Completely regular clique graphs

Hiroshi Suzuki

Received: 22 September 2012 / Accepted: 12 October 2013 / Published online: 5 November 2013
© Springer Science+Business Media New York 2013

Abstract

Let $\Gamma=(X, R)$ be a connected graph. Then Γ is said to be a completely regular clique graph of parameters (s, c) with $s \geq 1$ and $c \geq 1$, if there is a collection \mathcal{C} of completely regular cliques of size $s+1$ such that every edge is contained in exactly c members of \mathcal{C}. In this paper, we show that the parameters of $C \in \mathcal{C}$ as a completely regular code do not depend on $C \in \mathcal{C}$. As a by-product we have that all completely regular clique graphs are distance-regular whenever \mathcal{C} consists of edges. We investigate the case when Γ is distance-regular, and show that Γ is a completely regular clique graph if and only if it is a bipartite half of a distance-semiregular graph.

Keywords Distance-regular graph • Association scheme • Subconstituent algebra • Terwilliger algebra • Completely regular code • Distance-semiregular graph

1 Introduction

In this paper, we only consider finite graphs. Let $\Gamma=(X, R)$ be a connected graph with vertex set X and edge set R consisting of 2-element subsets of X. When $\{x, y\} \in$ R, i.e., x and y are adjacent, we write $x \sim y$. For $x, y \in X, \partial_{\Gamma}(x, y)=\partial(x, y)$ denotes the distance between x and y, i.e., the length of a shortest path between x and y in Γ. The diameter $d(\Gamma)$ is the maximal distance between two vertices. A nonempty subset C of X is said to be a clique if every distinct vertices in C are adjacent.

A subset C of X is often called a code in $\Gamma=(X, R)$, and $\Gamma_{i}(C)=\{x \in X \mid$ $\partial(x, C)=i\}$ is called the i th subconstituent with respect to C, where $\partial(x, C)=$ $\min \{\partial(x, y) \mid y \in C\}$. We write $\Gamma(C)$ for $\Gamma_{1}(C)$. The number $t=t(C)=\max \{i \mid$ $\left.\Gamma_{i}(C) \neq \emptyset\right\}$ is called the covering radius of C. If C and C^{\prime} are subsets of X, $\partial\left(C, C^{\prime}\right)=\min \left\{\partial(x, y) \mid x \in C, y \in C^{\prime}\right\}$. When $C=\{x\}$, we write $\Gamma_{i}(x)$ for $\Gamma_{i}(\{x\})$,

[^0]and set $\Gamma(x)$ for $\Gamma_{1}(x)$. The number $k(x)=|\Gamma(x)|$ is called the valency of x. For $x, y \in X$ with $\partial(x, y)=i$ with $i=0,1, \ldots, d(\Gamma)$, let
\[

$$
\begin{aligned}
& B_{i}(x, y)=\Gamma_{i+1}(x) \cap \Gamma(y), \quad A_{i}(x, y)=\Gamma_{i}(x) \cap \Gamma(y), \\
& C_{i}(x, y)=\Gamma_{i-1}(x) \cap \Gamma(y),
\end{aligned}
$$
\]

and $b_{i}(x, y)=\left|B_{i}(x, y)\right|, a_{i}(x, y)=\left|A_{i}(x, y)\right|$ and $c_{i}(x, y)=\left|C_{i}(x, y)\right|$.
A connected graph $\Gamma=(X, R)$ of diameter $D=d(\Gamma)$ is said to be distanceregular if for each $i \in\{0,1,2, \ldots, D\}$, the numbers $c_{i}=c_{i}(x, y), a_{i}=a_{i}(x, y)$ and $b_{i}=b_{i}(x, y)$ depend only on $i=\partial(x, y)$. In this case, the numbers b_{i}, a_{i}, c_{i} with $i=0,1, \ldots, D$ are called the parameters of Γ. For distance-regular graphs we refer the reader [4]. We mainly follow the notation and the terminologies in the monograph.

Let $\Gamma=(X \cup Y, R)$ be a connected bipartite graph with the bipartition $X \cup Y$, i.e., there is no edge within X and Y. Let $d^{X}=d^{X}(\Gamma)=\max \{\partial(x, y) \mid x \in X, y \in X \cup$ $Y\}$. Then Γ is said to be distance-semiregular on X, if for each $i \in\left\{0,1,2, \ldots, d^{X}\right\}$, the numbers $c_{i}^{X}=c_{i}(x, y)$, and $b_{i}^{X}=b_{i}(x, y)$ depend only on $i=\partial(x, y)$ whenever $x \in X$ and $y \in X \cup Y$. In this case the numbers b_{i}^{X}, c_{i}^{X} with $i=0,1, \ldots, d^{X}$ are called the parameters of Γ. Note that each vertex $y \in Y$ is of valency $b_{0}^{Y}=b_{1}^{X}+c_{1}^{X}$ and distance-semiregular graphs are biregular, i.e., the valency of a vertex depends only on the part the vertex belongs to. If $\Gamma=(X \cup Y, R)$ is distance-semiregular on both X and Y, Γ is called distance-biregular. For more information on distance-biregular graphs and distance-semiregular graphs, see [9, 11, 14].

Let $\Gamma=(X, R)$ be a connected graph, and C a nonempty subset of X with covering radius $t=t(C)$. Then C is said to be a completely regular code if $\gamma_{i}=\gamma_{i}(C)=$ $\left|\Gamma_{i-1}(C) \cap \Gamma(x)\right|, \alpha_{i}=\alpha_{i}(C)=\left|\Gamma_{i}(C) \cap \Gamma(x)\right|, \beta_{i}=\beta_{i}(C)=\left|\Gamma_{i+1}(C) \cap \Gamma(x)\right|$ do not depend on $x \in \Gamma_{i}(C)$ for $i \in\{0,1, \ldots, t\}$. In this case the numbers $\gamma_{i}, \alpha_{i}, \beta_{i}$ with $i=0,1, \ldots, t$ are called the parameters of C. We also write $\gamma_{i}(C), \alpha_{i}(C)$ or $\beta_{i}(C)$ exists when the corresponding number does not depend on the choice of $x \in \Gamma_{i}(C)$. For completely regular codes of distance-regular graphs, see [4, Sect. 11.1] and [13]. For a special type of completely regular codes in a regular graph, see [7].

Let $\Gamma=(X, R)$ be a connected graph. In [11], C.D. Godsil and J. Shawe-Taylor showed that $\{x\}$ is completely regular for each $x \in X$, if and only if Γ is either distance-regular or distance-biregular. As a corollary, we have that distance-regular graphs can be characterized as regular connected graphs such that $\{x\}$ is completely regular for each $x \in X$. It is not difficult to show that a connected bipartite graph $\Gamma=(X \cup Y, R)$ with the bipartition $X \cup Y$ is distance-semiregular on X, if and only if it is biregular and $\{x\}$ is completely regular for each $x \in X$. Recently it was shown in [6] that each edge of Γ is completely regular with the same parameters, if and only if Γ is either bipartite or almost bipartite distance-regular, i.e., distance-regular graphs of diameter D with $a_{0}=a_{1}=\cdots=a_{D-1}=0$. These results can be viewed as characterizations of distance-regularity by complete regularity of its substructures, i.e., cliques.

