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Abstract Given a crystallographic reduced root system and an element γ of the
lattice generated by the roots, we study the minimum number |γ |, called the length of
γ , of roots needed to express γ as sum of roots. This number is related to the linear
functionals presenting the convex hull of the roots. The map γ �−→ |γ | turns out to
be the upper integral part of a piecewise-linear function with linearity domains the
cones over the facets of this convex hull. In order to show this relation, we investigate
the integral closure of the monoid generated by the roots in a facet. We study also the
positive length, i.e., the minimum number of positive roots needed to write an element,
and we prove that the two notions of length coincide only for the types A� and C�.
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1 Introduction

Let � be a crystallographic reduced root system in the euclidean space E with scalar
product (·, ·). Let R be the Z-span of � in E and define |γ |, the length of γ , as the
minimum r ≥ 0 such that there exist r roots β1, β2, . . . , βr with γ = β1+β2+· · ·+βr .
So, |γ | is the size of a minimal partition of γ in roots.

Our aim is to describe the map R � γ �−→ |γ | ∈ N. (It is called the word length
with respect to � in [1], see also [14], and [16]). As we show it is related to the convex
hull P� of � in E , called the root polytope. Given an element λ ∈ E , let H(λ) be
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the closed half-space of E defined by {u ∈ E | (λ, u) ≤ 1}. If F is a facet of P� let
λF ∈ E be such that (λF , u) = 1 if u ∈ F and (λF , u) < 1 for u ∈ P� \ F ; then
P� = ⋂

F H(λF ), where F ranges over the set of all facets of P�, is a half-space
presentation of P�. Moreover, let V (F)

.= F∩� be the set of roots in F , and C(V (F))

be the Q
+-cone over V (F), i.e., the set of non-negative rational linear combinations

of elements of V (F). Our main result is the following formula.

Theorem A For any γ ∈ R we have

|γ | = max
F

	(λF , γ )
.

So if γ ∈ C(V (F)) for some facet F then |γ | = 	(λF , γ )
.

Hence we see that the length map is the upper integral part of linear functions on
the cones over the facets of P�.

Our proof of this theorem requires the evaluation of the map γ �−→ |γ | at a minimal
set of generators of the monoid M(F)

.= C(V (F)) ∩ R, with F a face of P�. Let
N (F) be the N-span of V (F) and Z(F) be the Z-span of V (F); N (F) is a submonoid
of M(F) and we say that the face F is normal if C(V (F)) ∩ Z(F) = N (F). Notice,
however, that it is to be expected that M(F) is larger than N (F), since for some facets,
Z(F) is a proper sublattice of R. We call M(F) the integral closure of N (F) in R and
we say that F is integrally closed in R if M(F) = N (F). The relation of these monoids
to certain toric varieties gives reason to these definitions; in particular, the normality
of a face F is equivalent to the normality of the toric variety whose coordinate ring is
C[tβ | β ∈ V (F)]. Similar varieties have been extensively studied over the years; see,
for example, [13] and the other papers cited there.

As stated above, we need to find the generators of M(F); this computation uses
the uniform description of P� given by Cellini and Marietti in [5] (see also Vinberg’s
paper [15] and [7,9] for a generalization). Assuming here that � is irreducible, the
faces of P� may be naturally defined in terms of the affine root system associated to
�. Let us say that a simple root α is maximal if its complement in the affine Dynkin
diagram of � is connected (see Table 1 in Sect. 6 for the list of maximal roots). Let
ω̌α be the coweight dual to α and let θ be the highest root of �; then the standard
parabolic facet F(α), with α a (simple) maximal root, is the set of elements u ∈ E
such that (ω̌α, u) = (ω̌α, θ). As we recall in Sect. 3 below, any facet of P� is in the
orbit of a unique standard parabolic facet by the Weyl group action. Notice that this
gives in particular an explicit half-space presentation of P� and allows for an effective
computation of the length as in the above theorem.

We are now ready to report our computation about the generators of M(F). As
we see in Sect. 4, the intersection of M(F) with a face of the cone C(V (F)) is the
monoid M(F ′) for some facet F ′ of a subsystem of �; hence we consider only the
proper generators of M(F), i.e., those not in the border of C(V (F)). In the following
theorem, we number the simple roots and the fundamental weights as in [2].

Theorem B Let F be a facet of P�, then the proper generators for the monoid M(F)

not in V (F) are as follows:
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• 2ω3 for the facet F(α3) of type B3,
• 2ω2 for the facet F(α2) of type E7,
• ω2 and 2ω2 for the facet F(α2) of type E8 and
• ω1 and 2ω1 for the facet F(α1) of type G2.

All other facets of any other type have no proper generator not in V (F).

In Sect. 6, we develop a general theory for proper generators to a certain extent,
but the proof of the above theorem needs some simple computations and checks that
are carried out on a case-by-case basis. As a consequence of the theorem, we have the
following two results.

Corollary C Any face of the root polytope P� is normal.

Corollary D The facet F(α), α ∈ 
 a maximal root, is integrally closed in R if and
only if (ω̌α, θ) = 1.

These integral closure properties may also be proved by finding a unimodular
triangulation of the facets of the root polytope; see for example [1], where such a tri-
angulation is given for type A, C, and D via explicit realizations of these root systems.
Similar polytopes related to root systems and their normality are studied via unimod-
ular triangulation in [4,10], and [11], while in [12] a combinatorial characterization of
diagonally split toric varieties is used. Notice, however, that, to our best knowledge,
it is neither known whether all root polytopes admit a unimodular triangulation suit-
able to prove the above corollaries, nor we know how to construct a triangulation in a
uniform way with respect to the root system type.

It is natural to consider also another type of length map. Let us choose a positive
subsystem �+ of � and let R+ be the N-span of �+, and, to an element γ of R+,
let us associate the minimum number |γ |+ of positive roots needed to write γ as sum
of positive roots. So |γ |+ is the size of a minimal partition of γ in positive roots.
We call |γ |+ the positive length of γ . It is clear that |γ | ≤ |γ |+ but in general this
inequality is strict. Consider, for example, B3 and the root β

.= α1 + α2 + 2α3. We
have γ

.= β − α2 = α1 + 2α3 and this shows that |γ | = 2, while |γ |+ = 3 since any
root has connected support.

Corollary E The positive length map coincides with the length map only for the types
A� and C�.

For type A� we prove this theorem by comparing a direct formula for the positive
length (Proposition 7.2) with the formula in Theorem A. For C� we use a different
strategy exploiting a triangulation of the root polytope described in [6].

The different behavior of types A� and C� with respect to the length map is reflected
in the following compatibility condition. Let us denote by P+

� the convex hull of the
set �+ ∪{0}, called the positive root polytope, and let also C(�+) be the non-negative
rational cone generated by the positive roots. We say that �+ is polyhedral if C(�+)

is a union of cones generated by subsets of roots of the faces of P�. Equivalently, �+
is polyhedral if P+

� = P� ∩ C(�+).
Notice that for A3 and C3, �+ is polyhedral while it is not for B3 as one may see

in Fig. 1. Moreover, it is clear that �+ is not polyhedral for G2 (see, for example,
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Fig. 1 The rank 3 root polytopes

tables in [2]) and it is easy to show that �+ is not polyhedral for D4; further, if �+ is
polyhedral then also the set of positive roots of a subsystem is polyhedral. Hence only
A� and C� may have a polyhedral positive root set and, indeed, this is proved in [6].

So �+ is polyhedral if and only if the positive length map coincides with the length
map. This suggests that some result similar to the formula in Theorem A should hold
also for γ �−→ |γ |+ using a half-space presentation of P+

� .
The paper is organized as follows. In Sect. 2 we fix some notation for the root

systems.
In Sect. 3 we review the main results of [5] relevant to our aims. In Sect. 4 we

see some preliminary result about faces and subsystems. In Sect. 5 we study the face
inclusion relation for the root polytope, in particular, we describe the pair of adjacent
facets, i.e., of facets having maximal intersection. In Sect. 6 we compute the generators
for the monoid M(F) and we study the integral closure and normality property. In this
section, we prove Theorem B and Corollaries C and D. Finally, in Sect. 7 we prove
Theorem A, we give a direct formula for length and positive length in type A� and we
prove Corollary E.

2 Root system notation

Let � be a crystallographic reduced root system of rank � in the Euclidean space E
whose scalar product is denoted by (u, v) for u, v ∈ E . Let also � ⊃ �+ ⊃ 
 be a
positive subsystem of � and 
 be the corresponding basis; moreover, let R

.= 〈
〉Z
be the lattice generated by the roots.

