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Abstract The Laplacian matrix of a graph G describes the combinatorial dynamics
of the Abelian Sandpile Model and the more general Riemann–Roch theory of G.
The lattice ideal associated to the lattice generated by the columns of the Laplacian
provides an algebraic perspective on this recently (re)emerging field. This binomial
ideal IG has a distinguished monomial initial ideal MG , characterized by the property
that the standard monomials are in bijection with the G-parking functions of the
graph G. The ideal MG was also considered by Postnikov and Shapiro (Trans Am
Math Soc 356:3109–3142, 2004) in the context of monotone monomial ideals. We
study resolutions of MG and show that a minimal-free cellular resolution is supported
on the bounded subcomplex of a section of the graphical arrangement of G. This
generalizes constructions from Postnikov and Shapiro (for the case of the complete
graph) and connects to work of Manjunath and Sturmfels, and of Perkinson et al. on the
commutative algebra of Sandpiles. As a corollary, we verify a conjecture of Perkinson
et al. regarding the Betti numbers of MG and in the process provide a combinatorial
characterization in terms of acyclic orientations.
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1 Introduction

Let G = (V, E) be an undirected and connected graph with vertex set V = [n+ 1] =
{1, 2, . . . , n+1}. The Laplacian L(G) of G is the symmetric (n+1)× (n+1) matrix
that encodes the dynamics of the chip-firing game on the graph G. More recently the
Laplacian has been central to the study of a discrete version of the Riemann-Roch
theorem for graphs, where chip-firing serves as the graph-theoretic notion of linear
equivalence of divisors.

In this paper we are interested in a certain class of ideals arising from L(G). We fix
a field K and consider the lattice ideal IG ⊂ K[x1, . . . xn+1] associated to L(G). By
definition IG is generated by binomials of the form xu − xv where u, v ∈ N

n+1, and
u − v are in the lattice spanned by the rows of L(G). Following the lead of [12] we
call this ideal the toppling ideal of the graph G; it was first introduced by Perkinson
et al. in [16].

After fixing the vertex n+1, the ideal IG has a distinguished monomial initial ideal
MG with the property that the standard monomials of MG are in bijection with the
so-called G-parking functions. This monomial ideal was first studied by Postnikov
and Shapiro [17] in the context of monotone monomial ideals and their deforma-
tions and can be defined by an explicit combinatorial rule (see below). As is illus-
trated in [12], the ideal MG has interesting connections to the Riemann–Roch theory
of G.

In each of the papers [12,16,17] various free resolutions of the ideals IG and MG

are considered. In the case that G = Kn+1 is a complete graph on n + 1 vertices, it is
shown in [17] that the monomial ideal MG has a minimal cellular resolution supported
on the first barycentric subdivision of a (n−1)-simplex. This fact is used in [17], where
the authors describe resolutions of the lattice ideal IG in the case that G is a saturated
graph. Indeed in this case the monomial ideal in question is generic, and the resolution
coincides with the Scarf complex of MG . By results of [15], this resolution lifts to the
Scarf complex of the lattice ideal IG . In [17] the authors show that the barycentric
subdivision of an (n − 1)-dimensional simplex supports a resolution of MG for an
arbitrary graph G on n vertices. However, these resolutions are typically far from
minimal and thus directly accessible homological information (such as (graded) Betti
numbers) is limited. In both [17] and [12] the issue of finding a minimal resolution
for the case of a general graph G is left as an open question.

In this paper we describe a simple and explicit minimal cellular resolution of the
monomial ideal MG . The polyhedral complex supporting the resolution is obtained
from the graphical hyperplane arrangement AG associated to G. More precisely, the
intersection of AG with a certain affine subspace yields the essential affine hyperplane
arrangement ÃG . Our main result (Theorem 3) is that BG , the bounded subcomplex
of ÃG , supports a minimal-free resolution of the monomial ideal MG . As a corollary
of our result, we verify a conjecture of Perkinson et al. regarding the Betti numbers of
MG . In particular the Betti numbers of MG enumerate acyclic orientations of certain
contractions of the graph G (see Corollary 3).

In their work on Laplacian lattice ideals, Manjunath and Sturmfels [12] demonstrate
how the duality involved in the discrete Riemann–Roch for certain graphs can be
expressed in terms of M∗G , the ideal Alexander dual to MG with respect to the canonical
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monomial of G. Our constructions also lead to an explicit description of a (co)cellular
resolution of the ideal M∗G for all graphs G; see Sect. 6.1.

This collaboration began in Berlin in the summer of 2012, and the results of this
paper were first presented in the Combinatorics seminar at the University of Miami in
September 2012. While this paper was being prepared, the two preprints [11] and [14]
were posted on the arXiv announcing similar results. Both papers employ purely alge-
braic/combinatorial methods while our perspective is that of geometric combinatorics.
In recent conversations with the authors of [14] we were made aware of their inde-
pendent work-in-progress involving cellular resolutions.

2 Graphs, G-parking functions, and monomial ideals

Throughout the paper we let G = (V, E) be a finite, undirected graph on the vertex set
V = [n + 1] = {1, 2, . . . , n + 1} and edge set E . We assume that G is connected and
without loops but with possibly parallel edges, i.e., multiple edges between vertices i
and j .

