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Abstract Let I" = (X, R) be a connected graph. Then I” is said to be a completely
regular clique graph of parameters (s, ¢) with s > 1 and ¢ > 1, if there is a collection
C of completely regular cliques of size s + 1 such that every edge is contained in
exactly ¢ members of C. In this paper, we show that the parameters of C € C as a
completely regular code do not depend on C € C. As a by-product we have that all
completely regular clique graphs are distance-regular whenever C consists of edges.
We investigate the case when I” is distance-regular, and show that I" is a completely
regular clique graph if and only if it is a bipartite half of a distance-semiregular graph.

Keywords Distance-regular graph - Association scheme - Subconstituent algebra -
Terwilliger algebra - Completely regular code - Distance-semiregular graph

1 Introduction

In this paper, we only consider finite graphs. Let I" = (X, R) be a connected graph
with vertex set X and edge set R consisting of 2-element subsets of X. When {x, y} €
R, i.e., x and y are adjacent, we write x ~ y. For x,y € X, or(x,y) = d(x, y) de-
notes the distance between x and y, i.e., the length of a shortest path between x and y
in I". The diameter d(I") is the maximal distance between two vertices. A nonempty
subset C of X is said to be a clique if every distinct vertices in C are adjacent.

A subset C of X is often called a code in I' = (X, R), and I;(C) ={x € X |
d(x,C) =i} is called the ith subconstituent with respect to C, where d(x,C) =
min{d(x,y) | y € C}. We write I'(C) for I'1(C). The number r = #(C) = max{i |
I;(C) # @} is called the covering radius of C. If C and C’ are subsets of X,
9(C,C") =min{d(x,y) |x € C,y € C'}. When C = {x}, we write I'; (x) for I'; ({x}),
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and set I"(x) for I'1(x). The number k(x) = |I"(x)| is called the valency of x. For
x,y€ X witho(x,y)=i withi =0,1,...,d(I"), let

Bi(x,y)=Ti1(x) N I(y), Ai(x,y) =Ti(x) N I'(y),
Cilx,y)=Ti1(x)NI(y),

and b (x, y) = |Bi(x, y)|, ai(x, y) = |Ai(x, y)| and ¢; (x, y) = |Ci (x, y)|.

A connected graph I" = (X, R) of diameter D = d(I") is said to be distance-
regular if for each i € {0, 1,2, ..., D}, the numbers ¢; = ¢;(x, y), a; = a;(x, y) and
b;i = b;j(x,y) depend only on i = d(x, y). In this case, the numbers b;, a;, ¢; with
i=0,1,..., D are called the parameters of I". For distance-regular graphs we refer
the reader [4]. We mainly follow the notation and the terminologies in the monograph.

Let I' = (X UY, R) be a connected bipartite graph with the bipartition X U Y, i.e.,
there is no edge within X and Y. Let d¥ = dX(I') = max{d(x,y) [x € X,y € X U
Y}. Then I is said to be distance-semiregular on X, if for each i € {0, 1,2, ...,d%X},
the numbers ciX =cj(x,y), and biX = b;(x,y) depend only on i = d(x, y) whenever
x € X and y € X UY. In this case the numbers b¥, X withi =0, 1,...,d* are called
the parameters of I". Note that each vertex y € Y is of valency bg = bf( + cf( and
distance-semiregular graphs are biregular, i.e., the valency of a vertex depends only
on the part the vertex belongs to. If I" = (X U Y, R) is distance-semiregular on both
X and Y, I is called distance-biregular. For more information on distance-biregular
graphs and distance-semiregular graphs, see [9, 11, 14].

Let I = (X, R) be a connected graph, and C a nonempty subset of X with cover-
ing radius r = ¢(C). Then C is said to be a completely regular code if y; = y;(C) =
11 (O)NT' ()], i =i (C) = O NI ()], i = Bi(C) = [[741(C)N T (x)[ do
not depend on x € I;(C) fori € {0, 1, ..., ¢t}. In this case the numbers y;, «;, ;i with
i=0,1,...,t are called the parameters of C. We also write y;(C), «; (C) or B;(C)
exists when the corresponding number does not depend on the choice of x € I7(C).
For completely regular codes of distance-regular graphs, see [4, Sect. 11.1] and [13].
For a special type of completely regular codes in a regular graph, see [7].

