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Abstract We determine normal forms and ranks of tensors of border rank at most
three. We present a differential-geometric analysis of limits of secant planes in a
more general context. In particular there are at most four types of points on limiting
trisecant planes for cominuscule varieties such as Grassmannians. We also show that
the singular locus of the secant varieties σr(Seg(Pn × P

m × P
q)) has codimension at

least two for r = 2,3.

Keywords Secant varieties · Border rank · Tensor rank · Segre product ·
Cominuscule varieties · Singularities of secant varieties · Classification of points of
border rank three

1 Introduction

Throughout the paper we work over the field of complex numbers C.
Motivated by applications, there has been a considerable amount of recent research

on ranks and border ranks of tensors, see, e.g., [9, 15] and references therein. In
signal processing one is interested in determining ranks of tensors, see, e.g., [6] and
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J. Buczyński (B)
Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, P.O. Box 21, 00-956
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references therein. In computational complexity, one looks for exotic algorithms via
limits of tensors of a given rank, see [16]. There are adequate tests to determine the
border ranks of tensors of small border rank; however, the possible ranks of such
tensors are not well understood. In this article we present normal forms for tensors of
border rank three. Already in this case the problem becomes subtle. We work in the
more general setting of secant varieties.

1.1 Definitions, notational conventions

For a projective variety X ⊂ PV not contained in a hyperplane, the X-rank of p ∈
PV , RX(p), is defined to be the smallest r such that there exist x1, . . . , xr ∈ X such
that p is in the span of x1, . . . , xr , and the X-border rank RX(p) is defined to be
the smallest r such that there exist curves x1(t), . . . , xr (t) ∈ X such that p is in the
span of the limiting plane limt→0〈x1(t), . . . , xr (t)〉. Let σr(X) ⊂ PV denote the set
of points of X-border rank at most r . When X = Seg(PA1 × · · · × PAn) ⊂ P(A1 ⊗
· · · ⊗ An) is the set of rank-one tensors in a space of tensors, the X-rank and border
rank agree with the usual notions of tensor rank and border rank. The set of points
of X-rank r contains a Zariski open subset of σr(X) and we are interested in the
complement of this set.

We let σ 0
r (X) denote the points of σr(X) of rank r . The tangential variety of a

smooth variety X ⊂ PV , τ(X) ⊂ PV , consists of all points on all embedded tangent
P

1’s. For varieties X,Y ⊂ PV , define

J (X,Y ) := {p ∈ PV | ∃x ∈ X, y ∈ Y such that p ∈ 〈x, y〉},

the join of X and Y . Note that J (X,X) = σ2(X). For a set Z ⊂ PV , Ẑ ⊂ V denotes
the cone over it and 〈Z〉 its linear span. For a variety Y ⊂ PV , Ysing denotes the
singular points of Y . The affine tangent space to a variety X ⊂ PV at a smooth point
x is denoted T̂xX ⊂ V .

Throughout the paper we assume A1, . . . ,An,A,B,C to be complex vector
spaces of dimension at least 2.

1.2 Results on ranks and normal forms for tensors

The following proposition was probably “known to the experts” but we did not find
it in the literature, so we include a statement and proof.

Proposition 1.1 Let X = Seg(PA1 × · · · × PAn) ⊂ P(A1 ⊗ · · · ⊗ An) be a Segre
variety. There is a normal form for points x ∈ σ̂2(X):

(a) x = a1
1 ⊗ · · · ⊗ an

1 for a point of X, which has rank 1;
(b) x = a1

1 ⊗ · · · ⊗ an
1 + a1

2 ⊗ · · · ⊗ an
2 for a point on a secant line to X (here we

require at least two of the ai
2’s to be independent of the corresponding ai

1), which
has rank 2; and

(c) for each J ⊆ {1, . . . , n}, |J | > 2, the normal form

x =
∑

j∈J

a1
1 ⊗ · · · ⊗ a

j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1 (1.1)
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where each a
j

2 is independent of the corresponding a
j

1 . This case has rank |J |.
In particular, all ranks from 1 to n occur for elements of σ2(X).

Our main result is the analogous classification for points in the third secant variety
of the Segre product:

Theorem 1.2 Assume n ≥ 3 and let X := Seg(PA1 × · · · × PAn). Let p = [v] ∈
σ3(X) \ σ2(X). Then v has one of the following normal forms:

(i) v = x + y + z with [x], [y], [z] ∈ X;
(ii) v = x′ + y, with [x], [y] ∈ X and x′ ∈ T̂[x]X;

(iii) v = x′ + x′′, where [x(t)] ⊂ X is a curve and x′ = x′(0), x′′ = x′′(0); or
(iv) v = x′ + y′, where [x], [y] ∈ X are distinct points that lie on a line contained in

X, x′ ∈ T̂[x]X, and y′ ∈ T̂[y]X.

The points of type (i) contain a Zariski open subset of σ3(X) \ σ2(X). If dimAi ≥ 3,
then those of type (ii) have codimension one in σ3(X), those of type (iii) are contained
in the closure of those of type (ii) and have codimension two in σ3(X), and those of
type (iv) are in the closure of the set of points of type (iii) and have codimension four
in σ3(X). There are n distinct components of points of type (iv). A general point of
each type is not a point of any of the other types.

When n = 2, all points on σ3(Seg(PA1 × PA2))\σ2(Seg(PA1 × PA2)) are of
type (i).

The following result may also have been “known to the experts” but we did not
find it in the literature either.

Theorem 1.3 A general point of τ(Seg(PA×PB×PC)), i.e., a point with the normal
form (1.1) with |J | = 3, is a smooth point of σ2(Seg(PA ×PB ×PC)). In particular,

codim
(
σ2
(
Seg(PA × PB × PC)

)
sing, σ2

(
Seg(PA × PB × PC)

))≥ 2.

We prove an analogous result for σ3(Seg(PA × PB × PC)):

Theorem 1.4 Let p ∈ σ3(Seg(PA × PB × PC)). If p is a general point of type (ii)
or (iii), or a general point of any component of points of type (iv), then p is a non-
singular point of σ3(Seg(PA × PB × PC)). Moreover, if dimA,dimB,dimC ≥ 3,
and p is a general point in the set of the points contained in some P(C2 ⊗C

3 ⊗C
3),

then p is a non-singular point of σ3(Seg(PA×PB×PC)), and similarly for permuted
statements.

In particular, codim(σ3(Seg(PA×PB ×PC))sing, σ3(Seg(PA×PB ×PC))) ≥ 2.

Normal forms for Theorem 1.2 when n = 3 are the following:

(i) a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3⊗b3⊗c3,
(ii) a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1 + a3⊗b3⊗c3,

(iii) a1⊗b2⊗c2 + a2⊗b1⊗c2 + a2⊗b2⊗c1 + a1⊗b1⊗c3 + a1⊗b3⊗c1 + a3⊗b1⊗c1,
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(iv) a2⊗b1⊗c2 + a2⊗b2⊗c1 + a1⊗b1⊗c3 + a1⊗b3⊗c1 + a3⊗b1⊗c1.

For type (iv) there are two other normal forms, where the role of a is switched with
that of b and c. These normal forms are depicted in terms of “slices” in Table 1. (In
the tensor literature, 3-way tensors T ∈ A⊗B⊗C are often studied by their images
T (A∗) ⊂ B⊗C, etc., and these images are studied in terms of bases, resulting in a pa-
rameterized subspace of a space of matrices. These parameterized spaces of matrices
are called slices.) Here aj , bj , cj need not be independent vectors, so to parameterize
the spaces, fix bases of each space and write the aj , bj , cj as arbitrary linear combi-
nations of basis vectors. (However, there are some independence requirements.)

Here are normal forms for all n:

p(i) = a1
1 ⊗ · · · ⊗ an

1 + a1
2 ⊗ · · · ⊗ an

2 + a1
3 ⊗ · · · ⊗ an

3 , (1.2)

p(ii) =
∑

i

a1
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
2 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 + a1

3 ⊗ · · · ⊗ an
3 , (1.3)

p(iii) =
∑

i<j

a1
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
2 ⊗ ai+1

1 ⊗ · · · ⊗ a
j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1

+
∑

i

a1
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 , (1.4)

p(iv) =
n∑

s=2

a1
2 ⊗ a2

1 ⊗ · · · ⊗ as−1
1 ⊗ as

2 ⊗ as+1
1 ⊗ · · · ⊗ an

1 .

+
n∑

i=1

a1
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 . (1.5)

Again, (1.5) has n − 1 other normal forms, where the role of a1∗ is exchanged with
ai∗. Also, the vectors need not all be linearly independent.

Remark 1.5 In contrast to case (iv) above, already with four points on a three-factor
Segre spanning a three-dimensional vector space, one can obtain new limits by taking
a second derivative, even when the limiting points are distinct. Consider the points
x1 = a1⊗b1⊗c1, x2 = a2⊗b2⊗c1, x3 = 1

2 (a1 + a2)⊗(b1 − b2)⊗c1, x4 = 1
2 (a1 −

a2)⊗(b1 +b2)⊗c1. Note that x1 = x2 +x3 +x4. Here both first and second derivatives
of curves give new points. More generally, consider

Seg
(
v2
(
P

1)× P
0 × · · · × P

0
︸ ︷︷ ︸

(n−2) factors

)⊂ Seg(PA1 ⊗ · · · ⊗ PAn).

Any four points lying on Seg(v2(P
1) × P

0 × · · · × P
0) will be linearly depen-

dent. Exceptional limit points turn out to be important—an exceptional limit in
σ5(Seg(PA × PB × PC)) is used in Bini’s approximate algorithm to multiply 2 × 2
matrices with an entry zero, and an exceptional limit in σ7(Seg(PA × PB × PC))

is used in Schönhage’s approximate algorithm to multiply 3 × 3 matrices using 21
multiplications, see [3, Thm 1.15].
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Since there are only finitely many configurations of triples of points in Ai up to
the action of GL(Ai), we conclude:

Corollary 1.6 There are only finitely many orbits of the action of GL(A1) × · · · ×
GL(An) on σ3(Seg(PA1 × · · · × PAn)).