For a simple root α, let ω̌α be the corresponding fundamental coweight; so
(ω̌α, β) = δα,β for α, β ∈ 
, or, in other words, the coweights ω̌α with α ∈ 


are the dual basis of 
. We denote by α̌ the dual root 2α/(α, α) of a root α; further,
ωα , α ∈ 
, is the dual basis of α̌, α ∈ 
. The scalar product of E is normalized so
that, for simply laced systems, α = α̌ (and so also ωα = ω̌α) for all α ∈ 
.

Given a subset A of 
, let WA be the parabolic subgroup of the Weyl group W of �

generated by the simple reflections sα for α ∈ A. We denote by W A the set of minimal
length representatives of W/WA. For a dominant coweight λ we define Wλ and W λ

as the stabilizer, respectively, the set of minimal length representatives of the quotient
W/Wλ. Clearly, Wλ = WA with A the set of all simple roots α such that (λ, α) = 0.

For an irreducible root system we denote by θ the highest root of � with respect to

 and we define mα ∈ N, α ∈ 
, so that θ = ∑

α∈
 mαα. If � is not simply laced
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then θs is the short highest root; we will also write θl for θ . Finally, let �l be the set
of long roots and �s be the set of short roots; if � is simply laced then we consider
all roots as long.

Any time we need to number the elements of the basis 
 we use the numbering in
[2]; further all symbols indexed by simple roots are accordingly numbered.

3 The root polytope

We define the root polytope P� of � as the convex hull in E of �.
Given an element λ ∈ E let H(λ) be the closed half-space {u ∈ E | (λ, u) ≤ 1}.

Since � is invariant for E � u �−→ −u ∈ E and it spans E , 0 is an interior point
of P�. So, � being a finite set, there exist elements λ1, λ2, . . . , λr such that P� =⋂r

i=1 H(λi ); this is a half-space presentation of P�. A face F of P� is the set of
elements u ∈ P� such that (λi , u) = 1 for i ∈ A ⊆ {1, 2, . . . , r} for some subset
A; we say that the elements λi , i ∈ A, define the face F . We denote by V (F) the
set F ∩ � of roots in F ; it contains the vertices of F but it is in general a larger
set.

Now we recall the main results of [5] relevant to our aims. We assume for the rest
of this section that � is irreducible.

The affine root system �̃ may be defined by adding a suitable node to the Dynkin
diagram of � (see [2]) and a simple root α0 to 
 obtaining the basis 
̃ = 
 ∪ {α0}
of the affine root system. The scalar product of E is extended to a bilinear form by
declaring (α0, α) = −(θ, α) for all α ∈ 
.

Notice that ( ω̌α

mα
, β) ≤ 1 for all β ∈ �. So, given a subset A of 
, the set F(A) of

the elements u ∈ P� such that ( ω̌α

mα
, u) = 1 for all α ∈ A is a face of P�; we call it a

standard parabolic face. Let also V (A)
.= V (F(A)).

The face F(A) is clearly the intersections of the faces F(α)
.= F({α}) for α ∈ A;

we call such a face F(α) the coordinate face associated with the simple root α. We
set also V (α)

.= V (F(α)) for short.
In general, the map A �−→ F(A) from subsets of 
 to standard parabolic faces

fails to be injective. As a first result we want to see how a fixed face may be defined
in terms of subsets A; so we introduce the following definitions. Given A ⊆ 
 define
A as the complement in 
̃ of the connected component of (
 \ A) ∪ {α0} containing
α0 and define ∂ A as the set of the simple roots α ∈ A such that there exists β in the
connected component of (
 \ A) ∪ {α0} containing α0 with (α, β) �= 0. We define
also A∗ .= 
 \ ∂ A. It is clear that ∂ A ⊆ A ⊆ A. Moreover, the following statement
holds.

Proposition 3.1 (Proposition 5.9 in [5]) F(B) = F(A) if and only if ∂ A ⊆ B ⊆ A.

Let I be the set of subsets A of 
 such that (
 \ A) ∪ {α0} is connected in the
Dynking diagram of �̃. By 3.1 the map I � A �−→ F(A) is a bijection from I to the
set of standard parabolic faces; moreover, if A ⊇ B then F(A) ⊆ F(B).

It is clear that not all faces of P� are standard parabolic. Since W acts on the faces
of P�, we consider the faces F(A; τ)

.= τ F(A), for A a subset of 
 and τ ∈ W , that
we call parabolic faces and we define analogously V (A; τ)

.= F(A; τ) ∩ �.
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Proposition 3.2 (Lemma 5.5 and Propositions 5.10, 5.11 in [5]) The orbits of W on
the set of faces of P� are in bijection with I; so any face is parabolic. The codimension
of the face F(A), A ∈ I, is |A| and its stabilizer in W is WA∗ . Hence the faces of the
root polytope are F(A; τ) with A ∈ I and τ ∈ W A∗

.

In particular, the facets (i.e., the faces of maximal dimension, equivalently those
spanning an affine subspace of E of dimension � − 1) of P� are in the orbits of the
coordinate faces F(α) with α simple root such that (
 \ {α}) ∪ {α0} is connected; we
call such simple roots maximal. Moreover, we find at once the following half-space
description of the root polytope.

Proposition 3.3 (Corollary 5.13 in [5]) P� = ∩H( τ ω̌α

mα
), where α runs in the set of

maximal roots and τ ∈ W 
\{α}.

Remark 3.4 Let us recall for later use that, by Corollary 5.8 and Proposition 5.4 in
[5], there exists a long root βA ∈ V (A) such that V (A) is the set of the roots β ∈ �

such that β ≥ βA, where ≥ is the dominant order; moreover, (ω̌α, βA) = mα for all
α ∈ A and (ω̌α, βA) < mα for all α �∈ A.

4 Preliminary results about faces and subsystems

In this section we introduce some notation and establish various preliminary results
needed in the subsequent sections.

Let F be a face of the root polytope P� of the irreducible root system �. We define
N (F) as the monoid generated by V (F), Z(F) as the lattice generated by V (F),
M(F) as the intersection C(V (F))∩ R, where C(V (F)) is the set of all non-negative
rational linear combinations of V (F). We will write also N (V (F)) for N (F) and
Z(V (F)) for Z(F). In order to compare the two monoids M(F) and N (F) we define
the following relation on M(F): v ≤F u if u − v ∈ N (F).

Lemma 4.1 The relation ≤F is an order on M(F). Moreover, M(F) is the union of
γ + N (F), where γ runs in the set of ≤F -minimal elements.

Proof The relation is clearly transitive since N (V ) is a monoid. If u ≤F v and v ≤F u
then u − v ∈ N (F) ∩ (−N (F)), but only 0 belongs to such intersection since N (F)

is strongly convex being V (F) defined as the 1-level set on � of some functionals on
E ; so u = v.

Now let λ be an element of E appearing in a half-space presentation of P� such that
(λ,w) = 1 for all w ∈ F . In particular, if u ≤F v, u �= v we have (λ, u) ≤ (λ, v)−1.
Hence any strictly descending chain of elements of M(F) must be finite since for all
u ∈ M(F) we have (λ, u) ≥ 0. The last claim is now clear. ��

In the following lemmas, we relate the faces of the root polytope and the root
subsystems. We sometime add the root system symbol as a subscript for clarity.

Lemma 4.2 Let F
.= F(A) be a face of the root polytope with A ∈ I, let E ′ be the

vector subspace of E generated by F and let �′ be the root subsystem � ∩ E ′ of �.
Then, there exists γA ∈ � such that
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(i) (
 \ A) ∪ {γA} is a basis of �′,
(ii) F = F�′({γA}).
Proof (i) Let �′+ .= �+ ∩ E ′; it is a positive subsystem of �′. The basis of �′

corresponding to �′+ contains 
 \ A since 
 \ A is a subset of the basis 
 of �

corresponding to �+.
By Proposition 3.2, the dimension of E ′ is |
| − |A| + 1; hence there exists
an uniquely determined γA ∈ �′+ such that (
 \ A) ∪ {γA} is the basis of �′
corresponding to �′+.

(ii) Notice that the subsystem �′ is irreducible by (1) of Corollary 4.5 in [5]. So let θ ′
be the highest root of �′ with respect to �′+ and let θ ′ = ∑

δ∈
\A m′
δδ + m′γA

for some non-negative integers m′
δ , δ ∈ 
 \ A and m′. Further βA ∈ �′+ and

so we may write βA = ∑
δ∈
\A aδδ + aγA for some non-negative integers aδ ,

δ ∈ 
 \ A, and a. We claim that a = m′.
Indeed suppose that γA = ∑

α∈
 cαα for some non-negative integers aα , α ∈ 
.
Then, βA = ∑

δ∈
\A(aδ + cδ)δ + ∑
α∈A(acα)α and we find that acα = mα for

any α ∈ A since (ω̌α, βA) = mα for any α ∈ A. (We want to stress that here and
in the remaining of this proof, a coweight ω̌α with α ∈ A is always related to �

and not to �′; i.e., ω̌α is an element of the dual basis of the basis 
 of �.)
Now notice that θ ≥ θ ′ = ∑

δ∈
\A(m′
δ +m′cδ)δ+∑

α∈A(m′cα)α. Hence m′cα ≤
mα for any α ∈ A. So m′ ≤ a using acα = mα .
On the other hand, βA ≤ θ ′ clearly implies that a ≤ m′ and so we have proved
our claim that a = m′.
We may now easily conclude the proof of the lemma. Indeed since a = m′ we
have βA ∈ F�′({γA}), hence F ⊆ F�′({γA}) since F is the set of all roots β ∈ �

such that β ≥ βA.
Finally, let β ∈ F�′({γA}) and α ∈ A. We have (ω̌α, β) = (ω̌α, m′γA) =
(ω̌α, aγA) = acα = mα and so β ∈ F .

