Completely regular clique graphs

Hiroshi Suzuki

Received: 22 September 2012 / Accepted: 12 October 2013 / Published online: 5 November 2013 © Springer Science+Business Media New York 2013

Abstract Let $\Gamma = (X, R)$ be a connected graph. Then Γ is said to be a completely regular clique graph of parameters (s, c) with $s \ge 1$ and $c \ge 1$, if there is a collection C of completely regular cliques of size s + 1 such that every edge is contained in exactly c members of C. In this paper, we show that the parameters of $C \in C$ as a completely regular code do not depend on $C \in C$. As a by-product we have that all completely regular clique graphs are distance-regular whenever C consists of edges. We investigate the case when Γ is distance-regular, and show that Γ is a completely regular graph.

Keywords Distance-regular graph · Association scheme · Subconstituent algebra · Terwilliger algebra · Completely regular code · Distance-semiregular graph

1 Introduction

In this paper, we only consider finite graphs. Let $\Gamma = (X, R)$ be a connected graph with vertex set *X* and edge set *R* consisting of 2-element subsets of *X*. When $\{x, y\} \in R$, i.e., *x* and *y* are adjacent, we write $x \sim y$. For $x, y \in X$, $\partial_{\Gamma}(x, y) = \partial(x, y)$ denotes the distance between *x* and *y*, i.e., the length of a shortest path between *x* and *y* in Γ . The diameter $d(\Gamma)$ is the maximal distance between two vertices. A nonempty subset *C* of *X* is said to be a clique if every distinct vertices in *C* are adjacent.

A subset *C* of *X* is often called a *code* in $\Gamma = (X, R)$, and $\Gamma_i(C) = \{x \in X \mid \partial(x, C) = i\}$ is called the *ith subconstituent* with respect to *C*, where $\partial(x, C) = \min\{\partial(x, y) \mid y \in C\}$. We write $\Gamma(C)$ for $\Gamma_1(C)$. The number $t = t(C) = \max\{i \mid \Gamma_i(C) \neq \emptyset\}$ is called the *covering radius* of *C*. If *C* and *C'* are subsets of *X*, $\partial(C, C') = \min\{\partial(x, y) \mid x \in C, y \in C'\}$. When $C = \{x\}$, we write $\Gamma_i(x)$ for $\Gamma_i(\{x\})$,

H. Suzuki (⊠) International Christian University, Mitaka, Tokyo 181-8585, Japan

e-mail: hsuzuki@icu.ac.jp

and set $\Gamma(x)$ for $\Gamma_1(x)$. The number $k(x) = |\Gamma(x)|$ is called the valency of x. For $x, y \in X$ with $\partial(x, y) = i$ with $i = 0, 1, ..., d(\Gamma)$, let

$$B_i(x, y) = \Gamma_{i+1}(x) \cap \Gamma(y), \qquad A_i(x, y) = \Gamma_i(x) \cap \Gamma(y),$$

$$C_i(x, y) = \Gamma_{i-1}(x) \cap \Gamma(y),$$

and $b_i(x, y) = |B_i(x, y)|$, $a_i(x, y) = |A_i(x, y)|$ and $c_i(x, y) = |C_i(x, y)|$.

A connected graph $\Gamma = (X, R)$ of diameter $D = d(\Gamma)$ is said to be *distance-regular* if for each $i \in \{0, 1, 2, ..., D\}$, the numbers $c_i = c_i(x, y)$, $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ depend only on $i = \partial(x, y)$. In this case, the numbers b_i, a_i, c_i with i = 0, 1, ..., D are called the parameters of Γ . For distance-regular graphs we refer the reader [4]. We mainly follow the notation and the terminologies in the monograph.

Let $\Gamma = (X \cup Y, R)$ be a connected bipartite graph with the bipartition $X \cup Y$, i.e., there is no edge within X and Y. Let $d^X = d^X(\Gamma) = \max\{\partial(x, y) \mid x \in X, y \in X \cup Y\}$. Then Γ is said to be *distance-semiregular* on X, if for each $i \in \{0, 1, 2, ..., d^X\}$, the numbers $c_i^X = c_i(x, y)$, and $b_i^X = b_i(x, y)$ depend only on $i = \partial(x, y)$ whenever $x \in X$ and $y \in X \cup Y$. In this case the numbers b_i^X, c_i^X with $i = 0, 1, ..., d^X$ are called the parameters of Γ . Note that each vertex $y \in Y$ is of valency $b_0^Y = b_1^X + c_1^X$ and distance-semiregular graphs are biregular, i.e., the valency of a vertex depends only on the part the vertex belongs to. If $\Gamma = (X \cup Y, R)$ is distance-semiregular on both X and Y, Γ is called *distance-biregular*. For more information on distance-biregular graphs and distance-semiregular graphs, see [9, 11, 14].

Let $\Gamma = (X, R)$ be a connected graph, and *C* a nonempty subset of *X* with covering radius t = t(C). Then *C* is said to be a *completely regular code* if $\gamma_i = \gamma_i(C) = |\Gamma_{i-1}(C) \cap \Gamma(x)|, \alpha_i = \alpha_i(C) = |\Gamma_i(C) \cap \Gamma(x)|, \beta_i = \beta_i(C) = |\Gamma_{i+1}(C) \cap \Gamma(x)|$ do not depend on $x \in \Gamma_i(C)$ for $i \in \{0, 1, ..., t\}$. In this case the numbers $\gamma_i, \alpha_i, \beta_i$ with i = 0, 1, ..., t are called the parameters of *C*. We also write $\gamma_i(C), \alpha_i(C)$ or $\beta_i(C)$ exists when the corresponding number does not depend on the choice of $x \in \Gamma_i(C)$. For completely regular codes of distance-regular graphs, see [4, Sect. 11.1] and [13]. For a special type of completely regular codes in a regular graph, see [7].