On the other hand, many distance-regular graphs contain many completely regular codes of various sizes. These completely regular codes correspond to substructures of the geometry associated with them. If Γ is a distance-regular graph of diameter D isomorphic to one of the Johnson graphs, the Hamming graphs, the

Grassmann graphs, the dual polar graphs, the bilinear forms graphs, then for each $i \in\{0,1, \ldots, D\}$ and vertices x, y at distance i, there is a geodetically closed completely regular code of diameter i containing x and y. In each case, there is a set \mathcal{C} of completely regular maximal cliques such that the incidence graph on $X \cup \mathcal{C}$ associated with it is distance-semiregular.

Definition 1 Let $\Gamma=(X, R)$ be a connected graph, and let \mathcal{C} be a collection of cliques of Γ. Then Γ is said to be a completely regular clique graph with parameters (s, c) with respect to \mathcal{C}, if the following are satisfied.
(i) Each member $C \in \mathcal{C}$ is a completely regular code of size $s+1 \geq 2$.
(ii) Each edge is contained in exactly c members of \mathcal{C} and $c \geq 1$.

When \mathcal{C} consists of Delsarte cliques, it is called a Delsarte clique graph with parameters (s, c) in $[2,3]$, and Delsarte clique graphs with parameters $(s, 1)$ are called geometric in [1]. Many examples are listed in [2].

Our first result in this paper is concerning the parameters of $C \in \mathcal{C}$.

Theorem 1 Let Γ be a completely regular clique graph with parameters (s, c) with respect to \mathcal{C}. Then the parameters of a completely regular code $C \in \mathcal{C}$ do not depend on C.

We prove Theorem 1 in Sect. 2 using modules of Terwilliger algebra $\mathcal{T}(C)$ with respect to $C \in \mathcal{C}$, and applying the fact that C is completely regular if and only if the primary $\mathcal{T}(C)$-module is thin. For Terwilliger algebras $\mathcal{T}(C)$ and their modules, see [15].

A connected graph is called edge distance-regular if every edge is a completely regular code with the same parameters. See [5,10]. Because of Theorem 1, the condition on parameters is not necessary. Combining with the result in [6] mentioned above, we have the following.

Corollary 2 Let $\Gamma=(X, R)$ be a connected graph of diameter D. Then the following are equivalent.
(i) For every $\{x, y\} \in R,\{x, y\}$ is a completely regular code.
(ii) Γ is a distance-regular graph with $a_{1}=\cdots=a_{D-1}=0$.

Next result is a characterization of distance-regular completely regular clique graphs. The proof will be given in Sect. 3. It can be viewed as a characterization of the collinearity graphs of distance-regular geometries in [8, 12].

Theorem 3 Let $\Gamma=(X, R)$ be a distance-regular graph. Then Γ is a completely regular clique graph if and only if Γ is the bipartite half of a distance-semiregular graph $\tilde{\Gamma}=(X \cup Y, \tilde{R})$ on X. Here the bipartite half of $\tilde{\Gamma}=(X \cup Y, \tilde{R})$ on X is the graph with vertex set X such that two vertices are adjacent whenever they are at distance 2 in $\tilde{\Gamma}$.

2 Parameter set of completely regular clique codes

The main objective of this section is to prove Theorem 1.

Lemma 4 Let $\Gamma=(X, R)$ be a connected graph of diameter $D>1$. Let \mathcal{C} be a collection of cliques of Γ. Then the following hold.
(i) Let $C, C^{\prime} \in \mathcal{C}$ with $C \cap C^{\prime} \neq \emptyset$. Suppose $\alpha_{0}(C), \beta_{0}(C), \alpha_{0}\left(C^{\prime}\right)$ and $\beta_{0}\left(C^{\prime}\right)$ exist. Then the valencies of the vertices in $C \cup C^{\prime}$ are the same.
(ii) If every edge is contained in at least one $C \in \mathcal{C}$, and both $\alpha_{0}(C)$ and $\beta_{0}(C)$ exist for all $C \in \mathcal{C}$, then Γ is regular with valency $k=\alpha_{0}(C)+\beta_{0}(C)$ for any $C \in \mathcal{C}$.

Proof (i) For all $x, y \in C, k(x)=\beta_{0}(C)+\alpha_{0}(C)=k(y)$, and for all $x^{\prime}, y^{\prime} \in C^{\prime}$, $k\left(x^{\prime}\right)=\beta_{0}\left(C^{\prime}\right)+\alpha_{0}\left(C^{\prime}\right)=k\left(y^{\prime}\right)$. Since $C \cap C^{\prime} \neq \emptyset$, the valency $k(x)$ is constant on $C \cup C^{\prime}$.
(ii) Since Γ is connected, the assertion follows from (i).

Let $\Gamma=(X, R)$ be a connected graph of diameter D and C a nonempty subset of X with covering radius $t(C)$. Let $V=\boldsymbol{R}^{X}$ denote the real vector space consisting of column vectors whose entries are indexed by X. For $\boldsymbol{u}, \boldsymbol{v} \in V,\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{T} \boldsymbol{v}$ and $\|\boldsymbol{u}\|=\sqrt{\langle\boldsymbol{u}, \boldsymbol{u}\rangle}$. Let $A \in \operatorname{Mat}_{X}(\boldsymbol{R})$ be the adjacency matrix of Γ. Let $\theta_{0}>\theta_{1}>\cdots>$ θ_{r} be all the distinct eigenvalues of A, and $E_{0}, E_{1}, \ldots, E_{r} \in \boldsymbol{R}[A]$ the corresponding primitive idempotents, where $\boldsymbol{R}[A]$ is the polynomial algebra in A over the real number field. Thus,

$$
\begin{aligned}
& E_{0}+E_{1}+\cdots+E_{r}=I, \quad E_{i} E_{j}=\delta_{i, j} E_{i}, \quad \text { and } \\
& A E_{i}=\theta_{i} E_{i} \quad \text { for } i, j \in\{0,1, \ldots, r\}
\end{aligned}
$$

