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Abstract Let p be an odd prime and let P be a p-group. We examine the order
complex of the poset of elementary abelian subgroups of P having order at least p2.
Bouc and Thévenaz showed that this complex has the homotopy type of a wedge
of spheres. We show that, for each nonnegative integer l, the number of spheres of
dimension l in this wedge is controlled by the number of extraspecial subgroups X
of P having order p2l+3 and satisfying �1(CP (X)) = Z(X). We go on to provide a
negative answer to a question raised by Bouc and Thévenaz concerning restrictions
on the homology groups of the given complex.
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1 Introduction

Since the appearance of the seminal papers [5,6] by Brown and [15] by Quillen,
group theorists, topologists, and combinatorialists have studied connections between
the algebraic structure of a group G and the topology of the order complexes of various
posets of p-subgroups of G. An excellent and extensive description of such activity
appears in the book [16]. The complex that has received the most attention is the
Quillen complex �Ap(G), whose faces are chains of nontrivial elementary abelian
subgroups of G. (Relevant terms used in this introduction will be defined in Sect. 2).
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When P is a finite p-group, �Ap(P) is contractible. So, one cannot learn much
about P from the topology of �Ap(P). However, Bouc and Thévenaz observed in [4]
that if one removes from Ap(P) all subgroups of P having order p, things become
more interesting.

Definition 1.1 Let p be a prime and let P be a finite p-group. We define A≥2(P) to
be the set of elementary abelian subgroups of P having order at least p2, ordered by
inclusion.

The main result in [4] is as follows

Theorem 1.2 Let p be a prime and let P be a finite p-group. The order complex
�A≥2(P) has the homotopy type of a wedge of spheres.

It is natural to ask how many spheres of each dimension appear in the wedge
described in Theorem 1.2. Equivalently, one can ask for the rank of each homology
group of �A≥2(P). Bouc and Thévenaz observed that if P is a 3-group of order at most
36 then, �A≥2(P) has at most one nontrivial reduced homology group. They observed
also that if P s a 2-group of order at most 29 then, �A≥2(P) has at most two nontrivial
reduced homology groups, and if ˜Hi (�A≥2(P)) and ˜Hj (�A≥2(P)) are nontrivial
then |i − j | ≤ 1. They asked whether the phenomena just described persist for larger
p-groups. A partial positive answer to their question was given by Bornand in [3].

Theorem 1.3 ([3], Corollary 4.12) Let p be a prime and let P be a finite p-group.
Assume [P, P] is cyclic. If p is odd then �A≥2(P) has at most one nontrivial reduced
homology group. If p = 2 then �A≥2(P) has at most two nontrivial reduced homology
groups, and if �A≥2(P) has two nontrivial reduced homology groups then these
groups appear in consecutive dimensions.

Our main results are Theorem 1.4 and Corollaries 1.6, 1.7, and 1.8 below. The point
of Corollary 1.6 is that determining the homotopy type of �A≥2(P) is the same as
enumerating certain subgroups of P . Corollaries 1.7 and 1.8 provide negative answers
to the question of Bouc and Thévenaz.

Theorem 1.4 Let p be an odd prime and let P be a noncyclic finite p-group. Let E(P)

be the set of subgroups X ≤ P such that

• X is extraspecial of exponent p, and
• �1(CP (X)) = Z(X).

Then

�A≥2(P) �
∨

X∈E(P)

�A≥2(X).

We prove Theorem 1.4 in Sect. 3.
When X is extraspecial of exponent p, the homotopy type of �A≥2(X) is known.

Proposition 1.5 (See [3], Proposition 4.7) Let p be an odd prime and let X be an
extraspecial group of exponent p and order p2n+1. Then, �A≥2(X) has the homotopy

type of a wedge of pn2
spheres of dimension n − 1.
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Note that when P is a cyclic p-group, �A≥2(P) = {∅}. By convention, (the
geometric realization of) �A≥2(P) is thus the (−1)-sphere S−1. Combining this fact
with Theorem 1.4 and Proposition 1.5, we get a new proof of Theorem 1.2, when p is
odd. In addition, we get the following result.