Let $\Gamma = (X, R)$ be a connected graph. In [11], C.D. Godsil and J. Shawe-Taylor showed that $\{x\}$ is completely regular for each $x \in X$, if and only if Γ is either distance-regular or distance-biregular. As a corollary, we have that distance-regular graphs can be characterized as regular connected graphs such that $\{x\}$ is completely regular for each $x \in X$. It is not difficult to show that a connected bipartite graph $\Gamma = (X \cup Y, R)$ with the bipartition $X \cup Y$ is distance-semiregular on X, if and only if it is biregular and $\{x\}$ is completely regular for each $x \in X$. Recently it was shown in [6] that each edge of Γ is completely regular with the same parameters, if and only if Γ is either bipartite or almost bipartite distance-regular, i.e., distance-regular graphs of diameter D with $a_0 = a_1 = \cdots = a_{D-1} = 0$. These results can be viewed as characterizations of distance-regularity by complete regularity of its substructures, i.e., cliques.

On the other hand, many distance-regular graphs contain many completely regular codes of various sizes. These completely regular codes correspond to substructures of the geometry associated with them. If Γ is a distance-regular graph of diameter D isomorphic to one of the Johnson graphs, the Hamming graphs, the Grassmann graphs, the dual polar graphs, the bilinear forms graphs, then for each $i \in \{0, 1, ..., D\}$ and vertices x, y at distance i, there is a geodetically closed completely regular code of diameter i containing x and y. In each case, there is a set C of completely regular maximal cliques such that the incidence graph on $X \cup C$ associated with it is distance-semiregular.

Definition 1 Let $\Gamma = (X, R)$ be a connected graph, and let C be a collection of cliques of Γ . Then Γ is said to be a *completely regular clique graph with parameters* (s, c) with respect to C, if the following are satisfied.

- (i) Each member $C \in C$ is a completely regular code of size $s + 1 \ge 2$.
- (ii) Each edge is contained in exactly *c* members of C and $c \ge 1$.

When C consists of Delsarte cliques, it is called a Delsarte clique graph with parameters (s, c) in [2, 3], and Delsarte clique graphs with parameters (s, 1) are called geometric in [1]. Many examples are listed in [2].

Our first result in this paper is concerning the parameters of $C \in C$.

Theorem 1 Let Γ be a completely regular clique graph with parameters (s, c) with respect to C. Then the parameters of a completely regular code $C \in C$ do not depend on C.

We prove Theorem 1 in Sect. 2 using modules of Terwilliger algebra $\mathcal{T}(C)$ with respect to $C \in C$, and applying the fact that *C* is completely regular if and only if the primary $\mathcal{T}(C)$ -module is thin. For Terwilliger algebras $\mathcal{T}(C)$ and their modules, see [15].

A connected graph is called *edge distance-regular* if every edge is a completely regular code with the same parameters. See [5, 10]. Because of Theorem 1, the condition on parameters is not necessary. Combining with the result in [6] mentioned above, we have the following.

Corollary 2 Let $\Gamma = (X, R)$ be a connected graph of diameter D. Then the following are equivalent.

- (i) For every $\{x, y\} \in R$, $\{x, y\}$ is a completely regular code.
- (ii) Γ is a distance-regular graph with $a_1 = \cdots = a_{D-1} = 0$.

Next result is a characterization of distance-regular completely regular clique graphs. The proof will be given in Sect. 3. It can be viewed as a characterization of the collinearity graphs of distance-regular geometries in [8, 12].

Theorem 3 Let $\Gamma = (X, R)$ be a distance-regular graph. Then Γ is a completely regular clique graph if and only if Γ is the bipartite half of a distance-semiregular graph $\tilde{\Gamma} = (X \cup Y, \tilde{R})$ on X. Here the bipartite half of $\tilde{\Gamma} = (X \cup Y, \tilde{R})$ on X is the graph with vertex set X such that two vertices are adjacent whenever they are at distance 2 in $\tilde{\Gamma}$.

2 Parameter set of completely regular clique codes

The main objective of this section is to prove Theorem 1.

Lemma 4 Let $\Gamma = (X, R)$ be a connected graph of diameter D > 1. Let C be a collection of cliques of Γ . Then the following hold.

- (i) Let $C, C' \in C$ with $C \cap C' \neq \emptyset$. Suppose $\alpha_0(C), \beta_0(C), \alpha_0(C')$ and $\beta_0(C')$ exist. Then the valencies of the vertices in $C \cup C'$ are the same.
- (ii) If every edge is contained in at least one $C \in C$, and both $\alpha_0(C)$ and $\beta_0(C)$ exist for all $C \in C$, then Γ is regular with valency $k = \alpha_0(C) + \beta_0(C)$ for any $C \in C$.

Proof (i) For all $x, y \in C$, $k(x) = \beta_0(C) + \alpha_0(C) = k(y)$, and for all $x', y' \in C'$, $k(x') = \beta_0(C') + \alpha_0(C') = k(y')$. Since $C \cap C' \neq \emptyset$, the valency k(x) is constant on $C \cup C'$.

(ii) Since Γ is connected, the assertion follows from (i).

Let $\Gamma = (X, R)$ be a connected graph of diameter D and C a nonempty subset of X with covering radius t(C). Let $V = \mathbf{R}^X$ denote the real vector space consisting of column vectors whose entries are indexed by X. For $\mathbf{u}, \mathbf{v} \in V$, $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$ and $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$. Let $A \in \operatorname{Mat}_X(\mathbf{R})$ be the adjacency matrix of Γ . Let $\theta_0 > \theta_1 > \cdots >$ θ_r be all the distinct eigenvalues of A, and $E_0, E_1, \ldots, E_r \in \mathbf{R}[A]$ the corresponding primitive idempotents, where $\mathbf{R}[A]$ is the polynomial algebra in A over the real number field. Thus,

$$E_0 + E_1 + \dots + E_r = I$$
, $E_i E_j = \delta_{i,j} E_i$, and
 $AE_i = \theta_i E_i$ for $i, j \in \{0, 1, \dots, r\}$.