We let L(G) denote the Laplacian of G. Recall that L(G) is the symmetric (n +
1)× (n+ 1) matrix with L(G)i j = −|{edges between i and j}| if i �= j and equal to
the degree of i = j , otherwise. We will denote by �(G) the sublattice of Z

n generated
by the rows of L(G). The Laplacian has been studied in various combinatorial settings
including spectral graph theory [7]. Since G is assumed to be connected, L(G) has a
one-dimensional kernel spanned by the vector (1, 1, . . . , 1)t . The celebrated Matrix-
Tree theorem (see [7, Sect. 13.2]) asserts that |detL̃(G)| is the number of spanning trees
of the graph G. This is an application of the Binet-Cauchy theorem to the truncated
Laplace matrix L̃(G), the matrix obtained by deleting the (n+1)st (or any other) row
and column from L(G). More recently, the Laplacian of G has appeared in the context
of a discrete Riemann–Roch theory for graphs [1], where it encodes the dynamics of
the so-called chip-firing moves (the discrete analog of linear equivalence of divisors).

We fix a field K and let K[x1, x2, . . . , xn+1] denote the polynomial ring in n + 1
generators. Associated to our graph G we let IG denote the lattice ideal associated to
�(G). By definition IG is generated by binomials of the form xu − xv, where u − v
is in the lattice �(G), generated by the columns of L(G),

IG = 〈xu − xv : u, v ∈ N
n+1, u− v ∈ �(G)〉. (1)

Here we use the notation xu = xu1
1 xu2

2 · · · xun+1
n+1 . The ideal IG is called the toppling

ideal of the graph G in [12] and [16].
The binomial ideal IG has a distinguished monomial initial ideal MG , characterized

by the property that the standard monomials of MG are given by the G-parking func-
tions. The ideals MG have also been studied in the context of monotone monomial
ideals in [17] and can be described explicitly as follows. For any nonempty subset
I ⊆ [n] we define the monomial

m I :=
∏{

xi : i j ∈ E, i ∈ I, j ∈ [n + 1]\I } =
∏

i∈I

xdI (i)
i , (2)
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where dI (i) denotes the number of edges from the vertex i to a vertex in [n + 1]\I .
Now define MG to be the ideal in R = K[x1, . . . , xn] generated by all m I , as I ranges
over all nonempty subsets of [n]:

MG = 〈m I : ∅ �= I ⊆ [n]〉 ⊆ K[x1, . . . , xn]. (3)

Since G is connected and n+1 �∈ I , MG is a proper monomial ideal in R. For a subset
I ⊆ [n + 1], let us denote by G[I ], the vertex-induced subgraph, i.e., the graph with
vertex set I and edges {i j ∈ E : i, j ∈ I }.
Proposition 1 The monomial m I is a minimal generator of MG if and only if G[I ]
and G[I c] are connected.

Proof Suppose G[I ] = G[I1] 
 G[I2]. Then m I = m I1 · m I2 . Similarly, if G[I c] =
G[J1] 
 G[J2] and n + 1 ∈ J2, then m I∪J1 divides m I . Thus, G[I ] and G[I c] are
connected for every minimal generator.

Conversely, assume that I ⊆ [n] satisfies the condition and assume that m J divides
m I with m J �= m I . Observe that J cannot be a subset of I . By the definition of m I

given in (2) above we see that

J ⊆ I �⇒ dJ ( j) ≥ dI ( j) for all j ∈ J. (4)

Thus, let j ∈ J\I . Along a path from j ∈ I c to n + 1 inside G[I c], there is an
edge st ∈ E such that s ∈ J but t ∈ J c. Since s ∈ I c, we have dI (s) = 0. But then
dJ (s) > 0 = dI (s) which contradicts that dJ (i) ≤ dI (i) for all i ∈ [n].

According to [4], a G-parking function is a function φ : [n] → Z≥0 such that for
every ∅ �= I ⊆ [n], there is an i ∈ I such that 0 ≤ φ(i) < dI (i). It is easily seen that
φ : [n] → Z≥0 is a G-parking function if and only if xφ = xφ(1)

1 xφ(2)
2 · · · xφ(n)

n �∈ MG .
Thus, the G-parking functions of G are exactly the nonvanishing monomials in
K[x]/MG . It is known [6] that the number of G-parking functions (and hence the
K-vector space dimension of K[x]/MG) equals the number of spanning trees of G
which, as we have seen, is given by |detL̃(G)|.

To realize MG as an initial ideal of IG , we first fix a spanning tree T of G rooted at
the vertex n + 1 and choose an ordering of the variables that is a linear extension of
T . More concretely, we choose a total order� of {x1, . . . , xn+1} that satisfies xi � x j

if in T the vertex i lies on the unique path from n + 1 to j . We then take the reverse
lexicographic term order for this ordering of variables. We call any such monomial
ordering a spanning tree order, borrowing the term from [12].