For each $i \in\{0,1, \ldots, t(C)\}$, let $E_{i}^{*}(C)$ denote the projection onto the subspace of V spanned by unit vectors corresponding to vertices in $\Gamma_{i}(C)$. We let $\mathcal{T}(C)$ denote the subalgebra of $\operatorname{Mat}_{X}(\boldsymbol{R})$ generated by A and $E_{0}^{*}(C), E_{1}^{*}(C), \ldots, E_{t(C)}^{*}(C)$. Let $\mathbf{1} \in V$ be the all one vector. A $\mathcal{T}(C)$-module W, i.e., a vector subspace of V invariant under the action of $\mathcal{T}(C)$, is said to be thin if $\operatorname{dim} E_{i}^{*}(C) W \leq 1$ for all $i \in\{0,1, \ldots, t(C)\} . \mathcal{T}(C) 1$ is called the primary module of $\mathcal{T}(C)$. Note that $\boldsymbol{w}_{i}=E_{i}^{*}(C) \mathbf{1}$ is the characteristic vector of $\Gamma_{i}(C)$ for $i \in\{0,1, \ldots, t(C)\}$ and $W_{C}=\operatorname{Span}\left(\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{t(C)}\right) \subset \mathcal{T}(C) \mathbf{1}$. It is easy to see that if C is a completely regular code with parameters $\gamma_{i}, \alpha_{i}, \beta_{i}(i=0,1, \ldots, t(C))$, then

$$
A \boldsymbol{w}_{i}=\beta_{i-1} \boldsymbol{w}_{i-1}+\alpha_{i} \boldsymbol{w}_{i}+\gamma_{i+1} \boldsymbol{w}_{i+1} \quad \text { for } i=0,1, \ldots, t(C) .
$$

Here $\boldsymbol{w}_{-1}=\boldsymbol{w}_{t(C)+1}=\mathbf{0}$, and β_{-1} and $\gamma_{t(C)+1}$ are indeterminate. Hence in this case $W_{C}=\mathcal{T}(C) \mathbf{1}$ and W_{C} is a thin irreducible $\mathcal{T}(C)$-module. See [15, Proposition 7.2].

The ideas and techniques of proofs of the following results are taken from the lecture note by P. Terwilliger [16].

Proposition 5 Let $\Gamma=(X, R)$ be a connected graph of diameter $D>1$. Suppose C, C^{\prime} are completely regular codes that are cliques of Γ with $\left|C \cap C^{\prime}\right|=e>0$. Let

$$
\begin{aligned}
W & =W_{C}=\operatorname{Span}\left(\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{t}\right), \quad \text { where } \boldsymbol{w}_{i}=E_{i}^{*}(C) \mathbf{1}, \\
A \boldsymbol{w}_{i} & =\beta_{i-1} \boldsymbol{w}_{i-1}+\alpha_{i} \boldsymbol{w}_{i}+\gamma_{i+1} \boldsymbol{w}_{i+1}, \\
W^{\prime} & =W_{C^{\prime}}=\operatorname{Span}\left(\boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{1}^{\prime}, \ldots, \boldsymbol{w}_{t^{\prime}}^{\prime}\right), \quad \text { where } \boldsymbol{w}_{i}^{\prime}=E_{i}^{*}\left(C^{\prime}\right) \mathbf{1}, \\
A \boldsymbol{w}_{i}^{\prime} & =\beta_{i-1}^{\prime} \boldsymbol{w}_{i-1}^{\prime}+\alpha_{i}^{\prime} \boldsymbol{w}_{i}^{\prime}+\gamma_{i+1}^{\prime} \boldsymbol{w}_{i+1}^{\prime},
\end{aligned}
$$

with $t=t(C)$ and $t^{\prime}=t\left(C^{\prime}\right)$. Then the following hold.
(i) There are polynomials $p(\lambda), p^{\prime}(\lambda) \in \boldsymbol{R}[\lambda]$ such that

$$
\operatorname{proj}_{W^{\prime}} \boldsymbol{w}_{0}=p(A) \frac{\left\|\boldsymbol{w}_{0}\right\|}{\left\|\boldsymbol{w}_{0}^{\prime}\right\|} \boldsymbol{w}_{0}^{\prime}, \quad \operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime}=p^{\prime}(A) \frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|}{\left\|\boldsymbol{w}_{0}\right\|} \boldsymbol{w}_{0}
$$

where with $k=\alpha_{0}+\beta_{0}$,

$$
\begin{aligned}
p(\lambda) & =\frac{\left\|\boldsymbol{w}_{0}\right\|^{2}-e}{\left(k-\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} \lambda+\frac{k e-\left\|\boldsymbol{w}_{0}\right\|^{2}\left(\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}-1\right)}{\left(k-\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|}, \\
p^{\prime}(\lambda) & =\frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}-e}{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} \lambda+\frac{k e-\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}\left(\left\|\boldsymbol{w}_{0}\right\|^{2}-1\right)}{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} .
\end{aligned}
$$

(ii) $p^{\prime}\left(\theta_{i}\right) m_{W}\left(\theta_{i}\right)=p\left(\theta_{i}\right) m_{W^{\prime}}\left(\theta_{i}\right)$ for all i, where

$$
m_{W}\left(\theta_{i}\right)=\frac{\left\|E_{i} \boldsymbol{w}_{0}\right\|^{2}}{\left\|\boldsymbol{w}_{0}\right\|^{2}} \quad \text { and } \quad m_{W^{\prime}}\left(\theta_{i}\right)=\frac{\left\|E_{i} \boldsymbol{w}_{0}^{\prime}\right\|^{2}}{\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}} .
$$

(iii) If $\left\|\boldsymbol{w}_{0}\right\|=\left\|\boldsymbol{w}_{0}^{\prime}\right\|$, i.e., $|C|=\left|C^{\prime}\right|$, then $m_{W}\left(\theta_{i}\right)=m_{W^{\prime}}\left(\theta_{i}\right)$ for all i.

Proof Since $C \cap C^{\prime} \neq \emptyset$, the valencies of the vertices in $C \cup C^{\prime}$ are the same by Lemma 4. Let $k=\alpha_{0}+\beta_{0}=\alpha_{0}^{\prime}+\beta_{0}^{\prime}$ be the valency of vertices in $C \cup C^{\prime}$.
(i) Since $A \boldsymbol{w}_{0}=\alpha_{0} \boldsymbol{w}_{0}+\gamma_{1} \boldsymbol{w}_{1}$ with $\gamma_{1} \neq 0$ and $\alpha_{0}=|C|-1=\left\|\boldsymbol{w}_{0}\right\|^{2}-1$,

$$
\boldsymbol{w}_{1}=\frac{1}{\gamma_{1}}\left(A-\left(\left\|\boldsymbol{w}_{0}\right\|^{2}-1\right) I\right) \boldsymbol{w}_{0} .
$$

Since $C^{\prime} \subset C \cup \Gamma(C),\left\langle\boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{i}\right\rangle=0$ for $i=2,3, \ldots, t$. Let $\operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime}=\xi_{0} \boldsymbol{w}_{0}+\xi_{1} \boldsymbol{w}_{1}$. By counting the edges between C and $\Gamma(C)$ in two ways, we have

$$
\left\|\boldsymbol{w}_{1}\right\|^{2}=\left\langle\boldsymbol{w}_{1}, \boldsymbol{w}_{1}\right\rangle=|\Gamma(C)|=\frac{\beta_{0}|C|}{\gamma_{1}}=\frac{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|^{2}}{\gamma_{1}},
$$