For each $i \in \{0, 1, ..., t(C)\}$, let $E_i^*(C)$ denote the projection onto the subspace of V spanned by unit vectors corresponding to vertices in $\Gamma_i(C)$. We let $\mathcal{T}(C)$ denote the subalgebra of $Mat_X(\mathbf{R})$ generated by A and $E_0^*(C)$, $E_1^*(C)$, ..., $E_{t(C)}^*(C)$. Let $\mathbf{1} \in V$ be the all one vector. A $\mathcal{T}(C)$ -module W, i.e., a vector subspace of V invariant under the action of $\mathcal{T}(C)$, is said to be *thin* if dim $E_i^*(C)W \leq 1$ for all $i \in \{0, 1, ..., t(C)\}$. $\mathcal{T}(C)\mathbf{1}$ is called the primary module of $\mathcal{T}(C)$. Note that $\mathbf{w}_i = E_i^*(C)\mathbf{1}$ is the characteristic vector of $\Gamma_i(C)$ for $i \in \{0, 1, ..., t(C)\}$ and $W_C = \text{Span}(\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_{t(C)}) \subset \mathcal{T}(C)\mathbf{1}$. It is easy to see that if C is a completely regular code with parameters γ_i , α_i , β_i (i = 0, 1, ..., t(C)), then

$$A \boldsymbol{w}_{i} = \beta_{i-1} \boldsymbol{w}_{i-1} + \alpha_{i} \boldsymbol{w}_{i} + \gamma_{i+1} \boldsymbol{w}_{i+1}$$
 for $i = 0, 1, ..., t(C)$.

Here $\boldsymbol{w}_{-1} = \boldsymbol{w}_{t(C)+1} = \boldsymbol{0}$, and β_{-1} and $\gamma_{t(C)+1}$ are indeterminate. Hence in this case $W_C = \mathcal{T}(C)\mathbf{1}$ and W_C is a thin irreducible $\mathcal{T}(C)$ -module. See [15, Proposition 7.2].

The ideas and techniques of proofs of the following results are taken from the lecture note by P. Terwilliger [16].

Proposition 5 Let $\Gamma = (X, R)$ be a connected graph of diameter D > 1. Suppose C, C' are completely regular codes that are cliques of Γ with $|C \cap C'| = e > 0$. Let

$$W = W_{C} = \text{Span}(\boldsymbol{w}_{0}, \boldsymbol{w}_{1}, \dots, \boldsymbol{w}_{t}), \text{ where } \boldsymbol{w}_{i} = E_{i}^{*}(C)\mathbf{1},$$

$$A\boldsymbol{w}_{i} = \beta_{i-1}\boldsymbol{w}_{i-1} + \alpha_{i}\boldsymbol{w}_{i} + \gamma_{i+1}\boldsymbol{w}_{i+1},$$

$$W' = W_{C'} = \text{Span}(\boldsymbol{w}_{0}', \boldsymbol{w}_{1}', \dots, \boldsymbol{w}_{t'}'), \text{ where } \boldsymbol{w}_{i}' = E_{i}^{*}(C')\mathbf{1},$$

$$A\boldsymbol{w}_{i}' = \beta_{i-1}'\boldsymbol{w}_{i-1}' + \alpha_{i}'\boldsymbol{w}_{i}' + \gamma_{i+1}'\boldsymbol{w}_{i+1}',$$

with t = t(C) and t' = t(C'). Then the following hold.

(i) There are polynomials $p(\lambda)$, $p'(\lambda) \in \mathbf{R}[\lambda]$ such that

$$\operatorname{proj}_{W'} \boldsymbol{w}_{0} = p(A) \frac{\|\boldsymbol{w}_{0}\|}{\|\boldsymbol{w}_{0}'\|} \boldsymbol{w}_{0}', \qquad \operatorname{proj}_{W} \boldsymbol{w}_{0}' = p'(A) \frac{\|\boldsymbol{w}_{0}'\|}{\|\boldsymbol{w}_{0}\|} \boldsymbol{w}_{0},$$

where with $k = \alpha_0 + \beta_0$,

$$p(\lambda) = \frac{\|\boldsymbol{w}_0\|^2 - e}{(k - \|\boldsymbol{w}_0'\|^2 + 1)\|\boldsymbol{w}_0\|\|\boldsymbol{w}_0'\|}\lambda + \frac{ke - \|\boldsymbol{w}_0\|^2(\|\boldsymbol{w}_0'\|^2 - 1)}{(k - \|\boldsymbol{w}_0'\|^2 + 1)\|\boldsymbol{w}_0\|\|\boldsymbol{w}_0'\|},$$
$$p'(\lambda) = \frac{\|\boldsymbol{w}_0'\|^2 - e}{(k - \|\boldsymbol{w}_0\|^2 + 1)\|\boldsymbol{w}_0\|\|\boldsymbol{w}_0'\|}\lambda + \frac{ke - \|\boldsymbol{w}_0'\|^2(\|\boldsymbol{w}_0\|^2 - 1)}{(k - \|\boldsymbol{w}_0\|^2 + 1)\|\boldsymbol{w}_0\|\|\boldsymbol{w}_0'\|}.$$

(ii) $p'(\theta_i)m_W(\theta_i) = p(\theta_i)m_{W'}(\theta_i)$ for all *i*, where

$$m_W(\theta_i) = \frac{\|E_i \boldsymbol{w}_0\|^2}{\|\boldsymbol{w}_0\|^2} \quad and \quad m_{W'}(\theta_i) = \frac{\|E_i \boldsymbol{w}_0'\|^2}{\|\boldsymbol{w}_0'\|^2}.$$

(iii) If $\|\boldsymbol{w}_0\| = \|\boldsymbol{w}_0'\|$, *i.e.*, |C| = |C'|, then $m_W(\theta_i) = m_{W'}(\theta_i)$ for all *i*.

Proof Since $C \cap C' \neq \emptyset$, the valencies of the vertices in $C \cup C'$ are the same by Lemma 4. Let $k = \alpha_0 + \beta_0 = \alpha'_0 + \beta'_0$ be the valency of vertices in $C \cup C'$.