Example 1 If G = Kn+1 is the complete graph on n + 1 vertices, we can take the
usual reverse lexicographic term order. The ideal MG is the tree ideal on n variables,
as described in [13, Sect. 4.3.4]. In this case the standard monomials of MG are
given by the classical parking functions studied in combinatorics, i.e., sequences of
nonnegative integers (a1, a2, . . . , an) with the property that, when placed in weakly
ascending order, sit below a staircase: ai ≤ |{ j : a j ≤ ai }| for all i ∈ [n]. The maximal
parking functions are given by the permutations of n, which also correspond to the
generators of the ideal that is Alexander dual to MG .
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Example 2 A graph G is said to be saturated if G has ui j > 0 edges between any
two vertices i �= j . In [12] it is shown that if G is a saturated graph on n + 1 vertices
then the ideal IG is a generic lattice ideal. For such graphs an explicit set of 2n − 1
binomial generators is given that form a Gröbner basis of IG with respect to reverse
lexicographic order.

We next introduce the example that will be used throughout the paper.

Example 3 (Running example) Let G be the 4-cycle with vertices {1, 2, 3, 4} and edges
{12, 23, 34, 14}. The Laplacian L(G) is the 4× 4 matrix given below.

L(G) =

⎡

⎢⎢⎣

2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

⎤

⎥⎥⎦ .

The ideal IG is given by

IG = 〈x2
1 − x2x4, x2

2 − x1x3, x2
3 − x2x4, x2

4 − x1x3, x1x2 − x3x4, x2x3 − x1x4〉.

The monomial ideal MG is given by

MG = 〈x2
1 , x2

2 , x2
3 , x1x2, x2

1 x2
3 , x2x3, x1x3〉.

The generator m{1,3} = x2
1 x2

3 is redundant, so MG = 〈x2
1 , x2

2 , x2
3 , x1x2, x2x3, x1x3〉 =

〈x1, x2, x3〉2.

3 Cellular resolutions

Let R = K[x1, . . . , xn] denote the polynomial ring on n variables with the standard
Z

n-grading given by deg(xa) = a ∈ Z
n≥0 for any monomial xa . For any graded

R-module M , a Z
n-graded free resolution of M is an exact sequence

0← M
φ1←− F1

φ2←− · · · φr←− Fr ← 0,

where each Fi is a graded free R-module

Fi ∼=
⊕

σ∈Zn

R(−σ)βi,σ

and where each φi is a graded map. The resolution is called minimal if each of the βi,σ

is minimal among all graded free resolutions of M . In this case the βi,σ = βi,σ (M)

are called the finely or Z
n-graded Betti numbers of the module M . The Z-graded Betti

numbers of M are given by

βi, j (M) =
∑

|σ |= j

βi,σ (M)
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Fig. 1 The (minimal) free
resolution of MG for G = K4 is
supported on B(�2). Vertices
are labeled by the subsets
I ⊆ [n] corresponding to
generators m I

where |σ | = σ1 + σ2 + · · · + σn . And finally, for each integer i , the i th (ungraded)
Betti number of M is given by

βi (M) =
∑

j

βi, j (M).

A labeled polyhedral complex is a polyhedral complex X together with an assign-
ment aF ∈ N

n to each face F ∈ X such that

(aF )i = max{(aG)i : G ⊂ F}.

for all i = 1, 2, . . . , n. Let X be a labeled polyhedral complex and let

M = MX = 〈 xaF : F ∈ X 〉 ⊆ K[x1, . . . , xn]

be the monomial ideal generated by the labels. Clearly, MX is generated by the
0-cells of X . For σ ∈ N

n , let X≤σ ⊆ X be the subcomplex of faces F for which
aF ≤ σ componentwise. Bayer and Sturmfels [3] described how labeled complexes
can encode resolutions of M , that is, when the chain complex FX of X gives rise
to a Z

n-graded resolution—a cellular resolution—of M . We refer to [13] for further
details from which the following criterion is taken.

Proposition 2 ([13, Proposition 4.5]) Let X be a labeled polyhedral complex and let
M = MX ⊂ K[x1, . . . , xn] be the associated monomial ideal. Then X supports a
cellular resolution FX of M if and only if the subcomplex X≤σ is K-acyclic for all
σ ∈ N

n. The resolution is minimal if aF �= aG for all faces F ⊂ G ∈ X .

Resolutions of IG and MG provide a new perspective on the duality expressed in
the Riemann–Roch theory of the graph G via the notion of Alexander duality. The
Betti numbers of MG have combinatorial interpretations in terms of the graph G, and,
as we will see, also relate to certain well-studied geometric complexes.

In [12] the authors consider resolutions of IG and MG . They show that in the
case of saturated graphs G, the toppling ideal IG has a minimal cellular resolution
supported on what we will denote as B(�n−1), the first barycentric subdivision of an
(n − 1)-dimensional simplex (Fig. 1).
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In this case the complex B(�n−1) can be lifted to the Scarf complex associated to
the (in this case generic) lattice ideal IG . This extends a result from [17], where it is
shown that the monomial ideal MG for G = Kn+1 has a resolution supported on the
same complex B(�n−1).

For an arbitrary (not necessarily saturated) graph G, it is shown in [12] that the
complex B(�n−1) supports a generally nonminimal cellular resolution of IG . This
leads to a formula for the Betti numbers of MG in terms of the ranks of the reduced
homology of certain induced subcomplexes of B(�n−1), although it is not clear how
one might obtain an explicit expression.

The description of a minimal resolution of MG for an arbitrary graph G is stated as
an open question in both [12] and [17]. In [16] the authors provide a conjecture for the
Betti numbers of MG in the context of combinatorial data arising from Riemann–Roch
theory of G. In Sect. 6 we confirm this conjecture.

