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Abstract It is well-known that translation schemes of prime order are exactly the
cyclotomic schemes. In this paper, we show that there do not exist any two-, three-, or
four-class nonsymmetric primitive translation schemes of prime square order. On the
other hand, we find new nonsymmetric four- and five-class association schemes from
cyclotomy as fission schemes of certain symmetric three-class association schemes.
Moreover, we provide an affirmative answer to the following question raised by Song
(J Algebr Comb 5:47–55, 1996): are there any other two-class primitive association
schemes that admit symmetrizable fission schemes besides the cyclotomic scheme of
index 2 for q ≡ 5 (mod 8)? To be more specific, we show that a certain two-class
primitive association scheme in the finite field F373 constructed by Feng and Xiang
(J Comb Theory Ser A 119:245–256, 2012) admits a four-class fission scheme. This
fission scheme is realized as a fusion scheme of the cyclotomic scheme of index 28.

Keywords Nonsymmetric primitive translation scheme · Cyclotomic scheme ·
Gauss sum

1 Introduction

A translation scheme is an association scheme (X, {Ri }d
i=0) for which the underlying

set X has naturally the structure of an abelian group, and for all relations Ri ∈ R,
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(x, y) ∈ Ri implies (x + z, y + z) ∈ Ri for all z ∈ X . Each relation Ri in a translation
scheme corresponds to a subset Di of X such that Di = {x − y : (x, y) ∈ Ri }.
The Bose-Mesner algebra of the translation scheme is isomorphic to the subalgebra
of the group algebra C[X ] generated by D0, · · · , Dd . This subalgebra is also known
as a Schur ring. From now on, we shall call (X, {Di }d

i=0) a translation scheme and
the subsets Di ’s as relations for convenience. On p. 68 of the book [6], the following
conjecture is raised:

Conjecture 1 Let (X,R) be a primitive translation scheme. Then one of the following
holds: (1) X is elementary abelian, (2) (X,R) is a Hamming scheme, (3) (X,R) is of
Latin square type or of negative Latin square type.

An association scheme is of (negative) Latin square type if each of its nontrivial
relations is a strongly regular graph of (negative) Latin square type. By A.V. Ivanov’s
classification, an amorphic association scheme with at least three classes must be of
Latin square type or negative Latin square type, cf. [18,35]. He also conjectured in [21]
that if each nontrivial relation in an association scheme is strongly regular, then the
association scheme must be amorphic. This conjecture turned out to be false, and all
the known primitive counterexamples are constructed in finite fields using the union of
cyclotomic classes; please refer to [15] and the references therein for more details. In
view of Conjecture 1 and these facts, finite fields and cyclotomy play important roles
in the study of primitive association schemes by yielding new association schemes
which help us to understand their structures better.

By a well-known theorem due to Hanaki and Uno [19], all association schemes
with a prime number of points must be pseudocyclic, which is the analog of the fact
that finite groups of prime order must be cyclic. In the translation scheme case, we
have the stronger result that a translation scheme with a prime number of points must
be a cyclotomic scheme, which is a corollary of the following multiplier theorem of
Schur and Wielandt.

Theorem 2 [6, Thm. 2.10.1] Let (X,R) be a translation scheme, and let s be an
integer coprime to |X |. Then for any R ∈ R, we have R(s) = {sx | x ∈ R} ∈ R.

In [2, p. 58], the question of when a symmetric association scheme can be split into
nonsymmetric commutative association scheme is posed. In [8], the authors consid-
ered nonsymmetric commutative association schemes with exactly one pair of non-
symmetric relations, and introduced a set of feasibility and realizability conditions.
From each nonsymmetric association scheme with three classes, a symmetric associa-
tion scheme with two classes can be obtained by merging the nonsymmetric relations,
which is called the symmetrization of the original association scheme. Two-class
skew-symmetric association schemes are regular tournaments, whose symmetrization
is trivial. There are some papers on the feasibility conditions for the existence of such
association schemes, cf. [3,17,33]. In [22], the author did a systematic investigation
of such association schemes of order no more than 100. There are several such asso-
ciation schemes of order 36, see [10,16,20,22]. There is an infinite family of such
association schemes of order 4s4, where s is a power of 2, cf. [9,25,27]. In [23], the
author found some more such association schemes of order 64. These are all the known
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primitive three-class nonsymmetric association schemes so far. On the nonexistence
side, in [17] the authors showed that there is no three-class nonsymmetric association
scheme whose symmetrization is a Paley type strongly regular graph.

A skew-symmetric association scheme is an association scheme with no sym-
metric adjacency relations other than the diagonal one. A typical example is given
by the cyclotomic scheme of index 4 in the finite field Fq , where q ≡ 5 (mod 8).
The study of four-class skew symmetric association schemes was initiated in [34].
In [3], Bannai and Song raised a question regarding the existence of four-class
amorphous skew-symmetric association schemes, which was answered in the neg-
ative in [28]. In the same paper, Ma classified four-class skew-symmetric associa-
tion schemes by their character tables, which fall into three types. In a subsequent
paper [29], the authors determined their intersection matrices, and generated a list
of feasible parameters with small orders. The aforementioned cyclotomic scheme
of index 4 is the only known such association scheme which is primitive to our
knowledge.

In the current paper, we are primarily concerned with primitive translation asso-
ciation schemes on prime power number of points. Let p be a prime. Symmetric
two-class translation schemes of order p2 are exactly the strongly regular graphs of
Latin square type with Z

∗
p as multiplier group; see the survey [26] for details. Non-

symmetric two-class translation schemes correspond to skew Hadamard difference
sets whose ambient groups must have order congruent to 3 modulo 4, so there are no
such association schemes of order p2. We show that there are no three- or four-class
primitive translation schemes of prime square order with at least one pair of nonsym-
metric relations. On the other hand, we find new nonsymmetric four- and five-class
association schemes from cyclotomy as fissions of certain symmetric three-class asso-
ciation schemes, which are primitive under certain conditions. Here, we say that an
association scheme admits a fission scheme if a relation of the original association
scheme is partitionable into at least two relations of a new association scheme. In par-
ticular, the obtained nonsymmetric four-class association schemes have exactly one
pair of nonsymmetric relation, which give a lot of examples of association schemes
studied in [8] by Chia and Kok. Moreover, we provide an affirmative answer to the
following question raised by Song [34]:

Problem 3 Are there any other two-class primitive association schemes that admit
symmetrizable fission schemes besides the cyclotomic scheme of index 2 for q ≡
5 (mod 8)?