(i) Since $A w_0 = \alpha_0 w_0 + \gamma_1 w_1$ with $\gamma_1 \neq 0$ and $\alpha_0 = |C| - 1 = ||w_0||^2 - 1$,

$$\boldsymbol{w}_1 = \frac{1}{\gamma_1} (A - (\|\boldsymbol{w}_0\|^2 - 1)I) \boldsymbol{w}_0.$$

Since $C' \subset C \cup \Gamma(C)$, $\langle \boldsymbol{w}'_0, \boldsymbol{w}_i \rangle = 0$ for i = 2, 3, ..., t. Let $\operatorname{proj}_W \boldsymbol{w}'_0 = \xi_0 \boldsymbol{w}_0 + \xi_1 \boldsymbol{w}_1$. By counting the edges between *C* and $\Gamma(C)$ in two ways, we have

$$\|\boldsymbol{w}_{1}\|^{2} = \langle \boldsymbol{w}_{1}, \boldsymbol{w}_{1} \rangle = \left| \Gamma(C) \right| = \frac{\beta_{0}|C|}{\gamma_{1}} = \frac{(k - \|\boldsymbol{w}_{0}\|^{2} + 1)\|\boldsymbol{w}_{0}\|^{2}}{\gamma_{1}}.$$

 $e = \langle \boldsymbol{w}_0', \boldsymbol{w}_0 \rangle = \langle \operatorname{proj}_W \boldsymbol{w}_0', \boldsymbol{w}_0 \rangle = \xi_0 \| \boldsymbol{w}_0 \|^2$, and

$$\|\boldsymbol{w}_{0}'\|^{2} - e = \langle \boldsymbol{w}_{0}', \boldsymbol{w}_{1} \rangle = \langle \operatorname{proj}_{W} \boldsymbol{w}_{0}', \boldsymbol{w}_{1} \rangle = \xi_{1} \|\boldsymbol{w}_{1}\|^{2} = \xi_{1} \frac{(k - \|\boldsymbol{w}_{0}\|^{2} + 1)\|\boldsymbol{w}_{0}\|^{2}}{\gamma_{1}}.$$

Deringer

 \Box

Therefore,

 $\operatorname{proj}_W \boldsymbol{w}'_0$

$$= \xi_{0} \boldsymbol{w}_{0} + \xi_{1} \boldsymbol{w}_{1}$$

$$= \frac{e}{\|\boldsymbol{w}_{0}\|^{2}} \boldsymbol{w}_{0} + \frac{\gamma_{1}(\|\boldsymbol{w}_{0}'\|^{2} - e)}{(k - \|\boldsymbol{w}_{0}\|^{2} + 1)\|\boldsymbol{w}_{0}\|^{2}} \cdot \frac{1}{\gamma_{1}} (A - (\|\boldsymbol{w}_{0}\|^{2} - 1)I) \boldsymbol{w}_{0}$$

$$= \frac{\|\boldsymbol{w}_{0}'\|}{\|\boldsymbol{w}_{0}\|} \left(\frac{\|\boldsymbol{w}_{0}'\|^{2} - e}{(k - \|\boldsymbol{w}_{0}\|^{2} + 1)\|\boldsymbol{w}_{0}\|\|\boldsymbol{w}_{0}'\|} A + \frac{ke - \|\boldsymbol{w}_{0}'\|^{2}(\|\boldsymbol{w}_{0}\|^{2} - 1)}{(k - \|\boldsymbol{w}_{0}\|^{2} + 1)\|\boldsymbol{w}_{0}\|\|\boldsymbol{w}_{0}'\|} I \right) \boldsymbol{w}_{0}$$

$$= p'(A) \frac{\|\boldsymbol{w}_{0}'\|}{\|\boldsymbol{w}_{0}\|} \boldsymbol{w}_{0}.$$

By symmetry we obtain the formula of $proj_{W'} \boldsymbol{w}_0$ as well.

(ii) Since $E_i w_0 \in W$ and A is a real symmetric matrix,

$$\frac{\langle E_{i} \boldsymbol{w}_{0}, E_{i} \boldsymbol{w}_{0}' \rangle}{\|\boldsymbol{w}_{0}\| \|\boldsymbol{w}_{0}'\|} = \frac{\langle E_{i} \boldsymbol{w}_{0}, \mathbf{w}_{0}' \rangle}{\|\boldsymbol{w}_{0}\| \|\boldsymbol{w}_{0}'\|} = \frac{\|\boldsymbol{w}_{0}'\|}{\|\boldsymbol{w}_{0}\| \|\boldsymbol{w}_{0}'\|} \frac{\langle E_{i} \boldsymbol{w}_{0}, p'(A) \boldsymbol{w}_{0} \rangle}{\|\boldsymbol{w}_{0}\| \|\boldsymbol{w}_{0}'\|} = \frac{\langle p'(A) E_{i} \boldsymbol{w}_{0}, \boldsymbol{w}_{0} \rangle}{\|\boldsymbol{w}_{0}\|^{2}} = p'(\theta_{i}) \frac{\langle E_{i} \boldsymbol{w}_{0}, E_{i} \boldsymbol{w}_{0} \rangle}{\|\boldsymbol{w}_{0}\|^{2}} = p'(\theta_{i}) \frac{\|E_{i} \boldsymbol{w}_{0}\|^{2}}{\|\boldsymbol{w}_{0}\|^{2}}$$
$$= p'(\theta_{i})m_{W}(\theta_{i}).$$

By symmetry we have (ii).

(iii) Suppose $\|\boldsymbol{w}_0\| = \|\boldsymbol{w}_0'\|$. Then $p(\lambda) = p'(\lambda)$ by (i). Therefore $m_W(\theta_i) = m_{W'}(\theta_i)$ for all *i* except possibly one *i* for which $p(\theta_i) = 0$. Since

$$1 = \frac{\langle \boldsymbol{w}_0, \, \boldsymbol{w}_0 \rangle}{\| \boldsymbol{w}_0 \|^2} = \sum_{i=0}^r \frac{\| E_i \, \boldsymbol{w}_0 \|^2}{\| \boldsymbol{w}_0 \|^2} = \sum_{i=0}^r m_W(\theta_i),$$

 $m_W(\theta_i) = m_{W'}(\theta_i)$ for all *i* without an exception.

Proposition 6 Let $\Gamma = (X, R)$ be a connected graph of diameter D > 1. Suppose Γ is regular of valency k. Let C, C' be completely regular codes that are cliques in Γ with $C \cap C' \neq \emptyset$. If |C| = |C'|, then the parameters of C and C' coincide.