4 Chip-firing and superstable configurations

The Laplacian L(G) describes the dynamics of the so-called chip-firing game or
Abelian Sandpile Model for G. We outline the basic construction here and refer to [16]
for further details. In this context, let us choose n+1 as a fixed sink. By a configuration
c on G we mean a placement of a number ci of “chips” or “grains of sand” on each
nonsink vertex i ∈ [n]. A vertex i is said to be unstable if the number of chips ci on
i is greater or equal to the degree of i . In this case, one can then “fire” the vertex i ,
distributing chips to each of its neighbors (one chip along every edge). Chips that are
sent to the sink vertex disappear. It is easily seen that “firing” the vertex i corresponds to
subtracting the i-th column of the truncated Laplacian L̃(G) from c. If G is connected,
repeated chip-firing of vertices eventually leads to a stable configuration c̄. One of the
fundamental results for chip-firing games is that this configuration c̄ is independent
of the sequence of firings; we call c̄ the stabilization of c.

A stable configuration c on G is said to be recurrent if c has a nonnegative value
on every nonsink vertex [n], and if for any configuration a there exists a configuration
b such that a + b stabilizes to c. The stabilization process gives rise to a monoidal
structure on the set of all configurations and forms a group when restricted to the
recurrent configurations of G. This group is called the sandpile group of G, denoted
S(G). The sandpile group can also be realized by considering the discrete subgroup
LG ⊂ Z

n generated by the columns of the truncated Laplacian L̃(G). We then have
an isomorphism

S(G) ∼= Z
n/LG

given by c �→ c + LG . Thus, every element of Z
n is equivalent to a recurrent config-

uration modulo the reduced Laplacian. As a corollary to the Matrix-Tree theorem, we
then see that the order of S(G) is given by the number of spanning trees of G.

The canonical configuration cω on G is the maximally stable configuration given
by

(cω)i = |{i j ∈ E : j ∈ [n]}| − 1
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for every nonsink i ∈ [n]. In the graph-theoretic Riemann–Roch theory developed
in [1], configurations are naturally identified with “divisors” on the graph G. In this
context the configuration cω − 1 is closely related to the “canonical divisor” of G.

To fully describe our results we will need a few more notions from the chip-firing
literature. As opposed to firing one vertex at a time, we consider a rule where one may
fire sets of vertices simultaneously. This leads to a stronger version of stability and
a resulting notion of superstable configurations. We will not detail the construction
here as it will be enough for us to use the following characterization ([16]): a sequence
a = (a1, a2, . . . , an) is a superstable configuration of G if and only if a is a G-parking
function. For the next result, recall that an acyclic orientation of G is an orientation
O of the edges of G with no directed cycles.

Theorem 1 ([4, Theorem 3.1]) There is a bijection between the set of acyclic orienta-
tions of G with unique sink n+1 and the set of maximal superstable configurations of
G. Given an acyclic orientation O, the corresponding configuration c = cO is given
by

ci = |{i →O j : j ∈ [n + 1]}| − 1.

We note that the bijection described in [4] actually involves the set of acyclic
orientations with unique source n+ 1, but of course there is a bijection between these
and orientations with unique sink n + 1 by reversing all arrows.

In [16] (Corollary 5.15) it is shown that a configuration c is superstable if and
only if cω − c is recurrent. Hence for an undirected graph G on vertex set [n + 1],
there is a bijective correspondence between minimal recurrent configurations, maximal
superstable configurations, maximal G-parking functions, and acyclic orientations
with n + 1 as the unique sink vertex.

5 Graphical arrangements and Whitney numbers

In this section we introduce graphical hyperplane arrangements and other notions from
geometric combinatorics that will serve to describe our resolutions. We describe the
basic constructions and terminology here, and refer to [8] and [19] for more details.

Once again we fix our graph G on vertex set V = [n + 1] with edge set E . For an
edge i j ∈ E , we define a corresponding hyperplane

hi j := {x ∈ R
n+1 : xi = x j }.

The arrangement AG = {hi j : i j ∈ E} of hyperplanes in R
n+1 is called the graphical

arrangement of G. The arrangement AG dissects space into polyhedra, called cells,
of various dimensions, and we use fk(AG) to denote the number of k-dimensional
cells, or k-cells, for short. A flat of AG is a nonempty intersection of elements of AG ,
and we let LG = L(AG) denote the collection of flats partially ordered by reverse
inclusion. In fact LG is a ranked (geometric) lattice, called the lattice of flats, with
minimum R

n+1 and maximum 1̂ = ⋂
i j∈E hi j . The rank rkG(x) of x ∈ LG is given
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by n + 1 − dim x and, since G is connected, LG has total rank rk(1̂) = n (which
we also take to be the rank of AG). The lattice of partitions of G is the collection of
unordered partitions V = V1
V2
· · ·
Vm such that the vertex-induced graph G[Vk]
is connected for all 1 ≤ k ≤ m. The partial order is by coarsening: a partition {Vk}k
is smaller than {Ul}l if every Us is contained in some Vt . The lattice of partitions is
naturally isomorphic to LG by associating to {Vk}k , the flat

⋂{
hi j : i j ∈ E, {i, j} ⊆ Vk for some k

}
.