In the three-factor case, there are 39 orbits, see Sect. 6.

Remark 1.7 Points of the form y +y′ +y′′ where y(t) is a curve on ˆSeg(PA1 ⊗· · ·⊗
PAn) have rank at most

(
n+1

2

)
because all such points are of the form (1.4) (perhaps

with linearly dependent variables). The bound RSeg(PA1⊗···⊗PAn)(y+y′+y′′) ≤ (n+1
2

)

is not tight; as for n = 3 the following theorem shows RSeg(PA×PB×PC)(y + y′ + y′′)
is at most five.

Theorem 1.8 The rank of a general point of the form [y + y′ + y′′] of σ3(Seg(PA ×
PB ×PC)) as well as the rank of a general point of the form [x′ + y′] where [x], [y]
lie on a line in Seg(PA × PB × PC), is 5. All other points of σ3(Seg(PA × PB ×
PC)) have rank less than five, so in particular, the maximum rank of any point of
σ3(Seg(PA × PB × PC)) is 5.

Remark 1.9 Theorem 1.8 seems to have been a “folklore” theorem in the tensor lit-
erature. For example, in Table 3.2 of [9], the result is stated and refers to [10], but
in that paper the result is stated and a paper that never appeared is referred to. Also,
there appear to have been privately circulating proofs; one due to R. Rocci from 1993
has been shown to us. We thank M. Mohlenkamp for these historical remarks.

The Comon conjecture on ranks says that for T ∈ SdV ⊂ V ⊗d the symmetric
tensor rank of T equals the tensor rank of T .

Corollary 1.10 The Comon conjecture holds for T ∈ σ̂3(v3(PV )).

Corollary 1.10 follows by comparing the normal forms and ranks of this paper
with those of [12].

In Sect. 3 we generalize Theorem 1.2 to generalized cominuscule varieties, a class
of homogeneous varieties which includes Grassmannians and spinor varieties. See
Sect. 3 for the definition of a generalized cominuscule variety, and Sect. 2 for the
definition of the second fundamental form II.

Theorem 1.11 Let X ⊂ PV be generalized cominuscule. Then [p] ∈ σ3(X) if and
only if at least one of the following situations occurs:

(i) p = ξ + η + ζ for some linearly independent ξ, η, ζ ∈ X̂ (p is on an honest
3-secant plane);

(ii) p = ξ ′ + η for some ξ, η ∈ X̂0 and ξ ′ ∈ T̂[ξ ]X;
(iii) p = ξ ′ + II((η′)2) for some ξ ∈ X̂, ξ ′ ∈ T̂[ξ ]X, η′ ∈ T[ξ ]X; or
(iv) p = ξ ′ + η′ for some ξ, η ∈ X̂, ξ ′ ∈ T̂[ξ ]X, η′ ∈ T̂[η]X with the line P〈ξ, η〉 con-

tained in X.
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To make sense of elements of the tangent and normal spaces as elements of V , we
have chosen a splitting V = x̂ ⊕ T ⊕ N as described in Sect. 2.1.

1.3 Overview

In Sect. 2 we review facts from projective differential geometry. In Sect. 3 we prove
Theorem 1.11. In Sect. 4 we apply Theorem 1.11 to cominuscule varieties, including
Grassmannians and spinor varieties. In Sect. 5 we analyze the case of the Segre va-
riety in detail, and we give two proofs of Theorem 1.2, a short proof by computing
the Lie algebras of the stabilizers of the points p(∗), and a longer proof that contains
more precise information which is of interest in its own right. In Sect. 6 we restrict
attention to the three-factor Segre variety, and prove Theorems 1.3, 1.4 and 1.8.

2 Curves in submanifolds of projective space

2.1 Fubini forms, fundamental forms, and the prolongation property

Let Xn ⊂ PV be a subvariety and let o ∈ X be a smooth point. We may choose a
splitting

V = ô ⊕ T ⊕ N, (2.1)

such that ô � C is the one-dimensional linear subspace corresponding to o ∈ PV , and
ô ⊕ T is the affine tangent space T̂oX.

We will abuse notation and identify T with the Zariski tangent space ToX =
ô∗⊗(T̂oX/ô) and N with the normal space NoX := ToPV/ToX. Since we are work-
ing at a point, the twist by the line bundle will not matter. Our choice of splitting will
not affect the end results of the calculations.

Any point [v] ∈ PV has a lift to a point v ∈ V of the form (ō, ṽ, vN) or (0, ṽ, vN),
where 0 and ō are points in ô � C, and ṽ ∈ T , vN ∈ N . In an analytic neighborhood
of o we may write X as a graph, that is, for x ∈ X near o, the vector xN depends
holomorphically on the vector x̃ and we expand this holomorphic map into a Taylor
series:

xN = xN(x̃) = IIo

(
x̃2)+ F3,o

(
x̃3)+ F4,o

(
x̃4)+ · · · (2.2)

Here x̃ ∈ T and x̃s ∈ SsT . Later we will study curves x(t) ∈ X, and express the
whole curve using (2.2), writing x̃(t) to be the curve in T , x̃s(t) ∈ SsT . Note that by
our choice of splitting there is no constant or linear term in (2.2). The quadratic part
IIo = F2,o gives rise to a well-defined tensor in S2T ∗

o X⊗NoX � S2T ∗⊗N , called the
second fundamental form. Further, the Fs,o ∈ SsT ∗⊗N are called the Fubini forms,
but they depend on the choice of splitting V = ô ⊕ T ⊕ N . See [8, Chap. 3] for more
details.

One can extract tensors from the Fubini forms, called fundamental forms. Let

Ns,o := NoX mod Image(F2,o, . . . ,Fs−1,o).
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The tensor Fs,o := (Fs,o mod Image(F2,o, . . . ,Fs−1,o)) ∈ SsT ∗
o X⊗Ns,o is well-

defined (independent of the choice of splitting (2.1)) and called the s-th fundamental
form of X at o. Fundamental forms satisfy a prolongation property (see [8, Chap. 3]):
if o ∈ X is a general point, then for all f1 ∈ Ss1T and f2 ∈ Ss2T we have

Fs1,o(f1) = 0 =⇒ Fs1+s2,o(f1f2) = 0. (2.3)

We write IIIo = F3,o. If there is no risk of confusion, we will often omit the base
point and write II := IIo, Fs := Fs,o, etc.

2.2 When taking limits, we may assume one curve is stationary

Lemma 2.1 Let G be a connected algebraic group and P a parabolic subgroup.
Let X = G/P ⊂ PV be a homogeneously embedded homogeneous variety and let
p ∈ σr(X). Then there exist a point ξ ∈ X̂ and r − 1 curves yj (t) ∈ X̂ such that
p ∈ limt→0〈ξ, y1(t), . . . , yr−1(t)〉.

Proof Since p ∈ σr(X), there exist r curves x(t), y1(t), . . . , yr−1(t) ∈ X̂ such that

p ∈ lim
t→0

〈
x(t), y1(t), . . . , yr−1(t)

〉
.

Choose a curve gt ∈ G, such that gt (x(t)) = x0 = x(0) for all t and g0 = Id . We have

〈
x(t), y1(t), . . . , yr−1(t)

〉 = gt
−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)

〉
and

lim
t→0

〈
x(t), y1(t), . . . , yr−1(t)

〉 = lim
t→0

(
gt

−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)
〉)

= lim
t→0

〈
x0, gt · y1(t), . . . , gt · yr−1(t)

〉
.

Set ξ = x0 and appropriately modify the yj (t) to complete the proof. �

We remark that for non-homogeneous X, an analogous statement is rarely true.
If r = 2, and X is smooth, then it is true, see Proposition 2.3. But already if r = 2
and X is singular, one often needs both curves moving (a cuspidical rational curve
embedded in P

3 is an example). Also if r = 3, and X has a trisecant line (for example,
X is a high degree rational normal curve projected from a general point on a trisecant
plane), then one also needs three curves moving to obtain some of the points on the
third secant variety.

2.3 Dimension counting and higher order invariants

Since dimσr(X) ≤ r dimX + r − 1, one can use a parameter count to see what one
expects in choosing a point of the boundary. Suppose dimX > 1, X is not a cone and
the third fundamental form is non-zero – for example, X = Seg(PA × PB × PC).
One can predict that the third fundamental form does not arise when computing a
point of σ3(X) which is on a plane obtained as a limit of spans of 3 points converging
to the same general point of X. This is because the third fundamental form is only
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well-defined modulo the second osculating space, which will have dimension greater
than dimX. In the case of the three-factor Segre variety the second osculating space
has dimension ab + ac + bc, and the third fundamental form is only well-defined
modulo the second osculating space. So were there a term III(v3) appearing in an
expression for a point on σ3(Seg(PA × PB × PC)), with no restrictions on v, then
the resulting variety would have to have dimension at least ab + ac + bc for the term
to be well-defined. If the dimensions of the vector spaces are sufficiently large, this
contradicts the dimension count. Such heuristics can be useful in calculations.

The following lemma will allow us to eliminate higher fundamental forms from
our considerations when studying σ3(X). It illustrates the dimension counting prin-
ciple.

Lemma 2.2 Let X ⊂ PV be a variety and let o ∈ X be a general point. Adopt the
notation of Sect. 2.1. Suppose ṽ(t) ⊂ T is a curve such that II(ṽ(t)2) vanishes at t = 0
up to order m − 1, that is II(ṽ(t)2) = tm(· · · ). If m > 0 and s ≥ 2, then Fs(ṽ(t)s)

vanishes at t = 0 up to order m + s − 3, that is Fs(ṽ(t)s) = tm+s−2(· · · ).

