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Abstract Let Γ = (X,R) be a connected graph. Then Γ is said to be a completely
regular clique graph of parameters (s, c) with s ≥ 1 and c ≥ 1, if there is a collection
C of completely regular cliques of size s + 1 such that every edge is contained in
exactly c members of C. In this paper, we show that the parameters of C ∈ C as a
completely regular code do not depend on C ∈ C. As a by-product we have that all
completely regular clique graphs are distance-regular whenever C consists of edges.
We investigate the case when Γ is distance-regular, and show that Γ is a completely
regular clique graph if and only if it is a bipartite half of a distance-semiregular graph.

Keywords Distance-regular graph · Association scheme · Subconstituent algebra ·
Terwilliger algebra · Completely regular code · Distance-semiregular graph

1 Introduction

In this paper, we only consider finite graphs. Let Γ = (X,R) be a connected graph
with vertex set X and edge set R consisting of 2-element subsets of X. When {x, y} ∈
R, i.e., x and y are adjacent, we write x ∼ y. For x, y ∈ X, ∂Γ (x, y) = ∂(x, y) de-
notes the distance between x and y, i.e., the length of a shortest path between x and y

in Γ . The diameter d(Γ ) is the maximal distance between two vertices. A nonempty
subset C of X is said to be a clique if every distinct vertices in C are adjacent.

A subset C of X is often called a code in Γ = (X,R), and Γi(C) = {x ∈ X |
∂(x,C) = i} is called the ith subconstituent with respect to C, where ∂(x,C) =
min{∂(x, y) | y ∈ C}. We write Γ (C) for Γ1(C). The number t = t (C) = max{i |
Γi(C) �= ∅} is called the covering radius of C. If C and C′ are subsets of X,
∂(C,C′) = min{∂(x, y) | x ∈ C,y ∈ C′}. When C = {x}, we write Γi(x) for Γi({x}),

H. Suzuki (B)
International Christian University, Mitaka, Tokyo 181-8585, Japan
e-mail: hsuzuki@icu.ac.jp

mailto:hsuzuki@icu.ac.jp


234 J Algebr Comb (2014) 40:233–244

and set Γ (x) for Γ1(x). The number k(x) = |Γ (x)| is called the valency of x. For
x, y ∈ X with ∂(x, y) = i with i = 0,1, . . . , d(Γ ), let

Bi(x, y) = Γi+1(x) ∩ Γ (y), Ai(x, y) = Γi(x) ∩ Γ (y),

Ci(x, y) = Γi−1(x) ∩ Γ (y),

and bi(x, y) = |Bi(x, y)|, ai(x, y) = |Ai(x, y)| and ci(x, y) = |Ci(x, y)|.
A connected graph Γ = (X,R) of diameter D = d(Γ ) is said to be distance-

regular if for each i ∈ {0,1,2, . . . ,D}, the numbers ci = ci(x, y), ai = ai(x, y) and
bi = bi(x, y) depend only on i = ∂(x, y). In this case, the numbers bi, ai, ci with
i = 0,1, . . . ,D are called the parameters of Γ . For distance-regular graphs we refer
the reader [4]. We mainly follow the notation and the terminologies in the monograph.

Let Γ = (X ∪Y,R) be a connected bipartite graph with the bipartition X ∪Y , i.e.,
there is no edge within X and Y . Let dX = dX(Γ ) = max{∂(x, y) | x ∈ X,y ∈ X ∪
Y }. Then Γ is said to be distance-semiregular on X, if for each i ∈ {0,1,2, . . . , dX},
the numbers cX

i = ci(x, y), and bX
i = bi(x, y) depend only on i = ∂(x, y) whenever

x ∈ X and y ∈ X∪Y . In this case the numbers bX
i , cX

i with i = 0,1, . . . , dX are called
the parameters of Γ . Note that each vertex y ∈ Y is of valency bY

0 = bX
1 + cX

1 and
distance-semiregular graphs are biregular, i.e., the valency of a vertex depends only
on the part the vertex belongs to. If Γ = (X ∪ Y,R) is distance-semiregular on both
X and Y , Γ is called distance-biregular. For more information on distance-biregular
graphs and distance-semiregular graphs, see [9, 11, 14].