Let I = (X, R) be a connected graph. In [11], C.D. Godsil and J. Shawe-Taylor
showed that {x} is completely regular for each x € X, if and only if I" is either
distance-regular or distance-biregular. As a corollary, we have that distance-regular
graphs can be characterized as regular connected graphs such that {x} is completely
regular for each x € X. It is not difficult to show that a connected bipartite graph
I' = (X UY, R) with the bipartition X U Y is distance-semiregular on X, if and only
if it is biregular and {x} is completely regular for each x € X. Recently it was shown
in [6] that each edge of I" is completely regular with the same parameters, if and
only if I" is either bipartite or almost bipartite distance-regular, i.e., distance-regular

graphs of diameter D with a9 =a; =--- =ap_1 = 0. These results can be viewed
as characterizations of distance-regularity by complete regularity of its substructures,
i.e., cliques.

On the other hand, many distance-regular graphs contain many completely regu-
lar codes of various sizes. These completely regular codes correspond to substruc-
tures of the geometry associated with them. If I" is a distance-regular graph of
diameter D isomorphic to one of the Johnson graphs, the Hamming graphs, the
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Grassmann graphs, the dual polar graphs, the bilinear forms graphs, then for each
i €{0,1,..., D} and vertices x, y at distance i, there is a geodetically closed com-
pletely regular code of diameter i containing x and y. In each case, there is a set C of
completely regular maximal cliques such that the incidence graph on X UC associated
with it is distance-semiregular.

Definition 1 Let I = (X, R) be a connected graph, and let C be a collection of
cliques of I". Then I is said to be a completely regular clique graph with parameters
(s, ¢) with respect to C, if the following are satisfied.

(1) Each member C € C is a completely regular code of size s + 1 > 2.
(ii) Each edge is contained in exactly ¢ members of C and ¢ > 1.

When C consists of Delsarte cliques, it is called a Delsarte clique graph with pa-
rameters (s, ¢) in [2, 3], and Delsarte clique graphs with parameters (s, 1) are called
geometric in [1]. Many examples are listed in [2].

Our first result in this paper is concerning the parameters of C € C.

Theorem 1 Let I" be a completely regular clique graph with parameters (s, c) with
respect to C. Then the parameters of a completely regular code C € C do not depend
onC.

We prove Theorem 1 in Sect. 2 using modules of Terwilliger algebra 7 (C) with
respect to C € C, and applying the fact that C is completely regular if and only if
the primary 7 (C)-module is thin. For Terwilliger algebras 7 (C) and their modules,
see [15].

A connected graph is called edge distance-regular if every edge is a completely
regular code with the same parameters. See [5, 10]. Because of Theorem 1, the con-
dition on parameters is not necessary. Combining with the result in [6] mentioned
above, we have the following.

Corollary 2 Let I' = (X, R) be a connected graph of diameter D. Then the following
are equivalent.

(i) Forevery {x,y} € R, {x,y} is a completely regular code.
(i1) I is a distance-regular graph witha; =---=ap—_1 =0.

Next result is a characterization of distance-regular completely regular clique
graphs. The proof will be given in Sect. 3. It can be viewed as a characterization
of the collinearity graphs of distance-regular geometries in [8, 12].

Theorem 3 Let I' = (X, R) be a distance-regular graph. Then I is a completely
regular clique graph if and only if I' is the bipartite half of a distance-semiregular
graph I' = (X UY, R) on X. Here the bipartite half of I' = (X UY, R) on X is the
graph with vertex set X such that two vertices are adjacent whenever they are at
distance 2in I".
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2 Parameter set of completely regular clique codes
The main objective of this section is to prove Theorem 1.

Lemma 4 Let I' = (X, R) be a connected graph of diameter D > 1. Let C be a
collection of cliques of I'. Then the following hold.

