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Abstract We construct a space classifying divisor classes of a fixed degree on all
tropical curves of a fixed combinatorial type and show that the function taking a divisor
class to its rank is upper semicontinuous. We extend the definition of the Brill–Noether
rank of a metric graph to tropical curves and use the upper semicontinuity of the rank
function on divisors to show that the Brill–Noether rank varies upper semicontinuously
in families of tropical curves. Furthermore, we present a specialization lemma relating
the Brill–Noether rank of a tropical curve with the dimension of the Brill–Noether locus
of an algebraic curve.

Keywords Tropical geometry · Tropical curves · Brill–Noether theory ·
Specialization Lemma

1 Introduction

Let � be a tropical curve in the sense of [2], so that � = (G, w, �) is a connected
compact metric graph with a non-negative integer weight function on its vertices. For
integers d and r , the Brill–Noether locus of�, denoted W r

d (�), is the set of equivalence
classes of divisors of degree d and rank at least r . The Brill–Noether rank wr

d(�) of
the curve � is the largest number ρ such that every effective divisor of degree r + ρ

is contained in an effective divisor of degree d and rank at least r . The main result in
this paper is the following:

Theorem (5.1) The Brill–Noether rank is upper semicontinuous on Mtr
g , the moduli

space of tropical curves of genus g.
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Moreover, we extend the Brill–Noether rank specialization Lemma ([10, Theorem
1.7]) to the setting of tropical curves:

Theorem (5.3) Let X be a smooth projective curve over a discretely valued field with
a regular semistable model whose special fiber has weighted dual graph �. Then for
every r, d ∈ N, dim W r

d (X) ≤ wr
d(�).

The notion of Brill–Noether rank was introduced in [10] in the context of metric
graphs and was motivated by the fact that the function taking a metric graph to the
dimension of its Brill–Noether locus is not upper semicontinuous on the moduli space
of metric graphs of a fixed genus. This is in contrast with the analogous statement for
algebraic curves. However, as shown in Theorem 1.6 of the same paper, the function
taking a metric graph to its Brill–Noether rank is indeed upper semicontinuous which
implies that this notion serves as a good tropical analog for the dimension of the
Brill–Noether locus of an algebraic curve.

The generalization of this upper semicontinuity to the setting of tropical curves
is not just a simple extension of the metric graph case. The difficulty lies in the fact
that, for a converging sequence of curves in M tr

g , the limit may be a curve with an
entirely different topology. To overcome this difficulty, we study the divisor theory of
tropical curves as the diameters of certain subcurves become sufficiently small. See
Proposition 4.3 for a precise statement. Proposition 4.4 then shows that every divisor
class contains an effective representative whose restriction to these subcurves has a
sufficiently high degree. It follows that the rank of the divisor does not drop in the
limit, despite the change in topology.

In order to manage sequences of pairs of tropical curves and divisors, we construct
in Sect. 3 a universal Jacobian classifying divisors on all tropical curves of a fixed
combinatorial type, with the property that the fiber over each point is the Jacobian of
the corresponding curve. Within this space we will identify the universal Brill–Noether
locus and show in Sect. 4 that it is a closed set, or equivalently, that the function taking
a divisor class to its rank is upper semicontinuous. We will then use this result in Sect.
5 to conclude that the Brill–Noether rank is upper semicontinuous on the moduli space
of tropical curves of genus g.

2 Preliminaries

In this section we briefly review some of the basics of divisor theory on tropical curves.
We refer the reader to [2], [5], [11], and [10, Sect. 2] for further details. We also give
a mild generalization of Luo’s theory of rank determining sets from metric graphs to
tropical curves.

2.1 Tropical curves

Definition 2.1 By a metric graph we mean a pair (G, �) such that G is a connected
graph and

� : E(G) → R>0
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is a function known as the length function. A tropical curve � is a triple (G, w, �)
such that (G, l) is a metric graph and

w : V (G) → Z≥0

is a function known as the weight function. A pure tropical curve is a tropical curve
whose weight function is identically zero. To emphasize that a curve is not pure we
will sometimes call it a weighted tropical curve.

Remark 2.1 We implicitly identify a tropical graph�with the underlying metric space
of the metric graph (G, �).

2.2 Divisor theory of a tropical curve

Let � = (G, 0, l) be a pure tropical curve. Recall that a rational function on � is a
piecewise linear function with integer slopes. To a rational function f , we associate
a divisor div( f ) whose value at each point p of � is the sum of the incoming slopes
of f at p. The group of divisors of the form div( f ) is denoted Prin(�). The rank of
a divisor D is the smallest number r such that for every effective divisor E of degree
r , D is linearly equivalent to a divisor containing E (where two divisors are linearly
equivalent whenever their difference is div( f ) for some rational function f ).

Now let � = (G, w, �) be any tropical curve. The pure tropical curve associated
to � is the curve �0 = (G, 0, �). For ε > 0 we denote �wε = (Gw, 0, lwε ) the pure
tropical curve obtained from �0 by attaching w(v) loops of length ε > 0 at every
vertex v of �. As shown in [2, Theorem 5.4], for a divisor D supported on �0, the
rank of D as a divisor on the curve �wε is independent of the choice of ε.

Definition 2.2 ([2]) Let � be a tropical curve.

1. The divisor group of � is defined to be the divisor group of the underlying pure
tropical curve, namely Div(�) := Div(�0).

2. Let D be a divisor on �. The rank of D, denoted r�(D), is its rank as a divisor on
�wε for any ε > 0. Since r�wε is independent of ε, this is well defined. When the
curve � is known from context we shall simply write r(D).

The genus of a graph G is its first Betti number g(G) = |E | − |V | + 1, and the
genus of the tropical curve � = (G, w, �) is

g(�) = g(G)+
∑

v∈V (G)

w(v).

2.3 Rank-determining sets for tropical curves

The theory of rank-determining sets, introduced by Luo, shows that in order to deter-
mine the rank of a divisor D on a (non-weighted) metric graph, one only needs to
determine whether or not D − E is linearly equivalent to an effective divisor for a
finite set of divisors E . We recall the basic notions of the theory.
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Fig. 1 The rose with g petals

Definition 2.3 ([11]) Let A be a subset of a metric graph � = (G, �) and let D be
a divisor on �. The A-rank of D, denoted r�,A(D), is the largest number r such that
whenever E is an effective divisor of degree r which is supported on the set A, the
divisor D − E is linearly equivalent to an effective divisor. The set A is said to be a
rank determining set if the rank of every divisor D on � coincides with its A-rank.