2 Preliminaries

Let (X, {Ri }d
i=0) be a d-class association scheme, and Ai be the adjacency matrix of the

relation Ri . Its Bose-Mesner algebra is defined as A = 〈A0, A1, . . . , Ad〉. Through-
out this paper, we will assume that (X, {Ri }d

i=0) is commutative, i.e., the algebra
A is commutative. Denote by E0 = (1/|X |)J, E1, . . . , Ed the primitive idempo-
tents of A, where J is the |X | × |X | all one matrix. Both sets {A0, A1, . . . , Ad} and
{E0, E1, . . . , Ed} are bases of the algebra A, and we thus have
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A j =
d∑

i=0

p j (i)Ei , E j = 1

|X |
d∑

i=0

q j (i)Ai ,

for some constants p j (i) and q j (i). Let P and Q be the (d +1)×(d +1)matrix, whose
(i, j)-th entry is p j (i) and q j (i), respectively. The matrices P and Q are called the
first eigenmatrix (or the character table) and the second eigenmatrix of (X, {Ri }d

i=0),
respectively. There exist numbers pk

i, j and qk
i, j such that

Ai A j =
d∑

k=0

pk
i, j Ak, Ei ◦ E j =

d∑

k=0

qk
i, j Ek,

where ◦ stands for entrywise multiplication. The numbers pk
i, j ’s and qk

i, j ’s are called

the intersection numbers and the Krein parameters of (X, {Ri }d
i=0), respectively. For

each 0 ≤ i ≤ d, the i-th intersection matrix Bi is defined as the (d + 1) × (d + 1)
matrix whose (k, j)-th entry is pk

i, j . Clearly, B0 is the identity matrix.

Given two association schemes X = (X, {Ri }d
i=0) and X ′ = (X, {R′

i }e
i=0), if for

each 0 ≤ i ≤ d, Ri ⊆ R′
j for some 0 ≤ j ≤ e, then we say that X is a fusion

scheme of X ′, and X ′ is a fission scheme of X . We shall need the following well-
known criterion due to Bannai [1] and Muzychuk [31], called the Bannai-Muzychuk
criterion: Let P be the first eigenmatrix of an association scheme (X, {Ri }0≤i≤d), and
�0 := {0},�1, . . . , �d ′ be a partition of {0, 1, . . . , d}. Then (X, {R�i }0≤i≤d ′) forms
an association scheme if and only if there exists a partition {�i }0≤i≤d ′ of {0, 1, . . . , d}
with�0 = {0} such that each (�i ,� j )-block of P has a constant row sum. Moreover,
the constant row sum of the (�i ,� j )-block is the (i, j)-th entry of the first eigenmatrix
of the fusion scheme.

Assume that (X, {Ri }d
i=0) is a translation scheme. There is an equivalence relation

defined on the character group X̂ of X as follows:χ ∼ χ ′ if and only ifχ(Ri ) = χ ′(Ri )

for each 0 ≤ i ≤ d. Here χ(R) = ∑
g∈R χ(g), for any χ ∈ X̂ , and R ⊆ X .

Denote by D0, D1, . . . , Dd the equivalence classes, with D0 consisting of only the
principal character χ0. Then (X̂ , {Di }d

i=0) forms a translation scheme, called the dual
of (X, {Ri }d

i=0). If {Di }d
i=0 is mapped to {Ri }d

i=0 under an isomorphism between X and
X̂ , then the association scheme is called self-dual. In the case X = (Fp f ,+), we take

the map τ : a → ψa as the group isomorphism from X to X̂ , whereψa(x) = e
2π i

p Tr(ax),
and Tr is the absolute trace. The first eigenmatrix of the dual association scheme is
equal to the second eigenmatrix of the original association scheme. Please refer to [2]
and [6] for more details.

An association scheme (X, {Ri }d
i=0) is called primitive if each of the undirected

graphs defined by Ri , 1 ≤ i ≤ d, is connected, and imprimitive otherwise. A nonsym-
metric association scheme is primitive if and only if its symmetrization is primitive. If
(X, {Ri }d

i=0) is a symmetric translation scheme, then it is well-known that (X, {Ri }d
i=0)

is primitive if and only if each nontrivial relation Ri generates the whole group X , i.e.,
not contained in any proper subgroup of X ; see [2]. It is equivalent to the fact that for
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each nontrivial relation Ri , χ(Ri ) = |Ri | for all nonprincipal characters χ of X ; see
[7].

A classical example of translation schemes is the cyclotomic scheme which we
describe now. Let p be a prime and q = p f ( f ≥ 1) be a prime power, N |q −1, and γ
be a primitive root of the finite field Fq . Define the multiplicative subgroup C (N ,q)

0 =
〈γ N 〉. Its cosets C (N ,q)

i = γ i C (N ,q)
0 , 0 ≤ i ≤ N − 1, are called the cyclotomic classes

of order N of Fq . Together with {0}, they form an N -class association scheme, which

is called the cyclotomic scheme of index N . If D = ⋃
i∈I C (N ,q)

i for some subset
I ⊆ ZN , then we say that D is defined by the index set I .

Now we introduce some notation that we shall use in the later sections. We define
the Gauss periods of index N over Fq as follows:

ηi =
∑

x∈C(N ,q)i

ψ(x), 0 ≤ i ≤ N − 1,

where ψ is the canonical additive character of Fq defined by ψ(x) = e
2π i

p Trq/p(x),
x ∈ Fq . For each multiplicative character χ of F

∗
q , the multiplicative group of Fq , we

define the Gauss sum

Gq(χ) =
∑

x∈F∗
q

ψ(x)χ(x).

The following relation will be repeatedly used in this paper (cf. [24, p. 195]):

ψ(x) = 1

q − 1

∑

χ∈F̂∗
q

Gq(χ)χ
−1(x), ∀ x ∈ F

∗,

where F̂∗
q is the character group of F

∗
q . The Gauss period can be expressed as a linear

combination of Gauss sums as follows:

ηi = ψ(γ i C (N ,q)
0 ) = 1

q − 1

∑

χ∈F̂∗
q

Gq(χ)χ
−1(γ i )

∑

x∈C(N ,q)0

χ−1(x)

= 1

N

N−1∑

i=0

Gq(ϕ
−i )ϕ(γ i ),

where ϕ is a multiplicative character of order N of F
∗
q .