$e=\left\langle\boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{0}\right\rangle=\left\langle\operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{0}\right\rangle=\xi_{0}\left\|\boldsymbol{w}_{0}\right\|^{2}$, and

$$
\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}-e=\left\langle\boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{1}\right\rangle=\left\langle\operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime}, \boldsymbol{w}_{1}\right\rangle=\xi_{1}\left\|\boldsymbol{w}_{1}\right\|^{2}=\xi_{1} \frac{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|^{2}}{\gamma_{1}}
$$

Therefore,

$$
\begin{aligned}
& \operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime} \\
& \quad=\xi_{0} \boldsymbol{w}_{0}+\xi_{1} \boldsymbol{w}_{1} \\
& \quad=\frac{e}{\left\|\boldsymbol{w}_{0}\right\|^{2}} \boldsymbol{w}_{0}+\frac{\gamma_{1}\left(\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}-e\right)}{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|^{2}} \cdot \frac{1}{\gamma_{1}}\left(A-\left(\left\|\boldsymbol{w}_{0}\right\|^{2}-1\right) I\right) \boldsymbol{w}_{0} \\
& \quad=\frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|}{\left\|\boldsymbol{w}_{0}\right\|}\left(\frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}-e}{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} A+\frac{k e-\left\|\boldsymbol{w}_{0}^{\prime}\right\|^{2}\left(\left\|\boldsymbol{w}_{0}\right\|^{2}-1\right)}{\left(k-\left\|\boldsymbol{w}_{0}\right\|^{2}+1\right)\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} I\right) \boldsymbol{w}_{0} \\
& \quad=p^{\prime}(A) \frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|}{\left\|\boldsymbol{w}_{0}\right\|} \boldsymbol{w}_{0} .
\end{aligned}
$$

By symmetry we obtain the formula of $\operatorname{proj}_{W^{\prime}} \boldsymbol{w}_{0}$ as well.
(ii) Since $E_{i} \boldsymbol{w}_{0} \in W$ and A is a real symmetric matrix,

$$
\begin{aligned}
\frac{\left\langle E_{i} \boldsymbol{w}_{0}, E_{i} \boldsymbol{w}_{0}^{\prime}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} & =\frac{\left\langle E_{i} \boldsymbol{w}_{0}, \boldsymbol{w}_{0}^{\prime}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|}=\frac{\left\langle E_{i} \boldsymbol{w}_{0}, \operatorname{proj}_{W} \boldsymbol{w}_{0}^{\prime}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|}=\frac{\left\|\boldsymbol{w}_{0}^{\prime}\right\|}{\left\|\boldsymbol{w}_{0}\right\|} \frac{\left\langle E_{i} \boldsymbol{w}_{0}, p^{\prime}(A) \boldsymbol{w}_{0}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|\left\|\boldsymbol{w}_{0}^{\prime}\right\|} \\
& =\frac{\left\langle p^{\prime}(A) E_{i} \boldsymbol{w}_{0}, \boldsymbol{w}_{0}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|^{2}}=p^{\prime}\left(\theta_{i}\right) \frac{\left\langle E_{i} \boldsymbol{w}_{0}, E_{i} \boldsymbol{w}_{0}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|^{2}}=p^{\prime}\left(\theta_{i}\right) \frac{\left\|E_{i} \boldsymbol{w}_{0}\right\|^{2}}{\left\|\boldsymbol{w}_{0}\right\|^{2}} \\
& =p^{\prime}\left(\theta_{i}\right) m_{W}\left(\theta_{i}\right)
\end{aligned}
$$

By symmetry we have (ii).
(iii) Suppose $\left\|\boldsymbol{w}_{0}\right\|=\left\|\boldsymbol{w}_{0}^{\prime}\right\|$. Then $p(\lambda)=p^{\prime}(\lambda)$ by (i). Therefore $m_{W}\left(\theta_{i}\right)=$ $m_{W^{\prime}}\left(\theta_{i}\right)$ for all i except possibly one i for which $p\left(\theta_{i}\right)=0$. Since

$$
1=\frac{\left\langle\boldsymbol{w}_{0}, \boldsymbol{w}_{0}\right\rangle}{\left\|\boldsymbol{w}_{0}\right\|^{2}}=\sum_{i=0}^{r} \frac{\left\|E_{i} \boldsymbol{w}_{0}\right\|^{2}}{\left\|\boldsymbol{w}_{0}\right\|^{2}}=\sum_{i=0}^{r} m_{W}\left(\theta_{i}\right)
$$

$m_{W}\left(\theta_{i}\right)=m_{W^{\prime}}\left(\theta_{i}\right)$ for all i without an exception.
Proposition 6 Let $\Gamma=(X, R)$ be a connected graph of diameter $D>1$. Suppose Γ is regular of valency k. Let C, C^{\prime} be completely regular codes that are cliques in Γ with $C \cap C^{\prime} \neq \emptyset$. If $|C|=\left|C^{\prime}\right|$, then the parameters of C and C^{\prime} coincide.

Proof We use the notation in the proof of Proposition 5. By Proposition 5(iii), $m_{W}\left(\theta_{i}\right)=m_{W^{\prime}}\left(\theta_{i}\right)$ for all i. Since $E_{i} E_{j}=\delta_{i, j} E_{i}$ for $i, j \in\{0,1, \ldots, r\}$, nonzero vectors in the set $\left\{E_{0} \boldsymbol{w}_{0}, E_{1} \boldsymbol{w}_{0}, \ldots, E_{r} \boldsymbol{w}_{0}\right\}$ are perpendicular to each other, and hence they form a linearly independent set of vectors. Since $\boldsymbol{R}[A] \boldsymbol{w}_{0}=\operatorname{Span}\left\{E_{0} \boldsymbol{w}_{0}\right.$, $\left.E_{1} \boldsymbol{w}_{0}, \ldots, E_{r} \boldsymbol{w}_{0}\right\}, \operatorname{dim} \boldsymbol{R}[A] \boldsymbol{w}_{0}=\operatorname{dim}(W)=t(C)+1$ is equal to the number of i such that $E_{i} \boldsymbol{w}_{0} \neq \mathbf{0}$, we have $t(C)=t\left(C^{\prime}\right)$. Let t be this number. Let $m\left(\theta_{i}\right)=$ $m_{W}\left(\theta_{i}\right)=\left\|E_{i} \boldsymbol{w}_{0}\right\|^{2} /\left\|\boldsymbol{w}_{0}\right\|^{2}$, and let $\boldsymbol{R}_{t}[\lambda]$ be the set of all polynomials of degree at most t. Then, for $f, g \in \boldsymbol{R}_{t}[\lambda]$,