Corollary 1.6 Let p be an odd prime and let P be a finite p-group. For each positive
integer n, let an(P) be the number of subgroups X ≤ P such that

• X is extraspecial of exponent p and order p2n+1, and
• �1(CP (X)) = Z(X).

Then, for each nonnegative integer l,

˜Hl(�A≥2(P)) ∼= Z
al+1(P)p(l+1)2

.

Applying Theorem 1.4 to certain split extensions of extraspecial p-groups by auto-
morphisms of order p, we prove the following result in Sect. 4.

Corollary 1.7 Let t be nonnegative integer and let k be a positive integer. For each
prime p > 2k+3 there exists a group P of order p2(t+k+2) such that the only nontrivial
homology groups of �A≥2(P) are ˜Ht (�A≥2(P)) and ˜Hk+t (�A≥2(P)).

Further constructions using central products, also found in Sect. 4, yield the fol-
lowing result.

Corollary 1.8 Let � be the smallest collection of subsets of the set N0 of nonnegative
integers satisfying

(1) if I ⊆ N0 and |I | ≤ 2, then I ∈ �, and
(2) if I, J ∈ �, then

1 + I + J := {1 + i + j : i ∈ I, j ∈ J } ∈ �.

For each I ∈ �, there exists an integer N (I ) such that for every prime p > N (I ),
there exists a p-group P of exponent p satisfying

˜Hi (�A≥2(P)) 	= 0 if and only if i ∈ I.

Applying condition (2) of Corollary 1.8 repeatedly to the set {0, 1}, we see that,
for each n ∈ N0, the set {n, n + 1, . . . , 2n, 2n + 1} lies in �. It follows that for each
m ∈ N0, there exist some odd prime p and some p-group P such that �A≥2(P) has
exactly m nontrivial reduced homology groups. It remains to be seen whether, for each
finite subset I of N0, there exist a prime p and a p-group P such that ˜Hi (�A≥2(P))

is nontrivial if and only if i ∈ I . Also of interest is whether the restriction p > N (I )
can be removed from Corollary 1.8 or from any stronger result of a similar nature.
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2 Definitions, notation, and preliminary results

2.1 Topology

The objects and ideas from topology that we will use are well known. Each is discussed
in at least one of [13], [2] and [18].

For a partially ordered set P , the order complex �P is the abstract simplicial
complex whose k-dimensional faces are all chains x0 < · · · < xk of length k from P .
We make no distinction between an abstract simplicial complex � and an arbitrary
geometric realization of �, as all such realizations have the same homeomorphism
type.

We write X � Y to indicate that topological spaces X, Y have the same homotopy
type.

Let X1, . . . , Xk be nonempty, pairwise disjoint topological spaces, and pick xi ∈ Xi

for each i ∈ [k] := {1, . . . , k}. The wedge
∨k

i=1(Xi , xi ) is obtained from the (disjoint)
union

⋃k
i=1 Xi by identifying all the xi . That is,

∨k
i=1(Xi , xi ) is the quotient space

⋃k
i=1 Xi/ ∼, where ∼ is the equivalence relation whose elements are (xi , x j ) for all

1 ≤ i < j ≤ k.
If, for each i ∈ [k], the connected components of Xi are pairwise homotopy equiv-

alent, then the homotopy type of
∨k

i=1(Xi , xi ) does not depend on the choice of the xi

and we write
∨k

i=1 Xi for any wedge of the Xi . In particular, if each Xi is a sphere then,
the wedge of spheres

∨k
i=1 Xi is well defined. For each l ≥ 0, there is an isomorphism

of reduced homology groups

˜Hl(

k
∨

i=1

Xi ) ∼=
k

⊕

i=1

˜Hl(Xi ).

In particular, if each Xi is a sphere then, the homotopy type of
∨k

i=1 Xi is uniquely
determined by its reduced homology, as asserted implicitly in the introduction.

