be reduced to at most k by
a finite sequence of moves. We give a description of the orbits of the lit-only σ -game
on nondegenerate graphs � which are not line graphs. We show that these graphs �

are 2-lit and provide a linear algebraic criterion for � to be 1-lit.
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1 Introduction

The notion of the σ -game on finite graphs � was first introduced by Sutner [17,18]
around 1989. A configuration of the σ -game on � is an assignment of one of two states,
on or off, to each vertex of �. Given a configuration, a move consists of choosing a
vertex of �, followed by changing the states of all of its neighbors. If only on vertices
can be chosen in each move, we come to the variation: lit-only σ -game. Starting
from an initial configuration, the goal of the lit-only σ -game on � is to minimize the
number of on vertices of �, or to reach an assigned configuration by a finite sequence
of moves.
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Given an integer k, the underlying graph � is said to be k-li t if for any configuration,
the number of on vertices can be reduced to at most k by a finite sequence of moves.
More precisely, we are interested in the orbits of the lit-only σ -game on � and the
smallest integer k, the minimum light number of � [19], for which � is k-lit. The notion
of lit-only σ -games occurred implicitly in the study of equivalence classes of Vogan
diagrams. The Borel-de Siebenthal theorem [2] showed that every Vogan diagram is
equivalent to one with a single-painted vertex, which implies that each simply-laced
Dynkin diagram is 1-lit. The equivalence classes of Vogan diagrams were described
by Chuah and Hu [7]. A conjecture made by Chang [5,6] that any tree with k leaves
is �k/2�-lit was confirmed by Wang and Wu [19], where the name “lit-only σ -game”
was coined.

The lit-only σ -game on a simple graph � is simply the natural action of a certain
subgroup H� of the general linear group over F2 [19]. Under the assumption that � is
the line graph of a simple graph G, Wu [21] described the orbits of the lit-only σ -game
on � and gave a characterization for the minimum light number of �. Moreover, if G
is a tree of order n ≥ 3, Wu showed that H� is isomorphic to the symmetric group
on n letters. Weng and the author [13] determined the structure of H� without any
assumption on G. The lit-only σ -game on a simple graph � can also be considered
as a representation κ� of the simply-laced Coxeter group W� over F2 [12]. The dual
representation of κ� preserves a certain symplectic form B� . The two representations
are equivalent whenever the form B� is nondegenerate. From this viewpoint it is natural
to partition simple connected graphs into two classes according as B� is degenerate
or nondegenerate.

In this paper, we treat nondegenerate graphs � which are not line graphs. We show
that H� is isomorphic to an orthogonal group, followed by a description of the orbits of
lit-only σ -game on � (Theorem 3.1). Moreover, we show that these graphs � are 2-lit
and provide a linear algebraic criterion for � to be 1-lit (Theorem 3.2). Combining
Theorem 3.1, Theorem 3.2, and those in [13,21], the study of the lit-only σ -game
on nondegenerate graphs is quite completed, and the focus for further research is on
degenerate graphs.

2 Preliminaries

From now on, let � = (S, R) denote a finite simple connected graph with vertex set S
and edge set R. Let F2 denote the two-element field {0, 1}. Let V denote an F2-vector
space that has a basis {αs | s ∈ S} in one-to-one correspondence with S. Let V ∗ denote
the dual space of V . For each s ∈ S, we define fs ∈ V ∗ by

fs(αt ) =
{

1 if s = t,
0 else

(1)

for all t ∈ S. The set { fs | s ∈ S} forms a basis of V ∗ and is called the basis of V ∗
dual to {αs | s ∈ S}. Each configuration f of the lit-only σ -game on � is interpreted
as the vector ∑

on vertices s

fs ∈ V ∗. (2)
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If all vertices of � are assigned the off state by f , we interpret (2) as the zero vector
of V ∗. Given s ∈ S and f ∈ V ∗ observe that f (αs) = 1 (resp. 0) if and only if the
vertex s is assigned the on (resp. off ) state by f .