For instance, if G is a loopless graph then V (G) is a rank- determining set for �
[11, Theorem 1.6]. In Corollary 2.1, we extend the notion of rank-determining sets to
tropical curves and show the existence of finite rank- determining sets supported on
the underlying pure tropical curve.

Next, we wish to give an equivalent definition of the rank in terms of the underlying
pure tropical curve.

Let us first consider an example:

Example 2.1 Let Rg be the tropical curve consisting of a single vertex v of weight
g and no edges. The pure tropical curve (Rg)

w
ε , obtained by attaching g loops to the

vertex v, is known as the “rose with g petals” (see Fig. 1).
Let D be the divisor d · v on Rg for some d ≥ 0. Then

r(D) =
{

d − g d > 2g

� d
2 � d ≤ 2g

.

In particular, r(D) ≥ r if and only if d ≥ r + min{r, g}. If d > 2g then this follows
immediately from the Riemann–Roch Theorem for tropical curves ([2, Theorem 5.4]).
The case where d < 2g appears in [2, Lemma 3.7] for weighted non-metric graphs
and the proof in general is similar: let v1, . . . , vg be the vertices in the middle of the
attached loops of (Rg)

w
1 . Then v, v1, . . . , vg is a rank- determining set for (Rg)

w
1 . Let

E = b · v + b1 · v1 + . . . + bg · vg be an effective divisor of degree � d
2 � supported

on v, v1, . . . , vg . For each i , identify the interior of the loop containing vi with the
interval (0, 1). Now define a rational function fi as follows

fi =
{

x 0 < x ≤ 1
2

1 − x 1
2 < x < 1
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and extend fi to the rest of (Rg)
w
1 by zero. Then D + ∑

i bi · div( fi ) is effective
and contains E , Hence r(D) ≥ � d

2 �. For the converse, D could either be a special
divisor (i.e., r > d − g) or a non-special divisor. If D is a non-special divisor then
2r = 2d − 2g < 2d − d = d. Otherwise, D is special and r ≤ 2d by Clifford’s
Theorem ([8, Theorem 1]).

Roughly speaking, Example 2.1 shows that a single vertex of weight w(v) places
r + min{r, w(v)} conditions on a divisor of rank r . In general, for a divisor E =
b1v1 + · · · + bsvs on a tropical curve, we write E∗ for the divisor

E∗ =
s∑

i=1

(bi + min{bi , w(vi )})vi .

Remark 2.2 A similar idea already appeared in the proof of the Specialization Lemma
for weighted graphs ([2, Theorem 4.9]). To show that the divisor obtained by special-
ization has the desired rank it was first proved that for a fixed vertex v, its equivalence
class contains a divisor whose value at v is at least r + min{r, w(v)}.
Proposition 2.1 Let D be a divisor on a tropical curve � = (G, w, �). Then D has
rank r if and only if for every effective divisor E of degree r , the divisor D − E∗ is
linearly equivalent to an effective divisor.

Moreover, if A is a rank-determining set for �0 which contains the vertices with
non-trivial weights, then it suffices to only consider divisors E that are supported on
A.

Proof To prove this we will use the following characterization of the rank of a divisor
on a tropical curve:

r(D) = min
0≤F≤W

(deg(F)+ r�0(D − 2F)), (2.1)

where W = ∑
v∈V (G) w(v) · v ([1, Corollary 5.5]).

Suppose first that D − E∗ is linearly equivalent to an effective divisor whenever E
is effective of degree r supported on A, and let us show that the rank of D is at least r .
By (2.1), we need to show that whenever F is an effective divisor which is contained
in W , then deg(F)+ r�0(D − 2F) ≥ r . Let F be such a divisor. If deg(F) > r , then
deg(F)+r�0(D −2F) ≥ r +1−1 = r . Therefore, we may assume that deg(F) ≤ r .
Since 0 ≤ F ≤ W , F∗ is just 2F . Let F ′ be any effective divisor of degree r −deg(F)
supported on A. Since F ′+2F ≤ (F ′+F)∗ and deg(F ′+F) = r , together with the fact
that F, F ′ are supported on A, we conclude that D is linearly equivalent to an effective
divisor that contains F ′ + 2F . Hence D − 2F is equivalent to a divisor containing
F ′. Since this is true for every effective divisor F ′ of degree r − deg(F) which is
supported on a rank-determining set for �0, we see that r�0(D − 2F) ≥ r − deg F ,
hence deg(F)+ r�0(D − 2F) ≥ r .

Conversely, suppose that the rank of D is r , and let E be an effective divisor of
degree r on�0. Write E = Ew+E0, where Ew(v) = min{E(v), w(v)} at every vertex
v, zero everywhere else, and E0 = E − Ew. Then E∗ = 2Ew + E0. To prove that
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D−2Ew−E0 is equivalent to an effective divisor it suffices to show that its rank on�0 is
non-negative. From the definition of the rank, subtracting an effective divisor may only
decrease the rank by the degree of the subtracted divisor, hence r�0(D −2Ew− E0) ≥
r�0(D−2Ew)−deg(E0). The fact that Ew ≤ W implies r ≤ deg(Ew)+r�0(D−2Ew),
hence r�0(D −2Ew)−deg(E0) ≥ r −deg(Ew)−deg(E0) = 0. This is true for every
such E , therefore r∗

�,V (G)(D) ≥ r .

In light of Proposition 2.1, we introduce the following definition, which is a slight
generalization of the notion of rank-determining sets for tropical curves.

Definition 2.4 Let A be a subset of a tropical curve � and let D be a divisor on �. The
weighted A-rank of D, denoted r∗

�,A(D) is the largest number r such that whenever
E is an effective divisor of degree r which is supported on A, the divisor D − E∗
is linearly equivalent (as a divisor on �0) to an effective divisor. We say that A is a
weighted rank-determining set if the rank of every divisor D on � coincides with its
weighted A-rank.

An immediate corollary of Proposition 2.1 is

Corollary 2.1 Let � = (G, w, �) be a tropical curve. Then every rank- determining
set for�0 which contains the vertices of positive weight is a weighted rank-determining
set for �.

In particular, the set of vertices of a tropical curve is a weighted rank-determining
set. 
�

3 The universal Jacobian

Let � be a tropical curve of genus g. The Jacobian of � is the group of divisor classes
of degree zero on �:

J (�) = Div0(�)/Prin(�).