If � is a simplicial complex and � is a contractible subcomplex of �, then � is
homotopy equivalent to the quotient space �/�. Therefore, if �1,�2 are simplicial
complexes such that �1 ∩ �2 is contractible then, �1 ∪ �2 is homotopy equivalent
with a wedge �1 ∨ �2. In particular, if �1 and �2 are simplicial complexes such that
�1, �2 and �1 ∩ �2 are contractible, then �1 ∪ �2 is also contractible. It follows
by induction on k that if �1, . . . ,�k are simplicial complexes such that

⋂

i∈I �i is
contractible for each nonempty I ⊆ [k] then

⋃k
i=1 �i is contractible. Now we can

derive the following lemma, which is key in our proof of Theorem 1.4. A result that is
essentially the same as this lemma was proved earlier by Kratzer and Thévenaz (see
[14, Lemma 2.8]).

Lemma 2.1 Say �1, . . . ,�k are simplicial complexes such that
⋂

i∈I �i is con-
tractible for each I ⊆ [k] satisfying |I | ≥ 2. Then, there exist x1, . . . , xk such that
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xi ∈ �i for each i ∈ [k] and

k
⋃

i=1

�i �
k

∨

i=1

(�i , xi ).

Proof Set � := ⋃k
i=1 �i and � := ⋃

1≤i< j≤k(�i ∩ � j ). Then, � is contractible.
Therefore, � � �/�. For each i ∈ [k], set �i := ⋃

j 	=i (�i ∩ � j ). Then �i is
contractible. Therefore, �i � �i/�i . Each �i/�i can be realized as a CW-complex
with one 0-cell yi corresponding to the subcomplex �i along with one d-cell for each
d-dimensional face in �i\�i . By construction, �/� = ∨k

i=1(�i/�i , yi ). To get the
wedge described in the lemma, we can take xi to be any point in �i . 
�

By convention, the wedge of an empty collection of spaces is a point.

2.2 Group theory

We use standard group theoretic notation as can be found in [1,7,17]. All groups are
assumed to be finite. For a group G and x, y ∈ G, we write [x, y] for the commutator
x−1 y−1xy. For A, B ⊆ G, we write [A, B] for the subgroup of G generated by all
commutators [a, b] with a ∈ A and b ∈ B. For x, y ∈ G, we write x y for y−1xy. We
record here the following well-known commutator formulas

[uv,w] = [u, w]v[v,w], (1)

[u, vw] = [u, w][u, v]w (2)

for all u, v, w ∈ G.
Let p be a prime and let P be a p-group. We say that P has exponent p if every

g ∈ P satisfies g p = 1. A nontrivial group P is elementary abelian if P is abelian
of exponent p, in which case P admits a vector space structure over the field Fp of
order p. The group P is extraspecial if its center Z(P) has order p and P/Z(P) is
elementary abelian. An extraspecial p-group has order p2n+1 for some positive integer
n (see for example [1, (23.10)]). The subgroup �1(P) ≤ P is, by definition, generated
by all elements of order p in P . As is standard, we define the terms of the lower central
series of P as γ1(P) = P and γn(P) = [P, γn−1(P)] for each positive integer n. The
nilpotence class of P is the smallest n such that γn+1(P) = 1. Finally, P is a central
product of subgroups Q, R if P = Q R and [Q, R] = 1. Given groups Q, R with
subgroups S ≤ Z(Q), T ≤ Z(R) and an isomorphism φ : S → T , one constructs a
central product of Q and R as (Q × R)/{(s−1, φ(s)) : s ∈ S}.

We will use the following results, the first of which is well known and appears as
[1, (23.8)] and the second of which is due to Hall (see [10, Sect. 4], [11, Introduction],
both of these papers can be found in [12]).

Lemma 2.2 Say X ≤ P is extraspecial and [P, X ] ≤ Z(X). Then P = XCP (X)

Theorem 2.3 (P. Hall) Let p be a prime and let P be a p-group. If the nilpotence
class of P is less than p and P = �1(P), then P has exponent p.
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3 The proof of Theorem 1.4

Throughout this section, p is an odd prime and P is a p-group.

3.1 Some useful elementary abelian sections

Let Z ≤ �1(Z(P)). (While we begin our discussion with no other condition on Z ,
soon we will turn to the case where |Z | = p.) Define

MZ (P) := {X ≤ P : Z < X = �1(X) and [X, X ] ≤ Z}.