For each s ∈ S define a linear transformation κs : V ∗ → V ∗ by

κs f = f + f (αs)
∑
st∈R

ft for all f ∈ V ∗. (3)

Fix a vertex s of �. Given any f ∈ V ∗, if the state of s is on, then κs f is obtained from
f by changing the states of all neighbors of s, and κs f = f otherwise. Therefore,
we may view κs as the move of the lit-only σ -game on � for which we choose the
vertex s and change the states of all neighbors of s if the state of s is on. In particular
κ2

s = 1. For any vector space U , let GL(U ) denote the general linear group of U .
Then κs ∈ GL(V ∗) for all s ∈ S. The subgroup H = H� of GL(V ∗) generated by the
κs for all s ∈ S was first mentioned by Wu [19], which is called the flipping group of
� in [12] and the lit-only group of � in [21].

The lit-only groups are closely related to the simply-laced Coxeter groups in the
following way. Recall that the simply-laced Coxeter group W = W� associated with
� = (S, R) is the group generated by all elements s ∈ S subject to the relations

s2 = 1,

(st)2 = 1 if st �∈ R,

(st)3 = 1 if st ∈ R

for all s, t ∈ S. By [12, Theorem 3.2], there exists a unique representation κ = κ� :
W → GL(V ∗) such that κ(s) = κs for all s ∈ S. Clearly κ(W ) = H . Given any
f, g ∈ V ∗ observe that g can be obtained from f by a finite sequence of moves of the
lit-only σ -game on � if and only if there exists w ∈ W such that g = κ(w) f . Given
an integer k, the underlying graph � is k-lit if and only if for each κ(W )-orbit O on
V ∗, there exists a subset K of S with size at most k such that

∑
s∈K fs ∈ O .

We now give the definitions of degenerate and nondegenerate graphs. Let B = B�

denote the symplectic form on V defined by

B(αs, αt ) =
{

1 if st ∈ R,

0 else
(4)

for all s, t ∈ S [16]. The radical of V (relative to B) is the subspace of V consisting
of the vectors α that satisfy B(α, β) = 0 for all β ∈ V . The form B is said to be
degenerate whenever the radical of V is nonzero and nondegenerate otherwise. The
graph � is said to be degenerate whenever the form B is degenerate, and nondegenerate
otherwise. The form B induces a linear map θ : V → V ∗ given by

θ(α)β = B(α, β) for all α, β ∈ V . (5)
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Since the kernel of θ is the radical of V and the matrix representing B with respect to
the basis {αs | s ∈ S} is the adjacency matrix of � over F2, the following lemma is
straightforward.

Lemma 2.1 Let A denote the adjacency matrix of � over F2. Then the following are
equivalent:

(i) � is a nondegenerate graph.
(ii) θ is an isomorphism of vector spaces.

(iii) A is invertible.

Recall that given a simple graph G, the line graph of G is a simple graph that
has a vertex for each edge of G, and two of these vertices are adjacent whenever the
corresponding edges in G have a common vertex. The purpose of this paper is to
investigate the lit-only σ -game on nondegenerate graphs which are not line graphs.
Thus, it is natural to ask how to determine if a nondegenerate graph is a line graph.
We will give two characterizations of nondegenerate line graphs as Proposition 2.4
below.

Lemma 2.2 Let G denote a finite simple connected graph of order n. Assume that �

is the line graph of G. Then θ(V ) has dimension n − 1 if n is odd and has dimension
n − 2 if n is even.