Proof Let Id := {f ∈ SdT | Fd(f ) = 0}. Since Id is a linear subspace of SdT , the
prolongation property (2.3) implies Id1 · Sd2T ⊂ Id1+d2 . Thus, if S :=⊕∞

d=0 SdT is
the symmetric algebra, and I :=⊕∞

d=0 Id , then I is a homogeneous ideal.
Consider S[[t]], the power series ring with coefficients in S, and let Jk be the ideal

generated by I and tk . The curve ṽ = ṽ(t) = ṽ0 + t ṽ1 + t2ṽ2 + · · · is naturally an
element in S[[t]]. In this interpretation, Fs(ṽ(t)s) = tk(· · · ) if and only if ṽ(t)s ∈ Jk .
In particular, our assumptions are:

• ṽ(t)2 ∈ Jm, and
• the constant coefficient ṽ2

0 ∈ I (because m > 0), thus also ṽs
0 ∈ I for s ≥ 2.

To show that ṽ(t)s ∈ Jm+s−2 for s ≥ 2, we argue by induction on s. Consider
∂
∂t

(ṽ(t)s) = s ∂ṽ
∂t

ṽs−1. By the inductive assumption, ṽs−1 ∈ Jm+s−3, so ∂
∂t

(ṽ(t)s) ∈
Jm+s−3. Since the constant coefficient ṽ0

s ∈ I , it follows that ṽ(t)s ∈ Jm+s−2, as
claimed. �

2.4 Points on σ2(X)

We reprove the standard fact that a point on a secant variety to a smooth variety X is
either on X, on an honest secant line, or on a tangent line to X. The proof we present
prepares the way for new results. Recall that if a point of σ2(X) is not on an honest
secant line, it must arise from a point on a limiting P

1 which is obtained by a curve
of P1’s, 〈x(t), y(t)〉, where [x(0)] = [y(0)].

Proposition 2.3 Let X ⊂ PV be a smooth variety and let [z] ∈ σ2(X)\σ2(X)0. Then
z may be obtained from first-order information, that is, z = u′ for some [u] ∈ X and
u′ ∈ T̂[u]X.

Proof There exist curves [x(t)], [y(t)] ⊂ X with x(0) = y(0) = ô ∈ o \ {0}, such that
[z] may be obtained as a point of the limiting P

1 = P(limt→0〈x(t), y(t)〉).
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Consider a splitting V = ô⊕T ⊕N and the curves x̃(t), ỹ(t) ∈ T as above. Write:

x̃(t) = x̃1t + x̃2t
2 + · · · + x̃k−1t

k−1 + x̃kt
k + x̃k+1t

k+1 + · · ·
ỹ(t) = x̃1t + x̃2t

2 + · · · + x̃k−1t
k−1 + ỹkt

k + ỹk+1t
k+1 + · · ·

where x̃j , ỹj ∈ T and k is the smallest integer such that ṽ0 := ỹk − x̃k �= 0. Let ṽ(t) :=
t−k(ỹ(t) − x̃(t)) = (ỹk − x̃k) + (ỹk+1 − x̃k+1)t + · · · . Then:

y(t) − x(t) = (ō + ỹ(t) + II
(
ỹ(t)2)+ F3

(
ỹ(t)3)+ · · · )− (ō + x̃(t) + II

(
x̃(t)2)

+ F3
(
x̃(t)3)+ · · · )

= tkṽ(t) + II
(
ỹ(t)2 − x̃(t)2)+ F3

(
ỹ(t)3 − x̃(t)3)+ · · ·

= tkṽ(t) + II
((

ỹ(t) − x̃(t)
)(

x̃(t) + ỹ(t)
))

+ F3
((

ỹ(t) − x̃(t)
)(

x̃(t)2 + x̃(t)ỹ(t) + ỹ(t)2))+ · · ·
= tkṽ(t) + II

(
tkṽ(t)

(
x̃(t) + ỹ(t)

))

+ F3
(
tkṽ(t)

(
x̃(t)2 + x̃(t)ỹ(t) + ỹ(t)2))+ · · ·

Since x̃(t) and ỹ(t) have no constant terms, we obtain:

y(t) − x(t) = tkṽ0 + tk+1(· · · ) and

x(t) ∧ y(t) = x(t) ∧ (y(t) − x(t)
)

= (ō + t (. . . )
)∧ (tkṽ0 + tk+1(· · · ))

= tk(ō ∧ ṽ0) + tk+1(. . . ).

Recall that ṽ0 ∧ ō �= 0. Thus the limiting affine plane limt→0〈x(t), y(t)〉 is equal to
〈ō, ṽ0〉.

Set z̃(t) := t ṽ(t) ∈ T and z(t) := ō+ t ṽ(t)+ II(t2ṽ(t)2)+· · · ∈ X̂. Then the same
affine plane can be obtained as limt→0〈ō, z(t)〉, thus one point is fixed and the other
approaches the first one from the direction of ṽ0. �

3 Generalized cominuscule varieties: proof of Theorem 1.11

Following [13], a homogeneously embedded homogeneous variety G/P ⊂ PV is
called generalized cominuscule if there is a choice of splitting (at any point) such that
the Fubini forms reduce to fundamental forms, that is,

V = ô ⊕ T ⊕ N2 ⊕ N3 ⊕ · · · ⊕ Nf (3.1)

with Fs(S
sT ) ⊂ Ns and thus Fs = Fs for all s ∈ {2, . . . , f }, and Fs = Fs = 0 for

all s > f . Generalized cominuscule varieties may be characterized intrinsically as
the homogeneously embedded G/P where the unipotent radical of P is Abelian. A
generalized cominuscule variety is cominuscule if and only if G is simple and the
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embedding is the minimal homogeneous one. For those familiar with representation
theory, a homogeneously embedded homogeneous variety G/P ⊂ PV is cominus-
cule if V is a fundamental representation Vωi

where ωi is a cominuscule weight,
that is, the highest root of g has coefficient one on the simple root αi . Generalized
cominuscule varieties are Segre–Veronese embeddings of products of cominuscule
varieties.

Grassmannians G(k,W), projective spaces P
n and products of projective spaces

in any homogeneous embedding (in particular, respectively, G(k,W) in the Plücker
embedding, Veronese varieties, and Segre varieties) are generalized cominuscule.

Throughout this section we assume X is generalized cominuscule. When studying
points of σ3(X), one has to take into account curves limiting to points on a trise-
cant line of X. When X is cut out by quadrics, as with homogeneous varieties, any
trisecant line of X will be contained in X. Theorem 1.11 shows such points are al-
ready accounted for by curves with just one or two limit points, and that higher order
differential invariants do not appear, as was hinted at in Lemma 2.2.

We commence the proof of Theorem 1.11 with an observation about the freedom
of choice of splitting as in (3.1).

Lemma 3.1 Let X be generalized cominuscule and let x, y1, . . . , yr−1 be r points
on X. Then there exists a choice of splitting as in (3.1) (so Fs(S

sT ) ⊂ Ns for all s),
such that x = o is the center of this splitting and none of the points y1, . . . , yr−1 lies
on the hyperplane T ⊕ N2 ⊕ N3 ⊕ · · · .

Proof Let G be the automorphism group of X and P ⊂ G be the parabolic subgroup
preserving x. Let Y ⊂ X×PV ∗ be the set of those pairs (o,H), where o ∈ X and H ⊂
V is a hyperplane, such that V = ô ⊕ H and there exists a splitting H = T ⊕ N2 ⊕
N3 ⊕ · · · , making the splitting of V as in (3.1). Since X is generalized cominuscule,
Y is non-empty. It is also G-invariant, under the natural action g · (x,H) = (g · x,g ·
H). Let Yx ⊂ P(V ∗) be the fiber over x. It is also non-empty, because G acts on X

transitively, and it is P -invariant. Since the Lie algebra of P contains all positive root
spaces, and x̂ is the highest weight space, the line x̂ is contained in every P -invariant
linear subspace of V (see, e.g., [7, Prop. 14.13]).

Fix H0 ∈ Yx and consider the intersection B := ⋂p∈P p · H0. This is a linear
subspace of V , which is invariant under P . So either B = 0 or x̂ ⊂ B . The latter
is however impossible, as x̂ ∩ H0 = 0 by our assumptions. So B = 0. The set of
hyperplanes {p · H0 ∈ PV ∗ | p ∈ P } is non-empty, irreducible with trivial base locus,
so its dimension is positive and by a trivial instance of Bertini’s Theorem there exists
at least one hyperplane H in this set that avoids all points y1, . . . , yr−1. �

Since there are only finitely many non-zero Fubini forms, the parameterization

φ : T → X̂

ṽ �→ ō + ṽ + II
(
ṽ2)+ · · ·

is polynomial.
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Remark 3.2 Suppose X is the closure of the image of a map

φ : T → PV

ṽ �→ ō + ṽ + vN(ṽ)

with V = o ⊕ T ⊕ N , ō ∈ o \ {0}, and a polynomial map vN : T → N . Then every
point y ∈ X is either on the hyperplane P(T ⊕ N), or is in the image of the parame-
terization φ.

Proof We use the following elementary topological statement: Let P be a topological
space, let I ⊂ U ⊂ P with I closed in U , and let Ī be the closure of I in P . Then
Ī ∩ U = I . To prove this, let J ⊂ P be a closed subset such that U ∩ J = I , which
exists from the definition of subspace topology. Then Ī ⊂ J , from the definition of
the closure, and so

I ⊂ Ī ∩ U ⊂ J ∩ U = I.

We use the statement with P = PV , U the affine piece of PV , which is the com-
plement of the hyperplane P(T ⊕ N), and I = φ(T ). Note that φ(T ) is closed in
U � T ⊕N , because it is the graph of vN (which is a polynomial map by our assump-
tion). Moreover, Ī = X, and so X ∩ U = I , and X ⊂ I ∪ P(T ⊕ N), as claimed. �

This implies the following property of tangent spaces on X.