Note that if Z 	= �1(P) then MZ (P) is nonempty, since 〈Z , x〉 ∈ MZ (P) for each
x of order p in P\Z . We consider MZ (P) to be partially ordered by inclusion and
define

M∗
Z (P) := {X ∈ MZ (P) : X is maximal in MZ (P)}.

Each X ∈ MZ (P) has nilpotence class at most two. By Lemma 2.3, each X ∈ MZ (P)

has exponent p.
The following technical lemma will be used both in the proof of Theorem 1.4 and

in the construction of examples proving Corollaries 1.7 and 1.8 in Sect. 4.

Lemma 3.1 Assume P is a central product of proper subgroups P1, P2 such that at
least one Pi has exponent p.

Set Z = P1 ∩ P2. Then

M∗
Z (P) = {X1 X2 : Xi ∈ M∗

Z (Pi ) for i = 1, 2}.

Proof We show first that if Xi ∈ MZ (Pi ) for i = 1, 2 then X := X1 X2 ∈ MZ (P).
It follows from commutator identities (1) and (2) that if gi , hi ∈ Pi for i = 1, 2 then

[g1g2, h1h2] = [g1, h1][g2, h2]. (3)

Therefore,

[X, X ] = [X1, X1][X2, X2] ≤ Z .

Also, X = �1(X), since Xi = �1(Xi ) for i = 1, 2. Note also that each Xi lies in
MZ (P).

Next let T ∈ MZ (P). There are surjective homomorphisms

• φ : P1 × P2 → P , φ((p1, p2)) = p1 p2,
• π1 : P1 × P2 → P1, π1((p1, p2)) = p1, and
• π2 : P1 × P2 → P2, π2((p1, p2)) = p2.
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For i = 1, 2, set

T i := πi (φ
−1(T )).

We claim that, for i = 1, 2, either T i ∈ MZ (Pi ) or T i = Z . The truth of this claim
implies the truth of the Lemma. Indeed, assuming the claim, T ≤ T 1T 2 ∈ MZ (P).
It follows that every element of M∗

Z (P) is of the form X1 X2 with Xi ∈ M∗
Z (Pi ). On

the other hand, say X = X1 X2 with each Xi ∈ M∗
Z (Pi ). If X ≤ T ∈ MZ (P), then

Xi ≤ T i ∈ MZ (Pi ) for i = 1, 2. Therefore, each T i = Xi and T = X .
Now we prove our claim. We assume without loss of generality that i = 1. Note

that Z ≤ T 1, since (z, 1) ∈ φ−1(Z) for each z ∈ Z . Let g1, h1 ∈ T 1. There exist
g2, h2 ∈ P2 such that g1g2 and h1h2 are in T . Now

[g1g2, h1h2] ∈ Z ≤ P2,

since [T, T ] ≤ Z . It follows from (3) that [g1, h1] ∈ P2, since both [g1g2, h1h2] and
[g2, h2] are in P2. Therefore, [g1, h1] ∈ P1 ∩ P2 = Z and [T 1, T 1] ≤ Z .

It remains to show that T 1 = �1(T 1). Assume for contradiction that T 1 has an
element g1 of order p2. There is some g2 ∈ T 2 such that g1g2 ∈ T . By Lemma 2.3,
(g1g2)

p = 1. As P1 does not have exponent p, it must be the case that g p
2 = 1. It

follows now from [P1, P2] = 1 that

1 = (g1g2)
p = g p

1 g p
2 = g p

1 ,

which gives the desired contradiction and completes our proof. 
�

3.2 Proof of Theorem 1.4

Let us recall a basic assumption under which we are working.

Hypothesis 3.2 The p-group P (of odd order) is not cyclic.

Our goal is to show that P is not a counterexample to Theorem 1.4.
Assume first that the center Z(P) is not cyclic. As shown in [4] by applying the

Quillen fiber lemma to the map A �→ A�1(Z(P)) on A≥2(P), �A≥2(P) is con-
tractible. (This is a key technique in the study of subgroup complexes that is used
first, to our knowledge, in [15] and described also in [16, Definition 3.3.1 and Lemma
3.3.3].) Let X ≤ P be extraspecial. Then �1(CP (X)) 	= Z(X), since Z(X) is cyclic.
So, Theorem 1.4 holds when Z(P) is not cyclic. We proceed under the following
assumption.