We will freely use both perspectives on the elements of LG .
Central to the study of hyperplane arrangements (and more general matroids) is

the notion of Whitney numbers. Here the doubly-indexed Whitney numbers of the first
kind are given by

wi j (LG) =
∑ {

μLG (x, y) : x, y ∈ LG, rk(x) = i, rk(y) = j
}

where μLG is Möbius function of LG . The Whitney numbers of LG are the simply
indexed versions

w j (LG) = w0 j (LG).

There is a well-known connection (see [8]) between the Whitney numbers of LG

and the chromatic polynomial of G given by

χ(t) =
n∑

j=0

w j (LG)tn− j .

We say that a hyperplane H is in general position with respect to the arrangement AG

if dim(x ∩ H) = dim x − 1 for all flats x ∈ LG . If A is a hyperplane arrangement and
U an affine subspace not parallel to any hyperplane, then the restriction of A to U is
given by A|U = {H ∩ U : H ∈ A}. We will need some further results from [8] that
we collect here for future reference.

Theorem 2 ([8, Theorem 3.2]) Let A be an arrangement of linear hyperplanes of
rank r and let k > 0. Let H be a hyperplane general with respect to A. Then the
induced arrangement A|H has |μ(0, 1)| = |wr (LG)| relatively bounded regions and
|wd−k,r | relatively bounded k − 1 cells.

Corollary 1 ([8, Corollary 7.3]) Let G be a graph with vertex set [n+1]. The number
of acyclic orientations of all contractions G/S in which S ∈ LG has k components,
such that the vertex n + 1 is the only sink, equals |wn+1−k,n(LG)|.

6 Cellular resolutions from graphical arrangements

In this section we describe our minimal cellular resolution of MG and derive some
consequences. As above we fix a connected graph G on vertex set [n + 1] and let
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Fig. 2 The complex BG for our
running example. The
coordinates (as elements of R

4)
of the 0-cells are indicated

AG ⊂ R
n+1 denote the associated graphical arrangement. Let U ⊂ R

n+1 be the
affine subspace

U :=
{

x ∈ R
n+1 : xn+1 = 0, x1 + x2 + · · · + xn = 1

} ∼= R
n−1

We let ÃG =
{
h̃i j := hi j ∩ U : i j ∈ E

}
be the restriction of AG to U . Note that

ÃG is an essential arrangement of |E | affine hyperplanes (two hyperplanes h̃i j and
h̃kl coincide if and only if i j and kl are parallel).

For a point p ∈ U such that pi �= p j for all i j ∈ E , we obtain an orientation
on G by orienting i → j if pi > p j . It is easy to see that this orientation is in fact
acyclic. If p takes the same value on some edges, we get an acyclic orientation on
a certain contraction of G as follows. From p we get a partition of the vertex set
[n + 1] = V1 
 V2 
 · · · 
 Vs where for each k we place i, j ∈ Vk if there is a
path i = i0i1 . . . it = j in G such that pih−1 = pih for all 1 ≤ h ≤ t . In particular,
the induced subgraphs G[Vi ] are connected, and we denote by G/p the result of
contracting each G[Vi ] to a single vertex. The remaining edges satisfy pi �= p j , and
thus, we get an acyclic orientation on G/p.

The bounded complex BG is the polyhedral complex of bounded cells of ÃG in
U . We let |BG | denote the underlying pointset in U . The next result says that we can
determine points p of |BG | in terms of the associated graph G/p (Fig. 2).

Proposition 3 For p ∈ U let C be the inclusion-minimal cell having p in the relative
interior. Then dim C + 2 is the number of vertices of G/p, and C ∈ BG if and only if
the acyclic orientation on G/p has a unique sink given by the vertex class containing
n + 1.

Proof Let L ⊂ U be the intersection of all h̃i j for which pi = p j . Then C is a
full-dimensional cell in L , and we have to determine only dim L . But the hyperplane
arrangement induced in L by ÃG is isomorphic to the arrangement ÃG/p and thus
dim L = |V (G/p)| − 2. It thus suffices to assume that pi �= p j for all edges i j ∈ E .

123



J Algebr Comb (2014) 40:805–822 815

Fig. 3 The subset labeling of BKn+1 corresponding to coordinates, and the induced monomial labeling of
BG for our running example G

If G has more than one sink, let i �= n + 1 be one of them and let j be an arbitrary
source. We claim that p is not contained in a bounded cell. Consider the halfline
{p(t) = p+ t (e j − ei ) : t ≥ 0}. Since j is a source, we have p j > pk for all jk ∈ E
and p(t) j ≥ p j > pk ≥ p(t)k for all t ≥ 0. An analogous argument applies for i and
shows that the halfline is contained in the same inclusion-minimal cell of ÃG as p.

Conversely, assume C is unbounded. Since C ⊂ U , there is a point q ∈ relint(C)

with qi < 0 for some i . All points in the relative interior of C induce the same
orientation on G. However, since qn+1 = 0 > qi , and G is connected, there is no
directed path from i to n + 1, and thus, n + 1 is not a sink.

In order for BG to support a cellular resolution, we have to label the zero-
dimensional cells of BG . From Proposition 3, we infer that a 0-cell v of BG is of
the form v = 1

|I |eI where eI ∈ {0, 1}n+1 is the characteristic vector of the nonempty
subset I ⊆ [n]. Using the fact that subsets I ⊆ [n] correspond to monomials m I

according to (2), this gives us a natural labeling of BG (Fig. 3).