We record some basic properties of Gauss sums here [24]:

(i) Gq(χ)Gq(χ) = q if χ is nontrivial;
(ii) Gq(χ

p) = Gq(χ), where p is the characteristic of Fq ;
(iii) Gq(χ

−1) = χ(−1)Gq(χ);
(iv) Gq(χ) = −1 if χ is trivial.
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In general, explicit evaluations of Gauss sums are very difficult. There are only a few
cases where the Gauss sums have been evaluated, see [4] for known results on Gauss
sums. In Sect. 4, we will use the explicit evaluations of Gauss sums of the quadratic
residue case and index 2 case.

Theorem 4 ([24]) Let η be the quadratic character of Fq = Fp f , and p∗ =
(−1)

p−1
2 p. It holds that

Gq(η) = (−1) f −1
(√

p∗
) f
.

Theorem 5 ([36, Case D; Theorem 4.12]) Let N = 2pm
1 , where p1 > 3 is a prime

such that p1 ≡ 3 (mod4), and m is a positive integer. Assume that p is a prime such
that [Z∗

N : 〈p〉] = 2. Let f = φ(N )/2, q = p f , and χ be a multiplicative character
of order N of Fq . For 0 ≤ t ≤ m − 1, we have

Gq(χ
pt

1) =
⎧
⎨

⎩
(−1)

p−1
2 (m−1) p

f −1
2 −hpt

1
√

p∗
(

b+c
√−p1
2

)2pt
1

if p1 ≡ 3 (mod8),

(−1)
p−1

2 m p
f −1

2
√

p∗ if p1 ≡ 7 (mod8);

Gq(χ
2pt

1) = p
f −pt

1h
2

(
b + c

√−p1

2

)pt
1

;

Gq(χ
pm

1 ) = (−1)
p−1

2
f −1

2 p
f −1

2
√

p∗,

where h is the class number of Q(
√−p1), and b and c are integers determined by

4ph = b2 + p1c2 and bp
f −h

2 ≡ −2 (mod p1).

We shall also need the following Davenport-Hasse lifting formula on Gauss sums.

Theorem 6 ([24, Theorem 5.14]) Let χ be a nontrivial multiplicative character of
Fq = Fp f and let χ ′ be the lifted character of χ to the extension field Fq ′ = Fp f s ,
i.e., χ ′(α) := χ(NormFq′/Fq (α)) for any α ∈ F

∗
q ′ . It holds that

Gq ′(χ ′) = (−1)s−1(Gq(χ))
s .

3 Nonsymmetric primitive association schemes of prime square order

In this section, we show that there is no nonsymmetric primitive translation scheme
with at most four classes of prime square order. As we mentioned in the introduction,
there are no such association schemes with two classes of prime square order. As
a consequence of the Wielandt-Schur multiplier theorem, such a translation scheme
can only survive in the additive group G = (Fp2 ,+), cf. [6, Theorem 2.10.5]. Let
(G, {Ri }d

i=0) be such a translation scheme with d = 3, 4.

Lemma 7 The translation scheme (G, {Ri }d
i=0) has the set S of nonzero squares of

Z
∗
p as a multiplier group.
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Proof We will use the Wielandt-Schur theorem to prove this lemma. Let R be any
nontrivial relation. Write γ for a fixed primitive root of Fp2 , and γ0 = γ p+1 ∈ F

∗
p. If

R(γ
2
0 ) = R, then R, R(γ0), R(γ

2
0 ), and R(γ

3
0 ) are four distinct nontrivial relations of the

association scheme, and thus d = 4. It follows that the association scheme has two
pairs of nonsymmetric relations, and R(−1) = R(γ

2
0 ). Its symmetrization is a two-class

association scheme (G, {{0}, R ∪ R(γ
2
0 ), R(γ0) ∪ R(γ

3
0 )}), so R ∪ R(γ

2
0 ) is a partial

difference set in G which has Z
∗
p as a multiplier group, cf. [26]. This contradicts the

fact that R ∪ R(γ
2
0 ) = R(γ0) ∪ R(γ

3
0 ). ��

Lemma 8 A translation scheme (G, {Ri }d
i=0) is symmetric if and only if its first eigen-

matrix has only real entries. Moreover, the dual of a symmetric translation scheme is
also symmetric.

Proof The first part follows from the simple fact that the eigenvalues of the transpose of
an adjacency matrix Ai are the complex conjugates of those of Ai . The dual translation
scheme has its first eigenmatrix equal to Q = |G| · P−1, which is real if P is. ��
Corollary 9 A translation scheme (G, {Ri }d

i=0)has the same number of nonsymmetric
relations as its dual.

Proof Let (G, {Si }d ′
i=0) be the symmetrization of the translation scheme (G, {Ri }d

i=0).
Then its dual translation scheme is symmetric by Lemma 8 and is a subscheme of the
dual of (G, {Ri }d

i=0). Therefore, the symmetrization of the dual of (G, {Ri }d
i=0) has at

least d ′ relations. Arguing in the opposite direction, we see that the symmetrization of
the translation scheme (G, {Ri }d

i=0) and the symmetrization of its dual have the same
number of relations. The claim immediately follows. ��
Remark 10 As pointed out by the editor, Corollary 9 also follows from a general fact on
commutative association schemes. For an arbitrary commutative association scheme,
there are two permutations induced by the transpose map, on the set of adjacency
matrices and on the set of primitive idempotents. These two involutions always have
the same number of fixed points (and hence the same number of transposed pairs),
because their permutation matrices are conjugate by the first eigenmatrix and thus
have the same trace. Since the number of nonsymmetric relations in the dual of a
translation scheme is the same as the number of nonsymmetric idempotents in the
original scheme, the claim follows.

Throughout this section, we use the standard notation on group rings as in [32]. To
make distinction, we use [i] for the group ring element in Z[ZN ] corresponding to
i ∈ ZN .

One consequence of the above lemma is that −1 is a nonsquare in Zp, and so

p ≡ 3 (mod 4). It is clear that S = C (N ,p2)
0 with N = 2(p + 1), the multiplicative

subgroup of index N = 2(p + 1) in Fp2 . Let Ci := γ i S, 0 ≤ i ≤ N − 1 be the
cyclotomic classes of index N . If a set D = ⋃

i∈I Ci , then we say that D is defined by
the index set I ⊂ ZN . According to Lemma 7, we assume that the nontrivial relations
in the association scheme (G, {Ri }d

i=0) are defined by the index sets I1, . . . , Id , and
the nontrivial relations in the dual association scheme are defined by the index sets
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J1, . . . , Jd . Since −1 ∈ C p+1, we have Ji = {i + p + 1mod N | i ∈ Ji }, and Ji ([0] −
[p + 1]) = 0 in Z[ZN ] if Ji defines a symmetric relation. The same conditions also
hold for the Ii ’s.