Hypothesis 3.3 Z(P) is cyclic.

Let Z = �1(Z(P)). Then, Z is cyclic of order p. We define

A>Z (P) := {H ∈ A≥2(P) : Z < H}.
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As shown in [4] by applying the Quillen fiber lemma to the map A �→ AZ on A≥2(P),

�A>Z (P) � �A≥2(P). (4)

(Again, this is a basic and key technique that is used in [15] and appears in [16,
Proposition 3.1.12(2)]). So, we work from now on with A>Z (P) in place of A≥2(P).

Lemma 3.4 Let X ∈ MZ (P). If X is not extraspecial, then �A>Z (X) is contractible.

Proof Note that first X is extraspecial if and only if Z(X) = Z . If Z(X) 	= Z , then
�1(Z(X) ∈ A≥2(X). Now we get that �A>Z (X) is contractible by applying the
Quillen fiber lemma to the map A �→ AZ(X) on A>Z (X), as discussed above. 
�

Note that it follows from Proposition 1.5 and Lemma 3.4 that the wedge
∨

X∈M∗
Z (P) �A>Z (X) is well defined.

Lemma 3.5 Assume X ∈ MZ (P) is extraspecial. Then, X ∈ M∗
Z (P) if and only if

�1(CP (X)) = Z.

Proof Say �1(CP (X)) 	= Z . Pick Y < �1(CP (X)) such that |Y | = p and Y 	= Z .
Then X < XY ∈ MZ (P), since XY ∼= X ×Y . Therefore, X 	∈ M∗

Z (P). Conversely,
say X 	∈ M∗

Z (P). There is some T such that X < T ∈ MZ (P). Then X � T and
[T, X ] ≤ Z = Z(X), since [T, T ] = Z < X . By Lemma 2.2, T = XCT (X). There
is some g ∈ CT (X)\Z with |g| = p, since T has exponent p and T 	= X . Now
g ∈ �1(CP (X))\Z . 
�

Each A ∈ A>Z (P) lies in MZ (P). The argument used to obtain (4) above applies
to X ∈ M∗

Z (P), as well as to P . Therefore,

�A>Z (P) =
⋃

X∈M∗
Z (P)

�A>Z (X).

Moreover, if an extraspecial p-group X does not have exponent p, then X 	= �1(X).
It follows now from Lemma 3.5 that E(P) consists of those members of M∗

Z (P) that
are extraspecial. With Lemmas 3.4 and 3.5 in hand, we can invoke Lemma 2.1 to prove
Theorem 1.4 once we show that the intersection of two or more members of M∗

Z (P)

lies in MZ (P) and is not extraspecial. Lemma 3.7 below says that this condition on
intersections does indeed hold, and thus completes the proof of Theorem 1.4.

Lemma 3.6 P has a normal elementary abelian subgroup N of order p2. Each S ∈
M∗

Z (P) contains N.

Proof The existence of N is [8, Lemma 10.11]. Now [P, N ] � P . Moreover, 1 <

[P, N ] < N , since Z(P) is cyclic and N is not and P is nilpotent. Therefore, [P, N ] =
Z , since [P, N ] ∩ Z(P) 	= 1. Let S ∈ M∗

Z (P). Then [S, N ] ≤ Z . It follows from
(1),(2) that [SN , SN ] ≤ Z . Therefore, SN/Z is abelian. Moreover, SN = �1(SN ),
since S = �1(S) and N = �1(N ). It follows that SN ∈ MZ (P). Therefore, N ≤ S,
since S ∈ M∗

Z (P). 
�
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Lemma 3.7 Let S ⊆ M∗
Z (P) with |S| ≥ 2. Then,

⋂

S∈S S lies in MZ (P) and is not
extraspecial.

Proof Let Y = ⋂

S∈S S. Then Z ≤ Y and, for any S ∈ S, [Y, Y ] ≤ [S, S] ≤ Z .
Moreover, Y = �1(Y ), since each S ∈ S has exponent p. By Lemma 3.6, Y has a
subgroup of order p2, so Z < Y . Therefore, Y ∈ MZ (P).