The Jacobian is identified with the torus H1(�
0,R)/H1(�

0,Z) � R
g(�0)/Zg(�0),

where g(�0) is the genus of �0. See [4], [12] for details. In this section, we introduce
the universal space of divisor classes over the space of all tropical curves of a fixed
combinatorial type.

Definition 3.1 Let � = (G, w, �) be a tropical curve. The combinatorial type of � is
(G, w).

Fix a combinatorial type (G, w). Let E(G) = {e1, ..., en} and denote σ = R
n≥0. We

can identify any point (s1, ..., sn) in the interior of σ with the tropical curve of type
(G, w) with �(ei ) = si which we denote by �(s1,...,sn). Next, we extend this definition
to the boundary of R

n≥0. For a point s on the boundary of σ we construct a tropical curve
�s = (Gs, �s, ws) as follows. Let Gs be the graph obtained from G by contracting an
edge ek whenever sk = 0. Define the length function by �(ei ) = si whenever si > 0,
and the weightws at a vertex v of Gs byws(v) = g(Hv), where Hv is the subgraph of
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Fig. 2 The finite graph G

Fig. 3 Different tropical curves obtained from the graph G

G being collapsed to the point v in Gs . For instance, by contracting a loop edge, the
weight at the base is increased by one, and contracting an edge between two vertices
identifies both of them to a single vertex whose weight is the sum of the weights at
both ends.

Remark 3.1 Points on the boundary of σ correspond to curves of different combinato-
rial types than points in the interior. All points in the interior of a face of σ correspond
to tropical curves of the same type.

Example 3.1 If G is the graph shown in Fig. 2 and w is the zero function, then the
tropical curves shown in Fig. 3 are all on different faces of σ .

For every s = (s1, ..., sn) ∈ σ there is a natural rescaling map αs : �(1,...,1) → �s

that induces a map H1(�(1,...,1),Z) → H1(�s,Z) and a surjection of homology groups
H1(�(1,...,1),R) � H1(�s,R), hence a surjection αs∗ : J (�(1,...,1)) → J (�s). Note
that this map is surjective even when edges are contracted. Therefore, we obtain a map

α : σ × J (�(1,...,1)) →
∐

s∈σ
{s} × J (�s)

given by

α(s, D) = (s, αs∗(D)).

Definition 3.2 Let (G, w) be a combinatorial type of tropical curves.

1. The universal Jacobian of the space of tropical curves of type (G, w) is

J (G, w) =
∐

s∈σ
{s} × J (�s)

endowed with the quotient topology, that is to say the largest topology making α
continuous.
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2. Fix a point p in �(1,...,1). For every s in σ , let αs(p) be its image in �s under the
natural rescaling map. By identifying pairs of the form (s, [D]) in {s} × J (�s)

with pairs of the form (s, [D−d ·αs(p)]) in {s}×Picd(�s)we obtain the universal
Picard space

Picd(G, w) =
∐

s∈σ
{s} × Picd(�s),

with the property that the map σ × (�(1,...,1))
d → Picd(G, w), sending (s, E) to

(s, αs∗[E − d · p]), is continuous.
3. The universal Brill–Noether locus, denoted W r

d (G, w), is the subset of Picd(G, w)
consisting of pairs (s, [D]) such that the rank of D is at least r .

We can also exhibit the universal Jacobian explicitly as a quotient of a polyhedral
set inside R

2n . Let c1, ..., cg be a basis for the Z-module H1(�1,...,1,Z), and suppose
that ci = ∑

j ai j e j , where e j are the edges of G and each ai j is an integer. Notice
that for any choice of s = (s1, ..., sn) in R

n≥0, the corresponding sums of edges in �s

obtained by the rescaling map also generate H1(�s,Z). For each i , let Ci be the vector
of coefficients of ci , namely Ci = (ai1, ai2, ..., ain) ∈ R

n , and for (s1, ..., sn) in σ
denote Cs1,...,sn

i = (s1ai1, ..., snain). Define

H =
∐

(s1,...,sn)∈σ
{(s1, ..., sn,

g∑

i=1

ti C
s1,...,sn
i ) | 0 ≤ ti ≤ 1)} ⊆ σ × R

n

(where ti runs through all the values between 0 and 1) and let

J = H/ ∼,

where ∼ is the equivalence relation identifying opposite faces in the parallelogram
above each point in σ . In other words, for each k = 1, ..., g, the relation ∼ identifies
points of the form

(s1, ..., sn,
∑

i �=k

ti C
s1,...,sn
i )

with those of the form

(s1, ..., sn,
∑

i �=k

ti C
s1,...,sn
i + Cs1,...,sn

k ).

The restriction of J to the fiber above any point of σ is naturally isomorphic to the
Jacobian of the corresponding tropical curve and we have a natural map

ψ : σ × J (�(1,...,1)) → J
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sending

(s1, ..., sn)×
g∑

i=1

ti C
1,...,1
i

to

(s1, ..., sn)×
g∑

i=1

ti C
s1,...,sn
i .

To show that this definition agrees with the one above, consider the following com-
muting diagram:

σ × J (�(1,...,1))

α

�������������
ψ

�������������

J (G, w)
θ

�� J

with θ defined on each fiber {s} × J (�s) of J (G, w) as the one to one and onto map
identifying J (�s) with a torus. Let us show that θ is continuous: suppose U ⊆ J
is an open set. By definition, a set in J (G, w) is open if and only if its preimage
in σ × J (�(1,...,1)) is, hence θ−1(U ) is open if and only if α−1(θ−1(U )) is. But
by the commutativity of the diagram α−1(θ−1(U )) = ψ−1(U ) which is open since
ψ is continuous. Hence θ is continuous. The Jacobian J (G, w) is compact because
it is the continuous image of a compact space and J is seen from definition to be
Hausdorff. The map θ is a bijection between a compact and a Haudorff space, hence
a homeomorphism.

4 The universal Brill–Noether locus

This section is devoted to proving the following proposition:

Theorem 4.1 Let (G, w) be a combinatorial type of tropical curves. Then the univer-
sal Brill–Noether locus W r

d (G, w) is closed in Picd(G, w).