Let L = {x ∈ F
∗
p2 | Tr(x) = 1} which has size p, where Tr := Trp2/p. We observe

that Ts = {imod N | γ i ∈ L} ⊂ ZN is a relative difference set in ZN with respect to
the order 2 subgroup 〈N0〉 (cf. [32]):

Ts T (−1)
s = p + p − 1

2
(ZN − 〈N0〉).

Let ψ be the canonical additive character of Fp2 such that ψ(x) = ξ
Tr(x)
p , where

ξp is a primitive p-th root of unity. By direct computations, we have

ψ(Ci ) =
M−1∑

j=0

ξ
Tr(γ i+N j )
p =

M−1∑

j=0

ξ
(γ N j Tr(γ i ))
p = ψ(Tr(γ i )S).

We have a partition of ZN into three parts by T0 = { p+1
2 ,

3(p+1)
2 }, Ts and Tn :=

{i + (q + 1)mod N | i ∈ Ts}. If i ∈ T0, then Tr(γ i ) = 0, and ψ(Ci ) = |C0|. If i ∈ Ts ,

then Tr(γ i ) is a nonzero square, and ψ(Ci ) = −1+√
p

2 with a proper choice of ξp. If

i ∈ Tn , then Tr(γ i ) is a nonsquare, and ψ(Ci ) = −1−√
p

2 . Assume that the set D is
defined by the index set I ⊂ ZN . Then we have

ψ(γ a D) =
∑

i∈I

ψ(Ci+a) = M · |I + a ∩ T0| + −1 + √
p

2
|I + a ∩ Ts |

+ −1 − √
p

2
|I + a ∩ Tn|

=
[(

p − 1

2
T0 − 1

2
Ts − 1

2
Tn +

√
p

2
(Ts − Tn)

)
I (−1)

]

a

=
√

p

2

[
(
√

p · T0 + Ts − Tn)I
(−1)

]

a
− |I |

2
.

In the case where D is a relation in the association scheme (G, {Ri }d
i=0), the group

ring element (
√

q · T0 + Ts − Tn)I (−1) = ∑d
i=1 ci Ji for some algebraic integers ci ,

1 ≤ i ≤ d. Multiplying both sides by [0] − [p + 1], we have Ts I (−1)([0] − [p +
1]) = ∑

i ci Ji ([0] − [p + 1]), where the summation is over such i that Ji defines a
nonsymmetric relation.

Now assume that the association scheme (G, {Ri }d
i=0) has exactly one pair of non-

symmetric relations, defined by I1 and I2, respectively. By Corollary 9, the dual trans-
lation scheme also has exactly one pair of nonsymmetric relations. The above argument
yields that Ts I (−1)

1 ([0] − [p + 1]) = cJ ([0] − [p + 1]) where the J defines a non-
symmetric relation in the dual association scheme. Applying the same argument to
the dual association scheme, we get Ts J (−1)([0] − [p + 1]) = d I1([0] − [p + 1])
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for some d ∈ Z. Multiplying both sides by T (−1)
s and taking involution, we get

Ts I (−1)
1 ([0] − [p + 1]) = p

d J ([0] − [p + 1]). Therefore, p = cd. Without loss of

generality, we assume that c = ±p. Now |Ts | = p, so Ts I (−1)
1 has all coefficients not

exceeding p, and the coefficients ±p occur in Ts I (−1)
1 ([0]−[p+1]) only if |I1| = p in

which case our association scheme is clearly imprimitive. Therefore, this case cannot
occur.

Now assume that d = 4 and (G, {Ri }4
i=0) has two pair of nonsymmetric relations,

defined by I, I + (p + 1), J, J + (p + 1) ∈ ZN , respectively. By Corollary 9, the
dual translation scheme also has two pairs of nonsymmetric relations. Also assume
that the nontrivial relations of the dual association scheme are defined by I ′, I ′ + (p +
1), J ′, J ′ + (p + 1) ∈ ZN . Now, we apply the same argument as above and get

Ts I (−1)([0] − [p + 1]) = aI ′([0] − [p + 1])+ bJ ′([0] − [p + 1]),
Ts J (−1)([0] − [p + 1]) = cI ′([0] − [p + 1])+ d J ′([0] − [p + 1]).

Multiplying both sides with T (−1)
s and taking involution, we have

pI ([0] − [p + 1]) = aTs I ′(−1)([0] − [p + 1])+ bTs J ′(−1)([0] − [p + 1]),
p J ([0] − [p + 1]) = cTs I ′(−1)([0] − [p + 1])+ dTs J ′(−1)([0] − [p + 1]).

The determinant ad − bc = 0, since the left hand side does not differ by a constant
multiple. We may solve that

Ts I ′(−1)([0] − [p + 1]) = p

ad − bc
(d I − bJ )([0] − [p + 1]),

Ts J ′(−1)([0] − [p + 1]) = p

ad − bc
(−cI + a J )([0] − [p + 1]).

Therefore, ad − bc divides p · gcd(b, d, a, c). Since gcd(b, d, a, c)2|ad − bc, we
have gcd(b, d, a, c)|p. It follows that gcd(b, d, a, c) = 1 or p. It is easy to see that
each of these four numbers are less than p, so we have gcd(b, d, a, c) = 1, and
ad − bc ∈ {±1,±p}. By replacing the association scheme with its dual if necessary,
we may assume that ad − bc ∈ {±1}.

Now we solve that

I ′(−1)([0] − [p + 1]) = 1

ad − bc
T (−1)

s (d I − bJ )([0] − [p + 1]),

J ′(−1)([0] − [p + 1]) = 1

ad − bc
T (−1)

s (−cI + a J )([0] − [p + 1]).

Therefore, multiplying each equation by its involution, respectively, we get

I ′ I ′(−1)([0] − [p + 1]) = p(d I − bJ )(d I − bJ )(−1)([0] − [p + 1]),
J ′ J ′(−1)([0] − [p + 1]) = p(−cI + a J )(−cI + a J )(−1)([0] − [p + 1]).
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10 J Algebr Comb (2015) 41:1–20

Assume without loss of generality that 1 < |I ′| ≤ p+1
2 (|I ′| = 1 would

imply imprimitivity). Observe that I ′ I ′(−1) has coefficients between 0 and |I ′|, so
I ′ I ′(−1)([0] − [p + 1]) has coefficient between −|I ′| and |I ′|. Therefore, together
with the fact that it is divisible by p, we have I ′ I ′(−1)([0] − [p + 1]) = 0. It follows
that the coefficient of p + 1 in I ′ I ′(−1) is the same as that of zero, namely |I ′|. This
means I ′ = I ′ + (p + 1), which is a contradiction.