(1) Let C,C’' € C with C N\ C’ # @. Suppose a(C), Bo(C), ag(C’) and Bo(C") exist.
Then the valencies of the vertices in C U C’ are the same.

(ii) If every edge is contained in at least one C € C, and both ao(C) and By(C) exist
forall C € C, then I is regular with valency k = ao(C) 4+ Bo(C) for any C € C.

Proof (i) For all x,y € C, k(x) = Bo(C) + ao(C) = k(y), and for all x’,y" € C’,
k(x") = Bo(C") + ap(C") = k(y'). Since C N C’ # @, the valency k(x) is constant on
cuc.

(ii) Since I" is connected, the assertion follows from (i). O

Let I" = (X, R) be a connected graph of diameter D and C a nonempty subset
of X with covering radius #(C). Let V = R* denote the real vector space consisting
of column vectors whose entries are indexed by X. Foru,v e V, (u,v) = uTv and
lu|| = +/{u, u). Let A € Maty (R) be the adjacency matrix of I". Let 6y > 0y > - - >
0, be all the distinct eigenvalues of A, and Ey, Ey, ..., E, € R[A] the correspond-
ing primitive idempotents, where R[A] is the polynomial algebra in A over the real
number field. Thus,

Eo+Ei+--+E =1, EE;j=6;E, and
AEiZGiEi fOfi,j€{0,1,~--’r}~

Foreachi € {0,1,...,1(C)}, let El.*(C) denote the projection onto the subspace of
V spanned by unit vectors corresponding to vertices in I;(C). We let 7 (C) de-
note the subalgebra of Maty (R) generated by A and Ej(C), E7(C), ..., E[*(C)(C).
Let 1 € V be the all one vector. A 7 (C)-module W, i.e., a vector subspace of
V invariant under the action of 7 (C), is said to be thin if dim EF(C)W <1 for
all i € {0,1,...,¢(C)}. T(C)1 is called the primary module of 7 (C). Note that
w; = EF(C)1 is the characteristic vector of I;(C) for i € {0,1,...,#(C)} and
Wc = Span(wog, w1, ..., w;cy) C T (C)1. It is easy to see that if C is a completely
regular code with parameters y;, «;, Bi (i =0, 1,...,¢(C)), then

Aw; = Bi—1wi—1 +o;w; + yiy1wiy fori =0,1,...,¢(C).

Here w_1 = w;(c)+1 =0, and f_; and y;(c)+1 are indeterminate. Hence in this case
We =T (C)1 and Wc is a thin irreducible 7 (C)-module. See [15, Proposition 7.2].

The ideas and techniques of proofs of the following results are taken from the
lecture note by P. Terwilliger [16].

Proposition 5 Let I' = (X, R) be a connected graph of diameter D > 1. Suppose
C, C' are completely regular codes that are cliques of I" with |C N C'| = e > 0. Let
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W = W¢ = Span(wp, wy, ..., w;), wherew; = E?(C)lv
Aw; = Bi_1wi—1 +oiw; + Y1 Wiy,
W' = W = Span(uh ). w)).  where w] = E}(C')L
Aw; = Bi_ wi_y +ojw; + ¥ wi,
witht =t(C) and t' =t (C"). Then the following hold.

(1) There are polynomials p(L), p’(A) € R[A] such that

. lwoll , o lwgl
projy wo = p(A) wy, projy wy = p (A) ——wo,
v A W llwoll
where with k = ag + Po,
() = lwoll® — e ke — llwoll>(lwyll* — 1)
k= llwh |12+ Dlwolllwpll ™ Gk — w12+ Dfwoll llwpll’
V) = lwy > — e ke — wylI>(lwoll*> — 1)
(k — lwoll2 + Dlwolllwyll ™ ¢k — llwoll? + Dllwoll lwpll”
(i) p'@)mw (6:;) = p@;))mw: (6;) for all i, where
E;wo? E;w,|?
(@) = LE2O g o = Lo
llwoll llwj|

(i) If lwoll = llwgll, i.e., [Cl=|C"|, then mw (6;) = mw(6;) for all i.