��
Lemma 4.3 If F ′ is a subface of the face F of P� and E ′ is the subspace of E
spanned by F ′ then F ′ is a facet of P�′ and V�(F) ∩ E ′ = V�′(F ′), where �′ is the
root subsystem � ∩ E ′ of �.

Proof By the previous Lemma 4.2, F ′ is a facet of P�′ and then the claim is clear
since V�(F) ∩ E ′ = F ∩ E ′ ∩ � = F ′ ∩ �′ = V�′(F ′). ��

Now we proceed with a lemma describing the lattice generated by the roots in a
face.

Lemma 4.4 Let A ∈ I, then Z(V (A)) = 〈
 \ A, βA〉Z.

Proof If β ∈ V (A) then (ω̌ε, β) = mε for all ε ∈ A, hence β = βA + ∑
α∈
\A cαα

with cα ∈ N for all α ∈ 
 \ A; so β ∈ 〈
 \ A, βA〉Z.
In order to prove the reverse inclusion consider a maximal chain e = τ0 < τ1 <

· · · < τr in W θ with respect to the left weak Bruhat order such that τrθ = βA and
let α1, α2, . . . , αr be simple roots such that τi = sαi τi−1 for i = 1, 2, . . . , r . Since
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τiθ ≥ βA we have τiβ ∈ V (A) and so {α1, α2, . . . , αr } ⊆ 
 \ A; further this is a set
equality since (ω̌α, βA) < mα for all α ∈ 
 \ A.

We have proved that the two roots τi−1θ and τiθ = τi−1θ + aαi , for some positive
a ∈ N, in the αi -string through τi−1θ are in V (A); but a root string is unbroken, hence
also τiθ + αi ∈ V (A). We conclude that 
 \ A ⊂ Z(V (A)). This finishes our proof
since it is clear that βA ∈ Z(V (A)). ��

Finally, in the next lemma, we see how the minimal elements of the monoid in a face
for non-reduced root system may be described in terms of the irreducible components.

Lemma 4.5 Suppose E = E1 ⊕ E2, where ⊕ is the orthogonal direct sum, and
�i ⊂ Ei , for i = 1, 2, are root systems. Suppose F is a face of P�1∪�2 and let
Fi

.= F ∩ Ei for i = 1, 2.

(i) F1 and F2 are faces of P�1 , respectively, of P�2 .
(ii) M(F) = M(F1) ⊕ M(F2) and N (F) = N (F1) ⊕ N (F2)

(iii) The set of non-zero ≤F -minimal elements of M(F) is the union of those of M(F1)

and of M(F2)

Proof Denote by � the root system �1 ∪ �2.

(i) Let λ1, λ2, . . . , λr ∈ E give a half-space presentation of P� and suppose that
A ⊆ {1, 2, . . . , r} is such that the elements λh , h ∈ A define the face F . Since
P�1 = P� ∩ E1, we see that, writing λh = (λh,1, λh,2), for h = 1, 2, . . . , r , the
vectors λ1,1, λ2,1, . . . , λr,1 give a half-space presentation of P�1 . In particular,
the vectors λh,1, h ∈ A define F1 = F ∩ E1, hence F1 is a face of P�1 . The proof
for F2 is analogous.

(ii) It is clear that V (F) = V (F1)∪ V (F2) and so N (F) = N (F1)⊕ N (F2) follows.
Moreover, M(F) = C(V (F)) ∩ R� = C(V (F1)) ⊕ C(V (F2)) ∩ R�1 ⊕ R�2 =
(C(V (F1)) ∩ R�1) ⊕ (C(V (F2)) ∩ R�2) = M(F1) ⊕ M(F2).

(iii) This follows from (ii).

5 The face inclusion relation

We want to study the inclusion condition for the faces of P�. We begin by the following
proposition; it is a slightly improved version of Lemma 4.2 in [5].

Proposition 5.1 If A ∈ I then WA∗ is the stabilizer of the barycenter

b(V (A))
.= 1

|V (A)|
∑

β∈V (A)

β

of V (A). In particular, the W -orbit of F(A) is in bijection with the W -orbit of b(V (A)).

Proof Since WA∗ is the stabilizer of F(A), it clearly stabilizes b(V (A)). Viceversa
b(V (A)) is in the dominant chamber by Lemma 4.2 in [5], so its stabilizer is generated
by the simple reflections it contains. Setting b

.= b(V (A)) for short, it suffices to show
that (b, α) > 0 for all α ∈ ∂ A to prove our claim.
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Now we show first that (βA, α) > 0 for all α ∈ ∂ A. Indeed, let us write βA =
θ − ∑

γ∈
\A cγ γ with cγ > 0, for all γ ∈ 
 \ A, and let α ∈ ∂ A. We have
(βA, α) = (θ, α) − ∑

γ∈
\A cγ (γ, α), where (θ, α) ≥ 0, since the highest root θ is
in the dominant chamber and (γ, α) ≤ 0 for all γ ∈ 
 \ A, since α ∈ A. This shows
that (βA, α) is positive as soon as (θ, α) > 0 or (γ, α) �= 0 for some γ �∈ A. Hence
(βA, α) > 0, by definition of ∂ A.

Now consider a general β ∈ V (A). We can write as above β = θ−∑
γ∈
\A cγ γ but

this time cγ ≥ 0. So the same argument as above shows that (β, α) ≥ 0 for all α ∈ ∂ A.
This proves our claim since for α ∈ ∂ A we have (b, α) = 1/|V (A)|∑β∈V (A)(β, α) ≥
1/|V (A)|(βA, α) > 0. ��
Proposition 5.2 If A, B ∈ I then the face F(B; σ) is contained in the face F(A; τ)

if and only if B ⊇ A and τ−1σ ∈ WA∗ · WB∗ .

Proof If τ−1σ = ηAηB with ηA ∈ WA∗ , ηB ∈ WB∗ and B ⊇ A then F(B; σ) =
τηAηB · F(B) = τηA · F(B) ⊆ τηA · F(A) = F(A; τ).

In order to prove the converse let η
.= sα1 sα2 · · · sαr , for some simple roots

α1, α2, . . . , αr , be a reduced expression of the minimal representative of τ−1σ

in W B∗
and let b

.= b(V (B)). So, by (iv) of Theorem 4.3.1 in [3], we have
b > sαr b > sαr−1 sαr b > · · · > sα1sα2 · · · sαr b, with respect to the dominant order,
being the above expression of η reduced. Hence, in particular, using Proposition 5.1,
there exists β ∈ sα2 · · · sαr · V (B) such that β ′ .= sα1(β) < β and so (β, α̌1) > 0.

But β is a root, so (ω̌α1 , β) ≤ mα1 and we find (ω̌α1 , β
′) = (ω̌α1 , β) − (β, α̌1) <

mα1 . We conclude that α1 �∈ A since β ′ ∈ ηV (B) ⊆ V (A). Hence α1 �∈ ∂ A, so we
have sα2 · · · sαr · F(B) ⊆ sα1 · F(A) = F(A). We inductively find that η ∈ WA∗ ,
hence τ−1σ ∈ WA∗ · WB∗ . It follows that F(B) ⊆ F(A) and so finally B ⊇ A since
A, B ∈ I.

As a first application of the previous proposition, in the following lemma we see
that the lattice generated by the roots in a face is compatible with subfaces.

Lemma 5.3 Let F ′ be a subface of the face F of P�. Then Z(V (F ′)) = Z(V (F)) ∩
〈F ′〉R.

Proof Using Proposition 5.2 we may assume that F and F ′ are standard parabolic
faces using the action of the Weyl group; so let F

.= F(A) and F ′ .= F(A′) for some
A ⊆ A′ ⊆ 
. Further, it suffices to prove our claim in the case A′ .= A ∪ {δ} with
δ ∈ 
\ A. Let E ′ .= 〈F(A′)〉R and, for a generic B ∈ I, let β ′

B
.= ∑

α∈B mαα; notice
that by the previous Lemma 4.4 we have Z(V (B)) = 〈
 \ B, βB〉Z = 〈
 \ B, β ′

B〉Z.