Lemma 3.3 Let X be generalized cominuscule and let � ⊂ X be a line. Then the
space T � := T̂[ξ ]X+ T̂[η]X for any [ξ ], [η] ∈ � is independent of the choice of [ξ ], [η].
Moreover, dimT � is constant over each irreducible component of the space parame-
terizing lines on X.

Proof Fix o := [ξ ] ∈ �. By Lemma 3.1 we may choose a splitting (3.1) such that [η] /∈
T ⊕ N . Thus [η] is in the image of the parameterization by Remark 3.2. Consider a
curve y(t) ∈ X̂ with y(0) = η. Note that ỹ(0) ∈ T is in the tangent direction to �.
Then in the splitting (3.1),

y′(0) = d

dt

(
ō + ỹ(t) + II

(
ỹ(t)2)+ III

(
ỹ(t)3)+ · · · )∣∣

t=0

= ỹ′(0) + 2II
(
ỹ′(0)ỹ(0)

)+ 3III
(
ỹ′(0)ỹ(0)2)+ · · ·

(�)= ỹ′(0) + 2II
(
ỹ′(0)ỹ(0)

)
.

Here (�) holds by the prolongation property (2.3), because II(ỹ(0)2) = 0. Thus letting
ν′ be any non-zero vector in Tξ� ⊂ T we have:

T � = T̂[ξ ]X + T̂[η]X = {ξ ′ + II
(
ζ ′ν′) | for ξ ′ ∈ T̂[ξ ]X,ζ ′ ∈ T[ξ ]X

}
. (3.2)

This formula is independent of η, so we can vary η ∈ � freely. Exchanging the roles
of ξ , and η, we can also vary ξ .
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Thus, T � is determined by the geometry of � ⊂ X. But the group of automor-
phisms of X acts transitively on each irreducible component of the space parame-
terizing lines on X. When X = G/P with G simple, this is [11, Theorem 4.3] and
[5]. (This is true for any minimally embedded homogeneous variety G/PI , with G

simple, where I indexes the deleted simple roots, as long as I does not contain an
“exposed short root” in the language of [11].) When X = Seg(vd1(G1/P1) × · · · ×
vdn(Gn/Pn)) is generalized cominuscule (with each Gi/Pi cominuscule), the set of
lines on X is the disjoint union of the variety of lines on each Gi/Pi such that di = 1.
Thus dimT � must be constant over these irreducible components. �

Lemma 3.3 allows an alternative interpretation of the points of type (iv):

Lemma 3.4 With the notation as in Theorem 1.11, let Z(X) denote the set of points
of type (iv). Then [p] ∈ Z(X) if and only if

(iv′) p = ξ ′ + II(ζ ′ν′) for some ξ ∈ X̂, ξ ′ ∈ T̂[ξ ]X, ζ ′, ν′ ∈ T[ξ ]X with II((ν′)2) = 0,
i.e., ν′ is tangent to a line on X through ξ .

Furthermore, Z(X) is a closed subset of PV .

Proof The alternative description (iv′) follows from (3.2).
To see that Z(X) is a closed subset of PV , note Z(X) is the image of a projective

space bundle over the variety parameterizing lines on X, whose fiber over � ⊂ X is
P(T �). Since dimT � is locally constant by Lemma 3.3, this bundle is a projective
variety, and thus Z(X) is an image of a projective variety, hence projective. �

In the following lemma, we provide an uniform interpretation of the points of
types (iii)–(iv).

Lemma 3.5 [p] is of type (iii) or (iv), if and only if

(iii–iv) p = ξ ′ + u for some ξ ∈ X̂0, ξ ′ ∈ T̂[ξ ]X, and u ∈ II := {II(ṽ2) : ṽ ∈ T }.
Moreover, for u ∈ V , the following conditions are equivalent:

(1) u ∈ II;
(2) There exist a curve ṽ(t) ∈ T and an integer m, such that II(ṽ(t)2) = tmu +

tm+1(. . . );
(3) There exist an integer m and vectors ṽ0, ṽ1, . . . , ṽm ∈ T , such that

II

(
d∑

i=0

ṽi ṽd−i

)

=
{

0 if d < m

u if d = m
.

Note that PII is the closure of the image of the rational map ii : PT ��� PN given
by [ṽ] �→ [II(ṽ2)].

Proof of Lemma 3.5 The equivalence of (1)–(3) is clear. In the notation of (3), a point
p is of type (iii) if and only if it is of type (iii–iv) with m = 0, and it is of type (iv)
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if and only if it is of type (iii–iv) with m = 1. So suppose p is of type (iii–iv) with
m > 1. Then it is in the closure of Z(X), the set of points of type (iv). But Z(X) is
closed by Lemma 3.4, so p is of type (iv). �

Proof of Theorem 1.11 Suppose p ∈ σ3(X), so there exist ξ and y(t) := y1(t), z(t) :=
y2(t) as in Lemma 2.1. Write ξ = ō, and by Lemma 3.1 we may choose the
splitting (3.1) such that for small values of t , we have y(t), z(t) �∈ T ⊕ N . So
y(t) = (ō, ỹ(t), yN(t)) by Remark 3.2 and similarly for z(t). Consider the curves
ỹ(t), z̃(t) ∈ T . Exchanging the roles of y and z if necessary, pick maximal integers
k, l, with l ≥ k ≥ 0 and such that

ỹ(t) = tkṽ(t) and

z̃(t) = tkλ(t)ṽ(t) + t lw̃(t)

for some holomorphic function λ(t) ∈ C and curves ṽ(t), w̃(t) ∈ T . From now on,
we write y for y(t), etc. We adopt the convention l = ∞ if w̃ = 0.

If l = 0, then 0, ỹ0, z̃0 are three distinct and non-collinear points in T . This implies
that p is on an honest 3-secant, and we are in case (i). So from now on suppose l > 0.

Our goal is to understand the leading term (in t) of

ō ∧ y ∧ z = ō ∧ (y − ō ) ∧ (z − ō − λ(y − ō )
)
. (3.3)

Expanding out terms we obtain:

y − ō = tkṽ + t2kII
(
ṽ2)+ t3kIII

(
ṽ3)+ · · · ,

(
z − ō − λ(y − ō )

)

= t lw̃ +
f∑

s=2

Fs

(
z̃s − λỹs

)

= t lw̃ +
f∑

s=2

Fs

((
λtkṽ + t lw̃

)s − λtskṽs
)

= t lw̃0 +
f∑

s=2

Fs

((
λs − λ

)
t skṽs + sλs−1t (s−1)k+l ṽs−1w̃

)+ t l+1(. . . )

= t lw̃0 +
f∑

s=2

(
λs − λ

)
t skFs

(
ṽs
)+ sλs−1t (s−1)k+l

Fs

(
ṽs−1w̃

)+ t l+1(. . . ).

(3.4)

First consider the case k ≥ 1, so that the three limit points coincide: ō = y0 = z0. In
this case, the terms in (3.4) with t (s−1)k+l are of order higher than l. By Lemma 2.2,
the higher fundamental forms Fs with s ≥ 3 will always have higher degree leading
term than II. Thus:

ō ∧ y ∧ z = ō ∧ tkṽ0 ∧ (t lw̃0 + t2kλ(λ − 1)II
(
ṽ2))+ · · · terms of higher order.
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We conclude that any point p in the limiting space, which is spanned by ō, ṽ0, and
the leading term of (t lw̃0 + t2kλ(λ − 1)II(ṽ2)), is of the form (iii–iv).

In the remainder of the argument assume k = 0 and we still assume l > 0.
If λ0 �= 0,1, the three limit points 0, ỹ0, z̃0 are distinct, but they lie on a line in

T . Also suppose that II(ṽ2
0) �= 0. This means (e.g. by (2.2)) that the projective line

from o in the direction of ṽ0 is not contained in X. It follows that ō, y0, z0 are linearly
independent, because any line trisecant to X is entirely contained in X. This leads to
case (i).

Now, say λ0 = 0 or 1, and II(ṽ2
0) �= 0. If λ0 = 0, then ō = z(0). If λ0 = 1, then

y(0) = z(0). Swapping the roles of x and y if necessary, we may assume λ0 = 0
and write λ = tmλm + tm+1(. . . ) with m ≥ 1 and λm �= 0. Note also ỹ = ṽ in this
case (because k = 0). Then the leading term of (3.4) is the leading term of t lw̃0 +∑f

s=2(λ
s − λ)Fs(ỹ

s
0) or it is of order at least l + 1. Therefore:

ō ∧ y ∧ z = ō ∧ y0 ∧
(

t lw̃0 +
f∑

s=2

(
λs − λ

)
Fs

(
ỹs

0

)
)

+ terms of higher order

= ō ∧ y0 ∧
(

t lw̃0 +
f∑

s=2

λs
Fs

(
ỹs

0

)

︸ ︷︷ ︸
=t2m·(... )

−λ

f∑

s=2

Fs

(
ỹs

0

)

︸ ︷︷ ︸
=y0−ō−ỹ0

)

+ terms of higher order

= ō ∧ y0 ∧ (λỹ0 + t lw̃0
)+ terms of higher order

= ō ∧ y0 ∧ (λmtmỹ0 + t lw̃0
)+ terms of higher order.

Note y0 is linearly independent from T , because II(ỹ2
0) �= 0. We cannot have m = l

and w̃0 = −λmỹ0, because then the choice of l would not be maximal. Thus we have
non-zero terms of degrees l or m, and the limiting space is spanned by ō, y0 and a
tangent vector to o (which is a linear combination of ỹ0 and w̃0). Therefore we are in
case (ii).

Finally, suppose II(ṽ2
0) = 0 (so the line 〈o, y(0)〉 is contained in X).

Hence (3.4) becomes

t lw̃0 +
f∑

s=2

((
λs − λ

)
Fs

(
ṽs
)+ sλs−1t lFs

(
ṽs−1w̃

))+ t l+1(. . . ).