The proposition is equivalent to the fact that, whenever a sequence (si , [Di ]) converges
to a pair (s, [D]) in Picd(G, w), and for every i the rank of Di is at least r , then the
limit divisor class [D] has rank at least r as well. Suppose that �s = (Gs, ws, �s) and
the vertices of Gs are v1, ..., vm . By the discussion above on rank-determining sets,
this is the same as showing that for every effective divisor E = b1v1 + ... + bmvm

of degree r , the divisor D is equivalent to a divisor containing b j + min{b j , w(v j )}
points at every vertex v j . Each vertex v j was obtained, roughly speaking, by collapsing
a subgraph Hj of genus w(v j ) of G and that subgraph is realized as a subcurve Λi .
Hence we expect that, when i is large enough, the divisor Di will be linearly equivalent
to a divisor whose restriction to a neighborhood of each subcurve Λi is of degree of
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Fig. 4 A squence of tropical curves converging in Picd (G, w)

at least b j + min{b j , w(v j )}. This leads us to explore the behavior of divisors when
the diameter of certain subcurves is very small with respect to the rest of the curve.
Figure 4 illustrates a sequence (�k) of pure tropical curves converging to a weighted
tropical curve �. The subcurves Λ1,Λ2,Λ3 and collapse in the limit to the weighted
vertices v1, v2, and v3.

See also [9] for a different example, where the limiting behavior of families of metric
graphs was studied in order to extend the Riemann–Roch Theorem to the metric graph
case.

Lemma 4.1 Let D and E be two effective linearly equivalent divisors on a tropical
curve �, and let f be a piecewise linear function such that D − E = div( f ). Then at
every point x where f is differentiable we have | f ′(x)| ≤ deg(D).

A similar claim for the case where deg(D) = 2 appeared in the second part of [7,
Lemma 3.1] and the proof of the general case is almost identical. We include the details
for completeness.

Proof Write F = div( f ) = D − E = x1 + · · · + xd − y1 − · · · − yd . Pick a point
z in �. Let s+(z) and s−(z) denote the sum of the positive and negative incoming
slopes of f at z, respectively. We will show that s+(z) ≤ d. An analogous argument
shows that s−(z) ≥ −d, so the lemma will follow. Let U be the union of all the paths
in � eminating from z along which f is non-decreasing. Let z1, . . . , zn be the set of
points in U that are either vertices of � or are points at which f is non-differentiable.
Let W = {z, z1, . . . , zn}. Then U\W consists of finitely many open segments. Let
S = {s1, . . . , sk} be the set of closures of these segments. So s1, . . . , sk (which could
be either closed intervals or loops) cover U and intersect at points in W , and f is linear
along each of them. Orient each segment in S for reference, and for each point y in W let

δ+(y) = { j |s j is incoming aty}
δ−(y) = { j |s j is outgoing aty}.

Finally, for each i = 1, . . . , k, let mi be the slope of f along the oriented segment
si . Note that the slope of f along any edge e leaving U must be negative, because
otherwise e would lie in U . Therefore, we have
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F(zi ) ≥
∑

j∈δ+(zi )

m j −
∑

j∈δ−(zi )

m j

F(z) ≥
∑

j∈δ+(z)
m j −

∑

j∈δ−(z)
m j + s+(z)

for i = 1, . . . , n. Summing over all i , we have F(z)+ F(z1)+ · · · + F(zl) ≥ s+(z).
Since F = x1 + · · · + xd − y1 − · · · − yd it must be that F(z)+ F(z1)+ · · · + F(zn)

and hence s+(z) is at most d.

Definition 4.1 Let� = (G, w, �) be a tropical curve. A tropical subcurveΛ is a triple
(H, w′, �′) such that H is a connected subgraph of G, w′ is the restriction of w to the
vertices of H and �′ is the restriction of � to the edges of H . For a tropical subcurve
Λ, we write Nδ(Λ) for the set of points in � whose distance from Λ is at most δ.

We now fix notation for the remainder of the section. Let � be a tropical curve
such that � = (G, w, �) and let Λ be a tropical subcurve of diameter ε > 0 with
Λ = (H, w′, �′). H is assumed to be a loopless graph with m vertices. D will always
denote an effective divisor of degree d and rank at least r on �.

Proposition 4.1 Let E be an effective divisor of degree r supported onΛ. Then there
is a closed neighborhood Λ′ of Λ which is contained in Ndε(Λ) and an effective
divisor D′ such that D and D′ coincide on Λ, D′ is linearly equivalent to D (as a
divisor on �), and D′|Λ′ − E∗ is equivalent (as a divisor onΛ′) to an effective divisor.

Proof Since r(D) ≥ r , Proposition 2.1 implies that there is a piecewise linear function
f on � satisfying E∗ ≤ D + div( f ). Denote μ = inf{ f (x) | x ∈ ∂Nε(Λ)}, and let

f̄ =
{
μ x ∈ Nε(Λ)

min{ f, μ} x /∈ Nε(Λ)
.

Define D′ = D + div( f̄ ), (see Sect. 2.2 for the definition of div( f̄ )). D′ identifies
with D on Λ since f̄ is constant on a neighborhood of Λ, and one easily checks that
D′ is effective. LetΛ′ be the closure of the union ofΛ with the paths emanating from
it along which f is decreasing and strictly larger than μ. By Lemma 4.1, the absolute
value of the slope of f is at most d, hence

sup{ f (x)− f (y) | x, y ∈ Λ} ≤ d · ε,

implying that these paths cannot be longer than dε and Λ′ is contained in Ndε(Λ). It
remains to show that the restriction of D′ to Λ′ is linearly equivalent (as a divisor on
Λ′) to an effective divisor containing E∗. Denote g = ( f − f̄ )|Λ′ and let D′′ be the
divisor D′′ = D′|Λ′ + div(g) on Λ′. D′′ is equivalent on Λ′ to D′|Λ′ and the claim is
that it is effective and contains E∗. Since this is true for (D + div( f ))|Λ′ , it suffices
to check that D′′ ≥ (D + div( f ))|Λ′ .

Let y be any point ofΛ′. If y is in the interior ofΛ′ then g identifies with ( f − f̄ ) on a
neighborhood of y, hence div(g)(y) = div( f − f̄ )(y) and D′′(y) = (D +div( f ))(y).