Proof Since C N C’ # @, the valencies of the vertices in C U C’ are the same by
Lemma 4. Let k = ap + Bo = o, + B, be the valency of vertices in C U C".
(i) Since Awg = apwo + y1w; with ;1 £0and ag = |C| — 1 = |wo|® — 1,

1
w = ;(A — (llwoll* = 1) wo.

Since C' C CUT'(C), (wy,, w;) =0fori =2,3,...,1. Let projy wy = §owo + £ wy.
By counting the edges between C and I'(C) in two ways, we have

BolCl _ (k — llwol> + D) llwol?
il = wr,w) =1 (©) === = yl ,

e = (wf, wo) = (projy w, wo) = &ollwol|*, and

](k— lwoll® + DJwoll?

|wh|* — e = (w, wi) = (projy wh, wi) =& wi|? =& m
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Therefore,
projy w
=&wo +&1w;
e yi(lwpl> —e) 1 )
— wo - — (A= (lwoll” =1)1)wo
NE (k — llwol12 + DJwo 12 yl( ( )
||wg||< lwy 1> — e s ke — wyl*(lwoll®> — 1) )w
= 0
lwoll \ (k — [lwoll + Dlwolllwgll ™~ (k — lwoll2 + Dllwollw}
llw} |
= p'(A)—>wy
llwo

By symmetry we obtain the formula of projy, wo as well.
(ii) Since E;wp € W and A is a real symmetric matrix,

(Eiwo, Ejwy) — (Ejwo, wy) — (Ejwo, projy wo) — [[wyll (E;jwo, p'(A)wo)

lwolllwpll — lwolllwyll —  lwolllwhll — llwoll  llwolllwpll
(P’ (A)E;wo, wo) (E;jwo, E;wo) I Ejwo |
= =) — =P () ———

llwo llwo llwo

= p'(6))mw (6;).

By symmetry we have (ii).
(iii) Suppose [|wol = |lwgll. Then p(x) = p’(A) by (i). Therefore my (6;) =
my (6;) for all i except possibly one i for which p(6;) = 0. Since

r

r . 2
I (wo, wo) ZZ I1Eiwoll :me(@'),

2
S w2

myy (0;) = my (6;) for all i without an exception. O

Proposition 6 Let I’ = (X, R) be a connected graph of diameter D > 1. Suppose I”
is regular of valency k. Let C, C' be completely regular codes that are cliques in I"
with CNC' #@. If |C| = |C’|, then the parameters of C and C' coincide.

Proof We use the notation in the proof of Proposition 5. By Proposition 5(iii),
mW(Qi) = mW/(Q,-) for all i. Since EiEj = Si’jEi for i,j (S {0, 1, . ,r}, nonzero
vectors in the set {Eqwo, Ejwo, ..., E,wo} are perpendicular to each other, and
hence they form a linearly independent set of vectors. Since R[A]wo = Span{Eqwy,
Eiwo, ..., E;wp}, dim R[A]lwy = dim(W) =¢(C) + 1 is equal to the number of
i such that E;wg # 0, we have 1(C) = t(C’). Let ¢ be this number. Let m(6;) =
mw (6;) = || E;wol|?/|lwol|, and let R,[A] be the set of all polynomials of degree at
most ¢. Then, for f, g € R/[A],

(f.8)m=)_ [(6:)gBIm(®:)

i=0

@ Springer



J Algebr Comb (2014) 40:233-244 239

defines an inner product on R[A]. Let go, g1, - .., g be uniquely determined monic
orthogonal polynomials with respect to this inner product. Let po, p1, ..., Pr, Pr+1
and pg, pi, ..., pj, p,, be polynomials defined by the following recursive relations:
po=1, Api=PBi—1pi—1 +aipi + Viv1pi+1, fori=0,1,..., twith p_; =0,

po=1, Api=B_pi_i+op;i+y/pi, fori=0,1,..., twithp'  =0.