Finally, let α be an arbitrary fixed element of A, denote by ϕ the vector ω̌α

mα
− ω̌δ

mδ
, and

by L the set of u ∈ E such that (ϕ, u) = 0.
Let γ be an element of Z(V (A)) ∩ E ′ = 〈
 \ A, β ′

A〉Z ∩ L . Then γ = cβ ′
A +∑

α∈
\A cαα for some c ∈ N and cα ∈ N for all α ∈ 
 \ A, and using the fact
that 0 = (ϕ, γ ) we find cδ = cmδ . Hence γ = c(β ′

A + mδδ) + ∑
α∈
\A′ cαα =

cβ ′
A′ + ∑

α∈
\A′ cαα. So γ ∈ 〈
 \ A′, β ′
A′ 〉Z = Z(V (A′)).

Now our claim is proved, since the inclusion Z(V (A′)) ⊆ Z(V (A)) ∩ 〈F(A′)〉R is
clear. ��
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We apply again Proposition 5.2 to the description of the border of a facet F(α),
α ∈ 
 a maximal root. We say that two faces of the same dimension d are adjacent if
their intersection is a face of dimension d − 1.

Proposition 5.4 Let α be a maximal root. The facets adjacent to F(α) are:

(i) F(δ; τ) with δ ∈ 
, δ �= α maximal root such that {α, δ} ∈ I and τ ∈ W
\{α},
(ii) F(α; τ sα) with τ ∈ W
\{α}, if there exists ε ∈ 
 non-maximal such that {α, ε} ∈

I. In such a case ε is the unique simple root adjacent to α in the Dynkin diagram
of �̃.

Proof Let the facet F1
.= F(δ; σ), with δ ∈ 
 maximal root, be adjacent to F

.=
F(α) and let F ′ .= F ∩ F1. Since F ′ has codimension 2 and is contained in F , by
Proposition 3.2 and Proposition 5.2 we have F ′ = F({α, ε}; τ) for some ε ∈ 
, ε �= α

such that {α, ε} ∈ I and τ ∈ W
\{α} since this is the stabilizer of F .
Using the fact that F ′ ⊂ F1 and Proposition 5.2, we obtain that δ ∈ {α, ε}. If ε is a

maximal root then δ = ε since otherwise if δ = α then F ′ would be contained in the
three different facets F , F1, and F({ε}; τ) and this is clearly impossible. Hence F1 is
of type (i) as in our claim.

So suppose that ε is not maximal; then δ = α since δ is maximal. Consider the
subspace E ′ of codimension 1 in E spanned by F ′. It is clearly the orthogonal of
ω̌α

mα
− τ ω̌ε

mε
and ω̌α

mα
− σ ω̌α

mα
. Since in turn E ′ determines F ′ and hence F1, if we show

that ω̌α

mα
− τ ω̌ε

mε
and ω̌α

mα
− τ sαω̌α

mα
are proportional, then we may conclude that F1 is of

type (ii) as in the claim.
Now notice that (
 \ {α, ε}) ∪ {α0} is connected, since {α, ε} ∈ I, while, being ε

not maximal, (
 \ {ε}) ∪ {α0} is not connected in the Dynkin diagram of �̃; hence ε

is the unique (simple) root in the Dynkin diagram of �̃ connected to α.
In particular α̌ = 2ω̌α − aω̌ε , for some a ∈ N, and (θ, α) = 0; so substituting the

first equation in the second one we find a = 2mα/mε . We compute

ω̌α

mα
− τ sαω̌α

mα
= ω̌α

mα
− τ

(
− ω̌α

mα
+ 2 ω̌ε

mε

)

= 2
(

ω̌α

mα
− τ ω̌ε

mε

)
.

This finishes the proof that F1 is of type (ii) in our claim when ε is not a maximal root.
Now we need to show that each facet of type (i) and (ii) is adjacent to F . But this is

clear since by (i) we have that F({α, δ}; τ) is a codimension 2 face in F(α)∩ F(δ; τ),
while by (ii) F({α, ε}; τ) is a codimension 2 face in F(α) ∩ F(α; τ sα). ��

If a facet F has some adjacent facet that is in the Weyl group orbit of F then we
say that F has autointersection; notice that these facets are described in (ii) of the
previous proposition.

We finish this section showing how a facet decomposes in orbits under the action
of its stabilizer; this will be used later.

Lemma 5.5 Let α be a maximal root. If � is not simply laced and the highest short
root θs ∈ V (α) (i.e., if (ω̌α, θs) = mα) then V (α) = (W
\{α} · θs) � (W
\{α} · θ)

otherwise V (α) = W
\{α} · θ .
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Proof Clearly W
\{α} · θ ⊂ V (α) and, if � is not simply laced and θs ∈ V (α) then
W
\{α} · θs ⊂ V (α).

Conversely, let us suppose � is not simply laced, θs ∈ V (α) and let β be a short root
in V (α). Clearly β = τθs for some τ ∈ W . Notice that θs is a dominant weight, hence
its stabilizer W ′ in W is a standard parabolic subgroup. So let τ ′ = sα1 sα2 . . . sαr , for
some α1, α2, . . . , αr , be a reduced expression of the minimal representative of τ in
W/W ′. By (iv) of Theorem 4.3.1 in [3], we have θs − β ∈ 〈α1, α2, . . . , αr 〉N and we
conclude αi �= α for all i = 1, 2, . . . , r since (ω̌α, β) = mα = (ω̌α, θs). In particular,
τ ′ ∈ W
\{α} and our claim is proved since β = τ ′θs .

The proof for the long roots is similar. ��

We define Vl(α)
.= V (α) ∩ �l = W
\{α} · θ and Vs(α)

.= V (α) ∩ �s ; this last set
is either W
\{α} · θs if � is non-simply laced and θs ∈ V (α) or empty otherwise.

6 Integral closure of the monoids generated by the faces

In this section we study the integral closure of the monoids generated by the faces of
the root polytope. In particular, we explicitly find the ≤F -minimal elements of M(F)

for every face F of the root polytope.
First of all notice that, by Lemma 4.5, the normality property and the minimal

elements for a non-irreducible root system may be determined from the irreducible
factors.

Further suppose that an element γ ∈ M(F) is also an element of M(F ′) with F ′
a face in the border of F , then F ′ ⊂ E ′ .= 〈F ′〉R and E ′ is a proper subspace of E .
Hence F ′ is a facet of the root polytope of �′ .= � ∩ E ′ by Lemma 4.3 and �′ is
irreducible by (1) of Corollary 4.5 in [5].

So throughout this section we will assume that � is irreducible and that F is a facet
of P�. We define a non-zero element of M(F) to be proper if it is not an element of
M(F ′) with F ′ a face in the border of F and we look for proper minimal elements of
M(F).

We want to develop a criterion for proper minimal elements. The minimal elements
of τ · F are the images, under the action of τ , of the minimal elements of F . So from
now on, we consider a facet F

.= F(α) for a fixed maximal root α ∈ 
. Recall that F
is defined by the vector λ

.= ω̌α

mα
and, in particular, V

.= V (F(α)) is the set of roots β

such that (ω̌α, β) = mα .
Given γ ∈ E let γ+ be the unique element in W
\{α} ·γ that is dominant for 
\{α}

(i.e., such that (γ+, δ) ≥ 0 for all δ ∈ 
, δ �= α). Given a simple root δ and τ ∈ W let
∇τ

α,δ be the vector ω̌α

mα
− τ ω̌δ

mδ
; further we set ∇α,δ

.= ∇e
α,δ . Finally, let �α be the set of

simple roots δ such that either δ �= α is maximal and {α, δ} ∈ I (i.e., the complement
of {α, δ} is connected in 
̃) or F has autointersection and δ is the unique root adjacent
to α (see (ii) of Proposition 5.4, in this case δ is not maximal).

Remark 6.1 By Proposition 5.4 the elements ∇τ
α,δ , with δ ∈ �α and τ ∈ W
\{α},

define the hyperplanes separating F from its adjacent facets. Indeed this is clear for
δ maximal. Further, if F has autointersection and δ is the unique root adjacent to
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α, we have 2∇τ
α,δ = ∇τ sα

α,α since, as seen in the proof of Proposition 5.4, τ sαω̌α =
−ω̌α + 2mα

τω̌δ

mδ
.

The following simple lemma will be useful in the sequel.

Lemma 6.2 Suppose γ is (
 \ {α})-dominant and let τ ∈ W
\{α}. Then (∇α,δ, γ ) ≤
(∇τ

α,δ, γ ) for any δ ∈ 
.