123



852 J Algebr Comb (2014) 40:841–860

If y ∈ ∂Λ′ and f (y) > μ then on each path emanating from Λ′ at y, f is non-
decreasing (otherwise, by the construction of Λ′ that path would have been included
in Λ′). Hence div(g)(y) ≥ div( f − f̄ )(y) and D′′(y) ≥ (D + div( f ))(y). Finally,
suppose that y ∈ ∂Λ′ and f (y) = μ. Let e be a segment leading to y from outside
Λ′ along which f has constant slope. If the incoming slope of f is non-negative
then f̄ identifies with f on e and ( f − f̄ ) = 0 on e. If the incoming slope of f
is negative then the incoming slope of f − f̄ is negative as well. In either case,
div(g)(y) ≥ div( f − f̄ )(y) and D′′(y) ≥ D + (div( f ))(y).

Proposition 4.2 Suppose that the closed neighborhood Nε·(3d)d−r+1(Λ) deforma-
tion retracts onto Λ. Then there is a neighborhood Λ̃ of Λ which is contained in
Nε·(3d)d−r+1(Λ) and an effective divisor D̃ such that

1. D is equivalent to D̃ as a divisor on �.
2. D and D̃ coincide on Λ.
3. The rank of D̃ as a divisor on Λ̃ is at least r .

Proof Recall that by Corollary 2.1, the vertices ofΛ are a rank-determining set forΛ.
Since Nε·(3d)d−r+1(Λ) deformation retracts ontoΛ and does not contain any weighted
vertices outside Λ, they are a rank-determining set for Nε·(3d)d−r+1(Λ) as well. Let
S1, . . . , SM be the different effective divisors of degree r supported on the vertices of
Λ. By Proposition (4.1) with Λ and S1 we obtain a curve Λ1 of diameter ε1 ≤ 3d · ε
and a divisor D1, such that D1 is linearly equivalent to D, identifies with it onΛ, and
D1|Λ1 − S∗

1 is linearly equivalent, as a divisor onΛ1, to an effective divisor. Note that
the degree of D1|Λ1 is at least r .

We now repeat the process successively for S2, ..., SM as follows. For 2 ≤ i ≤ M ,
we use Proposition (4.1) again to obtain a subcurveΛi and a divisor Di , such that the
restriction of Di toΛi−1 identifies with Di−1, and for every j = 1, . . . , i , Di |Λi − S∗

j
is equivalent, as a divisor on Λi , to an effective divisor.

If we denote εi the diameter of Λi , then by construction, εi < 3d · εi−1. Now,
if deg(Di|i) is the same as deg(Di−1|i), then Di−1 is already equivalent (as a divisor
on Λi−1) to a divisor that contains Si . Therefore, we may choose Λi to be the same
subcurve asΛi−1, and in this case, εi = εi−1. In particular, since the total degree of D
is d, there can be at most d −r +1 stages where the degree of the restriction increases,
and so εM < ε · (3d)d−r+1.

Now choose D̃ = DM and Λ̃ = ΛM . By construction, D̃ is linearly equivalent to
D, and for every subset S of degree r of the rank-determining set, D̃|Λ̃ is equivalent
on Λ̃ to a divisor containing S∗. It follows that rΛ̃(D̃|Λ̃) ≥ r .

Definition 4.2 Let Λ be a subcurve of a tropical curve � and let r ∈ Z≥0. Then we
write rΛ = r + min{r, g(Λ)}.
Corollary 4.1 In the same conditions and notations as Proposition 4.2, D is lin-
early equivalent to an effective divisor whose restriction to Λ̃ has degree at least rΛ.
Moreover, this divisor coincides with D on Λ.

Proof Let D̃ be the divisor linearly equivalent to D obtained in Proposition (4.2).
Then D̃ identifies with D onΛ and rΛ̃(D̃|Λ̃) ≥ r . Let E be the restriction of D̃ to Λ̃,
denote e = deg E and let h be the genus of Λ̃. We must show that e ≥ rΛ.
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If e ≥ 2h then by the Riemann–Roch theorem for tropical curves ([2, Theorem
5.4]), rΛ̃(E) = e − h, hence e = rΛ̃(E)+ h ≥ r + h ≥ r + min{r, h}.

Now suppose 0 ≤ e < 2h. E could either be a special (i.e., rΛ̃(E) > e − h) or a
non-special divisor, and we claim that in any case 2 · rΛ̃(E) ≤ e: if E is special this
is exactly Clifford’s theorem ([8, Theorem 1]). Otherwise, E is non-special, namely
rΛ̃(E) = e − h. Assume by contradiction that e < 2 · rΛ̃(E) = 2e − 2h. But then
2h < e, a contradiction. In any case, 2r ≤ 2 · rΛ̃(E) ≤ e. Together with the fact that
e < 2h, it follows that r < h, hence e ≥ 2r = r + min{r, h} = rΛ.

Suppose that instead of a single subcurve we are given two subcurves Λ1 and Λ2
and two integers r1 and r2 such that r1 +r2 = r . One could be tempted to use Corollary
4.1 twice to show that D is equivalent to an effective divisor whose restriction to both
Λ̃1 and Λ̃2 has degree at least rΛ1

1 and rΛ2
1 , respectively. However, when using the

corollary a second time in an attempt to move points of the divisor into Λ̃2, there is
no guarantee, a priori, that enough of its points will remain inside Λ̃1. The following
lemma shows that every subcurve contains special configurations of points which are
“stuck” inside the subcurve. That is to say, whenever the restriction of an effective
divisor to the subcurve is exactly that configuration, it cannot be moved to contain
fewer points in the subcurve.

Lemma 4.2 Let h be the genus of the underlying metric spaceΛ0 and let 0 ≤ k ≤ h.
Then there exists a divisor v1 +· · ·+vk of degree k supported onΛ such that whenever
E and E ′ are two linearly equivalent effective divisors, and the restriction of E to Λ
is exactly v1 + · · · + vk , then the degree of the restriction of E ′ to Λ is at least k.