Here, B; = Bi(C), a; = a; (C), yi = yi(C), B = Bi(C"), o] = a;(C"), y/ = y;(C")
(i=0,1,...,1), and assume y;y] = yt/+1 =1, p_1 = ., = 0. Then we have

pi(Awo = w;, pi(Awy = w; and pry1(A)wo = p;, (A)wj = 0. Moreover, for

(wi, w;) = (pi(A)wo, pj(A)wo)

= <Pi (A) ZE;,W(), pj(A) Z Eh’w0>

h=0 =0

=Y > pi)p; ) (Exwo, Eywo)

h=0h'=0

=" pi () p; On)m ) | wol®

h=0
= (pi> pj)mllwoll*.
Therefore we have for i, j € {0, 1, ..., ¢},

(pi. pj)m =38i,j =(pi P,’/>m’

and (pi+1, Pre1)m = (p;H , p;+1>m = 0. Considering the leading coefficients of p;
and p;, we have

Vive - Vibi =qi =Vivy---vip; forallie{0,1,... 1}

In particular, go, q2, . ..q; with g;41, monic characteristic polynomial of A on W,
satisfy

Agi = Bi—1Yigi—1 +@iqi +qiv1 =Bi_1V{qi—1 +@jqi +qiy1 fori=0,1,2,....1.
Therefore we have

Bi—iyi=PB_1yi and «j=af fori=0,1,2,... 1.
Since I' is regular of valency k, ao = o, implies fo = k — ap =k — a; = ;. Hence

we have y; = 71/ by above. Since o; = alf for all i, by induction, we can conclude that
all parameters are equal. O
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Proof of Theorem I Let I' be a completely regular clique graph with parameters
(s, ¢) with respect to C. Since every edge is contained in a member of C, I is regular
by Lemma 4. Now the fact that the parameters of completely regular codes C € C do
not depend on C follows from Proposition 6. g

Example 1 The prism graph below has two types of completely regular cliques, i.e.,
triangles {a, b, c} and {d, e, f}, and edges {a, f}, {c,d} and {b, e}. Parameters are
different. If C = {a, b, ¢} and C’ = {a, f}, then p(A) = $2 and p'(A) = £ (A — 1).

a f

b e

Example 2 The following graph is 3-regular with 8 vertices. Both edges {a, b} and
{c, d} are completely regular but parameters are different. Note that these two edges
do not have a common vertex.

X[

3 Completely regular clique graphs

In this section, we prove Theorem 3. We need the following result.

Proposition 7 (A. Neumaier [13, Theorem 4.1]) Let I' = (X, R) be a distance-
regular graph and let C be a nonempty subset of X with covering radius t = t(C).
Fori=0,1,...,t,let uj =|Ii(x)NC|and »; = |I;41(x) N C| when x € I;(C).

(1) C is completely regular if and only if ; and A; are independent of the choice of
x e I;(C).

(i1) Suppose C is completely regular with the parameters y;,o;, i with i €
{1,2,...,t}. Then

iCi Aici Ai—1Ci
J/i=M”, o =a; + iGi+1 lll’ and
Mi—1 i Mi—1
B = b — (i = i1 = Ai—1)Ci AiCit1 _
Mi—1 i
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Proposition 8 Ler F'=(XUY,R) bea distance-semiregular graph on X with pa-
rameters bX lX withi =0,1,...,d%X. Let I" be the bipartite half of I' on X. For
y€Y,write Cy = F(y) C X, and set C={Cy | y € Y}. Then the following hold.

(1) I is distance-regular.
(ii) Each element C € C is a clique and a completely regular code in I".
(iii) Each edge in I' is contained in cé( members of C. In particular, I’ = (X, R) isa
completely regular clique graph of parameters (bg -1, c§ ).

Proof (i) This is clear. See [14].