$$
\langle f, g\rangle_{m}=\sum_{i=0}^{r} f\left(\theta_{i}\right) g\left(\theta_{i}\right) m\left(\theta_{i}\right)
$$

defines an inner product on $\boldsymbol{R}_{t}[\lambda]$. Let $q_{0}, q_{1}, \ldots, q_{t}$ be uniquely determined monic orthogonal polynomials with respect to this inner product. Let $p_{0}, p_{1}, \ldots, p_{t}, p_{t+1}$ and $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{t}^{\prime}, p_{t+1}^{\prime}$ be polynomials defined by the following recursive relations:

$$
\begin{array}{lll}
p_{0}=1, & \lambda p_{i}=\beta_{i-1} p_{i-1}+\alpha_{i} p_{i}+\gamma_{i+1} p_{i+1}, & \text { for } i=0,1, \ldots, t \text { with } p_{-1}=0, \\
p_{0}^{\prime}=1, & \lambda p_{i}^{\prime}=\beta_{i-1}^{\prime} p_{i-1}^{\prime}+\alpha_{i}^{\prime} p_{i}^{\prime}+\gamma_{i+1}^{\prime} p_{i+1}^{\prime}, & \text { for } i=0,1, \ldots, t \text { with } p_{-1}^{\prime}=0 .
\end{array}
$$

Here, $\beta_{i}=\beta_{i}(C), \alpha_{i}=\alpha_{i}(C), \gamma_{i}=\gamma_{i}(C), \beta_{i}^{\prime}=\beta_{i}\left(C^{\prime}\right), \alpha_{i}^{\prime}=\alpha_{i}\left(C^{\prime}\right), \gamma_{i}^{\prime}=\gamma_{i}\left(C^{\prime}\right)$ $(i=0,1, \ldots, t)$, and assume $\gamma_{t+1}=\gamma_{t+1}^{\prime}=1, \beta_{-1}=\beta_{-1}^{\prime}=0$. Then we have $p_{i}(A) \boldsymbol{w}_{0}=\boldsymbol{w}_{i}, p_{i}^{\prime}(A) \boldsymbol{w}_{0}^{\prime}=\boldsymbol{w}_{i}^{\prime}$ and $p_{t+1}(A) \boldsymbol{w}_{0}=p_{t+1}^{\prime}(A) \boldsymbol{w}_{0}^{\prime}=\mathbf{0}$. Moreover, for $i, j \in\{0,1, \ldots, t+1\}$ with $\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t+1}^{\prime}=\mathbf{0}$,

$$
\begin{aligned}
\left\langle\boldsymbol{w}_{i}, \boldsymbol{w}_{j}\right\rangle & =\left\langle p_{i}(A) \boldsymbol{w}_{0}, p_{j}(A) \boldsymbol{w}_{0}\right\rangle \\
& =\left\langle p_{i}(A) \sum_{h=0}^{r} E_{h} \boldsymbol{w}_{0}, p_{j}(A) \sum_{h^{\prime}=0}^{r} E_{h^{\prime}} \boldsymbol{w}_{0}\right\rangle \\
& =\sum_{h=0}^{r} \sum_{h^{\prime}=0}^{r} p_{i}\left(\theta_{h}\right) p_{j}\left(\theta_{h^{\prime}}\right)\left\langle E_{h} \boldsymbol{w}_{0}, E_{h^{\prime}} \boldsymbol{w}_{0}\right\rangle \\
& =\sum_{h=0}^{r} p_{i}\left(\theta_{h}\right) p_{j}\left(\theta_{h}\right) m\left(\theta_{h}\right)\left\|\boldsymbol{w}_{0}\right\|^{2} \\
& =\left\langle p_{i}, p_{j}\right\rangle_{m}\left\|\boldsymbol{w}_{0}\right\|^{2} .
\end{aligned}
$$

Therefore we have for $i, j \in\{0,1, \ldots, t\}$,

$$
\left\langle p_{i}, p_{j}\right\rangle_{m}=\delta_{i, j}=\left\langle p_{i}^{\prime}, p_{j}^{\prime}\right\rangle_{m},
$$

and $\left\langle p_{t+1}, p_{t+1}\right\rangle_{m}=\left\langle p_{t+1}^{\prime}, p_{t+1}^{\prime}\right\rangle_{m}=0$. Considering the leading coefficients of p_{i} and p_{j}, we have

$$
\gamma_{1} \gamma_{2} \cdots \gamma_{i} p_{i}=q_{i}=\gamma_{1}^{\prime} \gamma_{2}^{\prime} \cdots \gamma_{i}^{\prime} p_{i}^{\prime} \quad \text { for all } i \in\{0,1, \ldots, t\} .
$$

In particular, $q_{0}, q_{2}, \ldots q_{t}$ with q_{t+1}, monic characteristic polynomial of A on W, satisfy
$\lambda q_{i}=\beta_{i-1} \gamma_{i} q_{i-1}+\alpha_{i} q_{i}+q_{i+1}=\beta_{i-1}^{\prime} \gamma_{i}^{\prime} q_{i-1}+\alpha_{i}^{\prime} q_{i}+q_{i+1} \quad$ for $i=0,1,2, \ldots, t$.
Therefore we have

$$
\beta_{i-1} \gamma_{i}=\beta_{i-1}^{\prime} \gamma_{i}^{\prime} \quad \text { and } \quad \alpha_{i}=\alpha_{i}^{\prime} \quad \text { for } i=0,1,2, \ldots, t .
$$

Since Γ is regular of valency $k, \alpha_{0}=\alpha_{0}^{\prime}$ implies $\beta_{0}=k-\alpha_{0}=k-\alpha_{0}^{\prime}=\beta_{0}^{\prime}$. Hence we have $\gamma_{1}=\gamma_{1}^{\prime}$ by above. Since $\alpha_{i}=\alpha_{i}^{\prime}$ for all i, by induction, we can conclude that all parameters are equal.

Proof of Theorem 1 Let Γ be a completely regular clique graph with parameters (s, c) with respect to \mathcal{C}. Since every edge is contained in a member of \mathcal{C}, Γ is regular by Lemma 4 . Now the fact that the parameters of completely regular codes $C \in \mathcal{C}$ do not depend on C follows from Proposition 6.

Example 1 The prism graph below has two types of completely regular cliques, i.e., triangles $\{a, b, c\}$ and $\{d, e, f\}$, and edges $\{a, f\},\{c, d\}$ and $\{b, e\}$. Parameters are different. If $C=\{a, b, c\}$ and $C^{\prime}=\{a, f\}$, then $p(\lambda)=\frac{1}{6} \lambda$ and $p^{\prime}(\lambda)=\frac{1}{6}(\lambda-1)$.

Example 2 The following graph is 3-regular with 8 vertices. Both edges $\{a, b\}$ and $\{c, d\}$ are completely regular but parameters are different. Note that these two edges do not have a common vertex.