This leads us to deduce the following theorem.

Theorem 11 There is no nonsymmetric primitive translation scheme of prime square
order with at most four classes.

4 Fission schemes of three-class association schemes based
on index 2 Gauss sums

Throughout this section, we assume that we are in the same settings as in Theorem 5:
p1 is a prime such that p1 > 3 and p1 ≡ 3 (mod 4); p is an odd prime such that
[Z∗

2p1
: 〈p〉] = 2 (that is, f := ord2p1(p) = (p1 − 1)/2). Put q = p f . In this case,

the Gauss sums Gq(χ
j )were completely evaluated in [36] as described in Theorem 5,

where χ is a multiplicative character of order 2p1 of Fq . (We called this the index 2
Gauss sum.)

Consider the extension field Fqs for a positive integer s and put G = (Fqs ,+). Let
γ be a primitive root of Fqs . Consider the automorphism group of G generated by
multiplication by γ p1 and the Frobenius automorphism which raises each element of
Fqs to its p-th power. Its orbits on (Fqs ,+) consist of

R0 ={0}, R1 =
⋃

j∈〈p〉(mod p1)

C (p1,qs )
j , R2 =

⋃

j∈−〈p〉(mod p1)

C (p1,qs )
j , R3 = C (p1,qs )

0 .

This partition (G, {Ri }3
i=0) becomes a symmetric three-class association scheme. In

particular, this is self-dual since Ji ’s are also invariant under the multiplication of p
modulo N by ψa(C

(N ,q)
0 ) = ψap(C

(N ,q)
0 ) for any a ∈ ZN , where Ji are the index sets

of the dual association scheme. This association scheme is primitive if and only if R3
generates the whole group, namely Fp[γ p1] = Fqs . This happens exactly when γ p1

has a minimal polynomial of degree f s over Fp, i.e., p has order f s modulo qs−1
p1

.
We now consider a four-class fission scheme of this association scheme.

Theorem 12 Take the conditions as above, and further assume that p1 ≡ 7 (mod8).
Define

S0 = R0, S1 = R1, S2 = R2, S3 = C (2p1,qs )
0 , S4 = C (2p1,qs )

p1 .

Then (G, {Si }4
i=0) becomes a four-class self-dual association scheme.

Proof In view of the Bannai-Muzychuk criterion, we need to compute the eigenvalues
ψ(γ a Si ), 1 ≤ i ≤ 4, and show that they are constant according to γ a ∈ S j , 1 ≤ j ≤ 4.
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Since we already know that ψ(γ a Si ), i = 1, 2, are constant according to γ a ∈ S j ,
1 ≤ j ≤ 4, we compute only the sum ψ(γ a S3). (Note that ψ(γ a S4) = ψ(γ a R3) −
ψ(γ a S3).) By the expression of Gauss periods as linear combinations of Gauss sums
as explained in the introduction, we have

ψ(γ a S3) = 1

2p1

2p1−1∑

i=0

Gqs (χ i )χ−i (γ a)

= 1

2p1

∑

0≤i≤2p1−1: i odd

Gqs (χ i )χ−i (γ a)

+ 1

2p1

∑

0≤i≤2p1−1: i even

Gqs (χ i )χ−i (γ a), (4.1)

where χ is a multiplicative character of order 2p1 of Fqs . On the other hand, we have

ψ(γ a R3) = 1

p1

p1−1∑

i=0

Gqs (χ2i )χ−2i (γ a),

which implies that

(4.1) = 1

2p1

∑

0≤i≤2p1−1: i odd

Gqs (χ i )χ−i (γ a)+ 1

2
ψ(γ a R3).

By Theorem 5 and the Davenport-Hasse lifting formula,

Gqs (χ i ) = (−1)s−1(−1)
p−1

2 s p
f −1

2 s
√

p∗s

for all odd i , where we used the facts that χ i (−1)
√

p∗ = √
p∗ and p−1

2 ≡
p−1

2
f −1

2 (mod 2). We now compute that

∑

0≤i≤p1−1: i odd

Gqs (χ i )χ−i (γ a)=(−1)s−1(−1)
p−1
2 s p

f−1
2 s

√
p∗s
χ−1(γ a)

p1−1∑

i=0

χ−2i (γ a)

= (−1)s−1(−1)
p−1

2 s p
f −1

2 s
√

p∗s ·
{
(−1)a if a ≡ 0 (mod p1),

0 otherwise.

This implies that ψ(γ a S3) is constant according to γ a ∈ Si , 1 ≤ i ≤ 4, since we
already know that ψ(γ a R3) is constant according to γ a ∈ Ri , 1 ≤ i ≤ 3. This
completes the proof. ��
Remark 13 (1) If s is odd and p ≡ 3 (mod 4), then the resulting association schemes

of Theorem 12 are nonsymmetric four-class association scheme with exactly one
pair of nonsymmetric relations. This result gives a lot of examples of nonsymmetric
association schemes studied in [8] by Chia and Kok.
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(2) We investigate the primitivity of the resulting nonsymmetric association schemes
in the case s = 1 in detail: As described in Sect. 2, the nonsymmetric association
scheme (G, {Si }4

i=0) is primitive if and only if ψ(γ a(Si ∪ −Si )) = |Si ∪ −Si | for
1 ≤ i ≤ 4. Noting that S3 ∪ −S3 = R3, it is enough to see that ψ(γ a R3) = |R3|.
(Note that if the graph corresponding to R3 is connected, then so are the others.)
In [13], the sum ψ(γ a R3) was computed as follows:

ψ(γ a R3) = 1

p1

(
p( f −h)/2

(−b ± p1c

2

)
− 1

)
or

1

p1

(
p( f −h)/2

(
p1 − 1

2

)
− 1

)
.

Therefore, (G, {Si }4
i=0) is primitive if and only if −b± p1c = 2p

f +h
2 and p1−1 =

2p
f +h

2 . Noting that b2 + p1c2 = 4ph , for each x ∈ {−b ± p1c, p1 − 1} we have
x ≤ b2 + c2 p1 = 4ph < 2p( f +h)/2 if p1 > 2h + 1 and c = 0. Thus, the
nonsymmetric association scheme (G, {Si }4

i=0) is primitive if p1 > 2h + 1 and
c = 0.