Proof We use the notation in the proof of Proposition 5. By Proposition 5(iii), $m_W(\theta_i) = m_{W'}(\theta_i)$ for all *i*. Since $E_i E_j = \delta_{i,j} E_i$ for $i, j \in \{0, 1, ..., r\}$, nonzero vectors in the set $\{E_0 \boldsymbol{w}_0, E_1 \boldsymbol{w}_0, ..., E_r \boldsymbol{w}_0\}$ are perpendicular to each other, and hence they form a linearly independent set of vectors. Since $\boldsymbol{R}[A]\boldsymbol{w}_0 = \text{Span}\{E_0\boldsymbol{w}_0, E_1\boldsymbol{w}_0, ..., E_r\boldsymbol{w}_0\}$, dim $\boldsymbol{R}[A]\boldsymbol{w}_0 = \dim(W) = t(C) + 1$ is equal to the number of *i* such that $E_i \boldsymbol{w}_0 \neq \boldsymbol{0}$, we have t(C) = t(C'). Let *t* be this number. Let $m(\theta_i) = m_W(\theta_i) = \|E_i \boldsymbol{w}_0\|^2 / \|\boldsymbol{w}_0\|^2$, and let $\boldsymbol{R}_t[\lambda]$ be the set of all polynomials of degree at most *t*. Then, for $f, g \in \boldsymbol{R}_t[\lambda]$,

$$\langle f, g \rangle_m = \sum_{i=0}^r f(\theta_i)g(\theta_i)m(\theta_i)$$

defines an inner product on $\mathbf{R}_t[\lambda]$. Let q_0, q_1, \ldots, q_t be uniquely determined monic orthogonal polynomials with respect to this inner product. Let $p_0, p_1, \ldots, p_t, p_{t+1}$ and $p'_0, p'_1, \ldots, p'_t, p'_{t+1}$ be polynomials defined by the following recursive relations:

$$p_0 = 1, \quad \lambda p_i = \beta_{i-1} p_{i-1} + \alpha_i p_i + \gamma_{i+1} p_{i+1}, \quad \text{for } i = 0, 1, \dots, t \text{ with } p_{-1} = 0,$$

$$p'_0 = 1, \quad \lambda p'_i = \beta'_{i-1} p'_{i-1} + \alpha'_i p'_i + \gamma'_{i+1} p'_{i+1}, \quad \text{for } i = 0, 1, \dots, t \text{ with } p'_{-1} = 0.$$

Here, $\beta_i = \beta_i(C)$, $\alpha_i = \alpha_i(C)$, $\gamma_i = \gamma_i(C)$, $\beta'_i = \beta_i(C')$, $\alpha'_i = \alpha_i(C')$, $\gamma'_i = \gamma_i(C')$ (*i* = 0, 1, ..., *t*), and assume $\gamma_{t+1} = \gamma'_{t+1} = 1$, $\beta_{-1} = \beta'_{-1} = 0$. Then we have $p_i(A)\mathbf{w}_0 = \mathbf{w}_i$, $p'_i(A)\mathbf{w}'_0 = \mathbf{w}'_i$ and $p_{t+1}(A)\mathbf{w}_0 = p'_{t+1}(A)\mathbf{w}'_0 = \mathbf{0}$. Moreover, for $i, j \in \{0, 1, ..., t+1\}$ with $\mathbf{w}_{t+1} = \mathbf{w}'_{t+1} = \mathbf{0}$,

$$\langle \boldsymbol{w}_{i}, \boldsymbol{w}_{j} \rangle = \langle p_{i}(A)\boldsymbol{w}_{0}, p_{j}(A)\boldsymbol{w}_{0} \rangle$$
$$= \left\langle p_{i}(A)\sum_{h=0}^{r} E_{h}\boldsymbol{w}_{0}, p_{j}(A)\sum_{h'=0}^{r} E_{h'}\boldsymbol{w}_{0} \right\rangle$$
$$= \sum_{h=0}^{r}\sum_{h'=0}^{r} p_{i}(\theta_{h})p_{j}(\theta_{h'})\langle E_{h}\boldsymbol{w}_{0}, E_{h'}\boldsymbol{w}_{0} \rangle$$
$$= \sum_{h=0}^{r} p_{i}(\theta_{h})p_{j}(\theta_{h})m(\theta_{h})\|\boldsymbol{w}_{0}\|^{2}$$
$$= \langle p_{i}, p_{j} \rangle_{m}\|\boldsymbol{w}_{0}\|^{2}.$$

Therefore we have for $i, j \in \{0, 1, \dots, t\}$,

$$\langle p_i, p_j \rangle_m = \delta_{i,j} = \langle p'_i, p'_j \rangle_m,$$

and $\langle p_{t+1}, p_{t+1} \rangle_m = \langle p'_{t+1}, p'_{t+1} \rangle_m = 0$. Considering the leading coefficients of p_i and p_j , we have

$$\gamma_1 \gamma_2 \cdots \gamma_i p_i = q_i = \gamma'_1 \gamma'_2 \cdots \gamma'_i p'_i \quad \text{for all } i \in \{0, 1, \dots, t\}.$$

In particular, q_0, q_2, \dots, q_t with q_{t+1} , monic characteristic polynomial of A on W, satisfy

$$\lambda q_i = \beta_{i-1} \gamma_i q_{i-1} + \alpha_i q_i + q_{i+1} = \beta'_{i-1} \gamma'_i q_{i-1} + \alpha'_i q_i + q_{i+1} \quad \text{for } i = 0, 1, 2, \dots, t.$$

Therefore we have

$$\beta_{i-1}\gamma_i = \beta'_{i-1}\gamma'_i$$
 and $\alpha_i = \alpha'_i$ for $i = 0, 1, 2, \dots, t$

Since Γ is regular of valency k, $\alpha_0 = \alpha'_0$ implies $\beta_0 = k - \alpha_0 = k - \alpha'_0 = \beta'_0$. Hence we have $\gamma_1 = \gamma'_1$ by above. Since $\alpha_i = \alpha'_i$ for all i, by induction, we can conclude that all parameters are equal.