Assume for contradiction that Y is extraspecial. Set Q := 〈{S : S ∈ S}〉. Now
[Y, Y ] = Z = Z(Y ) and it follows that [S, Y ] = Z for each S ∈ S, since [S, S] ≤ Z .
By commutator formulas (1) and (2), [Q, Y ] = Z . By Lemma 2.2, Q = Y CQ(Y ).
Note that Y ∩ CQ(Y ) = Z .

Now

Q = �1(Q) = Y�1(CQ(Y )).

Indeed, the first equality holds, since S = �1(S) for each S ∈ S. To prove the second
equality, we assume x ∈ Q has order p and write x = yh with y ∈ Y and h ∈ CQ(Y ).
Then

1 = x p = (yh)p = y ph p = h p,

since Y has exponent p and [Y, h] = 1. Therefore, h ∈ �1(CQ(Y )) and x ∈
Y�1(CQ(Y )) as claimed.

We claim that CQ(Y ) is not cyclic. Indeed,

CQ(Y ) = CQ(Y ) ∩ Y�1(CQ(Y ))

= �1(CQ(Y ))(Y ∩ CQ(Y ))

= �1(CQ(Y ))Z

= �1(CQ(Y )),

the second equality following from the Dedekind modular law (see for example [1,
(1.14)]). Therefore, if CQ(Y ) is cyclic then CQ(Y ) = Z and Q = Y . However, as
|S| ≥ 2, we know that Y 	∈ S and it follows that Q 	= Y .

Assume now that Z(CQ(Y )) is cyclic. We may apply Lemma 3.6 to CQ(Y ). Every
normal subgroup of CQ(Y ) is centralized by Y , and therefore normal in Q. Thus, there
is some N � Q such that

• N is elementary abelian of order p2,
• N 	≤ Y (as [Y, N ] = 1 and |Z(Y )| = p), and
• every S̃ ∈ M∗

Z (CQ(Y )) contains N .

By Lemma 3.1, each S ∈ M∗
Z (Q) satisfies S = Y S̃ for some S̃ ∈ M∗

Z (CQ(Y )). The
contradiction

Y < Y N ≤
⋂

S∈S
S = Y

now follows, as S ⊆ M∗
Z (Q).
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Finally, assume Z(CQ(Y )) is not cyclic. Let N = �1(Z(CQ(Y )). Then, Z < N
and N 	≤ Y . Moreover, N ≤ Z(Q). Let S ∈ S. Then [S, N ] = 1. By commutator
formulas (1) and (2), [SN , SN ] = Z . Moreover, SN = �1(SN ). It follows that
SN ∈ MZ (P). Therefore, N ≤ S, as S ∈ M∗

Z (P). Again we get the contradiction

Y < Y N ≤
⋂

S∈S
S = Y.


�
4 Examples

Here we prove Corollaries 1.7 and 1.8. Our first step is to produce, for every positive
integer m and every prime p > 2m + 1, a p-group P of order p2m+2 and exponent p
such that

{i : ˜Hi (�A≥2(P)) 	= 0} = {0, m − 1}. (5)

Recall that in Sect. 3 we observed that when Z(P) is cyclic, E(P) consists of those
X ∈ M∗

Z (P) thst are extraspecial. Thus by Theorem 1.4 and Proposition 1.5 (or by
Corollary 1.6), if Z(P) is cyclic then the set of all i > 0 such that ˜Hi−1 is nontrival is
the set of all i > 0 such that M∗

Z (P) contains an extraspecial p-group of order p2i+1.
So, for our purposes, it is necessary and sufficient to produce P of the desired order
p2m+2 and exponent p such that

• Z := Z(P) is cyclic, and
• M∗

Z (P) contains extraspecial groups of orders p3 and p2m+1 and no extraspecial
groups of other orders.

Let X be an extraspecial group of exponent p and order p2m+1. Let Z = Z(X) and
let z generate Z . There exist generators x1, . . . , xm, y1, . . . , ym for X such that

[xi , x j ] = [yi , y j ] = 1

for all i, j ∈ [m] and

[xi , y j ] =
{

z i = j,
1 i 	= j.