Next we describe an infinite family of nonsymmetric five-class association schemes
with exactly two pairs of nonsymmetric relations in the case p1 ≡ 3 (mod 8). Again,
we assume that we are in the same settings as in Theorem 5 with p1 ≡ 3 (mod 8). Let
f = (p1 − 1)/2, q = p f , and G = (Fq ,+). Define

R0 = {0}, R1 =
⋃

j∈〈p〉(mod p1)

C (p1,q)
j , R2 =

⋃

j∈−〈p〉(mod p1)

C (p1,q)
j , R3 = C (p1,q)

0 .

Then, (G, {Ri }3
i=0) is a three-class self-dual association scheme. This association

scheme is primitive if and only if R3 generates the whole group, namely Fp[γ p1] = Fq .
This happens exactly when γ p1 has a minimal polynomial of degree f over Fp, i.e.,
p has order f modulo q−1

p1
.

Suppose it holds that 1 + p1 = 4ph , where h is the class number of Q(
√−p1). Let

ξq−1 = e
2π i
q−1 and P be a prime ideal in Z[ξq−1] lying over p. Then, Z[ξq−1]/P is the

finite field of order q and

Z[ξq−1]/P = {ξ i
q−1 | 0 ≤ i ≤ q − 2} ∪ {0},

where ξq−1 = ξq−1 + P. Hence, γ := ξq−1 is a primitive root of Fq = Z[ξq−1]/P.

Let ωP be the Teichmüller character of F
∗
q such that ωP(γ ) = ξq−1. Put χ := ω

q−1
2p1
P .

Then χ is a multiplicative character of order 2p1 of F
∗
q .

By Theorem 5, we have

Gq(χ) = p
f −1

2 −h
√

p∗
(

b + c
√−p1

2

)2

, (4.2)
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where b, c ≡ 0 (mod p), b2 + c2 p1 = 4ph , and bp
f −h

2 ≡ −2 (mod p1). Since
1 + p1 = 4ph , we have b, c ∈ {−1, 1}, where the sign of c depends on the choice of
P. It was shown in [12] that bc ≡ −√−p1 (mod P). On the other hand, 1+ p1 = 4ph

implies that (1+√−p1)(1−√−p1) ∈ P, so either 1+√−p1 ∈ P or 1−√−p1 ∈ P.
We choose a prime ideal P such that 1 + √−p1 ∈ P. Then bc ≡ −√−p1 (mod P)
yields that bc = 1. From now on, we fix this choice of P and the corresponding
character χ .

Theorem 14 Take the conditions as above. Define

S0 = R0, S1 = R1, S2 =
⋃

j∈−〈p〉(mod2p1)

C (2p1,q)
j ,

S3 =
⋃

j∈−〈p〉(mod2p1)

C (2p1,q)
j+p1

, S4 = C (2p1,q)
0 , S5 = C (2p1,q)

p1 .

Then (G, {Si }5
i=0) becomes a five-class self-dual association scheme.

Proof Note that S2 ∪ S3 = R2 and S4 ∪ S5 = R3. By the Bannai-Muzychuk criterion,
it is enough to show that the sums ψ(γ a S2) and ψ(γ a S4) are constant according to
γ a ∈ Si , 1 ≤ i ≤ 5.

First, we compute the sum ψ(γ a S4). By the same argument as that in the proof of
Theorem 12, we have

ψ(γ a S4) = 1

2p1

2p1−1∑

�=0

Gq(χ
�)χ−�(γ a)

= 1

2p1

∑

0≤�≤2p1−1: � odd

Gq(χ
�)χ−�(γ a)+ 1

2
ψ(γ a R3),

where χ is as defined above. Since ψ(γ a R3) is constant according to γ a ∈ Ri ,
1 ≤ i ≤ 3, we only need to consider the sum

∑

0≤�≤2p1−1: � odd

Gq(χ
�)χ−�(γ a). (4.3)

By Theorem 5, we have

Gq(χ
�) = A

(
b + c

√−p1

2

)2

for all � ∈ 〈p〉, where b, c are the same as in the evaluation (4.2) of Gq(χ) and

A = p
f −1

2 −h√
p∗. By the choice of P, it is expanded as

Gq(χ
�) = A

(
1 − p1 + 2

√−p1

4

)
.
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Since Gq(χ
p1) = p

f −1
2

√
p∗ by Theorem 5 and χ�(−1)

√
p∗ = √

p∗ for any odd �,
the sum in Eqn. (4.3) is reformulated as

A

⎛

⎝
(

1 − p1 + 2
√−p1

4

) ∑

�∈〈p〉 (mod 2p1)

χ−�(γ a)

+
(

1 − p1 − 2
√−p1

4

) ∑

�∈−〈p〉 (mod 2p1)

χ−�(γ a)+ ph(−1)a

⎞

⎠ . (4.4)

Let η be the quadratic character of Fp1 and ψp1 be the canonical additive character of
Fp1 . Noting that 2 is a nonsquare in Fp1 , it holds that

∑

�∈〈p〉(mod 2p1)

χ−�(γ a) =
∑

�∈〈p〉(mod 2p1)

χ−p1�(γ a)χ2 p1−1
2 �(γ a)

= (−1)a
1

2

∑

�∈F∗
p1

(1 + η(�))ψp1(−2−1a�)

= (−1)a
−1 + η(−2−1a)G p1(η)

2
= (−1)a

−1 + η(a)
√−p1

2
.

Hence, by using 1 + p1 = 4ph , we have

(4.4) = A(−1)a ·
⎧
⎨

⎩

0 if a ∈ 〈p〉 (mod p1),
1
4 (−1 + 3p1)+ ph if a ∈ −〈p〉 (mod p1),

− (p1−1)2

4 + ph if a ≡ 0 (mod p1).

This shows that ψ(γ a S4) is constant according to γ a ∈ Si , 1 ≤ i ≤ 5.
Next, we consider the sum ψ(γ a S2). In the same way, we get

ψ(γ a S2) = 1

2p1

2p1−1∑

�=0

∑

i∈−〈p〉(mod 2p1)

Gq(χ
�)χ−�(γ a+i )

= 1

2p1

∑

0≤�≤2p1−1: � odd

∑

i∈−〈p〉(mod 2p1)

Gq(χ
�)χ−�(γ a+i )+ 1

2
ψ(γ a R2).