Proof First assume that k = h. We will show that the set of classes of effective divisors
onΛ that do not satisfy the Lemma cannot be the entire h-dimensional torus Pich(Λ).
Suppose that EΛ is such a divisor. Namely, there is an effective divisor E that restricts
to EΛ on Λ, and E is linearly equivalent to an effective divisor E ′ whose restriction
to Λ has degree less than h. Write

E = E ′ + div( f )

for some piecewise linear function f . The divisors div( f )|Λ and div( f |Λ) coincide
on the interior of Λ hence differ by a combination of its boundary points. Therefore,
if we denote the boundary points of Λ by y1, ..., y�, then

E |Λ = E ′|Λ + div( f |Λ)+ a1 · y1 + · · · + a� · y�

for some integers a1, ..., a�. Hence the divisor E |Λ is linearly equivalent, as a divisor
onΛ, to E ′|Λ+a1 · y1 +· · · a� · y�. For a fixed a1 y1 +· · ·+a�y�, every choice of E |Λ
corresponds to a choice of E ′|Λ which is a divisor of degree strictly smaller than h. It
follows that the set of all such [E |Λ] is the translation by a1 y1 + · · · + a�y� of the set
of effective divisors of a fixed degree smaller than h. Recall that this set has positive
codimension inside Pich(Λ) ([10, Proposition 3.6]). As we let a1 y1 + · · · + a�y� vary
over all the divisors supported on the boundary we see that the set of classes [EΛ]
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that do not satisfy the lemma is a countable union of sets of positive codimension, and
hence is a proper subset of Pich(Λ).

Now, let E be an effective divisor whose restriction to Λ is v1 + ...+ vk for some
k < h and let E ′ be an effective divisor such that E ′ = E +div( f ) for some piecewise
linear function f . Then E ′ = (E + vk+1 + ...+ vh + div( f ))− vk+1 − ...− vh . By
the first part, deg((E + vk+1 + ... + vh + div( f ))|Λ) ≥ h. Therefore, deg(E ′|Λ) ≥
h − (h − k) = k.

Since the lemma above requires the restriction of the divisor to Λ to be exactly
v1 + · · · + vk , we shall require a tool to remove superfluous points away from the
subcurve. This is given by the following lemma:

Lemma 4.3 Let E be an effective divisor on �. Suppose that the restriction of E toΛ
has degree greater than k but E is equivalent to an effective divisor F whose restriction
to Λ has degree smaller than k. Then there exists an arbitrarily small neighborhood
Λ′ ofΛ and an effective divisor E ′ linearly equivalent to E such that its restriction to
Λ′ has degree exactly k.

Proof Let f be the piecewise linear function satisfying E + div( f ) = F . Let
outdegΛ( f ) denote the sum of all the slopes of f emanating from Λ. Then
outdegΛ( f ) = deg(E |Λ)−deg(F |Λ) > 0. For each path eminating fromΛ, choose a
segment homeomorphic to an interval along which f has a constant slope and contains
no points of E except possibly at their intersection with Λ. Let {e1, ..., el} be the sets
of those paths. Note that each ei can be chosen arbitrarily small. For each ei , let pi be
its endpoint touching Λ and qi the other endpoint, and denote ci the outgoing slope
of f on ei . Rearrange the segments so that i2 > i1 whenever f (pi2) > f (pi1) or
f (pi2) = f (pi1) and f (qi2) > f (qi1). Let α be the first index satisfying

deg(E |Λ)−
α∑

i=1

ci < k.

Let Λ′ be the union of Λ with the segments eα+1, ..., el . Denote c = deg(E |Λ) −
α−1
(
∑
i=1

ci + k) > 0 and let M = f (pα)+ ε · c for some positive number ε smaller than

the length of eα . Now define

f̄ (x) =
{

f (pα)+ c · x x ∈ eα, 0 ≤ x ≤ ε

max( f (x),M) otherwise
,

and let E ′ := E + div( f̄ ). Then

outdegΛ′( f̄ ) =
α−1∑

i=1

ci + c =
α−1∑

i=1

ci + deg(E |Λ)− (k +
α−1∑

i=1

ci ) = deg(E |Λ)− k,

hence deg(E ′|Λ′) = deg(E |Λ)− outdegΛ′( f̄ ) = k as required.
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The next proposition is a stronger version of Corollary 4.1. We use it in Proposition
4.4 to generalize the result of the corollary to multiple tropical subcurves.

Proposition 4.3 Suppose that the neighborhood Nε·(3d)d−r+1(Λ)deformation retracts
onto Λ and does not contain any weighted vertices outside Λ. Then there is an effec-
tive divisor D̃ which is linearly equivalent to D, a neighborhood Λ̃ of Λ which is
contained in Nε·(3d)d−r+1(Λ), and an effective divisor U of degree r supported on Λ̃,
such that

1. D̃ contains U.
2. Any divisor that contains U and is linearly equivalent to D̃ restricts to a divisor

of degree at least rΛ on Λ̃.

Proof Let s = min{r, h} where h is the genus of Λ0. Let V be the effective divisor
of degree s supported onΛ that was obtained in Lemma 4.2. Since r(D) ≥ r , we can
replace D with a linearly equivalent effective divisor that contains V . By Corollary
4.1, there is a divisor D′ which is equivalent to D, identifies with it onΛ, and satisfies
deg(D′|Λ′) ≥ rΛ for some neighborhoodΛ′ ofΛ in Nε·(3d)d−r+1(Λ). In particular, D′
contains V , and D′ − V has degree at least r on Λ′.

Suppose that D′−V is equivalent to some divisor whose restriction toΛ′ has degree
less than r . Then by Lemma 4.3, D′ −V is equivalent to an effective divisor D′′ whose
restriction to an arbitrarily small neighborhood Λ̃ of Λ′ has degree exactly r . Choose
Λ̃ small enough so that it is still contained in Nε·(3d)d−r+1(Λ). Let U be the restriction

of D′′ to Λ̃. Take D̃ = D′′ + V . Then D̃ is equivalent to D′ which is equivalent to D.
Notice that the restriction of D̃ to Λ̃ is exactly V + U , hence the restriction of D̃ − U
is exactly V . Now, let E be any other effective divisor that contains U and is linearly
equivalent to D̃. Then E − U is effective and linearly equivalent to D̃ − U , so by the
choice of V , the restriction of E − U to Λ̃ has degree at least s = rΛ − r . Therefore,
deg(E |Λ̃) ≥ s + r = rΛ.

Otherwise, the restriction toΛ′ of every effective divisor that is linearly equivalent
to D′ −V has degree of at least r . In this case, the restriction toΛ′ of every divisor that
is linearly equivalent to D′ and contains V has degree of at least r + s = rΛ. Hence
the proposition is satisfied by choosing D̃ = D′, Λ̃ = Λ′, and U to be any effective
divisor of degree r , which contains V , contained in D̃, and is supported on Λ.

The following is the generalization of Corollary 4.1 to multiple subcurves. Suppose
that r1, . . . , rk are non-negative numbers such that r1 + . . .+ rk ≤ r , andΛ1, . . . , Λk

are tropical subcurves of � such that Λi = (Hi , wi , li ), each Hi is loopless, and the
diameter of each Λi is εi .