Identifying Z with Fp, one gets a nondegenerate, alternating bilinear form 〈·, ·〉 on
X/Z , defined by

〈Z x, Z y〉 := [x, y]

(see for example [1, (23.10)]).
Set

B := {g ∈ Aut (X) : zg = z}.

123



J Algebr Comb (2014) 40:771–784 781

The action of any g ∈ B on X induces a linear transformation on the Fp-vector space
X/Z . This transformation preserves the form 〈·, ·〉. Thus, we have a homomorphism
� from B to the group Sp(X/Z) of linear transformations preserving this form. As
shown by D. L. Winter in [19], � is surjective and the kernel of � is the group I nn(X)

of inner automorphisms of X . Thus we have a short exact sequence

1 → I nn(X) → B → Sp(X/Z) → 1 (6)

of groups. As noted by Griess in the introduction of [9], the sequence (6) splits.
Assume for the moment that there is some φ ∈ Sp(X/Z) such that

• φ has order p and
• the unique eigenspace CX/Z (φ) for φ is generated by Z y1.

(We will see shortly that such a φ exists whenever p > 2m.) There is some g ∈ B
such that |g| = p and �(g) = φ, since (6) splits.

We form the semidirect product P := 〈g〉X . The group P has order p2m+2. So, the
nilpotence class of P is at most 2m + 1. Assuming p > 2m + 1, we see that P has
exponent p by Theorem 2.3, as P = �1(P).

The group P/Z is not abelian, since CX/Z (φ) 	= X/Z . Therefore, X ∈ M∗
Z (P),

as X is maximal in P .
There is some integer j with 0 ≤ j < p such that [g, y1] = z j , since Z y1 ∈

CX/Z (φ). By (1), [x1− j
1 , y1] = z1− j and [gx1− j

1 , y1] = z. Therefore, the subgroup

S := 〈gx1− j
1 , y1〉 ≤ P is nonabelian of order p3. It follows that S is extraspecial and

lies in MZ (P). We claim that S ∈ M∗
Z (P). Indeed, say S ≤ T ∈ MZ (P). Then, T/Z

is contained in CP/Z (S/Z). It follows that T/Z ∩X/Z = 〈Z y1〉, since �(gx1− j
1 ) = φ.

Now |T/Z | ≤ p2, since [P/Z : X/Z ] = p. It follows that |T | ≤ p3 = |S| and T = S
as claimed.

Let T ∈ MZ (P). We claim that either T ≤ X or |T | ≤ p3. Indeed, assume
T 	≤ X . Then T contains some gh, with h ∈ X , and T/Z centralizes Zgh. Now
CX/Z (Zgh) = 〈Z y1〉, since �(gh) = φ. Therefore, |T/Z | ≤ p2 and |T | ≤ p3 as
claimed.

We see now that every extraspecial group inM∗
Z (P)other than X has order p3, since

no extraspecial group has order p2. Next, we produce the desired linear transformation
φ, thereby proving the existence of groups P satisfying (5).

Let V = X/Z . We use additive notation for our group operation on V and write x̄
for Z x ∈ V . Now V has basis x̄1, . . . , x̄m, ȳ1, . . . , ȳm and our alternating form 〈·, ·〉
is given by

〈x̄i , x̄ j 〉 = 〈ȳi , ȳ j 〉 = 0

for all i, j , and

〈x̄i , ȳ j 〉 = −〈ȳ j , x̄i 〉 =
{

1 i = j,
0 i 	= j.
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Define the linear transformation φ by

x∗
i := x̄iφ := (−1)m+1−i ȳm +

m
∑

j=i

(−1) j−i x̄ j

for all i ,

y∗
i := ȳiφ := ȳi + ȳi−1

for 2 ≤ i ≤ m, and

y∗
1 := ȳ1φ := ȳ1.