Proof Let U denote the vertex space of G over F2. Define a linear map μ : V → U
by

μ(αs) = u + v for all s ∈ S,

where u and v are the two endpoints of s in G. Since G is connected, the image of μ

is the subspace of U consisting of these vectors each of which equals the sum of an
even number of vertices of U . Define a linear map λ : U → V ∗ by

λ(u)αs =
{

1 if u is incident to s in G,

0 else

for all u ∈ U and for all s ∈ S. There is only one nonzero vector, the sum of all
vertices of G, in the kernel of λ. Since θ = λ ◦ μ and by the above comments, the
result follows. 
�

A claw is a tree with one internal vertex and three leaves. A simple graph is said to
be claw-free if it does not contain a claw as an induced subgraph. A cut-vertex of �

is a vertex of � whose deletion increases the number of components. A block of � is
a maximal connected subgraph of � without cut-vertices. A block graph is a simple
connected graph in which every block is a complete graph.

Lemma 2.3 [10, Theorem 8.5]. Let � denote a simple connected graph. Then � is
the line graph of a tree if and only if � is a claw-free block graph.

The following proposition follows by combining Lemmas 2.1–2.3.
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Proposition 2.4 Let � denote a simple connected graph. Then the following are equiv-
alent:

(i) � is a nondegenerate line graph.
(ii) � is the line graph of an odd-order tree.

(iii) � is a claw-free block graph of even order.

3 Main results

A quadratic form Q on V is a function Q : V → F2 satisfying

Q(α + β) = Q(α) + Q(β) + B(α, β) for all α, β ∈ V . (6)

Given a quadratic form Q on V , the orthogonal group with respect to Q is the subgroup
of GL(V ) consisting of all σ ∈ GL(V ) such that Q(σα) = Q(α) for all α ∈ V . Given
a basis P of V we define Q P to be the unique quadratic form on V with Q P (α) = 1
for all α ∈ P .

For the rest of this paper, the form B is assumed to be nondegenerate. Moreover,
let Q = Q P where P = {αs | s ∈ S} and let O(V ) denote the orthogonal group with
respect to Q. By (6), for any T ⊆ S a combinatorial interpretation of Q

(∑
s∈T αs

)
is

the parity of the number of vertices and edges on the subgraph of � induced by T .
We now can state the main results of this paper, which are Theorem 3.1, Theo-

rem 3.2, and Corollary 3.3.

Theorem 3.1 Assume that � is a nondegenerate graph, but not a line graph. Then
κ(W ) is isomorphic to O(V ). Moreover, the κ(W )-orbits on V ∗ are

{0}, θ(Q−1(0)\{0}), θ(Q−1(1)).

Under the assumption that B is nondegenerate, the number |S| = 2m is even and
there exists a basis {β1, γ1, . . . , βm, γm} of V such that B(βi , β j ) = 0, B(γi , γ j ) = 0
and

B(βi , γ j ) =
{

1 if i = j,
0 else

for all 1 ≤ i, j ≤ m. Such a basis {β1, γ1, . . . , βm, γm} of V is called a symplectic
basis of V . The Arf invariant of Q is defined to be

Arf(Q) =
m∑

i=1

Q(βi )Q(γi ),

which is independent of the choice of the symplectic basis {β1, γ1, . . . , βm, γm} of V
(for example see [1] or [9, Theorem 13.13]). Any two quadratic forms over F2 are
equivalent if and only if they have the same Arf invariant and the underlying spaces
have the same dimension (for example see [1] or [9, Proposition 13.14]). The order of
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O(V ) and the sizes of nontrivial O(V )-orbits on V are as follows (cf. [9, Chapter 14]).
If Arf(Q) = 0 then

∣∣O(V )
∣∣ = 2m2−m+1(2m − 1)(22 − 1)(24 − 1) · · · (22m−2 − 1),∣∣Q−1(1)
∣∣ = 22m−1 − 2m−1,∣∣Q−1(0)\{0}∣∣ = 22m−1 + 2m−1 − 1.

If Arf(Q) = 1 then

∣∣O(V )
∣∣ = 2m2−m+1(2m + 1)(22 − 1)(24 − 1) · · · (22m−2 − 1),∣∣Q−1(1)
∣∣ = 22m−1 + 2m−1,∣∣Q−1(0)\{0}∣∣ = 22m−1 − 2m−1 − 1.