Proof By (iv) of Theorem 4.3.1 of [3] we have τ−1γ = γ − η with η a non-negative
linear combination of 
 \ {α} since γ is (
 \ {α})-dominant. Using τ ∈ W
\{α} we
get

(∇τ
α,δ, γ ) =

(
ω̌α

mα
− τ ω̌δ

mδ
, γ

)

=
(

ω̌α

mα
, γ

)
−

(
ω̌δ

mδ
, τ−1γ

)

=
(

ω̌α

mα
, γ

)
−

(
ω̌δ

mδ
, γ − η

)

= (∇α,δ, γ
) +

(
ω̌δ

mδ
, η

)

and our claim follows since ( ω̌δ

mδ
, η) ≥ 0. ��

Proposition 6.3 An element γ ∈ R is a proper element of M(F) if and only if:
0 < (∇α,δ, γ+) for any δ ∈ �α .

Proof First of all notice that the set of proper elements of M(F) is clearly stable by
the action of W
\{α} since this is the stabilizer of F . So γ is proper if and only if γ+
is proper.

The element γ+ is a proper element of M(F) if it is not an element of a subface of
F , hence if and only if it is in M(F) and not in any hyperplane separating F from a
facet adjacent to F . So if a facet F ′ adjacent to F is defined by a vector μ then we
must have (λ − μ, γ+) > 0 since λ − μ = 0 is the hyperplane in E separating F and
F ′ and (λ − μ, β) = 1 − (μ, β) ≥ 0 for all β ∈ V .

As seen above these hyperplanes are defined by ∇τ
α,δ for δ ∈ �α , τ ∈ W
\{α};

so we have proved that 0 < (∇τ
α,δ, γ+) for all δ ∈ �α , τ ∈ W
\{α}. In particular

0 < (∇α,δ, γ+) for any δ ∈ �α .
Conversely, (∇τ

α,δ, γ+) ≥ (∇α,δ, γ+) for any δ ∈ �α , τ ∈ W
\{α} by Lemma 6.2.
This proves that γ+ is proper if and only if 0 < (∇α,δ, γ+) for any δ ∈ �α . ��

Our next result is a criterion for minimal elements of M(F). Given δ ∈ �α let

Dl(δ)
.= max

β∈V ∩�l
(∇α,δ, β)

Ds(δ)
.=

{
max

β∈V ∩�s
(∇α,δ, β), if V ∩ �s �= ∅,

+∞, if V ∩ �s = ∅.
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Proposition 6.4 A proper element γ of M(F) is minimal if and only if: for each β ∈ V
there exist δ ∈ �α and τ ∈ W
\{α}, depending on β, such that 0 < (∇τ

α,δ, γ ) <

(∇τ
α,δ, β).
In particular, if there exists a proper minimal element for M(F) then there exist

δl , δs ∈ �α such that

1

lcm(mα, mδl )
< Dl(δl) (1)

1

lcm(mα, mδs )
< Ds(δs) (2)

Proof Suppose that γ ∈ M(F) is a proper minimal element and β ∈ V . Since
γ − β �∈ M(F) there exists a facet F ′ adjacent to F , defined by a vector μ, such that
γ and γ − β are in different half-spaces defined by λ − μ. In particular:

(i) (λ − μ, γ ) > 0 since γ is a proper element of M(F),
(ii) (λ − μ, γ − β) < 0 since γ − β �∈ M(F).

These two inequalities are clearly equivalent to our claim by the description of the
hyperplanes separating F from its adjacent facets given in Remark 6.1.

In order to prove the converse let γ ∈ M(F) be proper and fulfill the above
condition. We have to show that for each η = ∑

β∈V cββ, cβ ∈ N, the element γ − η

is not in M(F) unless η = 0. Let β0 be such that cβ0 > 0 and let μ
.= μβ0 be

such that 0 < (λ − μ, γ ) < 1 − (μ, β0) as in the condition. We have (λ − μ, η) =∑
β∈V cβ(1 − (μ, β)) ≥ 1 − (μ, β0) > (λ − μ, γ ), where we have used that cβ ≥ 0,

1 − (μ, β) ≥ 0 for all β ∈ V and cβ0 ≥ 1.
So we have (λ − μ, γ − η) < 0 and this shows that γ − η �∈ M(F) since for all

elements ϕ of M(F) we have (λ − μ, ϕ) ≥ 0 using the fact that μ defines a facet
adjacent to F .

Now we prove the last claim. We see the proof of (1) for Dl , the proof of (2) is
analogous. So suppose that γ is a proper minimal element of M(F) and let β be a
long root in V . Then, by what already proved, there exist δ ∈ �α and τ ∈ W
\{α}
such that 0 < (∇τ

α,δ, γ ) < (∇τ
α,δ, β).

Now notice that (∇τ
α,δ, γ ) = (∇α,δ, τ

−1γ ) since τ stabilizes ω̌α . Further τ−1γ ∈ R

and we find that (ω̌α, τ−1γ ) and (ω̌δ, τ
−1γ ) are integer. So (∇τ

α,δ, γ ) = ( ω̌α

mα
, τ−1γ )−

( ω̌δ

mδ
, τ−1γ ) is an integral multiple of 1/ lcm(mα, mδ); further it is non-negative as

proved above.
Finally, (∇τ

α,δ, β) = (∇α,δ, τ
−1β) ≤ Dl(δ) since τ stabilizes V ∩�l . This finishes

the proof of (1). ��
The following lemma will be used for proving the subsequent necessary conditions

for minimality. Let δ, δ′ be two different simple roots. Since � irreducible, the Dynkin
diagram of � is a tree, hence there exists the minimal connected subset of 
 containing
δ and δ′; it is a segment of simple roots adjacent by pairs that we denote by [δ, δ′].
Lemma 6.5 If δ, δ′ are simple roots and τ ∈ W is such that (τ ω̌δ, ωδ′) < (ω̌δ, ωδ′)
then ω̌δ − τ ω̌δ ≥ ∑

ε∈[δ,δ′] ε̌.
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Proof Let τ ′ .= sαr sαr−1 · · · sα1 , with α1, α2, . . . , αr simple roots, be a reduced expres-
sion for the minimal representative τ ′ of τ in W/Wδ . Notice that defining λi

.=
sαi · · · sα1 ω̌δ , for i = 0, 1, . . . , r , we have (λi , αi+1) > 0 for all i = 0, 1, . . . , r − 1
by (iv) of Theorem 4.3.1 in [3].

We will show by induction on i that {α1, α2, . . . , αi } ⊂ 
 is connected in the
Dynkin diagram. The claim is clearly true for i = 1 so suppose i > 1. We have
(λi , αi+1) > 0, hence we may consider the minimum j ≥ 0 such that (λ j , αi+1) > 0.
If j = 0 then αi+1 = δ = α1 since λ0 = ω̌δ; in particular {α1, α2, . . . , αi+1} =
{α1, α2, . . . , αi } which is connected by induction.

So suppose j > 0. Hence (λ j−1, αi+1) ≤ 0. We have λ j = sα j λ j−1 = λ j−1 −aα̌ j ,
with a

.= (λ j−1, α j ) > 0. Further (λ j , αi+1) = (λ j−1, αi+1) − a(α j , α̌i+1) > 0 so
(α j , α̌i+1) < 0 which implies that α j and αi+1 are connected in the Dynkin diagram
of �. So {α1, α2, . . . , αi+1} is connected and our claim is proved.

Finally, notice that δ′ ∈ {α1, . . . , αr } since otherwise

(τ ω̌δ, ωδ′) = (τ ′ω̌δ, ωδ′) = (ω̌δ, τ
′−1ωδ′) = (ω̌δ, ωδ′).

So {δ, δ′} ⊆ {α1, . . . , αr } and this shows that [δ, δ′] ⊆ {α1, . . . , αr } since this last set
is connected. So ω̌δ − τ ω̌δ ≥ α̌1 + α̌2 + · · · + α̌r ≥ ∑

ε∈[δ,δ′] ε̌. ��
If � is not of type A then there exists a simple root, that we denote by ν, such that

θ is a positive multiple of ων .