Corollary 2 Under the labeling described above, the 0-cells of BG are labeled by the
minimal generators of MG. The label av ∈ N

n of a 0-cell v = 1
|I |eI of BG is given by

(av)i := dI (i)

for all i ∈ [n].
Proof From (2) and (3), we know that xav = m I is in MG . Now, by Proposition 1, m I is
a minimal generator if and only if G[I ] and G[I c] are connected and, by Proposition 3
this is the case if and only if v = 1

|I |eI is a 0-cell of BG .

The labels on higher dimensional bounded cells are determined by the compo-
nentwise maximum of the labels of incident 0-cells. That is, for a cell C ∈ BG and
i ∈ [n]

(aC )i = max{(av)i : v ∈ C is a 0-cell}.

However, we can also determine the labels of such cells directly.
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Proposition 4 Let C ∈ BG be a bounded cell with label aC ∈ N
n. For p ∈ relint(C),

we have

(aC )i = #{i j ∈ E : pi > p j }

Proof Fix 1 ≤ i ≤ n and let Di (p) := #{i j ∈ E : pi > p j }. Consider the set I ⊆ [n]
of vertices of G such that k ∈ I if there is a path k = i0i1 . . . is = i and pi j ≥ pi for
all 0 ≤ j ≤ s. By construction G[I ] is connected. Assume that the complementary
graph G[I c] is disconnected, and let J ⊂ I c be a connected component not containing
n + 1. Since C is a cell in the hyperplane arrangement ÃG , and p is a point in the
relative interior, C is the set of points x ∈ U with

xi = x j if pi = p j and xi ≥ x j if pi > p j

for all i j ∈ E . Observe that for all t ≥ 0 the point p(t) = p + t
|I |eI − t

|J |eJ is in
C . Indeed, p(t) ∈ U for all t . As for the defining equations and inequalities of C , the
only relevant case to check is kl ∈ E with k ∈ I and l ∈ J . By definition of I , we
have pk > pl and p(t)k = pk + t

|I | > pl − t
|J | for all t ≥ 0. This shows that C is not

bounded.
It follows that G[I c] is connected and, by Proposition 3, the point q = 1

|I |eI is a
0-cell of BG . To see that q ∈ C let kl ∈ E such that pk > pl but qk < ql . This implies
l ∈ I and k ∈ I c, but since pk > pl , and there is a path from l to i with values ≥ pi ,
this means k ∈ I . As for monomial labels, we have (aC )i ≥ (aq)i = #{i j ∈ E : j �∈
I } = Di (p).

To see that D(p)i upper bounds (aC )i , observe that relint(C) ⊆ {x ∈ U : xi >

x j for all i j ∈ E with pi > p j } for i fixed. In particular C is in the closure of this set
and every point q in the closure satisfies D(q)i ≤ D(p)i = (aC )i .

Here is the main lemma that we need.

Lemma 1 Let G = ([n+ 1], E) be a connected graph and BG the bounded subcom-
plex labeled according to the monomial ideal MG. For every σ ∈ N

n, the set

|BG |≤σ =
⋃
{F ∈ BG : aF ≤ σ }

is star-convex. Hence |BG |≤σ is contractible and in particular K-acyclic for any field
K.

Proof Let p1, p2, . . . , pm be the 0-dimensional cells of (BG)≤σ and for each i let
ai = api ∈ N

n be the corresponding exponent vector of the monomial label. Let us
define

J =
m⋃

i=1

supp(ai ).

In the subgraph of G induced on the vertices [n + 1]\J , let K be the set of vertices
corresponding to the connected component containing the vertex n+1. Finally, define
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Fig. 4 The subspace (BG )≤σ

for our running example G with
σ = (1, 1, 2) = x1x2x2

3 . The
star point in this case is
q = ( 1

3 , 1
3 , 1

3 , 0)

I = [n + 1]\K and q = 1

|I |eI .

We claim that q is a star point of |BG |≤σ . By construction, the contraction G/q has a
unique sink, and thus, q is contained in the relative interior of some cell BG with label
aq (Fig. 4).

Let us next verify that aq ≤ σ so that indeed q ∈ |BG |≤σ . First we claim that
Ik := supp(pk) ⊆ I for all k (note that supp(ak) ⊆ supp(pk)). For this suppose that
i ∈ Ik . If i ∈ supp(ak) then i ∈ J , and hence i ∈ I . If i /∈ supp(ak) then by definition
dIk (i) = 0. Since pk is a 0-cell of BG , both G[Ik] and G[I c

k ] are connected. Therefore,
any path from n+1 to i has to include an edge st with s /∈ supp(ak) and t ∈ supp(ak).
Hence i is not in the connected component of n + 1 in the subgraph of G induced on
[n + 1]\supp(ak). Since supp(ak) ⊆ J , this in turn implies that i /∈ K so that i ∈ I .
Now let i ∈ I with (aq)i = dI (i) > 0 and let j ∈ I c = K with i j ∈ E . Then there
is a path from n + 1 to j that does not meet J . Hence, if i �∈ J , there is a path in J c

from i to n + 1 which would contradict i ∈ I . This implies i ∈ J and thus i ∈ Ik for
some k. Now observe that σi ≥ dIk (i) ≥ dI (i).