For each s ∈ S, there exists α∨
s ∈ V such that

B(α∨
s , αt ) =

{
1 if s = t,
0 else

(7)

for all t ∈ S. The set {α∨
s |s ∈ S} forms a basis of V and is called the basis of V dual

to {αs | s ∈ S} (with respect to B).

Theorem 3.2 Assume that � = (S, R) is a nondegenerate graph, but not a line graph.
Then � is 2-lit. Moreover, the following are equivalent:

(i) � is 1-lit.
(ii) The restriction of Q to {α∨

s | s ∈ S} is surjective.

When the nondegenerate graph � is bipartite, Theorem 3.2 can be improved as
follows.

Corollary 3.3 Assume that � is a nondegenerate bipartite graph. Then � is 2-lit.
Moreover, the following are equivalent:

(i) � is 1-lit
(ii) � contains a vertex with even degree or � is a single edge.

As consequences of Corollary 3.3, we obtain two families of 1-lit graphs as follows.

• A tree is nondegenerate if and only if it has a perfect matching. By [11, Lemma 2.4],
a tree with a perfect matching satisfies Corollary 3.3(ii) and is therefore 1-lit
(cf. [14, Theorem 1.1]). This result gives a partial affirmative answer for [20,
Conjecture 7].

• For any two positive integers m and n, the m × n grid is nondegenerate if and only
if m + 1 and n + 1 are coprime [18]. By Corollary 3.3 any such m × n grid is 1-lit.
This result partially improves [8, Theorem 26].
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The following example shows that Corollary 3.3 is no longer true if the assumption
of � is the same as that of Theorem 3.2. Consider the graph � = (S, R) as below.

2

1

3 6

4

5

The graph � = (S, R) is nondegenerate and not a block graph. Therefore �

is not a line graph by Proposition 2.4. The basis {α∨
1 , α∨

2 , . . . , α∨
6 } of V dual to

{α1, α2, . . . , α6} can be expressed as follows.

α∨
1 = α2 + α6, α∨

4 = α3 + α5,

α∨
2 = α1 + α3 + α5 + α6, α∨

5 = α2 + α3 + α4 + α6,

α∨
3 = α2 + α4 + α5, α∨

6 = α1 + α2 + α5.

A direct computation shows that Q(α∨
s ) = 0 for all s ∈ S. Therefore � is not 1-lit

by Theorem 3.2, but the vertices 2,5 have even degree in �.

4 Proof of Theorem 3.1

To prove Theorem 3.1, we consider a family of linear transformations on V defined as
follows. For α ∈ V , the transvection on V with direction α is a linear transformation
τα : V → V defined by

ταβ = β + B(β, α)α for all β ∈ V .

Observe that τα preserves the form B and that τα ∈ GL(V ) since τ 2
α = 1.

For a subset P of V define T v(P) to be the subgroup of GL(V ) generated by τα

for α ∈ P , and define G(P) to be the simple graph whose vertex set is P and where
α, β in P form an edge if and only if B(α, β) = 1. For any two linearly independent
sets P and P ′ of V , we say that P ′ is elementary t-equivalent to P whenever there
exist α, β ∈ P such that P ′ is obtained from P by changing β to ταβ. The equivalence
relation generated by the elementary t-equivalence relation is called the t-equivalence
relation [3].

Lemma 4.1 [3, Theorem 3.3]. Let P denote a linearly independent set of V . Assume
that G(P) is a connected graph. Then there exists P ′ in t-equivalence class of P for
which G(P ′) is a tree.

Lemma 4.2 [15, Lemma 3.7]. Let P denote a linearly independent set of V . Assume
that G(P) is the line graph of a tree. Then, for each P ′ in the t-equivalence class of
P, the graph G(P ′) is the line graph of a tree.
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A basis P of V is said to have orthogonal type [4] if P is t-equivalent to some P ′
for which G(P ′) is a tree containing the graph

as a subgraph.