Proposition 6.6 Suppose that � is not of type A, let γ be a (
\{α})-dominant proper
minimal element of M(F) and write γ = ∑

ε∈
 cεωε . Then the element δ ∈ �α

provided by Proposition 6.4 for β = θ verifies

(∇α,δ, γ ) + 1

mδ

∑

ε∈[δ,ν]
cε < Dl(δ). (3)

Proof Let τ ∈ W
\{α} be the element provided by Proposition 6.4 for β = θ ; so

we have 0 < (∇τ
α,δ, γ ) < (∇τ

α,δ, θ) = 1 − ( τ ω̌δ

mδ
, θ). In particular we must have

(τ ω̌δ, θ) < mδ = (ω̌δ, θ) and we may apply Lemma 6.5 with δ′ = ν (since θ = kων

with k ∈ Q
+) and conclude that ω̌δ − τ ω̌δ ≥ ∑

ε∈[δ,ν] ε̌. Hence

(∇τ
α,δ, γ ) =

(
ω̌α

mα
, γ

)
−

(
τ ω̌δ

mδ
, γ

)

≥
(

ω̌α

mα
, γ

)
−

(
ω̌δ

mδ
, γ

)
+ ∑

ε∈[δ,ν]
(

ε̌
mδ

, γ
)

= (∇α,δ, γ ) + 1
mδ

∑
ε∈[δ,ν] cε

and our claim follows since, as seen in the end of the proof of Proposition 6.4,
(
τ

α,δ, θ) ≤ Dl(δ). ��
A similar result holds also for Ds but we will not need it.
For proper elements that are invariant under the stabilizer of F we have a very

simple criterion of minimality.
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Proposition 6.7 An element γ ∈ M(F) that is W
\{α}-invariant is proper minimal
if and only if there exist δs, δl ∈ �α such that 0 < (∇α,δs , γ ) < Ds(δs) and 0 <

(∇α,δl , γ ) < Dl(δl).

Proof For a W
\{α}-invariant element γ we have (∇τ
α,δ, γ ) = (∇α,δ, γ ) for any τ ∈

W
\{α}. Hence the claim follows at once by Proposition 6.4. ��
We are now ready to see the proof of Theorem B. Although we have seen in this

section some general conditions for proper minimal elements, we still need a case-by-
case analysis. This combinatorial problem has some similarity with the classification
of low triples in [8]. In Table 1, we have some simple numerical data that we will use
in this analysis; we will tacitly use these data without a reference to the table.

The data in the table are as follows: in the first column the irreducible type, in the
second column the maximal roots, the third column gives the coefficient mα for α a
maximal root, the fourth the values of ∇α,δ on Vl(α) and Vs(α) for any δ �= α maximal,
the fifth, for the facets with autointersection, the value of ∇α,ε on Vl(α) and Vs(α)

Table 1 Maximal root data

Type Maximal
roots α

mα Values of ∇α,δ on
V (α), δ �= α max.

Values of ∇α,ε on V (α), ε

non max. adj. to α

Minimal
elements

A� α1, α2, . . . , α� 1 0,1 – –

B�, � ≥ 3 α1 1 0, 1 on Vl (α) – –

1/2 on Vs (α)

α� 2 0, 1 (ε = α�−1, mε = 2) 2ω3 for � = 3

0, 1/2

C�, � ≥ 2 α� 1 – (ε = α�−1, mε = 2) –

0, 1 on Vl (α)

0, 1/2 on Vs (α)

D� α1, α�−1, α� 1 0, 1 – –

E6 α1 1 0, 1 (ε = α3, mε = 2) –

0, 1/2, 1

α6 1 0, 1 (ε = α5, mε = 2) –

0, 1/2, 1

E7 α2 2 0, 1 – 2ω2

α7 1 0, 1/2, 1 (ε = α6, mε = 2) –

0, 1/2, 1

E8 α1 2 0, 1/3 (ε = α3, mε = 4) –

0, 1/4

α2 3 0, 1/2 – ω2, 2ω2

F4 α4 2 – (ε = α3, mε = 4) –

0, 1/2 on Vl (α)

1/4 on Vs (α)

G2 α1 3 – (ε = α2, mε = 2) ω1, 2ω1

0, 1/2
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where ε is the unique simple root adjacent to α, and finally, in the last column we
have the proper minimal elements of the facet F(α) (these are computed in the proof).
Notice that the fourth and fifth columns give the value of ∇α,δ for any δ ∈ �α; we
have divided them in two columns for clarity. These values may be easily computed
using Lemma 5.5.

Proof of Theorem B We assume in what follows that γ = ∑
ε cεωε is a (
 \ {α})-

dominant proper minimal element of F
.= F(α), α a maximal root. So cε ≥ 0 for all

ε ∈ 
, ε �= α. It will turn out that any proper minimal element is W
\{α}-invariant,
hence we compute all proper minimal elements and not only the dominant ones.

• Type A�: All simple roots are maximal. Let α
.= αi , i = 1, 2, . . . , �; then �α is the

set of simple roots adjacent to αi in 
 and we have lcm(mα, mδ) = 1 for any δ ∈ �α .
But notice that Dl(δ) = 1 too, so the necessary condition (1) in Proposition 6.4
cannot be fulfilled.

• Type B�, � ≥ 3: The two maximal roots are α1, α�. Let α
.= α1, then �α = {α�}

and m1 = 1, m� = 2. But 1/ lcm(m1, m�) = 1/2 = Ds(α�) and so the condition
(2) in Proposition 6.4 is violated. We conclude that the face F(α1) has no proper
minimal element.

Now let α
.= α�. We have �α = {α1, α�−1} and m1 = 1, m�−1 = 2. Notice that

1/ lcm(m�, m�−1) = 1/2 = Dl(α�−1) hence the necessary condition (1) of Proposi-
tion 6.4 should be satisfied for δ = α1. So we have (∇α�,α1 , γ )+c1+c2 < 1 = Dl(α1),
by Proposition 6.6, and so c1 = c2 = 0. Moreover

∇α�,α1 = ω̌�

2
− ω̌1 =

�−1∑

i=1

i − 2

2
α̌i + � − 2

4
α̌�

hence

(∇α�,α1 , γ ) =
�−1∑

i≥3

i − 2

2
ci + � − 2

4
c� < 1.

Since γ ∈ R we find that c� is even. Moreover, by a direct computation, ∇α�,α�−1 =
ω̌�/4, hence (∇α,α�−1 , γ ) = c�/4 and, by Proposition 6.3, we have 0 < c�/4; so c� is
also positive.

Now this implies � = 3 since for � ≥ 4 we have (� − 2)c�/4 ≥ 1. Hence we find
c� < 4 and so c� = 2. But now it is clear that γ = 2ω3 is proper minimal since it is
invariant by W
\{α3} and δs = δl = α1 fulfills the condition in Proposition 6.7.

In particular we conclude that the facet F(α�) has no proper minimal element for
� ≥ 4.

• Type C�: The unique maximal root is α� and �α�
= {α�−1}. Moreover, m� = 1

and m�−1 = 2. So, by condition (2) of Proposition 6.4, there is no proper minimal
element since 1/ lcm(m�, m�−1) = 1/2 = Ds(α�−1).

• Type D�: The maximal roots are α1, α�−1, α�, and mα = 1 for all such roots. Also
these facets have no proper minimal element since 1/ lcm(mα, mδ) = 1 = Dl(δ)

for all distinct maximal roots α and δ and no facet has autointersection.
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• Type E6: The maximal roots are α1 and α6; since they are symmetric we con-
sider only α

.= α1. We have �α = {α3, α6}. Since m1 = m6 = 1 we find
1/ lcm(m1, m6) = 1 = Dl(α6); so the necessary condition (1) of Proposition 6.4
should be satisfied for δ = α3 and (∇α1,α3 , γ ) + (c2 + c3 + c4)/2 < 1 by Propo-
sition 6.6. But (∇α1,α3 , γ ) = c1/2 > 0 and we find c1 = 1, c2 = c3 = c4 = 0.
Moreover, by Proposition 6.3, 0 < (∇α1,α6 , γ ) = 2(1 − c6)/3 − c5/3 since

∇α1,α6 = ω̌1 − ω̌6 = 2

3
(α̌1 − α̌6) + 1

3
(α̌3 − α̌5).

This shows that c6 = 0 and c5 = 0 or c5 = 1. We conclude either γ = ω1 or
γ = ω1 + ω5; but this is impossible since these are not elements of R. Hence there
are no proper minimal elements for any facet for this type.

• Type E7: The maximal roots are α2 and α7. We consider first F(α2). We have
�α2 = {α7} and m2 = 2, m7 = 1. By Proposition 6.6 (∇α2,α7 , γ ) + c1 + c3 + c4 +
c5 + c6 + c7 < 1, hence c1 = c3 = c4 = c5 = c6 = c7 = 0. Further

∇α2,α7 = 1

2
ω̌2 − ω̌7 = 1

4
(α̌2 − α̌5 − 2α̌6 − 3α̌7)

and so c2 < 4. Moreover, 0 < (∇α2,α7 , γ ) = c2/4 and finally γ = 2ω2 using the
fact that γ ∈ R. This element is minimal by Proposition 6.7 with δl = α7.

Now consider F(α7). We have �α7 = {α2, α6}, m7 = 1, m2 = 2, m6 = 2. We
will prove that the condition (3) of Proposition 6.6 does neither hold for δ = α2 nor
δ = α6. We begin considering the case δ = α2.