Next, let r ∈ |BG |≤σ be an arbitrary point. We need to show that the line segment
connecting r and q is contained in |BG |≤σ . Recall that if i ∈ I , then either dI (i) = 0 or
else, by Proposition 4, there exists a point p ∈ |BG |≤σ such that pi > p j for i j ∈ E .
Thus, if ri > r j for some i j ∈ E , we have i ∈ I and qi = 1

|I | . But qs ≤ 1
|I | for all

s ∈ [n] and therefore qi ≥ q j . We conclude that no hyperplane h̃i j strictly separates
r and q, and therefore, the open line segment (r, q) is contained in some (inclusion
minimal) cell C of the arrangement ÃG .

We first confirm that C ∈ BG . Let p ∈ (r, q) ⊆ relint(C). Appealing to Proposition
3, we need to show that the induced orientation on the contraction of G/p has a unique
sink given by the class containing the vertex n+1. By contradiction, assume that i ∈ [n]
corresponds to a sink in G/p that is different from n+1. Let i = i0i1 . . . im = n+1 be
a path such that rih−1 ≥ rih for all h = 1, . . . , m. As r is in the bounded subcomplex,
and hence G/r has a unique sink, such a path exists. By assumption, the path is not
weakly decreasing for p; that is, there is an index l with pil−1 < pil . In particular
we have pil > 0. We have supp(p) = supp(r) ∪ supp(q) and, by construction,

123



818 J Algebr Comb (2014) 40:805–822

supp(r) ⊆ supp(q) and hence il ∈ I = supp(q) and qil = 1
|I | . Thus, the path is

weakly decreasing for q which implies p ∈ (r, q) ⊆ {x ∈ U : xil−1 ≥ xil }. Recall
that U is the affine slice U = {x ∈ R

n+1 : xn+1 = 0, x1 + x2 + · · · + xn = 1}.
It is left to show that aC ≤ σ . For this let i ∈ [n] with pi > 0, so that i ∈ I .

If ri > 0 then since supp(r) ⊆ supp(q), we have qi > q j ⇒ ri > r j and thus
σi ≥ (ar )i ≥ (aC )i . If ri = 0, then pi > p j ⇒ qi > q j and thus σi ≥ (aq)i ≥ (aC )i ,
as desired.

Theorem 3 With the monomial labeling described above, the complex BG supports
a minimal cellular resolution of MG ⊂ K[x1, . . . , xn] over every field K.

Proof We apply the criteria from Proposition 2. Corollary 2 and Lemma 1 imply
that BG , with the monomial labeling described in Proposition 4, supports a cellular
resolution of MG . Proposition 4 asserts that the cellular resolution is indeed minimal.

Example 4 In the case of our running example, we obtain a free minimal resolution
of MG from the labeled complex in Fig. 3. Disregarding the grading, the resolution
has the form

0← R
φ1←− R6 φ2←− R8 φ3←− R3 φ4←− 0.

In particular the Betti numbers βi are given by the face numbers fi−1(BG), and the
differentials are described by the incidence relations of BG .

In addition we obtain an explicit combinatorial formula for the Betti numbers of
IG , verifying a conjecture of Perkinson et al. [16, Conjecture 7.9].

Corollary 3 For a graph G let Pk denote the elements of LG that have k components.
For S ∈ Pk let G/S be the graph induced on S, with k vertices given by contracting the
elements of S, while preserving the edges between elements of S. Then the (nongraded)
Betti numbers of the ideal MG are given by

βk(MG) =
∑

S∈Pk+1

#{c : c a minimal recurrent configuration on G/S}.

Proof Let S be an element of Pk+1. As we have seen, the minimal recurrent configu-
rations of G/S correspond to the maximal G/S-parking functions, which are in turn in
bijection with acyclic orientations of G/S with unique sink n+1. From Proposition 3
we know that this set is in bijection with the k − 1 cells of BG . Theorem 3 shows that
k − 1 cells of BG index βk(MG) (Fig. 5).

Corollary 4 If G is a tree on the vertices [n + 1], then MG = 〈x1, x2, . . . , xn〉, and
BG is an (n − 1)-dimensional simplex realizing the Koszul complex.

Proof In this case ÃG is an arrangement of n hyperplanes in U ∼= R
n−1. It is easy

to see that the only acyclic orientation of G with unique sink n + 1 is obtained by
orienting all edges toward n + 1. And, since any contraction of G is again a tree, we
see that BG has a unique bounded cell of dimension n− 1 with n facets, i.e., BG is an
(n − 1)-dimensional simplex.
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Fig. 5 The acyclic orientations of our example G with vertex 4 as the unique sink, enumerating the syzygies
of MG : β3 = 3, β2 = 8, β1 = 6

Lastly we note that, in principle, Theorem 3 gives an algebraic approach to acyclic
orientations of G and the study of the face poset of BG by means of minimal Z

n-graded
resolutions. However, enumerating acyclic orientations of G is #P-hard [10], and we
do not expect the algebraic method to be efficient.