Lemma 4.3 Assume that P is a basis of V for which G(P) is a tree, but not a path.
Then P is of orthogonal type.

Proof Since G(P) is not a path it contains a vertex α with degree at least three. If any
two neighbors of α, say β and γ , are leaves of G(P), then β + γ lies in the radical of
V , which contradicts that B is nondegenerate. Therefore, at most one neighbor of α

is a leaf in G(P) and so P is of orthogonal type.

Lemma 4.4 [4, Section 10]. Let P denote a basis of V which is of orthogonal type.
Then T v(P) is the orthogonal group with respect to Q P . Moreover, the T v(P)-orbits
on V are

{0}, Q−1
P (0)\{0}, Q−1

P (1).

Proof of Theorem 3.1. For each s ∈ S, let τs denote the transvection on V with direc-
tion αs . By [16, Section 5], there exists a unique representation τ = τ� : W → GL(V )

such that τ(s) = τs for all s ∈ S. For each w ∈ W the transpose of τ(w−1) is equal
to κ(w). Therefore κ is the dual representation of τ . Since τ preserves the form B we
have

θ ◦ τ(w) = κ(w) ◦ θ for all w ∈ W. (8)

Let P = {αs | s ∈ S}. Clearly T v(P) = τ(W ) and G(P) is (isomorphic to) �. By
Lemma 4.1 there exists P ′ in t-equivalence class of P for which G(P ′) is a tree.
Since G(P) is not a line graph, the tree G(P ′) is not a path by Lemma 4.2. By
Lemma 4.3 the basis P ′ of V , as well as P , is of orthogonal type. By Lemma 4.4, the
group τ(W ) = O(V ) and the τ(W )-orbits on V are {0}, Q−1(0)\{0}, and Q−1(1).
Applying (8) and since θ is an isomorphism by Lemma 2.1, the result follows. 
�

5 Proof of Theorem 3.2 and Corollary 3.3

Recall the basis {α∨
s | s ∈ S} of V from (7). To prove Theorem 3.2 and Corollary 3.3,

we introduce a simple graph which includes the information of the values B(α∨
s , α∨

t )

for all s, t ∈ S as follows.
Define R∨ to be the set consisting of all two-element subsets {s, t} of S with

B(α∨
s , α∨

t ) = 1. Define �∨ to be the simple graph with vertex set S and edge set R∨.
We will refer to �∨ as the dual graph of �. Note that the notion of dual graphs defined
above is different from the usual ones in graph theory. The following lemma suggests
why the graph �∨ is of interest.
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Lemma 5.1 For each s ∈ S we have θ(α∨
s ) = fs .

Proof Let s, t ∈ S be given. Using (5) and (7), we have θ(α∨
s )αt = 1 whenever s = t

and otherwise θ(α∨
s )αt = 0. Comparing this with (1) the result follows. 
�

Lemma 5.2 For each s ∈ S we have

αs =
∑
st∈R

α∨
t .

Proof Fix s ∈ S. By (1), (4), and (5), the vector θ(αs) is equal to

∑
st∈R

ft .

By Lemma 5.1 the above is equal to

θ

( ∑
st∈R

α∨
t

)
.

Now, by Lemma 2.1(ii) this lemma follows. 
�
Observe that B�∨ is equivalent to B. Therefore �∨ is a nondegenerate graph. Since

{αs | s ∈ S} is the basis of V dual to {α∨
s | s ∈ S}, the graph � is the dual graph of

�∨. By duality Lemma 5.2 implies that

Lemma 5.3 For each s ∈ S we have

α∨
s =

∑
st∈R∨

αt .

Lemma 5.4 Let A and A∨ denote the adjacency matrices of � and �∨ over F2,
respectively. Then A and A∨ are inverses of each other.