Deringer

Proof of Theorem 1 Let Γ be a completely regular clique graph with parameters (s, c) with respect to C. Since every edge is contained in a member of C, Γ is regular by Lemma 4. Now the fact that the parameters of completely regular codes $C \in C$ do not depend on C follows from Proposition 6.

Example 1 The prism graph below has two types of completely regular cliques, i.e., triangles $\{a, b, c\}$ and $\{d, e, f\}$, and edges $\{a, f\}$, $\{c, d\}$ and $\{b, e\}$. Parameters are different. If $C = \{a, b, c\}$ and $C' = \{a, f\}$, then $p(\lambda) = \frac{1}{6}\lambda$ and $p'(\lambda) = \frac{1}{6}(\lambda - 1)$.

Example 2 The following graph is 3-regular with 8 vertices. Both edges $\{a, b\}$ and $\{c, d\}$ are completely regular but parameters are different. Note that these two edges do not have a common vertex.

3 Completely regular clique graphs

In this section, we prove Theorem 3. We need the following result.

Proposition 7 (A. Neumaier [13, Theorem 4.1]) Let $\Gamma = (X, R)$ be a distanceregular graph and let C be a nonempty subset of X with covering radius t = t(C). For i = 0, 1, ..., t, let $\mu_i = |\Gamma_i(x) \cap C|$ and $\lambda_i = |\Gamma_{i+1}(x) \cap C|$ when $x \in \Gamma_i(C)$.

- (i) C is completely regular if and only if µ_i and λ_i are independent of the choice of x ∈ Γ_i(C).
- (ii) Suppose C is completely regular with the parameters $\gamma_i, \alpha_i, \beta_i$ with $i \in \{1, 2, ..., t\}$. Then

$$\gamma_i = \frac{\mu_i c_i}{\mu_{i-1}}, \qquad \alpha_i = a_i + \frac{\lambda_i c_{i+1}}{\mu_i} - \frac{\lambda_{i-1} c_i}{\mu_{i-1}}, \quad and$$

 $\beta_i = b_i - \frac{(\mu_i - \mu_{i-1} - \lambda_{i-1})c_i}{\mu_{i-1}} - \frac{\lambda_i c_{i+1}}{\mu_i}.$

Proposition 8 Let $\widetilde{\Gamma} = (X \cup Y, \widetilde{R})$ be a distance-semiregular graph on X with parameters b_i^X, c_i^X with $i = 0, 1, ..., d^X$. Let Γ be the bipartite half of $\widetilde{\Gamma}$ on X. For $y \in Y$, write $C_y = \widetilde{\Gamma}(y) \subset X$, and set $\mathcal{C} = \{C_y \mid y \in Y\}$. Then the following hold.

- (i) Γ is distance-regular.
- (ii) Each element $C \in C$ is a clique and a completely regular code in Γ .
- (iii) Each edge in Γ is contained in c_2^X members of C. In particular, $\Gamma = (X, R)$ is a completely regular clique graph of parameters $(b_0^Y 1, c_2^X)$.

Proof (i) This is clear. See [14].

(ii) Since Γ is a distance-2-graph of $\widetilde{\Gamma}$, each C_y is a clique in Γ . Let $C = C_y \in \mathcal{C}$. We apply Proposition 7 to show that C is completely regular. Let $x \in X$ with $\partial_{\Gamma}(x, C) = i$. Then $\partial_{\widetilde{\Gamma}}(x, y) = 2i + 1$. Hence

$$\mu_{i}(x) = \left| \Gamma_{i}(x) \cap C \right| = \left| \widetilde{\Gamma}_{2i}(x) \cap \widetilde{\Gamma}(y) \right| = c_{2i+1}^{X}$$

Therefore $\mu_i(x)$ does not depend on the choice of $x \in \Gamma_i(C)$. Since *C* is a clique, $\lambda_i(x) = |C| - \mu_i(x)$ and $\lambda_i(x)$ does not depend on the choice of $x \in \Gamma_i(C)$ either.

(iii) For each edge $\{x_1, x_2\}$ of Γ there exist c_2^X vertices $y \in Y$ such that $\{x_1, x_2\} \subset C_y$. Thus we have the assertions.

Let $\Gamma = (X, R)$ be a completely regular clique graph with parameters (s, c) with respect to C. The *incidence graph* of Γ is a bipartite graph $\widetilde{\Gamma} = (X \cup Y, \widetilde{R})$ with vertex set $X \cup Y$, where Y = C, and edge set $\widetilde{R} = \{(x, y) \mid x \in X, y \in Y \text{ such that } x \in y\}$. Let c_i and b_i be parameters of Γ if they exist. Let c_i^X and b_i^X denote the parameters of $\widetilde{\Gamma}$ when the base vertex is in X and they exist. We define c_i^Y and b_i^Y similarly.

Lemma 9 Let $\widetilde{\Gamma} = (X \cup Y, \widetilde{R})$ be the incidence graph of a completely regular clique graph $\Gamma = (X, R)$ with parameters (s, c) with respect to C. Then the following hold.

- (i) $\tilde{\Gamma}$ is biregular of valencies (b_0^X, b_0^Y) , where $b_0^X = (\beta_0 + s)c/s$ and $b_0^Y = s + 1$. Moreover, $c_1^X = 1$, $c_2^X = c$, $c_3^X = \gamma_1$, $b_1^X = s$, $b_2^X = \beta_0 c/s$, $b_3^X = s + 1 - \gamma_1$, and $b_1^Y = b_0^X - 1$.
- (ii) Γ is edge regular with $a_1 = (s-1) + \beta_0(\gamma_1 1)/s$.
- (iii) If $d(\Gamma) > 1$, then Γ is $K_{2,1,1}$ -free if and only if $\gamma_1 = 1$ if and only if $a_1 = s 1$. In this case c = 1, and each member of C is a maximal clique.

Proof (i) By Lemma 4(ii), Γ is regular of valency $k = b_0 = \alpha_0 + \beta_0$. By definition, we have $b_0^Y = s + 1$, $c_1^X = 1$, $b_1^X = b_0^Y - c_1^X = s \ge 1$, $c_2^X = c$ and $c_3^X = \gamma_1$. We show that b_0^X exists.