3 Completely regular clique graphs

In this section, we prove Theorem 3. We need the following result.
Proposition 7 (A. Neumaier [13, Theorem 4.1]) Let $\Gamma=(X, R)$ be a distanceregular graph and let C be a nonempty subset of X with covering radius $t=t(C)$. For $i=0,1, \ldots$, , let $\mu_{i}=\left|\Gamma_{i}(x) \cap C\right|$ and $\lambda_{i}=\left|\Gamma_{i+1}(x) \cap C\right|$ when $x \in \Gamma_{i}(C)$.
(i) C is completely regular if and only if μ_{i} and λ_{i} are independent of the choice of $x \in \Gamma_{i}(C)$.
(ii) Suppose C is completely regular with the parameters $\gamma_{i}, \alpha_{i}, \beta_{i}$ with $i \in$ $\{1,2, \ldots, t\}$. Then

$$
\begin{aligned}
& \gamma_{i}=\frac{\mu_{i} c_{i}}{\mu_{i-1}}, \quad \alpha_{i}=a_{i}+\frac{\lambda_{i} c_{i+1}}{\mu_{i}}-\frac{\lambda_{i-1} c_{i}}{\mu_{i-1}}, \quad \text { and } \\
& \beta_{i}=b_{i}-\frac{\left(\mu_{i}-\mu_{i-1}-\lambda_{i-1}\right) c_{i}}{\mu_{i-1}}-\frac{\lambda_{i} c_{i+1}}{\mu_{i}} .
\end{aligned}
$$

Proposition 8 Let $\widetilde{\Gamma}=(X \cup Y, \widetilde{R})$ be a distance-semiregular graph on X with parameters b_{i}^{X}, c_{i}^{X} with $i=0,1, \ldots, d^{X}$. Let Γ be the bipartite half of $\widetilde{\Gamma}$ on X. For $y \in Y$, write $C_{y}=\widetilde{\Gamma}(y) \subset X$, and set $\mathcal{C}=\left\{C_{y} \mid y \in Y\right\}$. Then the following hold.
(i) Γ is distance-regular.
(ii) Each element $C \in \mathcal{C}$ is a clique and a completely regular code in Γ.
(iii) Each edge in Γ is contained in c_{2}^{X} members of \mathcal{C}. In particular, $\Gamma=(X, R)$ is a completely regular clique graph of parameters $\left(b_{0}^{Y}-1, c_{2}^{X}\right)$.

Proof (i) This is clear. See [14].
(ii) Since Γ is a distance-2-graph of $\widetilde{\Gamma}$, each C_{y} is a clique in Γ. Let $C=C_{y} \in \mathcal{C}$. We apply Proposition 7 to show that C is completely regular. Let $x \in X$ with $\partial_{\Gamma}(x, C)=i$. Then $\partial_{\widetilde{\Gamma}}(x, y)=2 i+1$. Hence

$$
\mu_{i}(x)=\left|\Gamma_{i}(x) \cap C\right|=\left|\widetilde{\Gamma}_{2 i}(x) \cap \widetilde{\Gamma}(y)\right|=c_{2 i+1}^{X}
$$

Therefore $\mu_{i}(x)$ does not depend on the choice of $x \in \Gamma_{i}(C)$. Since C is a clique, $\lambda_{i}(x)=|C|-\mu_{i}(x)$ and $\lambda_{i}(x)$ does not depend on the choice of $x \in \Gamma_{i}(C)$ either.
(iii) For each edge $\left\{x_{1}, x_{2}\right\}$ of Γ there exist c_{2}^{X} vertices $y \in Y$ such that $\left\{x_{1}, x_{2}\right\} \subset$ C_{y}. Thus we have the assertions.

Let $\Gamma=(X, R)$ be a completely regular clique graph with parameters (s, c) with respect to \mathcal{C}. The incidence graph of Γ is a bipartite graph $\widetilde{\Gamma}=(X \cup Y, \widetilde{R})$ with vertex set $X \cup Y$, where $Y=\mathcal{C}$, and edge set $\widetilde{R}=\{(x, y) \mid x \in X, y \in Y$ such that $x \in y\}$. Let c_{i} and b_{i} be parameters of Γ if they exist. Let c_{i}^{X} and b_{i}^{X} denote the parameters of $\widetilde{\Gamma}$ when the base vertex is in X and they exist. We define c_{i}^{Y} and b_{i}^{Y} similarly.

Lemma 9 Let $\widetilde{\Gamma}=(X \cup Y, \widetilde{R})$ be the incidence graph of a completely regular clique graph $\Gamma=(X, R)$ with parameters (s, c) with respect to \mathcal{C}. Then the following hold.
(i) $\widetilde{\Gamma}$ is biregular of valencies $\left(b_{0}^{X}, b_{0}^{Y}\right)$, where $b_{0}^{X}=\left(\beta_{0}+s\right) c / s$ and $b_{0}^{Y}=s+1$. Moreover, $c_{1}^{X}=1, c_{2}^{X}=c, c_{3}^{X}=\gamma_{1}, b_{1}^{X}=s, b_{2}^{X}=\beta_{0} c / s, b_{3}^{X}=s+1-\gamma_{1}$, and $b_{1}^{Y}=b_{0}^{X}-1$.
(ii) Γ is edge regular with $a_{1}=(s-1)+\beta_{0}\left(\gamma_{1}-1\right) / s$.
(iii) If $d(\Gamma)>1$, then Γ is $K_{2,1,1}$-free if and only if $\gamma_{1}=1$ if and only if $a_{1}=s-1$. In this case $c=1$, and each member of \mathcal{C} is a maximal clique.

Proof (i) By Lemma 4(ii), Γ is regular of valency $k=b_{0}=\alpha_{0}+\beta_{0}$. By definition, we have $b_{0}^{Y}=s+1, c_{1}^{X}=1, b_{1}^{X}=b_{0}^{Y}-c_{1}^{X}=s \geq 1, c_{2}^{X}=c$ and $c_{3}^{X}=\gamma_{1}$. We show that b_{0}^{X} exists.

Let $x \in X$ and let

$$
S=\left\{\left(x^{\prime}, y\right) \in X \times Y \mid \partial_{\tilde{\Gamma}}\left(x, x^{\prime}\right)=2, \partial_{\tilde{\Gamma}}(x, y)=\partial_{\tilde{\Gamma}}\left(y, x^{\prime}\right)=1\right\} .
$$

By counting the cardinality of S, we have $|S|=|\widetilde{\Gamma}(x)| b_{1}^{X}=b_{0} c_{2}^{X}$. Hence b_{0}^{X} exists and $b_{0}^{X}=b_{0} c_{2}^{X} / b_{1}^{X}=k c / s$.