If a ≡ 0 (mod p1), then

∑

0≤�≤2p1−1: � odd

∑

i∈−〈p〉(mod 2p1)

Gq (χ
�)χ−�(γ a+i )

= A

⎛

⎝
(

1 − p1 + 2
√−p1

4

) ∑

i∈−〈p〉(mod 2p1)

∑

�∈〈p〉(mod 2p1)

χ−�(γ a+i )
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+
(

1− p1−2
√−p1

4

) ∑

i∈−〈p〉(mod 2p1)

∑

�∈−〈p〉(mod 2p1)

χ−�(γ a+i )− p1−1

2
ph(−1)a

⎞

⎠

= A(−1)a

⎛

⎝
(

1 − p1 + 2
√−p1

4

)(−1 + η(a)
√−p1

2

) ∑

i∈〈p〉(mod 2p1)

χ i (γ )

+
(

1 − p1 − 2
√−p1

4

)(−1 − η(a)
√−p1

2

) ∑

i∈−〈p〉(mod 2p1)

χ i (γ )− p1 − 1

2
ph

⎞

⎠

= A(−1)a
(

−
(

1 − p1 + 2
√−p1

4

) (−1 + η(a)
√−p1

2

)(−1 − √−p1

2

)

−
(

−1 − p1 − 2
√−p1

4

)(−1 − η(a)
√−p1

2

) (−1 + √−p1

2

)
− p1 − 1

2
ph

)

= A(−1)a ·
{

0 if a ∈ 〈p〉 (mod p1),

− p2
1−6p1+1

8 − p1−1
2 ph if a ∈ −〈p〉 (mod p1).

This shows that ψ(γ a S2) is constant according to γ a ∈ Si , 1 ≤ i ≤ 5. Thus, we have
the assertion of the theorem. ��

Remark 15 (i) We find that (G, {Si }5
i=0) becomes a five-class association scheme

in the following cases:

(p, p1, h)=(3, 11, 1), (5, 19, 1), (17, 67, 1), (3, 107, 3), (41, 163, 1), (5, 499, 3).

We checked by using Magma [5] for all p1 < 5000. (Note that p and h are deter-
mined by 1+p1 = 4ph .) The association schemes for (p, p1) = (3, 11), (3, 107)
are nonsymmetric with exactly two pairs of nonsymmetric relations, where
−S3 = S2 and −S5 = S4, and the others are symmetric.

(ii) We obtain infinite families of five-class association schemes by using the “recur-
sive” technique applied in [13,14,30]: Let p and p1 be primes such that

[Z∗
2pm

1
: 〈p〉] = 2 for all m ≥ 1, and let q = p

p1−1
2 pm−1

1 . Define

R0 = {0}, R1 =
pm−1

1 −1⋃

i=0

⋃

j∈〈p〉(mod p1)

C
(pm

1 ,q)

2i+pm−1
1 j

,

R2 =
pm−1

1 −1⋃

i=0

⋃

j∈−〈p〉(mod p1)

C
(pm

1 ,q)

2i+pm−1
1 j

, R3 =
pm−1

1 −1⋃

i=0

C
(pm

1 ,q)
2i ,

and

S0 = R0, S1 = R1, S2 =
pm−1

1 −1⋃

i=0

⋃

j∈−〈p〉(mod 2p1)

C
(2pm

1 ,q)

2i+pm−1
1 j

,
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S3 =
pm−1

1 −1⋃

i=0

⋃

j∈−〈p〉(mod 2p1)

C
(2pm

1 ,q)

2i+pm−1
1 j+pm

1
,

S4 =
pm−1

1 −1⋃

i=0

C
(2pm

1 ,q)
2i , S5 =

pm−1
1 −1⋃

i=0

C
(2pm

1 ,q)
2i+pm

1
.

Write G ′ = (Fq ,+). Then, the partition (G ′, {Ri }3
i=0) becomes a three-class

association scheme and the partition (G ′, {Si }5
i=0) forms a five-class fission

scheme of (G ′, {Ri }3
i=0). The proof is done by the quite similar argument as

[14, Theorem 3.6], that is, reducing the proof to the case m = 1, i.e., the proof
of Theorem 14. So we omit the proof.
Since the pairs

(p, p1) = (5, 19), (17, 67), (3, 107), (41, 163), (5, 499)

as listed in Remark 15 (i) satisfy that [Z∗
2pm

1
: 〈p〉] = 2 for all m ≥ 1, we obtain

five infinite families of five-class association schemes. Since [Z∗
2pm

1
: 〈p〉] = 2

for m ≥ 2 in the case (p, p1) = (3, 11), it cannot be generalized in this way.
(iii) We show that the five infinite families of association schemes of Remark 15 (ii)

are primitive similar to the argument in Remark 13: if (p, p1) = (3, 107), i.e., the
association schemes are nonsymmetric, by using the computation of ψ(γ a R3)

given in [13] we have

ψ(γ a(S4 ∪ −S5)) = ψ(γ a R3)

= 1

p1

(
p( f −h)/2

(−b ± p1c

2

)
− 1

)
or

1

p1

(
p( f −h)/2

(
p1 − 1

2

)
− 1

)

= 3
f −1

2 · 53 − 1

107
or

−3
f −1

2 · 54 − 1

107
= 3 f − 1

107
.

Next consider the case (p, p1) = (3, 107), i.e., the association schemes are
symmetric. By [30, Theorem 3.2], if p ≡ 1 (mod 4), it holds that for any I ⊆ Z2p1

pm
1 −1∑

i=0

∑

j∈I

ψ

(
γ aC

(2pm+1
1 ,p

p1−1
2 pm

1 )

2i+pm
1 j

)
= p

(p1−1)2 pm−1
1

4

pm−1
1 −1∑

i=0

∑

j∈I

ψ ′
(
ωaC

(2pm
1 ,p

p1−1
2 pm−1

1 )

2i+pm−1
1 j

)
+ p

(p1−1)2 pm−1
1

4 − 1

p1
, (4.5)
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where ψ and ψ ′ are canonical additive characters of F
p

p1−1
2 pm

1
and F

p
p1−1

2 pm−1
1

,

and γ and ω are primitive roots of F
p

p1−1
2 pm

1
and F

p
p1−1

2 pm−1
1

, respectively. Then,

by the computation of ψ(γ a S4) for m = 1 in Theorem 14, we have that for
general m

ψ(γ a S4) = 1

2p1

(
p( f −h)/2

(−b − p1c

2

)
− 1

)
,

1

2p1

(
p( f −h)/2

(−b + p1c

2

)
− 1

)
± p

f
2 −h

2p1

(
ph + 3p1 − 1

4

)
,

1

2p1

(
p( f −h)/2

(
p1 − 1

2

)
− 1

)
± p

f
2 −h

2p1

(
ph − (p1 − 1)2

4

)
,

which are not equal to p f −1
2p1

for any (p, p1)=(5, 19), (17, 67),(41, 163),(5, 499).