Let $x \in X$ and let

$$S = \left\{ \left(x', y\right) \in X \times Y \mid \partial_{\tilde{\Gamma}}(x, x') = 2, \ \partial_{\tilde{\Gamma}}(x, y) = \partial_{\tilde{\Gamma}}(y, x') = 1 \right\}.$$

By counting the cardinality of *S*, we have $|S| = |\tilde{\Gamma}(x)|b_1^X = b_0 c_2^X$. Hence b_0^X exists and $b_0^X = b_0 c_2^X / b_1^X = kc/s$.

Hence $\widetilde{\Gamma}$ is biregular. Therefore b_i^X exists if and only if c_i^X exists, $b_{2i}^X + c_{2i}^X = b_0^X$, $b_{2i-1}^X + c_{2i-1}^X = b_0^Y$. Since $\alpha_0 = s$,

$$b_2^X = b_0^X - c_2^X = kc/s - c = c(k-s)/s = \beta_0 c/s$$

The rest follow immediately.

(ii) Since
$$b_0 = b_0^X b_1^X / c_2^X$$
 and $b_1 = b_2^X b_3^X / c_2^X = \beta_0 (s+1-\gamma_1)/s$, we have
 $a_1 = b_0 - c_1 - b_1 = \beta_0 + s - 1 - \beta_0 (s+1-\gamma_1)/s = (s-1) + \beta_0 (\gamma_1 - 1)/s$.

(iii) We first prove that Γ is $K_{2,1,1}$ -free if and only if $\gamma_1 = 1$. Suppose Γ is $K_{2,1,1}$ -free. Let $y \in X$, $x, z \in \Gamma(y)$ with $\partial(x, z) = 2$ and $\{x, y\} \subset C \in C$. Since Γ is $K_{2,1,1}$ -free, $\gamma_1 = |\Gamma(z) \cap C| = 1$. Conversely, suppose $\gamma_1 = 1$. If x, y, z, w form a $K_{2,1,1}$ with $\partial(z, w) = 2$ and $\{x, y\} \subset C \in C$, then either z or w is not in C. This contradicts $\gamma_1 = 1$.

By (ii) it is clear that $\gamma_1 = 1$ is equivalent to $a_1 = s - 1$.

Assume these three equivalent conditions. Then clearly c = 1 and each member of C is a maximal clique. This proves (iii).

Next we show that the incidence graph of a distance-regular completely regular clique graph is distance-semiregular.

Proposition 10 Let $\Gamma = (X, R)$ be a distance-regular graph of valency k and diameter D. Suppose Γ is a completely regular clique graph with parameters (s, c) with respect to C. Let t be the uniquely determined covering radius and $\gamma_i, \alpha_i, \beta_i$ with i = 0, 1, ..., t the parameters of completely regular codes in C. Let $\widetilde{\Gamma} = (X \cup Y, \widetilde{R})$ be its incidence graph with Y = C. Then the following hold.

- (i) $\widetilde{\Gamma}$ is distance-semiregular on X and Γ is a bipartite half of $\widetilde{\Gamma}$ on X.
- (ii) The diameter $d(\tilde{\Gamma}) = 2D$ if t = t(C) = D 1 and $d(\tilde{\Gamma}) = 2D + 1$ if t = t(C) = D and the parameters of $\tilde{\Gamma}$ are as follows.

$$b_0^Y = s + 1, \qquad b_0^X = kc/s, \qquad c_1^X = 1, \qquad c_2^X = c,$$

$$c_{2i+1}^X = \frac{\gamma_1 \gamma_2 \cdots \gamma_i}{c_1 c_2 \cdots c_i}, \qquad c_{2j}^X = \frac{c_1 c_1 \cdots c_{j-1} c_j c}{\gamma_1 \gamma_2 \cdots \gamma_{j-1}}, \quad and$$

$$b_{2i+1}^X = s + 1 - c_{2i+1}^X, \qquad b_{2j}^X = kc/s - c_{2j}^X$$

for i, j with $0 \le 2i + 1, 2j \le d(\widetilde{\Gamma})$.

Proof Let μ_i with i = 0, 1, ..., t be the numbers defined in Proposition 7.

(i) For $y \in Y$, a subset $\widetilde{\Gamma}(y)$ of X forms a clique of Γ in C by definition. We write $C_y = \widetilde{\Gamma}(y)$. Since $\widetilde{\Gamma}$ is biregular by Lemma 9 (i), b_i^X exists if and only if c_i^X exists, and $b_{2i}^X + c_{2i}^X = b_0^X$ and $b_{2i-1}^X + c_{2i-1}^X = b_0^Y$. Moreover, if $b_0^X, b_1^X, \ldots, b_{i-1}^X, c_1^X, c_2^X, \ldots, c_i^X$ exist, $k_i^X = |\widetilde{\Gamma}_i(x)| = (b_0^X b_1^X \cdots b_{i-1}^X)/(c_1^X c_2^X \cdots c_i^X)$ does not depend on the choice of $x \in X$.

Let $y \in Y$ and $x \in \Gamma_i(C_y)$. Then $\partial_{\tilde{\Gamma}}(x, y) = 2i + 1$ and

$$c_{2i+1}(x, y) = \left| \widetilde{\Gamma}_{2i}(x) \cap \widetilde{\Gamma}(y) \right| = \left| \Gamma_i(x) \cap C_y \right| = \mu_i.$$

Therefore c_{2i+1}^X and hence b_{2i+1}^X exists for all *i*.

Now suppose $b_0^X, b_1^X, \dots, b_{2i+1}^X, c_0^X, c_1^X, \dots, c_{2i+1}^X$ exist for $i \ge 1$. For $x' \in \Gamma_{i+1}(x)$, by counting the cardinality of the set

$$S = \left\{ \left(x'', y\right) \mid y \in \widetilde{\Gamma}_{2i+1}(x) \cap \widetilde{\Gamma}(x'), \ x'' \in \widetilde{\Gamma}_{2i}(x) \cap \widetilde{\Gamma}(y) \right\}$$
$$= \left\{ \left(x'', y\right) \mid x'' \in \Gamma_i(x) \cap \Gamma(x'), \ y \in \widetilde{\Gamma}(x') \cap \widetilde{\Gamma}(x'') \right\}$$

we have $c_{i+1}c_2^X = c_{2i+1}^X |\tilde{\Gamma}_{2i+1}(x) \cap \tilde{\Gamma}(x')| = c_{2i+1}^X c_{2i+2}(x, x')$. Thus c_{2i+2}^X exists and

$$c_{2i+2}^X = c_{i+1}c_2^X/c_{2i+1}^X$$

By induction, we have that $\tilde{\Gamma}$ is distance-semiregular on X.