We claim that the summands with Fs for s ≥ 3 are irrelevant to the leading term. First
note for s ≥ 3 the fundamental form Fs(ṽ

s−1w̃) vanishes at t = 0 by the prolongation
property (2.3). So t lFs(ṽ

s−1w̃) has order of vanishing at least l+1, unless s = 2. Next
we treat

f∑

s=2

(
λs − λ

)
Fs

(
ṽs
) = (λ2 − λ

) f∑

s=2

(
1 + λ + · · · + λs−2)

Fs

(
ṽs
)
.
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By Lemma 2.2, for s ≥ 3 the leading term of Fs(ṽ
s) is of higher order than that of

II(ṽs). Thus the leading term of (3.4) can only come from the leading term of

t lw̃0 + (λ2 − λ
)
II
(
ṽ2)+ 2λtlII(ṽw̃0). (3.5)

Suppose μ is a holomorphic function in one variable, and m is the maximal integer
such that λ − 1 = tmμ2 for sufficiently small values of t . Note that μ has invertible
values near t = 0. If m ≥ l, then only t lw̃0 + 2λtlII(ṽw̃0) contributes to the leading
term of (3.4), and p is of type (iii–iv). Suppose m < l, and rewrite (3.5), up to terms
of order > l:

t lw̃0 + λtmII

((
μṽ + t l−m

μ
w̃0

)2)
.

Thus there exists u ∈ II (either u = 0 or u is the leading coefficient of II((μṽ +
t l−m

μ
w̃0)

2) up to scale, compare with Lemma 3.5(2)), such that the limiting space
limt→0〈ō, y(t), z(t)〉 is spanned by either ō, y0, u or ō, y0, w̃0 + u. Since y0 ∈ ô ⊕ T ,
in either case we have p = ξ ′ + u for some ξ ′ ∈ ô ⊕ T , a linear combination of ō, y0
and w̃0, and also after possible rescaling of u. That is, p is a point of type (iii–iv).

It remains to prove that any point p of the form (i), (ii), or (iii–iv) is in σ3(X).
Case (i) is clear, case (ii) follows as σ3(X) = J (X,σ2(X)) ⊃ J (X, τ(X)) and points
on tangent lines are handled by Proposition 2.3.

Finally, for case (iii–iv), take ξ = ō, and ξ ′ = ō + w̃0 with w̃0 ∈ T . For u ∈ II, let
ṽ and m be as in Lemma 3.5(2). Set:

x(t) := ō,

y(t) := ō + t ṽ + t2II
(
ṽ2)+ · · · , and

z(t) := ō + 2t ṽ + 4t2II
(
ṽ2)+ · · · + 2tm+2w̃0 + · · ·

i.e. ỹ(t) = t ṽ and z̃(t) = 2t ṽ + 2tm+2w̃0. We calculate:

x(t) ∧ y(t) ∧ z(t) = ō ∧ t ṽ ∧ tm+2(2w̃0 + 2u) + · · · terms of higher order.

Here ξ ′ + u = ō + w̃0 + u is in the limiting space. �

4 Examples

In the next sections we treat the case of Segre product with at least 3 factors in detail.
Here we briefly review some other cases.

4.1 Known results

We record the following known results:

Example 4.1 Let X ⊂ PV be one of v2(P
n) (symmetric matrices of rank one),

G(2, n) (skew-symmetric matrices of rank two), Seg(PA × PB) (matrices of rank
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one), or the Cayley plane OP
2. Then any point on σr(X) for any r is on an honest

secant Pr−1.

Example 4.2 [12] Let X = vd(Pn) for d > 2. Then any point in σ3(X) is of the form:

(i) p = ξ + η + ζ for some ξ, η, ζ ∈ X̂ (p is on an honest 3-secant plane), or
(ii) p = ξ ′ + η for some ξ, η ∈ X̂ and ξ ′ ∈ T[ξ ]X, or

(iii) p = ξ ′ + II(η′, η′) for some ξ ∈ X̂, ξ ′, η′ ∈ T[ξ ]X.

Normal forms for σ3(vd(PV ))\σ2(vd(PV )) of these types are respectively xd +yd +
zd , xd−1y + zd and xd−1y + xd−2z2, where x, y, z ∈ V . Thus the points of type (iv)
do not occur in this case.

The generalized cominuscule varieties with σ2(X) = PV are Seg(P1 × P
n),

Seg(P1 × P
1 × P

1), quadric hypersurfaces Q, the Veronese varieties v2(P
1), v3(P

1),
the Grassmannians G(2,5) and G(3,6), the spinor varieties S5 and S6, the La-
grangian Grassmannian GLag(3,6), Seg(P1 × Q), and the Freudenthal variety
E7/P7.

4.2 Grassmannians in Plücker embedding

Let X := G(k,n) ⊂ P(
∧k

C
n), and suppose 3 ≤ k ≤ n − k and n − k > 3. The tan-

gent space at E ∈ G(k,n) can be identified with the space of k × (n − k)-matrices∧k−1
E ⊗ F � E∗ ⊗ F , where F = C

n/E. The local parameterization in this case
comes from a choice of splitting C

n � E ⊕ F and the determined splitting:

∧k
(E ⊕ F) =

∧k
E ⊕

∧k−1
E ⊗ F ⊕

∧k−2
E ⊗

∧2
F ⊕ · · · ⊕

∧k
F

� ô ⊕ E∗ ⊗ F ⊕
∧2

E∗ ⊗
∧2

F ⊕ · · · ⊕
∧k

E∗ ⊗
∧k

F.

The parameterization has the following form:

T � E∗ ⊗ F � M
ϕ�→ [

1,︸︷︷︸
∈ô

M,︸︷︷︸
∈T

∧2
M,

︸ ︷︷ ︸
=II(M2)∈N2

. . . ,
∧k

M
︸ ︷︷ ︸
∈Nk

]
,

where Fs(M
s) =∧s

M ∈∧s
E∗ ⊗∧s

F , expressed in linear coordinates, is the col-
lection of all s × s minors of M .

In the normal forms of Theorem 1.11 we can take the first point ξ = ō, for the
second we have k choices given the rank of M . Let εi for i ∈ {1, . . . , k} denote the
matrix of rank i with the block form

( Idi 0
0 0

)
. The normal forms are:

(i) p = ō + ϕ(εi) + ϕ(M) for some i, M ,
(ii) p = ō + M + ϕ(εi) or p = M + ϕ(εi) for some i, M ,
(iii) p = ō + M +∧2

εi or p = M +∧2
εi for some i, M ,

(iv′) p = ō + M +∧2
εi+1 −∧2

εi or p = M +∧2
εi+1 −∧2

εi for some i �= k, M .
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In (iv′), ν = εi+1 − εi is a rank-one matrix, so II(ν2) = 0, and
∧2

εi+1 −∧2
εi =

1
2 II(u, εi). In all normal forms, we can pick M to be in some normal form. For ex-
ample, if i = k = n − k, then M may be (at least) assumed to be in Jordan normal
form.

4.3 Lagrangian Grassmannians

Let X be the Lagrangian Grassmannian GLag(k,2k) = Ck/Pk ⊂ P(Vωk
) with k > 3,

where Vω =∧k
C

2k/
∧k−2

C
2k is the minimal homogeneous embedding. In this case

the local parameterization is identical, but with T � S2
C

k and M a symmetric k × k

matrix (see [1, §5]). The normal forms are also identical.

4.4 Spinor varieties

Let X be the spinor variety Sk = Dk/Pk for k ≥ 7 in its minimal homogeneous em-
bedding P(

∧even
C

k). In this case T � ∧2
C

k and M is a skew-symmetric k × k

matrix, and the parameterization is similar to the previous cases:

M
ϕ�→ [ 1,︸︷︷︸

∈ô

M,︸︷︷︸
∈T

Pf4 M,︸ ︷︷ ︸
=II(M2)∈N2

Pf6 M,︸ ︷︷ ︸
=III(M3)∈N3

. . . ],

where Pf2s M ∈∧2s
C

k , expressed in linear coordinates, is the collection of all 2s ×
2s sub-Pfaffians of M .

Let εskew
i for i ∈ {1, . . . , � 1

2k�} denote the matrix of rank 2i with the block form

⎛

⎝
0 Idi 0

− Idi 0 0
0 0 0

⎞

⎠ .

The normal forms are:

(i) p = ō + ϕ(εskew
i ) + ϕ(M) for some i, M ,

(ii) p = ō + M + ϕ(εskew
i ) or p = M + ϕ(εskew

i ) for some i, M ,
(iii) p = ō + M + Pf4 εskew

i or p = M + Pf4 εskew
i for some i, M ,

(iv′) p = ō + M + Pf4 εskew
i+1 − Pf4 εskew

i or p = M + Pf4 εskew
i+1 − Pf4 εskew

i for some

i �= � 1
2k�, M .

5 The Segre product Seg(PA1 × ···× PAn)

Recall that for any smooth variety X, if x ∈ σ2(X), then either x ∈ X, x ∈ σ 0
2 (X) or

x lies on an embedded tangent line to X, see Proposition 2.3.
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5.1 Proof of Proposition 1.1

All the assertions except for the rank of x in (1.1) are immediate. The rank of x is at
most |J | because there are |J | terms in the summation.

Assume without loss of generality |J | = n and work by induction. The case n = 2
is clear. Now assume we have established the result up to n − 1, and consider x(A∗

1).
It is spanned by

a2
1 ⊗ · · · ⊗ an

1 ,

n∑

j=2

a2
1 ⊗ · · · ⊗ a

j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1 .