6.1 Duality

As detailed in [12], the duality involved in the discrete Riemann–Roch theory of certain
graphs G has a commutative algebraic analog in terms of the ideal M∗G = M [k+1]

G .
Here M∗G is the Alexander dual ideal of MG with respect to the monomial

xk+1 = xdeg(1)

1 xdeg(2)

2 · · · xdeg(n)
n ,

where 1 = (1, 1, . . . , 1).
As a corollary to Theorem 3 we may apply the notion of duality of cellular reso-

lutions [12] to obtain a (co)cellular minimal resolution of M∗G . For this we will need
the following result from the literature.

Proposition 5 ([13, Theorem 5.37]) Fix a monomial ideal I generated in degrees
preceding a and a cellular resolution FX of R/(I + xa+1) such that all face labels on
X precede a + 1. If Y = a + 1 − X, then FY�a is a weakly cocellular resolution of
I [a]. The resolution supported by Y�a is minimal if FX is minimal.

In our context we take G to be our graph on vertex set [n + 1], and let BG denote
the labeled polyhedral complex defined above. We define B̄G to be the colabeled
polyhedral complex with underlying complex BG but with monomial label on a face
C given by

(āC )i = deg(i)+ 1− (aC )i .

Combining our Theorem 3 with Proposition 5 gives us the following.

Proposition 6 Let G be a graph on vertex set [n + 1] and set

a = (deg(1), deg(2), . . . , deg(n)).
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Fig. 6 The colabeled complex B̄G (with 0-cells and 2-cells labeled) and the subcomplex
(B̄G

)
�a , con-

sisting of three 2-cells and two 1-cells. The dual complex is also depicted

Then with the notation established above, the labeled complex
(B̄G

)
�a supports a

minimal cocellular resolution of the ideal M∗G.

Example 5 In our running example, we have a = (2, 2, 2), and

M∗G = Ma
G = 〈x1x2

2 x2
3 , x2

1 x2x2
3 , x2

1 x2
2 x3〉.

The colabeled complex B̄G is depicted below, along with the subcomplex supporting
the minimal resolution of M∗G (Fig. 6).

Remark 1 For the case of G = Kn+1, the complete graph on n + 1 vertices, this is
the duality between the (resolutions of the) tree ideals and the permutohedron ideals
described in [13, Example 5.44].

7 Further questions

7.1 Toppling ideals

As mentioned in Sect. 2, there is a monomial term order � for K[x1, . . . , xn+1] for
which the ideal MG is the initial ideal of IG . A natural question to ask is whether one can
describe a minimal cellular resolution of the lattice binomial ideal IG . A construction
presents itself in terms of a quotient of the unimodular graphic lattice associated to
G, similar to the cellular resolutions of binomial Lawrence ideals described in [2].
Mohammadi and Shokrieh [14] informed us about progress along these lines that will
be published in a sequel to their recent paper.

7.2 Monotone monomial ideals

In [17] the authors study monotone monomial ideals, a class of monomial ideals that are
strictly more general than those arising as MG for a graph G. We recall the definition
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here. A monotone monomial family M = {m I : I ∈ 	} is a collection of monomials
indexed by a set 	 of nonempty sets in [n] that satisfy the conditions

(MM1) For I ∈ 	, supp(m I ) ⊆ I ,
(MM2) For I, J ∈ 	 such that I ⊂ J , we have m I divides m J .
(MM3) For I, J ∈ 	, lcm(m I , m J ) is divisible by mk for some K ⊃ I ∪ J in 	.

We then define the monotone monomial ideal 〈M〉 associated to the family M to
be the ideal generated by the monomials m I in M.

The monomial ideals MG associated to a (directed) graph G described above are
monotone. In this case 	 is the set of all nonempty subsets of [n], and m I is given
by the formula 2. The natural question to ask is if a similar construction to BG can be
used to resolve the ideals 〈M〉. Is there an arrangement of hyperplanes corresponding
to a monotone family?

7.3 Shi arrangements and duality

In his study of the affine Weyl group of type An−1, Shi introduced the arrangement
Sn of hyperplanes in R

n that now bears his name:

Sn = {xi − x j = 0, 1 : 1 ≤ i < j ≤ n}.

Shi proved that the number of regions in the complement of Sn is given by (n +
1)n−1 (the number of trees on n + 1 labeled vertices). Stanley [18] gave the first
bijective proof of this fact by providing an explicit labeling of the regions with parking
functions. Hopkins and Perkinson [9] generalize this picture, motivated by a conjecture
of Duval, Klivans, and Martin. Associated to a graph G they define what they call a
bigraphical arrangement and show that a Pak-Stanley type labeling of its regions
is in bijection with the G-parking functions. Specifying certain parameters of the
bigraphical arrangements recover the G-Shi and G-semiorder arrangements.

From Theorem 3, we obtain a minimal resolution of the ideal MG from the graphical
arrangement of G. We also know that when MG is Riemann–Roch (in the sense of
[12]), the generators of M∗G (the Alexander dual of MG) are given by the maximal G-
parking functions. It would be interesting to find a connection between the bigraphical
arrangements of [9] and the cellular resolutions that we have considered here.

7.4 Topology of the partition poset

Björner and Wachs [5] use the graphical hyperplane arrangement of the complete
graph (the so-called braid arrangement) to give an explicit basis for the homology of
the partition poset. It would be interesting to connect this study to the resolutions of
the ideals studied here, and in particular to consider the case of a general graph G.
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