(ii) Since I is a distance-2-graph of I, each Cyisacliquein I".Let C=C, €C.
We apply Proposition 7 to show that C is completely regular. Let x € X with
or(x,C)=i.Then dp(x, y) =2i + 1. Hence

1) =L@ NC|= )Ny =k,

Therefore p;(x) does not depend on the choice of x € I;(C). Since C is a clique,

Ai(x) =|C| — ui(x) and A; (x) does not depend on the choice of x € I';(C) either.
(iii) For each edge {x1, x3} of I" there exist c§ vertices y € Y such that {x, xp} C

Cy. Thus we have the assertions. O

Let I' = (X, R) be a completely regular clique graph with parameters (s, ¢) with
respect to C. The incidence graph of I' is a bipartite graph r'= (XUy, R) with vertex
set XUY,where Y =C, andedgesetR ={(x, y) | x € X,y € Y such that x € y}. Let
c¢; and b; be parameters of I if they exist. Let c and bX denote the parameters of r
when the base vertex is in X and they exist. We define C, and bly similarly.

Lemma9 Let [ = (XUY, E) be the incidence graph of a completely regular clique
graph I' = (X, R) with parameters (s, c) with respect to C. Then the following hold.

@) I is biregular of valencies (bX, bg), where b()f = (Bo + s)c/s and bg =s+1.
Moreover, c]X =1, cg( =c, cg( =1, blx =y, bé( = Boc/s, pX=s+1- y1, and
bl =bf —1.
(ii) I is edge regular with a; = (s — 1) + Bo(y1 — 1)/s.
(iii) Ifd(I") > 1, then I' is K2 1 1-free if and only if y1y = 1 if and only if a; =5 — 1.
In this case ¢ = 1, and each member of C is a maximal clique.

Proof (i) By Lemma 4(ii) I" is regular of valency k = by = g + Bo. By definition,
wehavebg_s+1 cl =1, bX_bY—cfzsz l,cfzcandcfzyl.Weshow
that bx exists.

Let x € X and let

S={(x,y)eX xY|ds(x.x")=2, 35(x,y) =05(y.x') =1}

By counting the cardinality of S, we have |S| = |I"(x)|b¥ = boc) . Hence b exists
and b§ = bocy /b{f =ke/s.

@ Springer



242 J Algebr Comb (2014) 40:233-244

Hence I is biregular. Therefore biX exists if and only if ciX exists, bfi + cg = bff ,
bX 1+c2l | _b Since ag = s,

bY =bf — X =ke/s —c=c(k —s)/s = Poc/s.

The rest follow immediately.
(i1) Since by = bé(bf(/cé( and b = bfbg(/cf = Po(s +1—y1)/s, we have

ag=by—ci—b1=Bo+s—1—=Po(s+1—y)/s=(—1D+Bo(y1 —D/s.

(iii) We first prove that I" is K> 1 1-free if and only if y; = 1. Suppose I" is K2 1,1-
free. Let y € X, x,z € I'(y) with d(x,z) =2 and {x, y} C C €C. Since I" is K2 1,1-
free, y1 = |I'(z) N C| = 1. Conversely, suppose y1 = 1. If x,y,z, w form a K211
with d(z, w) =2 and {x, y} C C € C, then either z or w is not in C. This contradicts
Y=L

By (ii) it is clear that y; =1 is equivalentto a; = s — 1.

Assume these three equivalent conditions. Then clearly ¢ = 1 and each member of
C is a maximal clique. This proves (iii). g

Next we show that the incidence graph of a distance-regular completely regular
clique graph is distance-semiregular.

Proposition 10 Let I = (X, R) be a distance-regular graph of valency k and diam-
eter D. Suppose I is a completely regular clique graph with parameters (s, c) with
respect to C. Let t be the uniquely determined covering radius and y;, «;, Bi with
i=0,1,...,t the parameters of completely regular codes in C. Let F'=(Xuy, ﬁ)
be its incidence graph with Y = C. Then the following hold.

@) Iis distance-semiregular on X and I' is a bipartite half of I on X.
(ii) The diameter d(I') =2D ift =t(C) =D —1andd(I') =2D + 1 ift =1(C) =
D and the parameters of I' are as follows.

bg:s—i—l, bé(:kc/s, cf:l, cé(:c,
Yive---vYi cicy---cj—1cjc
C§+1——, C§j=—j I~ and
ciey - Yive---vVj-1
b =s+1=cyyy.  by=ke/s —c3

fori, jwith0<2i+1,2j <d(I).