By induction, the second vector has rank n − 1, so the only way x(A∗
1) could be

spanned by n − 1 rank-one elements would be if there were an expression of the sec-
ond vector as a sum of n − 1 decomposable tensors where one of terms is a multiple
of a2

1 ⊗ · · · ⊗ an
1 . Say there were such an expression, where a2

1 ⊗ · · · ⊗ an
1 appeared

with coefficient λ, then the tensor
∑n

j=2 a2
1 ⊗ · · · ⊗ a

j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1 −
λa2

1 ⊗ · · · ⊗ an
1 would have rank n − 2, but setting ã2

2 = a2
2 − λa2

1 and ã
j

2 = a
j

2 for
j ∈ {3, . . . , n}, this would imply that

n∑

j=2

a2
1 ⊗ · · · ⊗ a

j−1
1 ⊗ ã

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1

had rank n − 2, a contradiction.

Remark 5.1 The case n = 3 was previously established by Grigoriev, Ja’Ja’ and Te-
ichert.

5.2 Parameterization in the Segre case

Suppose X = Seg(PA1 ×· · ·×PAn). Let ō = a1
1 ⊗· · ·⊗an

1 , and let A′
j = a1

1 ⊗· · ·⊗
a

j−1
1 ⊗ (Aj/a

j

1 ) ⊗ a
j+1
1 ⊗ · · · ⊗ an

1 � Aj/a
j

1 . Then T = A′
1 ⊕ · · · ⊕ A′

n and X is
parameterized by

(
a′

1, . . . , a
′
n

) �→ [
1,︸︷︷︸
∈ô

a′
1, . . . , a

′
n︸ ︷︷ ︸

∈T

, a′
1 ⊗ a′

2, . . . , a
′
n−1 ⊗ a′

n︸ ︷︷ ︸
=II((a′

1,...,a
′
n)2)∈N2

, . . . , a′
1 ⊗ a′

2 ⊗ · · · ⊗ a′
n︸ ︷︷ ︸

∈Nn

]
.

Thus II((a′
1, . . . , a

′
n) · (b′

1, . . . , b
′
n)) = 1

2 (a′
1 ⊗ b′

2 + b′
1 ⊗ a′

2, . . . , a
′
n−1 ⊗ b′

n + b′
n−1 ⊗

a′
n).

In this case the base locus of II is PA′
1 � · · · � PA′

n ⊂ P(A′
1 ⊕ · · · ⊕ A′

n) � PT . If
II(ṽ2

0) = 0, then ṽ0 ∈ A′
i for some i and if further II(ṽ0ṽ1) = 0 then ṽ1 ∈ A′

i for the
same i.

In particular, if a line � ⊂ X contains o and is tangent to ṽ0, then by (3.2) we have:

dimT � = 2 dimX + 1 − dim ker II(ṽ0 ·) = 2 dimX + 2 − dimAi. (5.1)



J Algebr Comb (2014) 40:475–502 493

Now we prove Theorem 1.2. The normal forms follow from the discussion in the
previous sections.

Now suppose dimAi ≥ 3. To see that the general points of each type do not belong
to the other types, note that for any type and for any i, in the normal forms (1.2)–
(1.5) either ai

1, a
i
2, a

i
3 are linearly independent, or the point is contained in a subspace

variety, i.e., a closed subvariety consisting of tensors in some A1 ⊗· · ·⊗Ai−1 ⊗C
2 ⊗

Ai+1 ⊗ · · ·⊗An. Thus the general points of each type form a single orbit (or n orbits
for type (iv)) of the action of GL(A1) × · · · × GL(An). Therefore the only possible
way that they could overlap, is if one of the orbits were equal to the other. But the
orbits are distinct by the dimension count below, which we present in two different
forms.

5.3 First proof of dimensions in Theorem 1.2

We compute the Lie algebras of the stabilizers of each type of point. Without loss of
generality (for computing codimension), assume dimAj = 3. Write Γ = (x1, . . . , xn)

where xα = (xi
j,α), 1 ≤ i, j ≤ 3. We calculate the Γ such that Γ.p(∗) = 0 in each

case ∗ = i, ii, iii, iv and denote this algebra by gp(∗)
. In each case one has a system of

3n = dim(A1 ⊗ · · · ⊗ An) linear equations, many of which are zero or redundant.

gp(i) =
⎧
⎨

⎩
×

α=1,...,n

⎛

⎝
x1

1,α 0 0
0 x2

2,α 0
0 0 x3

3,α

⎞

⎠
∣∣
∣∣
∑

α

xi
i,α = 0, i = 1,2,3

⎫
⎬

⎭
.

Note dimgp(i) = 3n − 3.

gp(ii) =

⎧
⎪⎨

⎪⎩
×

α=1,...,n

⎛

⎜
⎝

x1
1,α x1

2,α 0
0 −∑β �=α x1

1,β 0
0 0 x3

3,α

⎞

⎟
⎠

∣∣∣∣
∑

α

x3
3,α = 0,

∑

α

x1
2,α = 0

⎫
⎪⎬

⎪⎭
.

Note dimgp(ii) = 3n − 2.

gp(iii) =

⎧
⎪⎨

⎪⎩
×

α=1,...,n

⎛

⎜
⎝

x1
1,α x1

2,α x1
3,α

0 −∑β �=α x1
1,β −∑β �=α x1

2,β

0 0 −∑β �=α x1
1,β

⎞

⎟
⎠

∣
∣∣∣
∑

α

x1
3,α = 0

⎫
⎪⎬

⎪⎭
.

Note dimgp(iii) = 3n − 1.

gp(iv)

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

x1
1,1 x1

2,1 x1
3,1

x2
1,1 x2

2,1 −∑ρ x1
2,ρ

0 0 −∑ρ x1
1,ρ

⎞

⎟
⎠ ,

×
ρ=2,...,n

⎛

⎜⎜
⎝

x1
1,ρ x1

2,ρ x1
3,ρ

0 −∑σ �=ρ x1
1,σ − x2

2,1 −x1
2,1

0 −x2
1,1 −∑β �=ρ x1

1,β

⎞

⎟⎟
⎠

∣∣∣∣
∑

α

x1
3,α = 0

⎫
⎪⎪⎬

⎪⎪⎭
.
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Here the index ranges are 1 ≤ α,β ≤ n, 2 ≤ ρ,σ ≤ n. Note dimgp(iv)
= 3n + 1.

5.4 Second proof of dimensions in Theorem 1.2

Throughout this section X = Seg(PA1 × · · · × PAn).
We show the assertion about the codimension of types (ii), (iii), (iv). Type (ii)

is immediate as its closure is J (X, τ(X)) which is easily seen to have the expected
dimension via Terracini’s lemma.

We will use the following lemma:

Lemma 5.2 Suppose n ≥ 2 and dimAi ≥ 3 for all i ∈ {1, . . . , n}. Let R be a degree 3,
zero-dimensional subscheme of X = Seg(PA1 × · · · × PAn). Suppose moreover R is
in general position, that is, it is not contained in any Seg(PA1 ×· · ·×P

1 ×· · ·×PAn).
Let 〈R〉 � P

2 ⊂ P(A1 ⊗· · ·⊗An) denote the smallest linear space containing R. Then
X ∩ 〈R〉 = R.

Proof Any such R is isomorphic either to 3 distinct reduced points, or a double
point and a reduced point, or one of the two kinds of triple points: SpecC[x]/x3,
or SpecC[x, y]/〈x2, xy, y2〉.

If n = 2, without loss of generality, we may suppose dimA1 = dimA2 = 3. We
can write down explicitly 〈R〉 ⊂ P(A1 ⊗A2) for each of the schemes as, respectively:

⎛

⎝
s

t

u

⎞

⎠ ,

⎛

⎝
t s

s

u

⎞

⎠ ,

⎛

⎝
u t s

t s

s

⎞

⎠ ,

⎛

⎝
t s u

s

u

⎞

⎠ .

The claim may be verified explicitly for each case, by calculating the scheme defined
by 2 × 2 minors of each of the matrices.

If n ≥ 3, let Bi = A1 ⊗· · ·⊗Ai−1 ⊗Ai+1 ⊗· · ·⊗An. Then X =⋂n
i=1 PAi ×PBi ,

and the claim easily follows from the n = 2 statement. �

Lemma 5.3 Suppose n ≥ 2 and dimAi ≥ 3 for all i ∈ {1, . . . , n}. Let X =
Seg(PA1 × · · · × PAn) and let � ⊂ X be a line spanned by x, y ∈ X. Let v ∈
T̂xX + T̂yX be general and consider P2 spanned by � and [v]. Then P

2 ∩ X = �.

Proof Let x = a1
1 ⊗ · · · ⊗ an

1 , y = a1
2⊗a2

1 ⊗ · · · ⊗ an
1 , and v be as in (1.5). Let B :=

A2 ⊗ · · · ⊗ An and:

b1 := a2
1 ⊗ · · · ⊗ an

1 ,

b2 :=
n∑

i=2

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
2 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 ,

b3 :=
n∑

i=2

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 .
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Then x = a1
1 ⊗ b1, y = a1

2 ⊗ b1 and v = a1
1 ⊗ b3 + a1

2 ⊗ b2 + a1
3 ⊗ b1. Consider a

linear combination sv + tx + uy. The intersection P
2 ∩ X is contained in the zero

locus of the 2 × 2 minors of the following matrix:
⎛

⎝
t s

u s

s

⎞

⎠ ,

which can be identified with the line s = 0 that is, the line spanned by x and y. �

Let Osc(X) be the closure of the set of points of type (iii). Let [p] ∈ Osc(X) be a
general point. We claim such p uniquely determines [x] such that p = x + x′ + x′′.
Suppose without loss of generality dimA1 = 3. Write p = p(iii) of (1.4), and consider
the underlying map p(iii) : A1

∗ → A2 ⊗ · · · ⊗ An:

p(iii)
(
a1

1
∗)=

n∑

2≤i<j

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
2 ⊗ ai+1

1 ⊗ · · · ⊗ a
j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1

+
n∑

i=2

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 ,

p(iii)
(
a1

2
∗)=

n∑

j=2

a1
1 ⊗ · · · ⊗ a

j−1
1 ⊗ a

j

2 ⊗ a
j+1
1 ⊗ · · · ⊗ an

1 ,

p(iii)
(
a1

3
∗)= a2

1 ⊗ · · · ⊗ an
1 .