5 A nonsymmetric four-class fission scheme of a conference graph

First we recall the construction of two-class translation schemes in [12]. A more
common way to describe two-class translation schemes is to use the language of
partial difference sets, but we don’t introduce this definition here and refer to [26]
for details. Let p1 be an odd prime. We assume the following specific index 2 case:
N0 = 2p1, p1 > 3 is a prime, and p1 ≡ 3 (mod 4); p is an odd prime such that
[Z∗

N0
: 〈p〉] = 2 (that is, f := ordN0(p) = φ(N0)/2). Assume that p1 ≡ 7 (mod 8).

Let Ci = C (N0,q)
i for 1 ≤ i ≤ N0 − 1.

Theorem 16 Assume that we are in the index 2 case specified as above. Let p1 ≡
7 (mod 8), f = (p1 − 1)/2, and q = p f , and write G = (Fq ,+). Let I0 be any

subset of ZN0 such that {i mod p1 | i ∈ I0} = Zp1 , and let D0 = ⋃
i∈I0

C (N0,q)
i ,

D1 = F
∗
q \ D0. Then (G, {{0}, D0, D1}) is a two-class translation scheme if p ≡

1 (mod 4).

The Cayley graph of D0 in Theorem 16 is a conference graph, namely, it is a strongly
regular graph with parameters of the form (v, v−1

2 , v−5
4 , v−1

4 ). By using Magma [5],

we find that for p = 37, q = p3, and N = 2N0 = 28, the sets Ri = ⋃
i∈Ii

C (N ,q)
i

with the index sets

I1 = {0, 1, 4, 12, 16, 20, 24} ⊂ Z28, I2 = I1 + 7, I3 = I1 + 14, I4 = I1 + 21

define a four-class skew-symmetric association scheme whose symmetrization is cov-
ered by Theorem 16. The dual association scheme is defined by

J1 = {0, 4, 8, 12, 13, 16, 24} ⊂ Z28, J2 = J1 + 7, J3 = J1 + 14, J4 = J1 + 21.

We have q = 373 = 1072 + 4 · 992 = 372 + 4 · 1112. By Ma and Wang’s results
[29], a skew-symmetric fission scheme with four classes of a conference graph exists
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only if q ≡ 5 (mod 8) and there exist integers g, h such that q = g2 + 4h2 with
g ≡ 1 (mod 4), and the first eigenmatrix P is of the form

P =

⎛

⎜⎜⎜⎜⎝

1 f f f f
1 ρ τ ρ̄ τ̄

1 τ ρ̄ τ̄ ρ

1 ρ̄ τ̄ ρ τ

1 τ̄ ρ τ ρ̄

⎞

⎟⎟⎟⎟⎠

where f = q−1
4 , ρ = 1

4 (−1 + √
q + √−2q + 2g

√
q), τ = 1

4 (−1 − √
q +√−2q − 2g

√
q). However, Ma and Wang did not give new constructions besides

the cyclotomic schemes. It turns out that our example happens with g = 37. For the
corresponding cyclotomic scheme of order 4 over F373 , we have g = −107. This
implies that the two association schemes have different first eigenmatrices, so the
resulting association schemes are non-isomorphic.

The intersection matrices of our association scheme are given below:

B1 =

⎛

⎜⎜⎜⎜⎝

0 0 0 12663 0
1 3170 3161 3170 3161
0 3115 3161 3161 3226
0 3152 3226 3170 3115
0 3226 3115 3161 3161

⎞

⎟⎟⎟⎟⎠
B2 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 12663
0 3161 3226 3115 3161
1 3161 3170 3161 3170
0 3226 3115 3161 3161
0 3115 3152 3226 3170

⎞

⎟⎟⎟⎟⎠

B3 =

⎛

⎜⎜⎜⎜⎝

0 12663 0 0 0
0 3170 3115 3152 3226
0 3161 3161 3226 3115
1 3170 3161 3170 3161
0 3161 3226 3115 3161

⎞

⎟⎟⎟⎟⎠
B4 =

⎛

⎜⎜⎜⎜⎝

0 0 12663 0 0
0 3161 3161 3226 3115
0 3226 3170 3115 3152
0 3115 3161 3161 3226
1 3161 3170 3161 3170

⎞

⎟⎟⎟⎟⎠

Remark 17 The cyclotomic field Q(ξ37) has a cyclic Galois group so has only one
subfield of extension degree 4 over Q, whose algebraic integer ring has a basis given
by the Gauss periods of index 4 over F37, denoted by η0, . . . , η3 as usual. We can
express the ρ in terms of the linear combinations of these ηi ’s over Z as follows: with
g = 37, we have ρ = 9 + 37η0; with g = −107, we have ρ = 8 + 35η0 + 5η1 − 7η3.
In both cases, τ is a conjugate of ρ.

6 Concluding remarks

In this paper, we showed that there do not exist any two-, three- or four-class non-
symmetric primitive translation schemes of prime square order. On the other hand, we
found new nonsymmetric four- and five-class association schemes from cyclotomy as
fission schemes of certain symmetric three-class association schemes. Moreover, we
provided one example of skew-symmetric four-class association schemes as a fission
scheme of a conference graph other than the cyclotomic scheme of index 2, which
gives an affirmative answer to a question raised in [34].
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We close this paper by giving some interesting problems for future work.

1. Generalize Theorem 11 for general d ≥ 5, or find examples of nonsymmetric
primitive translation schemes of prime square order with more than four classes.

2. Find analogies of Theorems 12 and 14 in index more than 2 cases. In particular,
in index 4 case, the Gauss sums with characters of order N = p1, where p1 is a
prime, have already been evaluated in [11].

3. Generalize the skew-symmetric four-class association scheme in Sect. 5 into an
infinite family. For an odd prime p, the finite field Fp3 already has a very rich
structure. It will be interesting to construct more translation schemes in this field.
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