(ii) Note that $\mu_0 = 1$. Now by Proposition 7,

$$c_{2i+1}^X = \mu_i = \frac{\gamma_1 \gamma_2 \cdots \gamma_i}{c_1 c_2 \cdots c_i}, \text{ and } c_{2i+2}^X = \frac{c_{i+1} c_2^X}{c_{2i+1}^X} = \frac{c_1 c_1 \cdots c_i c_{i+1} c}{\gamma_1 \gamma_2 \cdots \gamma_i}.$$

Thus we have the assertion.

Theorem 3 now follows directly from Propositions 8 and 10.

4 Notes

It is useful to define the notion of completely regular clique graphs in terms of an incidence structure.

Definition 2 Let $\mathcal{I} = (X, Y, I)$ be an incidence structure, where *X* and *Y* are finite set and *I* a relation on $X \times Y$. Let $\Gamma = (X, R)$ be the collinearity graph of \mathcal{I} with vertex set *X* and edge set $R = \{\{x, x'\} \subset X \mid x \neq x' \text{ and there exists } y \in Y \text{ such that } xIy \text{ and } x'Iy\}$. Then \mathcal{I} is said to be a *CRC geometry with parameters* (s, c), if the following are satisfied.

- (i) For each y ∈ Y, let C_y = {x ∈ X | xIy}. Then C_y is a completely regular code of Γ of size s + 1 ≥ 2.
- (ii) For each distinct $x, x' \in X$, $|\{y \in Y \mid xIy \text{ and } x'Iy\}| \in \{0, c\}$ and $c \ge 1$.

Let $\Gamma = (X, R)$ be one of the Johnson graphs or the Grassmann graphs of diameter D. Then for each $i \in \{0, 1, ..., D-1\}$ and $x, y \in X$ with $\partial(x, y) = i$ we can choose a geodetically closed completely regular code $C_{x,y}$ of diameter i containing x and y. Define $C_i = \{C_{x,y} \mid x, y \in X \text{ with } \partial(x, y) = i\}$ and C_{i+1} similarly. Then the pair (C_i, C_{i+1}) defines a CRC geometry when incidence is defined by inclusion.

We conclude this paper by proposing three problems related to completely regular clique graphs.

Problem 1 Prove or disprove that completely regular clique graphs are distance-regular.

Problem 2 Classify completely regular clique graphs with respect to C such that there is a nonempty collection C' of completely regular codes of width two such that (C, C', \subset) is a CRC geometry when incidence is defined by inclusion.

Problem 3 Characterize connected graphs $\Gamma = (X, R)$ with the following properties.

- (i) There is a nonempty collection C of cliques of size s + 1 and that for each C ∈ C and x ∈ C, T(C)c_x is a thin irreducible T(C)-module, where c_x = x̂ 1/|C| ∑_{y∈C} ŷ ∈ C^X. Here ẑ is a unit vector in C^X corresponding to a vertex z.
 (ii) Each edge is contained in exactly c members of C and c ≥ 1.
- **Acknowledgements** The author would like to thank anonymous referee for pointing out a couple of errors in the first manuscript and giving many valuable suggestions. This research was partially supported by the Grant-in-Aid for Scientific Research (No. 21540023), Japan Society of the Promotion of Science.

References

- 1. Bang, S., Koolen, J.H.: On distance-regular graphs with smallest eigenvalue at least -m. J. Comb. Theory, Ser. B **100**, 573–584 (2010)
- 2. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte clique graphs. Eur. J. Comb. 28, 501-516 (2007)
- 3. Bang, S., Hiraki, A., Koolen, J.H.: Delsarte set graphs with small c₂. Graphs Comb. **26**, 147–162 (2010)
- 4. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)
- Cámara, M., Dalfó, C., Fàbrega, J., Fiol, M.A., Garriga, E.: Edge-distance-regular graphs. J. Comb. Theory, Ser. A 118, 2071–2091 (2011)
- Cámara, M., Dalfó, C., Delorme, C., Fiol, M.A., Suzuki, H.: Edge-distance-regular graphs are distance-regular. J. Comb. Theory, Ser. A 120, 1057–1067 (2013)
- De Bruyn, B., Suzuki, H.: Intriguing sets of vertices of regular graphs. Graphs Comb. 26, 629–646 (2010)
- De Clerck, F., De Winter, S., Kuijken, E., Tonesi, C.: Distance-regular (0, α)-reguli. Des. Codes Cryptogr. 28, 179–194 (2006)
- 9. Delorme, C.: Distance biregular bipartite graphs. Eur. J. Comb. 15, 223-238 (1994)
- Fiol, M.A., Garriga, E.: An algebraic characterization of completely regular codes in distance-regular graphs. SIAM J. Discrete Math. 15, 1–13 (2001)
- Godsil, C.D., Shawe-Taylor, J.: Distance-regularised graphs are distance-regular or distance-biregular. J. Comb. Theory, Ser. B 43, 14–24 (1987)
- 12. Kuijken, E., Tonsei, C.: Distance-regular graphs and (α, β) -geometries. J. Geom. 82, 135–145 (2005)
- 13. Neumaier, A.: Completely regular codes. Discrete Math. 106/107, 353-360 (1992)
- 14. Suzuki, H.: Distance-semiregular graphs. Algebra Colloq. 2, 315–328 (1995)
- Suzuki, H.: The Terwilliger algebra associated with a set of vertices in a distance-regular graph. J. Algebr. Comb. 22, 5–38 (2005)
- Terwilliger, P.: Algebraic Graph Theory, hand-written note of a series of lectures given in 1993. rewritten and added comments by H. Suzuki. URL http://subsite.icu.ac.jp/people/hsuzuki/lecturenote/