Hence $\widetilde{\Gamma}$ is biregular. Therefore b_{i}^{X} exists if and only if c_{i}^{X} exists, $b_{2 i}^{X}+c_{2 i}^{X}=b_{0}^{X}$, $b_{2 i-1}^{X}+c_{2 i-1}^{X}=b_{0}^{Y}$. Since $\alpha_{0}=s$,

$$
b_{2}^{X}=b_{0}^{X}-c_{2}^{X}=k c / s-c=c(k-s) / s=\beta_{0} c / s
$$

The rest follow immediately.
(ii) Since $b_{0}=b_{0}^{X} b_{1}^{X} / c_{2}^{X}$ and $b_{1}=b_{2}^{X} b_{3}^{X} / c_{2}^{X}=\beta_{0}\left(s+1-\gamma_{1}\right) / s$, we have

$$
a_{1}=b_{0}-c_{1}-b_{1}=\beta_{0}+s-1-\beta_{0}\left(s+1-\gamma_{1}\right) / s=(s-1)+\beta_{0}\left(\gamma_{1}-1\right) / s .
$$

(iii) We first prove that Γ is $K_{2,1,1}$-free if and only if $\gamma_{1}=1$. Suppose Γ is $K_{2,1,1-}$ free. Let $y \in X, x, z \in \Gamma(y)$ with $\partial(x, z)=2$ and $\{x, y\} \subset C \in \mathcal{C}$. Since Γ is $K_{2,1,1-}$ free, $\gamma_{1}=|\Gamma(z) \cap C|=1$. Conversely, suppose $\gamma_{1}=1$. If x, y, z, w form a $K_{2,1,1}$ with $\partial(z, w)=2$ and $\{x, y\} \subset C \in \mathcal{C}$, then either z or w is not in C. This contradicts $\gamma_{1}=1$.

By (ii) it is clear that $\gamma_{1}=1$ is equivalent to $a_{1}=s-1$.
Assume these three equivalent conditions. Then clearly $c=1$ and each member of \mathcal{C} is a maximal clique. This proves (iii).

Next we show that the incidence graph of a distance-regular completely regular clique graph is distance-semiregular.

Proposition 10 Let $\Gamma=(X, R)$ be a distance-regular graph of valency k and diameter D. Suppose Γ is a completely regular clique graph with parameters (s, c) with respect to \mathcal{C}. Let t be the uniquely determined covering radius and $\gamma_{i}, \alpha_{i}, \beta_{i}$ with $i=0,1, \ldots, t$ the parameters of completely regular codes in \mathcal{C}. Let $\widetilde{\Gamma}=(X \cup Y, \widetilde{R})$ be its incidence graph with $Y=\mathcal{C}$. Then the following hold.
(i) $\widetilde{\Gamma}$ is distance-semiregular on X and Γ is a bipartite half of $\widetilde{\Gamma}$ on X.
(ii) The diameter $d(\widetilde{\Gamma})=2 D$ if $t=t(C)=D-1$ and $d(\widetilde{\Gamma})=2 D+1$ if $t=t(C)=$ D and the parameters of $\widetilde{\Gamma}$ are as follows.

$$
\begin{aligned}
b_{0}^{Y} & =s+1, \quad b_{0}^{X}=k c / s, \quad c_{1}^{X}=1, \quad c_{2}^{X}=c \\
c_{2 i+1}^{X} & =\frac{\gamma_{1} \gamma_{2} \cdots \gamma_{i}}{c_{1} c_{2} \cdots c_{i}}, \quad c_{2 j}^{X}=\frac{c_{1} c_{1} \cdots c_{j-1} c_{j} c}{\gamma_{1} \gamma_{2} \cdots \gamma_{j-1}}, \quad \text { and } \\
b_{2 i+1}^{X} & =s+1-c_{2 i+1}^{X}, \quad b_{2 j}^{X}=k c / s-c_{2 j}^{X}
\end{aligned}
$$

for i, j with $0 \leq 2 i+1,2 j \leq d(\widetilde{\Gamma})$.
Proof Let μ_{i} with $i=0,1, \ldots, t$ be the numbers defined in Proposition 7.
(i) For $y \in Y$, a subset $\widetilde{\Gamma}(y)$ of X forms a clique of Γ in \mathcal{C} by definition. We write $C_{y}=\widetilde{\Gamma}(y)$. Since $\widetilde{\Gamma}$ is biregular by Lemma 9 (i), b_{i}^{X} exists if and only if c_{i}^{X} exists, and $b_{2 i}^{X}+c_{2 i}^{X}=b_{0}^{X}$ and $b_{2 i-1}^{X}+c_{2 i-1}^{X}=b_{0}^{Y}$. Moreover, if $b_{0}^{X}, b_{1}^{X}, \ldots, b_{i-1}^{X}, c_{1}^{X}, c_{2}^{X}, \ldots, c_{i}^{X}$ exist, $k_{i}^{X}=\left|\widetilde{\Gamma}_{i}(x)\right|=\left(b_{0}^{X} b_{1}^{X} \cdots b_{i-1}^{X}\right) /\left(c_{1}^{X} c_{2}^{X} \cdots c_{i}^{X}\right)$ does not depend on the choice of $x \in X$.

Let $y \in Y$ and $x \in \Gamma_{i}\left(C_{y}\right)$. Then $\partial_{\tilde{\Gamma}}(x, y)=2 i+1$ and

$$
c_{2 i+1}(x, y)=\left|\widetilde{\Gamma}_{2 i}(x) \cap \widetilde{\Gamma}(y)\right|=\left|\Gamma_{i}(x) \cap C_{y}\right|=\mu_{i}
$$

Therefore $c_{2 i+1}^{X}$ and hence $b_{2 i+1}^{X}$ exists for all i.
Now suppose $b_{0}^{X}, b_{1}^{X}, \ldots, b_{2 i+1}^{X}, c_{0}^{X}, c_{1}^{X}, \ldots, c_{2 i+1}^{X}$ exist for $i \geq 1$. For $x^{\prime} \in$ $\Gamma_{i+1}(x)$, by counting the cardinality of the set

$$
\begin{aligned}
S & =\left\{\left(x^{\prime \prime}, y\right) \mid y \in \widetilde{\Gamma}_{2 i+1}(x) \cap \widetilde{\Gamma}\left(x^{\prime}\right), x^{\prime \prime} \in \widetilde{\Gamma}_{2 i}(x) \cap \widetilde{\Gamma}(y)\right\} \\
& =\left\{\left(x^{\prime \prime}, y\right) \mid x^{\prime \prime} \in \Gamma_{i}(x) \cap \Gamma\left(x^{\prime}\right), y \in \widetilde{\Gamma}\left(x^{\prime}\right) \cap \widetilde{\Gamma}\left(x^{\prime \prime}\right)\right\}
\end{aligned}
$$

we have $c_{i+1} c_{2}^{X}=c_{2 i+1}^{X}\left|\widetilde{\Gamma}_{2 i+1}(x) \cap \widetilde{\Gamma}\left(x^{\prime}\right)\right|=c_{2 i+1}^{X} c_{2 i+2}\left(x, x^{\prime}\right)$. Thus $c_{2 i+2}^{X}$ exists and

$$
c_{2 i+2}^{X}=c_{i+1} c_{2}^{X} / c_{2 i+1}^{X} .
$$

By induction, we have that $\widetilde{\Gamma}$ is distance-semiregular on X.
(ii) Note that $\mu_{0}=1$. Now by Proposition 7,

$$
c_{2 i+1}^{X}=\mu_{i}=\frac{\gamma_{1} \gamma_{2} \cdots \gamma_{i}}{c_{1} c_{2} \cdots c_{i}}, \quad \text { and } \quad c_{2 i+2}^{X}=\frac{c_{i+1} c_{2}^{X}}{c_{2 i+1}^{X}}=\frac{c_{1} c_{1} \cdots c_{i} c_{i+1} c}{\gamma_{1} \gamma_{2} \cdots \gamma_{i}} .
$$