The projectivization of the image is a P
2 containing a degree 3 scheme R ⊂

Seg(PA2 × · · · × PAn) in general position, which is isomorphic to the triple point
SpecC[x]/x3 supported at [p(a1

3
∗
)]. By Lemma 5.2, R is determined by 〈R〉 =

P(p(A∗
1)), so it is independent of the choice of normal form. Therefore 〈a1

2
∗
, a1

3
∗〉,

which is the linear span of the unique degree 2 subscheme of R, is determined by p,
and so is a1

1 (up to scale). Similarly, ai
1 are determined by p up to scale.

Thus we have a rational dominant map ψ : Osc(X) ��� X, ψ(p) := [a1
1 ⊗ · · · ⊗

an
1 ]. A general fiber over o ∈ X is contained in the second osculating space P(ô ⊕

T ⊕ N2), and its closure is equal to the closure of points of the form ō + ξ̃ ′ + II(ṽ2).
Thus dim Osc(X) = 3

∑
(dimAi − 1).

Finally consider Z(X), the set of points of type (iv), which is closed by Lemma
3.4. Let [p] ∈ Z(X) be a general point of any of the irreducible components. We
claim p uniquely determines the line P〈x, y〉 such that p = x + x′ + y + y′. Suppose
without loss of generality dimAi = 3 for all i. Possibly permuting the factors, write
p = p(iv) of (1.5). First consider the underlying map p(iv) : A∗

1 :→ A2 ⊗ · · · ⊗ An:

p(iv)

(
a1

1
∗) =

n∑

i=2

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 ,

p(iv)

(
a1

2
∗) =

n∑

i=2

a2
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
2 ⊗ ai+1

1 ⊗ · · · ⊗ an
1 ,
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p(iv)

(
a1

3
∗) = a2

1 ⊗ · · · ⊗ an
1 .

The projectivization of the image is a P
2 containing a degree 3 scheme R ⊂

Seg(PA2 × · · · × PAn) in general position, which is isomorphic to the triple point
SpecC[x, y]/〈x2, xy, y2〉 point supported at [p(iv)(a

1
3
∗
)]. By Lemma 5.2, [p(iv)(a

1
3
∗
)]

is the unique reduced point in P(p(iv)(A
∗
1)) ∩ Seg(PA2 × · · · ×PAn), so independent

of the choice of normal form. Therefore 〈a1
1, a1

2〉 ⊂ PA1 is determined by p(iv).
Now consider p(iv) : A∗

n :→ A1 ⊗ · · · ⊗ An−1:

p(iv)

(
an

1
∗) =

n−1∑

i=1

a1
1 ⊗ · · · ⊗ ai−1

1 ⊗ ai
3 ⊗ ai+1

1 ⊗ · · · ⊗ an−1
1

+
n−1∑

i=2

a1
2 ⊗ a2

1 ⊗ · · · ⊗ ai−1
1 ⊗ ai

2 ⊗ ai+1
1 ⊗ · · · ⊗ an−1

1 ,

p(iv)

(
an

2
∗) = a1

2 ⊗ a2
1 ⊗ · · · ⊗ an−1

1 ,

p(iv)

(
an

3
∗) = a1

1 ⊗ · · · ⊗ an−1
1 .

By Lemma 5.3 the projective line P〈p(iv)(a
n
2

∗),p(iv)(a
n
3

∗)〉 is determined by p(iv).
Thus an

1 (and similarly ai
1 for i ∈ {2, . . . , n}) is determined (up to scale) by p(iv).

Therefore, the line P(〈a1
1, a1

2〉 ⊗ a2
1 ⊗ · · · ⊗ an

1 ) ⊂ X is uniquely determined by p(iv).
The lines on X are parameterized by n irreducible varieties:

Li := PA1 × · · · × PAi−1 × G(2,Ai) × PAi+1 × · · · × PAn.

By the argument above we have a rational dominant map χ : Z(X) ���L1 � · · · �Ln.
A general fiber over � ∈ Li is PT � in the notation of Lemma 3.3, the linear span of
projective tangent spaces to X at points of �. By (5.1) dimT � = 2 dimX+2−dimAi ,
and the dimension of each irreducible component of Z(X) is equal to 3

∑
(dimAi −

1) − 2.

6 Orbits of tensors in A ⊗ B ⊗ C of border rank at most 3

Let A � C
a, B � C

b, C � C
c. Let

Suba′,b′,c′ = Suba′,b′,c′(A⊗B⊗C)

= {T ∈ A⊗B⊗C | ∃Ca′ ⊂ A, C
b′ ⊂ B, C

c′ ⊂ C,

such that T ∈ C
a′⊗C

b′⊗C
c′}

This subspace variety admits a desingularization as follows. Let E → G(a′,A) ×
G(b′,B)×G(c′,C) be E = SA �SB �SC , where SA → G(a′,A) is the tautological
rank a′ subspace bundle and similarly for B,C. Then PE → Suba′,b′,c′(A⊗B⊗C)

is a desingularization and using it one can see that Suba′,b′,c′(A⊗B⊗C)sing =
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Table 1 Orbits of border rank 3 in A ⊗ B ⊗ C that are not contained in a Sub233, Sub323, or Sub332.
Orbits 34–36 are identical up to permutations of A, B , C

# Orbit closure dim Normal form Slice R R

34 Z(X)A 3a + 3b + 3c − 11 a1⊗(b1⊗c2 + b2⊗c1) + a2⊗b1⊗c1
+ a3⊗(b3⊗c1 + b1⊗c3)

( t s u

s

u

)
3 5

35 Z(X)B 3a + 3b + 3c − 11 a1⊗(b1⊗c2 + b2⊗c1 + b3⊗c3)

+ a2⊗b1⊗c1 + a3⊗b3⊗c1

( t s

s

u s

)
3 5

36 Z(X)C 3a + 3b + 3c − 11 a1⊗(b1⊗c2 + b2⊗c1 + b3⊗c3)

+ a2⊗b1⊗c1 + a3⊗b1⊗c3

( t s u

s

s

)
3 5

37 Osc(X) 3a + 3b + 3c − 9 a1⊗(b1⊗c3 + b2⊗c2 + b3⊗c1)

+ a2⊗(b1⊗c2 + b2c1) + a3⊗b1⊗c1

(u t s

t s

s

)
3 5

38 J (X, τ(X)) 3a + 3b + 3c − 8 a1⊗(b1⊗c2 + b2⊗c1)

+ a2⊗b1⊗c1 + a3⊗b3⊗c3

( t s

s

u

)
3 4

39 σ3(X) 3a + 3b + 3c − 7 a1⊗b1⊗c1 + a2⊗b2⊗c2 + a3⊗b3⊗c3

( s

t

u

)
3 3

Suba′−1,b′,c′ ∪ Suba′,b′−1,c′ ∪ Suba′,b′,c′−1, whenever a′ < bc, and similarly for per-
muted statements. In [4, §6], normal forms for tensors in Sub233 ∪ Sub323 ∪ Sub332

are given. There are 33 such.
We present the list of remaining orbits in σ3(Seg(PA×PB ×PC)) under the action

of GL(A) × GL(B) × GL(C).
Each orbit is uniquely determined by its closure, which is an algebraic variety

listed in the second column of the table. The orbit itself is an open dense subset of
this variety. The dimension of the algebraic variety is in the third column. The fourth
column is the normal form of the underlying tensor, the distinct variables are assumed
to be linearly independent. The normal form is also given as a slice. The border rank
and rank are given in the next columns.

Z(X)A, Z(X)B , Z(X)C denote the three components of Z(X), the set points of
type (iv) in Theorem 1.2. Osc(X) denotes the closure of the set points of type (iii),
while J (X, τ(X)) denotes the closure of the set points of type (ii).

The ranks of cases 34–37 in Table 1 are calculated in Sect. 6.1. The rank of case 39
is obvious, while the rank of case 38 is at most 4, due to the normal form expression.
If it were 3, then a general point of type (ii), would be expressible as a point of
type (i), a contradiction with Theorem 1.2.

6.1 Proof of Theorem 1.8

The rank of a linear subspace U ⊂ C
k⊗C

l is the smallest r such that U is contained
in a linear space of dimension r spanned by rank-one elements. The rank of a tensor
T ∈ A⊗B⊗C equals the rank of the linear subspace T (A∗) ⊂ B⊗C (see, e.g., [15,
Thm. 3.1.1.1]).



498 J Algebr Comb (2014) 40:475–502

Proposition 6.1 The ranks of the spaces parameterized by

⎛

⎝
u t s

t s 0
s 0 0

⎞

⎠ ,

and by
⎛

⎝
t s u

s 0 0
u 0 0

⎞

⎠

are both 5.

Proof We first show the rank is at most 5: in the second case, it is immediate. In the
first case the rank of

⎛

⎝
0 t s

t s 0
s 0 0

⎞

⎠

is 4 (see [4, §6]), and the rank of

⎛

⎝
u 0 0
0 0 0
0 0 0

⎞

⎠

is one.
To see the ranks are at least five, were it four in the first case, we would be able to

find a 3 × 3 matrix

T =
⎛

⎝
f1g1 f1g2 f1g3
f2g1 f2g2 f2g3
f3g1 f3g2 f3g3

⎞

⎠

of rank 1, such that the 4-plane spanned by:

T1 :=
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ , T2 :=
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , T3 :=
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , T

is spanned by matrices of rank 1. In particular, T1 would be in the span of
T2, T3, T and another matrix of rank 1. Thus we would be able to find constants
β,γ,f1, f2, f3, g1, g2, g3, such that the rank of

⎛

⎝
γ β 1
β 1 0
1 0 0

⎞

⎠+
⎛

⎝
f1g1 f1g2 f1g3
f2g1 f2g2 f2g3
f3g1 f3g2 f3g3

⎞

⎠
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is one. There are two cases: if g3 �= 0, then we can subtract g1
g3

times the third column

from the first, and g2
g3

times the third column from the second to obtain

⎛

⎝
∗ ∗ 1 + f1g3
∗ 1 f2g3
1 0 f2g3

⎞

⎠

which has rank at least two. If g3 = 0 the matrix already visibly has rank at least two.
Thus it is impossible to find such constants β,γ,fi, gi and the rank in question is
necessarily at least 5.