Proposition 4.4 Suppose that for every i , the curve Nεi ·(3d)d−ri +1(Λi ) deformation
retracts ontoΛi and contains no weighted vertices outsideΛi . Then there is a neigh-
borhood Λ̃i of eachΛi which is contained in Nεi ·(3d)d−ri +1(Λi ), and an effective divisor

linearly equivalent to D, whose restriction to each Λ̃i is of degree at least rΛi
i .

Proof We will construct, using induction on k, an effective divisor Dk , a seqeunce
of effective divisors U1, . . . ,Uk , and neighborhoods Λ̃1, . . . , Λ̃k with the following
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properties: for every i , Λ̃i is contained in Nεi ·(3d)d−ri +1(Λi ) and contains Λi ; Ui is of

degree ri and is supported on Λ̃i ; the restriction to Λ̃i of any divisor that is linearly
equivalent to D and contains Ui is of degree of at least rΛi

i ; Dk is linearly equivalent
to D and contains U1, . . . ,Uk . Then Dk satisfies the statement of the proposition.

For k = 1, this is just Proposition 4.3. Now suppose that k is at least 2 and that the
claim is true for i = k − 1. Then Dk−1 contains U1, ...,Uk−1, hence Dk−1 − U1 −
· · · − Uk−1 is effective and of rank at least r − r1 − · · · − rk−1 ≥ rk . Moreover, Dk−1
is linearly equivalent to D, so we can use Proposition 4.3 again for the the divisor
Dk−1 − U1 − ... − Uk−1 and the subcurve Λk . We obtain an effective divisor Uk of
degree rk , an effective divisor D′

k that contains Uk , and a neighborhood Λ̃k ofΛk such
that D′

k is linearly equivalent to Dk−1 − U1 − · · · − Uk−1 and every effective divisor

which is linearly equivalent to D′
k and contains Uk has degree of at least rΛk

k on Λ̃k .
Now take Dk = D′

k + U1 + · · ·+ Uk−1 and the statement of the induction is satisfied.

We are now in a position to prove that the Brill–Noether locus is closed in the universal
Jacobian:

Proof (of Theorem 4.1) Let (si , [Di ]) be a sequence in Pich(G, w) converging to
(s, [D]), and suppose that for every i , Di is a divisor of degree d and rank at least r
on �si . By passing to a subsequence, we may assume that the points si are all in the

interior of the same face σ of R
|E(G)|
≥0 . By replacing (G, w) with the combinatorial

type corresponding to σ , we can assume that every curve �si is of type (G, w) and
that s is a point of σ , possibly on the boundary.

Recall the map


d : σ × (�(1,...,1))
d → Pich(G, w)

defined in Sect. 3, and let β, αi be the natural rescaling maps

�(1,...,1)

αi

����
��

��
��

�
β

����
��

��
��

�

�si �s

(note that every αi is a homeomorphism while β is a retract). Let v1, . . . , vk be the
vertices of �s which are either weighted or whose preimage under β is more than a
single point. Let Λ1, . . . , Λk be the disjoint preimages of v1, . . . , vk in �(1,...,1). The
weight at every point x of �s equals the genus of β−1(x), hence the preimage of any
point other than v1, . . . , vk is a single non-weighted point. For every 1 ≤ j ≤ k, and
every i , let ε j

i be the diameter ofαi (Λ j ). Fix a rank-determining set for�s that contains
v1, ..., vk , namely A = {v1, . . . , vk, vk+1, . . . , vK } for some points vk+1, . . . , vK .

Now, let E = r1v1 +· · ·+ rkvk + rk+1vk+1 +· · ·+ rK vK be an effective divisor of
degree r on �s . We need to show that D is linearly equivalent to an effective divisor
containing E∗ = rΛ1

1 v1 + · · · + rΛk
k vk + rk+1vk+1 + · · · + rK vK . Since for every

j , the subcurve αi (Λ j ) collapses to a point in the limit β(Λ j ), we can find i large
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enough so that each of the neighborhoods N
ε

j
i (3d)d−r j +1(αi (Λ j )) deformation retracts

onto αi (Λ j ). Since Di − (rk+1vk+1 + · · · + rK vK ) has rank at least r1 + · · · + rk ,

Proposition 4.4 implies that there are closed neighborhoods Δ j
i of each curve αi (Λ j )

such that, by replacing Di with a linearly equivalent divisor, we can assume that it

contains rk+1vk+1 + · · · + rK vK and its restriction to Δ j
i has degree at least r

Λ j
j .

Let D̂i be the preimage of Di in (�(1,...,1))d . The fact that αi is a homeomorphism

implies that the restriction of D̂i to α−1
i (Δ

j
i ) has degree r

Λ j
j as well. Hence, for every

j we may choose an effective divisor C j
i of degree r

Λ j
j on �(1,...,1) that is contained in

the restriction of D̂i to α−1
i (Δ

j
i ). By compactness we may assume that the sequence

D̂i converges in (�(1,...,1))d to some D̂, and similarly that each sequence C j
i converges

to some C j such that C j ≤ D̂. Each C j
i is supported on α−1

i (Δ
j
i ), so C j is supported

on
∞∩

i=1
α−1

i (Δ
j
i ). Since the diameters of Δ j

i tend to zero as i tends to infinity, the set
∞∩

i=1
α−1

i (Δ
j
i ) in�(1,...,1) is exactlyΛ j

i . Therefore, C j is supported onΛ j
i and the degree

of the restriction of D̂ to Λi
j is at least r

Λ j
j for every j . By continuity of 
d , the pair

(s, D̂) is mapped to (s, [D]) in Pich(G, w), hence D is equivalent to a divisor that
contains E∗.

This is true for every effective divisor E of degree r supported on the rank-
determining set A, and it follows that r(D) ≥ r .

5 The Brill–Noether rank of a tropical curve

In the classical case, the dimension of the Brill–Noether locus is an important invariant
of an algebraic curve. Among its different properties, the function that takes a curve
C to dim(W r

d (C)) is upper semicontinuous on the moduli space of algebraic curves of
a fixed genus. However, this is no longer true for metric graphs ([10, Example 2.1]).
As a substitute for the dimension of the locus, Lim, Payne, and Potashnik introduced
the notion of Brill–Noether rank:

Definition 5.1 ([10]) Let � = (G, �) be a metric graph and let r, d be non-negative
integers. The Brill–Noether rank wr

d(�) is the largest number ρ such that every effec-
tive divisor of degree r +ρ is contained in an effective divisor D of degree d and rank
at least r .