Indeed in this case we have

∇α7,α2 = ω̌7 − 1

2
ω̌2 = 3

4
α̌7 + 1

4
α̌5 − 1

4
α̌2,

hence, by Proposition 6.4 we should have (∇α7,α2 , γ ) + (c1 + c2 + c3 + c4)/2 =
c1/2+c2/4+c3/2+c4/2+c5/4+3c7/4 < 1. But 0 < (∇α7,α6 , γ ) = (ω̌7−ω̌6/2, γ ) =
(α̌7, γ )/2 = c7/2. Hence c7 = 1, c1 = c2 = c3 = c4 = c5 = 0 and γ = c6ω6 + ω7.
However no such γ ∈ R and so we have proved that the condition (1) in Proposition 6.4
does not hold for δ = α2.

Now suppose δ = α6 in Proposition 6.4 and let τ be an element in W
\{α7} for which
the condition of the proposition is fulfilled. As we have just seen (∇α7,α6 , γ ) = c7/2,
hence

0 <
c7

2
= (∇α7,α6 , γ ) ≤ (∇τ

α7,α6
, γ ) < (∇τ

α7,α6
, θ) = 1 − (

ω̌6

2
, τ−1θ)

using Lemma 6.2 for the second inequality from the left. Hence c7 = 1 and
(ω̌6, τ

−1θ) = 0.
Notice that τ−1θ ∈ V (α7) since τ ∈ W
\{α7}; so α7 is in the support of the root

τ−1θ , while α6 is not in this support since (ω̌6, τ
−1θ) = 0. But the support of a root

is a connected subset of 
, so we find τ−1θ = α7 = −ω̌6 + 2ω̌7.
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Since θ = ω̌1 we have τ ω̌6 = −ω̌1 + 2ω̌7 = ω̌6 − (2α̌1 + 2α̌2 + 3α̌3 + 4α̌4 +
3α̌5 + 2α̌6) (see the table for E7 in [2], for example). We find

(∇τ
α7,α6

, γ ) = (ω̌7, γ ) −
(

τ ω̌6
2 , γ

)

= (ω̌7, γ ) −
(

ω̌6
2 , γ

)
+

(
ω̌6−τ ω̌6

2 , γ
)

= (∇α7,α6 , γ ) + 1
2

(
2α̌1 + 2α̌2 + 3α̌3 + 4α̌4 + 3α̌5 + 2α̌6, γ

)

= c7
2 + c1 + c2 + 3

2 c3 + 2c4 + 3
2 c5 + c6.

Now, using c7 = 1 and (∇τ
α7,α6

, θ) = 1 proved above, the condition of Proposition 6.4
becomes

1

2
+ c1 + c2 + 3

2
c3 + 2c4 + 3

2
c5 + c6 < 1.

Hence c1 = c2 = c3 = c4 = c5 = c6 = 0. So γ = ω̌7, but ω̌7 �∈ R and this shows
that we cannot have δ = α6 in Proposition 6.4 either.

We conclude that the facet F(α7) has no proper minimal element.

• Type E8: There are two maximal roots: α1 and α2. We begin with F(α1) showing
that this facet has no proper minimal element.

We have �α1 = {α2, α3}. Since 1/ lcm(m1, m3) = 1/ lcm(2, 4) = 1/4 = Dl(α3), we
cannot have δ = α3 by condition (1) in Proposition 6.4. For δ = α2, by Proposition 6.6,
(∇α1,α2 , γ ) + (c2 + c4 + c5 + c6 + c7 + c8)/3 < 1/3 = Dl(α2) since m2 = 3. So
c2 = c4 = c5 = c6 = c7 = c8 = 0, moreover,

∇α1,α2 = 1

2
ω̌1 − 1

3
ω̌2 = 1

3
α̌1 − 1

6
α̌2 + 1

6
α̌3

and so c1/3 + c3/6 < 1/3. But 0 < (∇α1,α2 , γ ) = c1/4 which implies c1 > 0 that is
incompatible with the previous inequality. This proves our claim about F(α1).

Now we consider F(α2); here �α2 = {α1}. The condition in Proposition 6.6 is

(∇α2,α1 , γ ) + (c1 + c3 + c4 + c5 + c6 + c7 + c8)/2 < 1/2

hence c1 = c3 = c4 = c5 = c6 = c7 = c8 = 0 and we have γ = c2ω2. We find
0 < (∇α2,α1 , γ ) = c2/6 < 1/2 by which c2 = 1 or c2 = 2. Since ω2 ∈ R and ω2
is invariant by W
\{α1}, ω2 and 2ω2 are minimal elements by Proposition 6.7 with
δl = α1.

• Type F4: The unique maximal root is α4 with �α4 = {α3} but 1/ lcm(m4, m3) =
1/ lcm(2, 4) = 1/4 = Ds(α3), and hence condition (2) in Proposition 6.4 cannot
be fulfilled. So M(F(α4)) has no proper minimal element.

• Type G2: Only α1 is maximal and δ = α2 in Proposition 6.6. We have m1 = 3,
m2 = 2 and so the condition is 0 < (∇α1,α2 , γ ) + c2/2 < 1/2 = Dl(α2). We
find c2 = 0, hence 0 < (∇α1,α2 , γ ) = c1/6 < 1/2. We conclude that the proper
minimal elements are ω1, 2ω1 by Proposition 6.7. ��
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If F is a face of the root polytope, let us define min(F) as the set of non-zero
≤F -minimal elements of M(F) with respect to the order defined in Sect. 4 and define
pmin(F) ⊆ min(F) as the set of proper minimal elements of M(F).

Corollary 6.8 For any face F of the root polytope min(F) ∩ Z(V (F)) = ∅.

Proof First we show that pmin(F) ∩ Z(V (F)) = ∅.
The face F is a facet of the root polytope for some irreducible subsystem of � by

(1) of Corollary 4.5 in [5] and Lemma 4.2. Further, by the Weyl group action, we may
assume also that F is a coordinate facet, so F

.= F(α) for a maximal root α ∈ 
.
So it suffices to prove our claim for the proper minimal elements in Table 1. For each
such an element γ we check that mα does not divide (ω̌α, γ ); this is clearly sufficient
to conclude that γ �∈ Z(V (α)).

For B3, α
.= α3 and (ω̌3, 2ω3) = 3 and our claim is true since m3 = 2. For E7,

α
.= α2 and (ω̌2, 2ω2) = 7, while m2 = 2. For E8, α

.= α2 and (ω̌2, ω2) = 8, while
m2 = 3, hence ω2 and 2ω2 are not elements of Z(V (α)). Finally for G2, α

.= α1, we
have (ω̌1, ω1) = 2 and we conclude that ω1 and 2ω1 are not in Z(V (α)).

Now notice that min(F) = ∪ pmin(F ′), where F ′ runs in the set of subfaces
of F . So if γ ∈ min(F) ∩ Z(V (F)), there exists F ′ subface of F such that γ ∈
pmin(F ′) ∩ Z(V (F)). But pmin(F ′) ⊂ 〈F ′〉R and so γ ∈ Z(V (F ′)) by Lemma 5.3.
This finishes the proof since pmin(F ′) ∩ Z(V (F ′)) = ∅ as proved above. ��

We are now ready to prove the Corollaries C and D in the Introduction.

Proof of Corollary C Let F be a face of the root polytope; we have to show that
C(V (F)) ∩ Z(V (F)) = N (V (F)).

It is clear that the set in the right-hand side is a subset of the one in the left-hand
side so let γ ∈ C(V (F)) ∩ Z(V (F)) ⊂ C(V (F)) ∩ R = M(F).

There exist γ0 ∈ N (V (F)) and γ1 ∈ min(F) ∪ {0} such that γ = γ0 + γ1. So
γ1 = γ − γ0 ∈ Z(V (F)) and we find γ1 = 0 since min(F) ∩ Z(V (F)) = ∅ by
Corollary 6.8. Hence γ = γ0 ∈ N (V (F)). ��

Proof of Corollary D Let F
.= F(α), α a maximal root, denote by R a system of

representatives for the quotient R/Z(V (F)) and suppose 0 represents the class of
Z(V (F)). Then if we denote by Mγ the intersection (γ + Z(V (F))) ∩ C(V (F)) we
have M(F) = R ∩ C(V (F)) = ∪Mγ where γ runs in R. Now notice that Mγ is
a non-void set since C(V (F)) is a cone of maximal dimension (i.e., it spans E as a
vector space).