Proof Let pu; withi =0, 1,..., 7 be the numbers defined in Proposition 7.

(i) For y e Y, a subset F(y) of X forms a clique of I in C by defini-
tion. We write C, F(y) Since I is biregular by Lemma 9 (i), bX exists if
and only if ciX exists, and béi + c2l = bg and b21— + 021_1 = b . Moreover, if
bE . bX, . bE e S, X exist,kf‘=|ﬁ(x)|=(b5‘b{‘--.bf_l)/(c{‘cgf.--cl?‘)
does not depend on the choice of x € X.

@ Springer



J Algebr Comb (2014) 40:233-244 243

Let y € Y and x € [3(Cy). Then 85 (x, y) =2i + 1 and
cip1(x,y) = | D) N T )| = | L) N Cy| = i

X X . .
Therefore it and hence b2i 41 exists forall i.

Now suppose bx,blx,...,bgiﬂ,cg,cf‘,...,cfiﬂ exist for i > 1. For x’ €

Ii41(x), by counting the cardinality of the set
S={(".y) |y € D@ NI (¥'), x" € Di(x) N ()}
= {(x”, y) |x" el;(x)N F(x/), ye F(x’) N F(x”)}

X X 7 ~ X X .
we have c¢jy1¢y = ¢y [Daip1(x) N I'(x")| = ¢35 c2i+2(x, x"). Thus ¢3; , exists
and

X _ . X, X
Chiin =Cit1Cy [Chi -

By induction, we have that I is distance-semiregular on X.
(i1) Note that ;o = 1. Now by Proposition 7,

X
X _, _Nrvi 4 X . _GH1G _acddyic
U T e M AT X T T T
1€2 l it Yiva:---Vi
Thus we have the assertion. O

Theorem 3 now follows directly from Propositions 8 and 10.

4 Notes

It is useful to define the notion of completely regular clique graphs in terms of an
incidence structure.

Definition 2 Let Z = (X, Y, I) be an incidence structure, where X and Y are finite
setand [ arelationon X x Y. Let I = (X, R) be the collinearity graph of Z with ver-
tex set X and edge set R = {{x, x'} C X | x # x’ and there exists y € Y such that xIy
and x'Iy}. Then Z is said to be a CRC geometry with parameters (s, c), if the fol-
lowing are satisfied.

(i) ForeachyeY,letCy ={x € X | xIy}. Then C, is a completely regular code of
I of size s +1 > 2.
(ii) For each distinct x,x" € X, [{y € Y | xIy and x'Iy}| € {0,c} and ¢ > 1.

Let I = (X, R) be one of the Johnson graphs or the Grassmann graphs of diam-
eter D. Then for each i € {0,1,..., D — 1} and x, y € X with d(x,y) =i we can
choose a geodetically closed completely regular code Cy y of diameter i containing
x and y. Define C; = {Cy y | x, y € X with 9(x, y) =i} and C; 1 similarly. Then the
pair (C;, Cj+1) defines a CRC geometry when incidence is defined by inclusion.

We conclude this paper by proposing three problems related to completely regular
clique graphs.
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Problem 1 Prove or disprove that completely regular clique graphs are distance-
regular.

Problem 2 Classify completely regular clique graphs with respect to C such that
there is a nonempty collection C” of completely regular codes of width two such that
(C,C’, ©) is a CRC geometry when incidence is defined by inclusion.

Problem 3 Characterize connected graphs I" = (X, R) with the following proper-
ties.

(i) There is a nonempty collection C of cliques of size s + 1 and that for each
Ce C and x € C, T(C)cx is a thin irreducible 7 (C)-module, where ¢, =
x— T C Z} ccyE C¥ . Here ? is a unit vector in C* corresponding to a vertex z.

(i) Each edge is contained in exactly ¢ members of C and ¢ > 1.
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