Proof We show that A∨ A is equal to the identity matrix. Let s, t ∈ S be given. By
the comment below Lemma 5.1 the (s, t)-entry of A (resp. A∨) is equal to B(αs, αt )

(resp. B(α∨
s , α∨

t )). By the definition of �∨ the (s, t)-entry of A∨ A is equal to

B

( ∑
su∈R∨

αu, αt

)
. (9)

By Lemma 5.3 the vector in the first coordinate of (9) is equal to α∨
s . Therefore (9) is

equal to 1 if and only if s = t by (7). The result follows. 
�
We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2 In Lemma 5.1 we saw that θ(α∨
s ) = fs for all s ∈ S. Therefore

(i) and (ii) are equivalent by Theorem 3.1. To show that � is 2-lit, it is now enough to
consider the two cases: (a) Q(α∨

s ) = 0 for all s ∈ S; (b) Q(α∨
s ) = 1 for all s ∈ S.
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(a) It suffices to show that there exist s, t ∈ S such that Q(α∨
s + α∨

t ) = 1. Since the
form B is nontrivial there exist s, t ∈ S such that B(α∨

s , α∨
t ) = 1. Then the s and

t are the desired elements in S.
(b) It suffices to show that there exist two distinct s, t ∈ S such that Q(α∨

s +α∨
t ) = 0.

By our assumption, the graph � is not a complete graph. Using Lemma 5.4, we
deduce that �∨ is not a complete graph. Therefore there exist two distinct s, t ∈ S
such that B(α∨

s , α∨
t ) = 0. Such s and t are the desired elements in S. 
�

To prove Corollary 3.3, we give a sufficient condition for Theorem 3.2(ii).

Lemma 5.5 Let � = (S, R) denote a nondegenerate graph. Assume that there exists
s ∈ S with even degree in � such that

∑
{u,v}⊆S
su,sv∈R

B(α∨
u , α∨

v ) = 0, (10)

where the sum is over all two-element subsets {u, v} of S with su, sv ∈ R. Then the
restriction of Q to {α∨

t | st ∈ R} is surjective.

Proof Apply Q to either side of the equation in Lemma 5.2. Using (6), (10) and
Q(αs) = 1 to evaluate the resulting equation, we obtain that

∑
st∈R

Q(α∨
t ) = 1. (11)

By (11) there exists a neighbor u of s for which Q(α∨
u ) = 1. Since s has even degree

in � there exists a neighbor v of s for which Q(α∨
v ) = 0. The result follows. 
�

Proof of Corollary 3.3. By Proposition 2.4 a nondegenerate bipartite graph � is a line
graph if and only if � is a path of even order. Since every path is 1-lit, this corollary
holds for � as a line graph. We thus assume that � is not a line graph. By Theorem 3.2
the graph � is 2-lit. By Lemma 5.4 we deduce that the graph �∨ is bipartite with the
same bipartition that of �. We use this to show that (i) and (ii) are equivalent.

(ii) ⇒ (i): Let s denote a vertex of � with even degree. Since � and �∨ are bipartite
graphs with same bipartition, we deduce that B(α∨

u , α∨
v ) = 0 for any

neighbors u, v of s in �. Therefore (10) holds. By Lemma 5.5 the restriction
of Q on {α∨

t | st ∈ R} is onto. Therefore � is 1-lit by Theorem 3.2.
(i) ⇒ (ii): Suppose on the contrary that each vertex of � has odd degree. Using

Lemma 5.4, we deduce that each vertex of �∨ has odd degree. Let s denote
any element of S. By Lemma 5.3, Q(α∨

s ) is equal to

Q

( ∑
st∈R∨

αt

)
. (12)

Since the bipartite graphs � and �∨ have the same bipartition, we deduce that
B(αu, αv) = 0 for any neighbors u, v of s in �∨. By (6), the summation in (12)
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can be moved out front. Since Q(αs) = 1 for all s ∈ S, it follows that (12) is equal to
1, contradicting Theorem 3.2(ii). 
�
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