To show that 〈vφ,wφ〉 = 〈v,w〉 for all v,w ∈ V , it suffices to examine the cases
where v,w lie in our basis. Certainly

〈y∗
k , y∗

l 〉 = 0 = 〈ȳk, ȳl〉

for all k, l. Also,

〈x∗
k , x∗

l 〉 =
〈

(−1)m+1−k ȳm +
m

∑

s=k

(−1)s−k x̄s, (−1)m+1−l ȳm +
m

∑

t=l

(−1)t−l x̄t

〉

= 〈(−1)m−k(x̄m − ȳm), (−1)m−l(x̄m − ȳm)〉
= 0

= 〈x̄k, x̄l〉.

For arbitrary k and 1 < l ≤ m,

〈x∗
k , y∗

l 〉 =
m

∑

s=k

(−1)s−k〈x̄s, ȳl〉 +
m

∑

t=k

(−1)t−k〈x̄t , ȳl−1〉

=
⎧

⎨

⎩

0 + 0 k > l
1 + 0 k = l
(−1)l−k + (−1)l−1−k k < l

= 〈x̄k, ȳl〉.

Finally,

〈x∗
k , y∗

1 〉 =
m

∑

s=k

(−1)s−k〈x̄s, ȳ1〉

=
{

1 k = 1
0 k > 1

= 〈x̄k, ȳ1〉.

123



J Algebr Comb (2014) 40:771–784 783

With respect to the ordering x1, . . . , xm, ym, . . . , y1 of our basis (note the yi appear
in reverse order), the matrix of φ is upper triangular with 1 on the diagonal. Therefore,
(φ − 1)2m = 0. So, if p > 2m then

0 = (φ − 1)p = φ p − 1

(the second equality following from the binomial theorem) and φ has order p.
Now we compute CV (φ), the unique eigenspace of φ. Pick

v =
m

∑

i=1

αi x̄i +
m

∑

j=1

β j ȳ j ,

an arbitrary element of V . Write

vφ =
m

∑

i=1

γi x̄i +
m

∑

j=1

δ j ȳ j .

Then, v ∈ CV (φ) if and only if αi = γi and β j = δ j for all i, j . We calculate

γi =
i

∑

s=1

(−1)i−sαs (7)

for 1 ≤ i ≤ m,

δ j = β j + β j+1 (8)

for 1 ≤ j < m, and

δm = βm +
m

∑

s=1

(−1)m+1−sαs . (9)

Say v ∈ CV (φ). From (7) we conclude that αi = 0 for 1 ≤ i ≤ m − 1. With
this conclusion in hand, we obtain from (9) that αm = 0. From (8) we conclude that
β j = 0 for 2 ≤ j ≤ m. Certainly ȳ1 ∈ CV (φ). We see now that

CV (φ) = 〈ȳ1〉

as desired.
We observe now that, with P a central product of P1 and P2 as in Lemma 3.1 and

Xi ∈ M∗
Z (Pi ) for each i , the product X1 X2 is extraspecial if and only if both Xi

are extraspecial. Moreover, if each Xi is extraspecial of order p2mi +1 (and therefore,
�A≥2(Xi ) has reduced homology concentrated in degree mi − 1) then X1 X2 has
order p2(m1+m2)+1 (and �A≥2(X1 X2) has reduced homology concentrated in degree
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m1 + m2 − 1). Corollary 1.7 is obtained from Lemma 3.1 by taking P1 be a group of
exponent p and order p2k+4 with nontrivial reduced homology concentrated in degrees
0 and k, as constructed above (with k = m + 1) and taking P2 to be extraspecial of
order p2t+1 and exponent p. Corollary 1.8 follows from Lemma 3.1, Proposition 1.5
and Corollaries 1.6 and 1.7. Indeed, Proposition 1.5 and Corollary 1.7 show that I ∈ �

in the cases |I | = 1 and |I | = 2, respectively. Moreover, ∅ ∈ �, since A≥2(P) is
contractible if P is elementary abelian of order at least p2. Now assume that P1 and P2
both have cyclic center and exponent p and that the set of orders of elements ofM∗

Z (Pi )

is {2 j + 1 : j ∈ Ii } for i = 1, 2. Let P be a central product of P1 and P2. Then, by
Lemma 3.1, the set of orders of elements of M∗

Z (P) is {2(i1+i2)+1 : i1 ∈ I1, i2 ∈ I2}.
Part (2) of Corollary 1.8 now follows from Corollary 1.6.
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