The authors showed that the function wr
d is in fact upper semicontinuous on the space

classifying metric graphs of a given genus ([10, Theorem 1.6]). For the case of a
tropical curve we propose the following definition:

Definition 5.2 Let� = (G, w, �) be a tropical curve and let r, d be non-negative inte-
gers. The Brill–Noether rank wr

d(�) is the largest number ρ such that every effective
divisor E of degree r + ρ is contained in an effective divisor D of degree d and rank
at least r .
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Recall that, by definition, this means that E and D are divisors on �0, but the rank of
D is computed as a divisor on the curve �wε for any ε > 0. We will show in 5.1 that
with this definition, the function assigning a tropical curve its Brill–Noether rank is
upper semicontinuous on M tr

g , the moduli space of tropical curve. We briefly review
the construction of M tr

g , following [6].

Fix a combinatorial type (G, w). Recall that we may identify points in R
E(G)
>0

with curves of type (G, w), by assigning lengths to the edges of G according to the
coordinates of the points. We may then identify points on the boundary of R

E(G)
≥0 with

curves in which the appropriate edges are contracted. To get a unique representation we
should identify curves obtained from weight-preserving symmetries. Let Aut(G, w) be
the group of weight-preserving automorphisms of G. Then Aut(G, w) acts on R

E(G)
≥0

by simply permutating coordinates. Denote

C(G, w) = R
E(G)
≥0 /Aut(G, w)

the closure of the cell classifying all curves of type (G, w). Consider
∐

C(G, w), the
disjoint union of all the cells, and let ∼ be the equivalence relation identifying two
points if they correspond to isomorphic curves.

Definition 5.3 The moduli space of a tropical curve of genus g is

M tr
g =

∐
C(G, w)/ ∼ .

Theorem 5.1 The Brill–Noether rank is upper semicontinuous on the moduli space
of tropical curves of genus g.

Proof It suffices to show that the Brill–Noether rank is upper semicontinuous on the
closure of each of the cells comprising M tr

g . Fix a combinatorial type (G, w), and let

σ = R
|E(G)|
≥0 . Let [si ] be a sequence in (G, w) such that the Brill–Noether rank of each

�si is at least ρ, and suppose that [si ] converges to [s]. We may choose representatives
si so that they converge to s in σ . Now, we need to show that wr

d(�s) ≥ ρ.
Let E be an effective divisor of degree r +ρ on �s . For every i , choose an effective

divisor Ei of degree r +ρ on �si , so that the sequence (si , [Ei ]) converges to (s, [E])
in Picr+ρ(G, w). Since each of the curves �si has Brill–Noether rank at least ρ, there
exists a divisor Di containing Ei , such that each [Di ] is in W r

d (G, w). By passing to
a subsequence we may assume that the sequence (si , [Di ]) converges in Picd(G, w)
to some (s, [D]) such that E is contained in D. By Theorem 4.1, W r

d (G, w) is closed
in Picd(G, w), so (s, [D]) is in W r

d (G, w) as well, and the rank of D is at least r .

To conclude the paper we wish to examine the relation between the Brill–Noether
rank of a tropical curve and the dimension of the Brill–Noether locus of an algebraic
curve.

Let X0 be a nodal curve. The dual graph of X0 is the metric graph (G, �), where
the vertices of G are identified with the irreducible components of X0, and an edge of
length 1 connects two vertices whenever the two corresponding components meet. In
particular, loop edges correspond to self-intersection of components of the special fiber.
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As defined in [2], the dual weighted graph of X0 is the weighted metric graph
(G, w, �), where (G, �) is the dual graph of X0, and the weight at a vertex v is the
geometric genus of the corresponding component. Note that the genus of the dual
weighted graph is the same as the genus of X0.

In [3] the author presented a specialization lemma relating the rank of divisors
on algebraic curves with the rank of divisors on their dual graphs. This lemma was
generalized in [2, Theorem 4.9] and we will need the following special case:

Theorem 5.2 ([1, Theorem 1.2]) Let X be a smooth projective curve over a discretely
valued field with a regular semistable model X whose special fiber X0 has dual
weighted graph � = (G, w, �). Then there is a degree-preserving specialization map
τ : Div(X) → Div(G) such that for every D ∈ Pic(X), rX (D) ≤ r�(τ(D)).

In [10, Theorem 1.7] the authors proved a similar inequality relating the dimension of
the Brill–Noether locus of an algebraic curve with the Brill–Noether rank of a tropical
curve. The proof used Baker’s specialization lemma together with the following fact:

Proposition 5.1 ([10, Proposition 5.1]) Let X be a smooth projective curve. Suppose
W r

d (X) is not empty, and let E be an effective divisor of degree r + dim(W r
d (X)) on

X. Then there is a divisor D whose class is in Wr
d (X) such that D − E is effective.

In what follows we shall use the above proposition together with the specialization
lemma for weighted graphs to do the same for the dual weighted graph of the special
fiber of a curve:

Theorem 5.3 Let X be a smooth projective curve over a discretely valued field with
a regular semistable model whose special fiber has weighted dual graph �. Then for
every r, d ∈ N, dim W r

d (X) ≤ wr
d(�).

Proof Denote the dimension of W r
d (X) by ρ. To show that the above inequality is

true we must show that every effective divisor E of degree r + ρ is contained in an
effective divisor D of degree d and rank at least r . Note that by definition, both D and
E are divisors supported on �0.

We start by showing that the statement is true whenever E is a rational divisor,
namely that its distance from any vertex is rational. Let E be such a divisor. Then
E is the specialization of some effective divisor E X of degree r + ρ on X . Since
wr

d(X) = ρ, it follows by [10, Proposition 5.1] that E X is contained in an effective
divisor DX of degree d and rank at least r , which specializes to a divisor D that
contains E . By the Specialization Lemma, the rank of D on � is at least r .

Now, let E be any effective divisor on �0 and let (Ei ) be a sequence of rational
effective divisors converging to E . For each i , choose a divisor Di of rank r that con-
tains Ei . By compactness of Picd(�), there is a subsequence of {Di } which converges
to a divisor D that contains E . Since each Di is in W r

d (�), and W r
d (�) is closed, D is

of rank r as well.
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