Further we know that M0 = Z(V (F)) ∩ C(V (F)) = N (V (F)) by Corollary C.
Since, by definition, the facet F is integrally closed in R if and only if R ∩C(V (F)) =
N (V (F)), we find at once that this is the case if and only if R = Z(V (F)). Now by
Lemma 4.4 we have Z(V (F)) = 〈
 \ {α}, β{α}〉Z = 〈
 \ {α}, mαα〉Z. So R =
Z(V (F)) if and only if mα = 1 and this is our claim. ��

123



68 J Algebr Comb (2015) 41:49–71

7 Application to the length map

In this section we prove the main Theorem A of our paper giving the formula for the
length map. We begin by checking a particular case of the formula for the minimal
elements of a facet.

Lemma 7.1 If F is a facet of the root polytope and γ ∈ min(F) then |γ | ≤ 	(λF , γ )

where λF is the vector defining F.

Proof Since γ is a minimal element of M(F) there exists a subface F ′ of F such that
γ is a proper minimal element of M(F ′). Moreover, by Lemma 4.3, F ′ is a facet of
the root polytope of �′, where E ′ .= 〈F ′〉R, �′ .= � ∩ E ′, and it is clearly defined by
λF |E ′ . Hence we may assume that γ ∈ pmin(F).

If τ ∈ W then τ · γ is a minimal element of M(τ F); further λτ F = τλF and
|τγ | = |γ |. So we may also assume that F

.= F(α) is a coordinate face for a maximal
root α ∈ 
; in particular F is defined by λF = ω̌α/mα . Hence we complete the proof
by checking the inequality in the claim writing the proper minimal elements in Table 1
as sum of roots.

For B3 and α
.= α3,

γ = 2ω3
= α1 + 2α2 + 3α3
= (α1 + 2α2 + 2α3) + α3

so |γ | ≤ 2 = 	(ω̌3, γ )/2
.
For E7 and α

.= α2,

γ = 2ω2
= 4α1 + 7α2 + 8α3 + 12α4 + 9α5 + 6α6 + 3α7
= θ + (θ − α1 − α3) + θE6 + (α2 + α3 + α4 + α5 + α6 + α7)

so |γ | ≤ 4 = 	(ω̌2, γ )/2
.
For E8 and α

.= α2, γ = ω2 = θ + (θ − α8) + θE6 . So |γ | ≤ 3 = 	ω̌2(γ )/3
 and
also |2γ | ≤ 6 = 	(ω̌2, 2γ )/3
.

For G2 and α
.= α1, γ = ω1 = 2α1 + α2 ∈ �. So |γ | = 1 = 	(ω̌1, γ )/3
 and

|2γ | ≤ 2 = 	(ω̌1, 2γ )/3
. ��
We are now in a position to prove our formula for the length map.

Proof of Theorem A Let γ ∈ R and r
.= |γ |. Then there exist β1, β2, . . . , βr ∈ �

such that γ = β1 + β2 + · · · + βr . Now if λF defines the facet F we have (λF , γ ) =
(λF , β1)+ (λF , β2)+· · ·+ (λF , βr ) ≤ r since (λF , u) ≤ 1 for all u ∈ P�. But since
r is a non-negative integer we have also 	(λF , γ )
 ≤ r .

In order to prove the reverse inequality notice that the Q-cones over the facets
partition 〈
〉Q; hence if γ ∈ R there exists a facets F such that γ ∈ C(V (F)). Then
(λF , γ ) ≥ (λF ′, γ ) for all facet F ′, so it suffices to show that |γ | ≤ 	(λF , γ )
.

The monoid C(V (F)) ∩ R = M(F) is the union of the monoids γ ′ + N (V (F))

with γ ′ ∈ min(F) ∪ {0}. Hence there exist β1, β2, . . . , βt ∈ V (F) ⊂ � and γ ′ ∈
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Fig. 2 A horizontal partition

min(F) ∪ {0} such that γ = β1 + β2 + · · · + βt + γ ′. So, using Lemma 7.1, |γ | ≤
t + |γ ′| ≤ t + 	(λF , γ ′)
 = 	t + (λF , γ ′)
 = 	(λF , γ )
. ��

As an application of our results we see an explicit formula for the (positive) length
for elements of R+ for type A�. Similar but more complex formulas may be derived
for the other irreducible root systems. Since any partition in positive roots is a partition
in roots, we have always |γ | ≤ |γ |+ for all γ ∈ R+; in what follows we will use this
many times without explicit mention.

Assuming that � is of type A�, we want to show that the partition of minimal size
for an element γ ∈ R+ is given by what we call a horizontal tiling. We illustrate this
with a graphical example for A6 and γ = 2α1 + 3α2 + 3α3 + 4α5 + α6. Consider the
map a : i �−→ ai with ai = (ω̌i , γ ) that we draw as in Fig. 2.

We define a partition of γ by grouping together as many boxes as possible in
horizontal lines. This is what we call the horizontal tiling for γ ; it gives a partition of
γ in terms of positive roots that we call the horizontal partition. It is not hard to show
that the number h(γ ) of roots in the horizontal partition for γ = ∑�

i=1 aiαi ∈ R+ is
given by the formula

h(γ ) =
�∑

i=1

max(ai − ai−1, 0),

where we set a0 = 0. In the following lemma we show that both the length and the
positive length are given by the map h; so in particular they coincide for type A�.

Proposition 7.2 If � is of type A�, then, for all γ ∈ R+, |γ | = |γ |+ = h(γ ).

Proof For 1 ≤ h ≤ k ≤ �, we denote by αh,k the root αh + αh+1 + · · · + αk . First of
all notice that |γ |+ ≤ h(γ ) since h(γ ) is the size of a partition in positive roots (the
horizontal one). Now we claim that h(γ + αh,k) ≤ h(γ ) + 1.

Indeed let γ = ∑�
i=1 aiαi , γ ′ .= γ + αh,k = ∑�

i=1 a′
iαi . Notice that we have

a′
i =

⎧
⎨

⎩

ai , if 1 ≤ i < h
ai + 1, if h ≤ i ≤ k
ai , if k < i ≤ �.

Hence h(γ ′) = h(γ )+(ah−ah−1+1)0−(ah−ah−1)
0+(ak+1−ak−1)0−(ak+1−ak)

0,
where we set (a)0 .= max(a, 0) for short. It is clear that (a + 1)0 − (a)0 ≤ 1 and
(a − 1)0 − (a)0 ≤ 0; so we have h(γ ′) ≤ h(γ ) + 1 as claimed.
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Now let γ = β1 + β2 + · · · + βr be a partition of minimal size of γ in positive
roots. Since any positive root is αh,k for some h, k as above, we find h(γ ) ≤ r = |γ |+
by what proved. So |γ |+ = h(γ ); the horizontal partition is a partition of minimal
size.

The final step is to show that |γ | = |γ |+. We use the formula in Theorem A;
for type A�, the facets are defined by the orbits of the fundamental weights under
the Weyl group action. They are in bijection with the set of sequences, called rows,
R = 1 ≤ r1 < r2 < · · · r j ≤ � + 1 of increasing integers, with j = 1, 2, . . . , �:

the row R corresponds to the weight λ(R)
.= ∑ j

h=1 ωrh − ωrh−1 (where we set
ω0 = ω�+1 = 0).

But for any such R we have (λ(R), γ ) = ∑ j
h=1(ωrh − ωrh−1, γ ) = ∑ j

h=1(arh −
arh−1) ≤ ∑l

i=1(ai − ai−1)
0 = |γ |+. This proves that |γ | = |γ |+. ��

The next step is to prove that the two length maps are equal also for type C�.

Proposition 7.3 If � is of type C�, then for all γ ∈ R+, |γ | = |γ |+.

Proof Let F be a facet of P� such that γ ∈ M(F). In [6] a triangulation of the facets
of P� for type C� is defined. This triangulation has the following two properties:

(i) C(V (F)) ∩ C(�+) is the union of the non-negative rational cones generated by
certain simplices of the triangulation;

(ii) each simplex of the triangulation of F is a basis for the lattice R.

Hence γ is a non-negative integral linear combination of a simplex T ⊂ �+ of the
triangulation; let us say γ = ∑

β∈T aββ, aβ ∈ N. So we find |γ |+ ≤ ∑
β∈T aβ =

(λF , γ ) = |γ | and this finishes the proof. ��
Now we prove that the positive length map is different from the length for all types

but A� and C�.

Proposition 7.4 If � is neither of type A� nor C� then there exists γ ∈ R
+ such that

|γ | < |γ |+.

Proof For all the above types we find α, β ∈ �+ such that α−β ∈ R+, |α−β|+ = 3;
this suffices to prove our claim since |α − β| ≤ 2. The table below reports such roots
α, β.

Type α β

B�, � ≥ 3 α�−2 + α�−1 + 2α� α�−1

D� α�−3 + α�−2 + α�−1 + α� α�−2

E α2 + α3 + α4 + α5 α4

F4 α1 + α2 + 2α3 α2

G2 3α1 + α2 α2

Finally, the Corollary E of the Introduction follows by Propositions 7.2–7.4.
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