Thus we have the assertion.
Theorem 3 now follows directly from Propositions 8 and 10.

4 Notes

It is useful to define the notion of completely regular clique graphs in terms of an incidence structure.

Definition 2 Let $\mathcal{I}=(X, Y, I)$ be an incidence structure, where X and Y are finite set and I a relation on $X \times Y$. Let $\Gamma=(X, R)$ be the collinearity graph of \mathcal{I} with vertex set X and edge set $R=\left\{\left\{x, x^{\prime}\right\} \subset X \mid x \neq x^{\prime}\right.$ and there exists $y \in Y$ such that $x I y$ and $\left.x^{\prime} I y\right\}$. Then \mathcal{I} is said to be a CRC geometry with parameters (s, c), if the following are satisfied.
(i) For each $y \in Y$, let $C_{y}=\{x \in X \mid x I y\}$. Then C_{y} is a completely regular code of Γ of size $s+1 \geq 2$.
(ii) For each distinct $x, x^{\prime} \in X, \mid\left\{y \in Y \mid x I y\right.$ and $\left.x^{\prime} I y\right\} \mid \in\{0, c\}$ and $c \geq 1$.

Let $\Gamma=(X, R)$ be one of the Johnson graphs or the Grassmann graphs of diameter D. Then for each $i \in\{0,1, \ldots, D-1\}$ and $x, y \in X$ with $\partial(x, y)=i$ we can choose a geodetically closed completely regular code $C_{x, y}$ of diameter i containing x and y. Define $\mathcal{C}_{i}=\left\{C_{x, y} \mid x, y \in X\right.$ with $\left.\partial(x, y)=i\right\}$ and \mathcal{C}_{i+1} similarly. Then the pair $\left(\mathcal{C}_{i}, \mathcal{C}_{i+1}\right)$ defines a CRC geometry when incidence is defined by inclusion.

We conclude this paper by proposing three problems related to completely regular clique graphs.

Problem 1 Prove or disprove that completely regular clique graphs are distanceregular.

Problem 2 Classify completely regular clique graphs with respect to \mathcal{C} such that there is a nonempty collection \mathcal{C}^{\prime} of completely regular codes of width two such that $\left(\mathcal{C}, \mathcal{C}^{\prime}, \subset\right)$ is a CRC geometry when incidence is defined by inclusion.

Problem 3 Characterize connected graphs $\Gamma=(X, R)$ with the following properties.
(i) There is a nonempty collection \mathcal{C} of cliques of size $s+1$ and that for each $C \in \mathcal{C}$ and $x \in C, \mathcal{T}(C) \boldsymbol{c}_{x}$ is a thin irreducible $\mathcal{T}(C)$-module, where $\boldsymbol{c}_{x}=$ $\hat{x}-\frac{1}{|C|} \sum_{y \in C} \hat{y} \in \boldsymbol{C}^{X}$. Here \hat{z} is a unit vector in \boldsymbol{C}^{X} corresponding to a vertex z.
(ii) Each edge is contained in exactly c members of \mathcal{C} and $c \geq 1$.

Acknowledgements The author would like to thank anonymous referee for pointing out a couple of errors in the first manuscript and giving many valuable suggestions. This research was partially supported by the Grant-in-Aid for Scientific Research (No. 21540023), Japan Society of the Promotion of Science.

References

1. Bang, S., Koolen, J.H.: On distance-regular graphs with smallest eigenvalue at least $-m$. J. Comb. Theory, Ser. B 100, 573-584 (2010)
2. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte clique graphs. Eur. J. Comb. 28, 501-516 (2007)
3. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte set graphs with small c_{2}. Graphs Comb. 26, 147-162 (2010)
4. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
5. Cámara, M., Dalfó, C., Fàbrega, J., Fiol, M.A., Garriga, E.: Edge-distance-regular graphs. J. Comb. Theory, Ser. A 118, 2071-2091 (2011)
6. Cámara, M., Dalfó, C., Delorme, C., Fiol, M.A., Suzuki, H.: Edge-distance-regular graphs are distance-regular. J. Comb. Theory, Ser. A 120, 1057-1067 (2013)
7. De Bruyn, B., Suzuki, H.: Intriguing sets of vertices of regular graphs. Graphs Comb. 26, 629-646 (2010)
8. De Clerck, F., De Winter, S., Kuijken, E., Tonesi, C.: Distance-regular ($0, \alpha$)-reguli. Des. Codes Cryptogr. 28, 179-194 (2006)
9. Delorme, C.: Distance biregular bipartite graphs. Eur. J. Comb. 15, 223-238 (1994)
10. Fiol, M.A., Garriga, E.: An algebraic characterization of completely regular codes in distance-regular graphs. SIAM J. Discrete Math. 15, 1-13 (2001)
11. Godsil, C.D., Shawe-Taylor, J.: Distance-regularised graphs are distance-regular or distance-biregular. J. Comb. Theory, Ser. B 43, 14-24 (1987)
12. Kuijken, E., Tonsei, C.: Distance-regular graphs and (α, β)-geometries. J. Geom. 82, 135-145 (2005)
13. Neumaier, A.: Completely regular codes. Discrete Math. 106/107, 353-360 (1992)
14. Suzuki, H.: Distance-semiregular graphs. Algebra Colloq. 2, 315-328 (1995)
15. Suzuki, H.: The Terwilliger algebra associated with a set of vertices in a distance-regular graph. J. Algebr. Comb. 22, 5-38 (2005)
16. Terwilliger, P.: Algebraic Graph Theory, hand-written note of a series of lectures given in 1993. rewritten and added comments by H. Suzuki. URL http://subsite.icu.ac.jp/people/hsuzuki/lecturenote/

[^0]: H. Suzuki (\boxtimes)

 International Christian University, Mitaka, Tokyo 181-8585, Japan
 e-mail: hsuzuki@icu.ac.jp