The second case is more delicate. Write all 2 × 2 minors of
⎛

⎝
t s u

s 0 0
u 0 0

⎞

⎠+ x

⎛

⎝
f1g1 f1g2 f1g3
f2g1 f2g2 f2g3
f3g1 f3g2 f3g3

⎞

⎠

and consider fi and gj as parameters of degree 0, and remaining variables
α1, α2, α3, x of degree 1. We claim (sf3 − uf2)

2 and (sg3 − ug2)
2 are in the ideal I

generated by minors. This can be verified by patient calculation, or using a computer
algebra system, such as Magma [2]. Thus f2 = f3 = g2 = g3 = 0, for otherwise we
have a degree 1 equation in the radical ideal

√
I , and then the rank-one matrices do

not span the four-dimensional linear space. But in such a case u2 and s2 are among
the minors, giving u and s as linear equations in

√
I , a contradiction. �

6.2 Singularities

In this subsection we prove Theorems 1.3 and 1.4. The strategy is uniform to most
cases: using the parameterization E → Subi,j,k as in the beginning paragraph of
Sect. 6, which is biregular away from the locus Subi−1,j,k ∪ Subi,j−1,k ∪ Subi,j,k−1,
we reduce statements to properties of secant varieties of low dimensional Segre prod-
ucts.

Proof of Theorem 1.3 First note that σ2(Seg(PA × PB × PC)) = Sub2,2,2. In partic-
ular, any point of σ2(Seg(P1 × P

1 × P
1)) = P

7 is a smooth point. Now just observe
that [a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1] is a smooth point of Sub2,2,2, because it
is not contained in Sub2,2,1 ∪ Sub2,1,2 ∪ Sub1,2,2. �

Similarly, in Theorem 1.4 if dimA = 2, then σ3(Seg(PA×PB ×PC)) = Sub2,3,3.
A general point of each type (i)–(iv) is not contained in any of the smaller subspace
varieties, so the same argument works. So we will assume dimA,dimB,dimC ≥ 3.

Lemma 6.2 Suppose dimA = dimB = dimC = 3. Then a general point of each
component of points of type (iv) is a smooth point of σ3(Seg(PA × PB × PC)).

Proof The only defining equations of σ3(Seg(P2 ×P
2 ×P

2)) are the 27 (degree four)
Strassen equations. If we write T = a1⊗X + a2⊗Y + a3⊗Z, then 9 of the equations
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are the entries of the 3 × 3 matrix

P(T )st =
∑

j,k

(−1)j+k
(
detXĵ

k̂

)(
Y

j
t Zs

k − Y s
k Z

j
t

)
(6.1)

where X
ĵ

k̂
is X with its j -th row and k-th column removed. The remaining equations

come from permuting the roles of X,Y,Z, see, e.g. [14]. Take T = a1 ⊗ (b1 ⊗ c2 +
b2 ⊗ c1 + b3 ⊗ c3) + a2 ⊗ b1 ⊗ c1 + a3 ⊗ b3 ⊗ c1 as in Table 1 row 35. Writing
T = a1 ⊗ X + a2 ⊗ Y + a3 ⊗ Z, we have

X =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , Y =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , Z =
⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ .

Then

dPT =
⎛

⎝
−dx2,3 + dy1,3 − dz1,2 + dz2,1 −dz2,2 dz2,3

dy2,3 − dz2,2 0 0
dx2,2 − dy2,1 + dy3,3 − dz3,2 −dy2,2 −dy2,3

⎞

⎠

which indeed has six linearly independent differentials.
To argue for the other components, i.e., when T is of the form 34 or 36 in Table 1,

one can permute the factors A, B , and C. �

Proof of Theorem 1.4 Assume dimA,dimB,dimC ≥ 3. Since the map P(E) →
Sub3,3,3 is an isomorphism near a general point of type (iv), the Lemma implies that
such a point is a smooth point of σ3(Seg(PA × PB × PC)) for any A, B , C (each of
dimension at least 3). But orbits 34–36 from Table 1 are in the closure of orbits 37
and 38. So σ3(Seg(PA × PB × PC)) is non-singular at a general point of each type
(ii)–(iv).

The final thing to prove is that σ3(Seg(PA×PB×PC)) is non-singular at a general
point of Sub233. Let p be such a point. Since σ3(Seg(PA ×PB ×PC)) ⊂ Sub333, we
may assume dimA = dimB = dimC = 3. First note that Sub233 is not contained in
J (X, τ(X)), as they are both irreducible, have the same dimension and J (X, τ(X)) �⊂
Sub233. So p is not in J (X, τ(X)). By Theorem 1.2, this implies that there exists an
open neighborhood U ⊂ σ3(PA ×PB ×PC) of p, such that in this neighborhood all
points are of type (i).

Consider the dominant rational map

φ : (A × B × C)×3 ��� σ̂3
(
Seg(PA × PB × PC)

)

(a1, b1, c1), (a2, b2, c2), (a3, b3, c3) �→ a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3

Let W := φ−1(U). Then φ|W : W → U is a regular surjective map. The aim is to
calculate the tangent map at any point in φ−1(p). We commence with identifying
φ−1(p). Since RX(p) = 3, any point in φ−1(p) will be contained in a fixed (A′ ×
B ′ × C′)×3 with dimA′ = 2, dimB ′ = dimC′ = 3 by [4, Cor. 2.2].

Write p = [a1 ⊗ b1 ⊗ c1 + (a1 + a2) ⊗ b2 ⊗ c2 + a2 ⊗ b3 ⊗ c3] (see [4, §6]). We
claim that this normal form is unique up to trivialities such as 7-dimensions worth
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Table 2 Singularities of σ3(Seg(PA × PB × PC)). In the first column we list the tensor space, assuming
4 ≤ a ≤ b ≤ c. In the second column we write the dimension of the secant variety. In the third column we
present the upper bound on the dimension of the singular locus of the secant variety, which follows from
our results in this section

A ⊗ B ⊗ C dimσ3 dim Sing ≤

C
2 ⊗C

2 ⊗C
2 7 −1

C
2 ⊗C

2 ⊗C
3 11 −1

C
2 ⊗C

2 ⊗C
c 3c + 2 2c + 3

C
2 ⊗C

3 ⊗C
3 17 −1

C
2 ⊗C

3 ⊗C
c 3c + 8 3c + 4

C
2 ⊗C

b ⊗C
c 3b + 3c − 1 max{3b + 3c − 9,2b + 3c − 2}

C
3 ⊗C

3 ⊗C
3 20 18

C
3 ⊗C

3 ⊗C
c 3c + 11 3c + 9

C
3 ⊗C

b ⊗C
c 3b + 3c + 2 3b + 3c

C
a ⊗C

b ⊗C
c 3a + 3b + 3c − 7 2a + 3b + 3c − 6

of rescalings, and permutations of summands. By writing p : (A′)∗ → B ′ ⊗ C′, we

obtain the slice
( s

s+t
t

)
. The set of rank-2 elements in this linear space is given by

the determinant of the matrix. This set consists of three lines in (A′)∗ spanned by a∗
1 ,

a∗
1 −a∗

2 , and a∗
2 . Thus the triple a1, (a1 +a2), a2 is (up to order and scale) determined

by p. In a similar way we consider the other slices, and 2 × 2 minors of the resulting
matrices, to conclude that triples b1, b2, b3 and c1, c2, c3 are determined by p, up to
order and scale. It is easy to see, that any meaningfully different choice of orders, or
scaling will give a different tensor, so the preimage of p consists of 6 components,
each of dimension 7, isomorphic to (C∗)7.

Next, we calculate the image of tangent map of φ at any q ∈ φ−1(p), say q =
[(a1, b1, c1), (a1 + a2, b2, c2), (a2, b3, c3)]. This image is spanned by the following
tensors, all considered modulo p, as we look at a subspace of TpP(A ⊗ B ⊗ C) �
(A ⊗ B ⊗ C)/p:

ai ⊗ b1 ⊗ c1 ai ⊗ b2 ⊗ c2 ai ⊗ b3 ⊗ c3 for any i ∈ {1, . . . ,dimA},
a1 ⊗ bj ⊗ c1 (a1 + a2) ⊗ bj ⊗ c2 a2 ⊗ bj ⊗ c3 for any j ∈ {1, . . . ,dimB},
a1 ⊗ b1 ⊗ ck (a1 + a2) ⊗ b2 ⊗ ck a2 ⊗ b3 ⊗ ck for any k ∈ {1, . . . ,dimC}.

This space is independent of the choice of the order or scalings in q . Also the linear
space above has dimension

3(dimA + dimB + dimC) − 7 = dimσ3(PA × PB × PC),

because there are 3(dimA+dimB +dimC) tensors listed above, and each a1 ⊗b1 ⊗
c1, (a1 + a2) ⊗ b2 ⊗ c2, a2 ⊗ b3 ⊗ c3 is listed three times and p is a sum of those
three tensors. One can check there are no other linear dependencies.

Thus, φ : W → P(A ⊗ B ⊗ C) is a map with constant rank on an open subset
containing φ−1(p). Therefore the image is non-singular at p, as claimed. �
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We summarize our results in Table 2. In particular, it follows that σ3(Seg(PA ×
PB × PC)) is always non-singular in codimension 1, that is, codimension of the
singular locus is at least 2. Moreover, it is of codimension 2 if and only if, one of the
factors is C3, and the others have dimension at least 3.
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