Let Γ = (X,R) be a connected graph, and C a nonempty subset of X with cover-
ing radius t = t (C). Then C is said to be a completely regular code if γi = γi(C) =
|Γi−1(C)∩Γ (x)|, αi = αi(C) = |Γi(C)∩Γ (x)|, βi = βi(C) = |Γi+1(C)∩Γ (x)| do
not depend on x ∈ Γi(C) for i ∈ {0,1, . . . , t}. In this case the numbers γi, αi, βi with
i = 0,1, . . . , t are called the parameters of C. We also write γi(C), αi(C) or βi(C)

exists when the corresponding number does not depend on the choice of x ∈ Γi(C).
For completely regular codes of distance-regular graphs, see [4, Sect. 11.1] and [13].
For a special type of completely regular codes in a regular graph, see [7].

Let Γ = (X,R) be a connected graph. In [11], C.D. Godsil and J. Shawe-Taylor
showed that {x} is completely regular for each x ∈ X, if and only if Γ is either
distance-regular or distance-biregular. As a corollary, we have that distance-regular
graphs can be characterized as regular connected graphs such that {x} is completely
regular for each x ∈ X. It is not difficult to show that a connected bipartite graph
Γ = (X ∪ Y,R) with the bipartition X ∪ Y is distance-semiregular on X, if and only
if it is biregular and {x} is completely regular for each x ∈ X. Recently it was shown
in [6] that each edge of Γ is completely regular with the same parameters, if and
only if Γ is either bipartite or almost bipartite distance-regular, i.e., distance-regular
graphs of diameter D with a0 = a1 = · · · = aD−1 = 0. These results can be viewed
as characterizations of distance-regularity by complete regularity of its substructures,
i.e., cliques.

On the other hand, many distance-regular graphs contain many completely regu-
lar codes of various sizes. These completely regular codes correspond to substruc-
tures of the geometry associated with them. If Γ is a distance-regular graph of
diameter D isomorphic to one of the Johnson graphs, the Hamming graphs, the
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Grassmann graphs, the dual polar graphs, the bilinear forms graphs, then for each
i ∈ {0,1, . . . ,D} and vertices x, y at distance i, there is a geodetically closed com-
pletely regular code of diameter i containing x and y. In each case, there is a set C of
completely regular maximal cliques such that the incidence graph on X∪C associated
with it is distance-semiregular.

Definition 1 Let Γ = (X,R) be a connected graph, and let C be a collection of
cliques of Γ . Then Γ is said to be a completely regular clique graph with parameters
(s, c) with respect to C, if the following are satisfied.

(i) Each member C ∈ C is a completely regular code of size s + 1 ≥ 2.
(ii) Each edge is contained in exactly c members of C and c ≥ 1.

When C consists of Delsarte cliques, it is called a Delsarte clique graph with pa-
rameters (s, c) in [2, 3], and Delsarte clique graphs with parameters (s,1) are called
geometric in [1]. Many examples are listed in [2].

Our first result in this paper is concerning the parameters of C ∈ C.

Theorem 1 Let Γ be a completely regular clique graph with parameters (s, c) with
respect to C. Then the parameters of a completely regular code C ∈ C do not depend
on C.

We prove Theorem 1 in Sect. 2 using modules of Terwilliger algebra T (C) with
respect to C ∈ C, and applying the fact that C is completely regular if and only if
the primary T (C)-module is thin. For Terwilliger algebras T (C) and their modules,
see [15].

A connected graph is called edge distance-regular if every edge is a completely
regular code with the same parameters. See [5, 10]. Because of Theorem 1, the con-
dition on parameters is not necessary. Combining with the result in [6] mentioned
above, we have the following.

Corollary 2 Let Γ = (X,R) be a connected graph of diameter D. Then the following
are equivalent.

(i) For every {x, y} ∈ R, {x, y} is a completely regular code.
(ii) Γ is a distance-regular graph with a1 = · · · = aD−1 = 0.

Next result is a characterization of distance-regular completely regular clique
graphs. The proof will be given in Sect. 3. It can be viewed as a characterization
of the collinearity graphs of distance-regular geometries in [8, 12].

Theorem 3 Let Γ = (X,R) be a distance-regular graph. Then Γ is a completely
regular clique graph if and only if Γ is the bipartite half of a distance-semiregular
graph Γ̃ = (X ∪ Y, R̃) on X. Here the bipartite half of Γ̃ = (X ∪ Y, R̃) on X is the
graph with vertex set X such that two vertices are adjacent whenever they are at
distance 2 in Γ̃ .
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2 Parameter set of completely regular clique codes

The main objective of this section is to prove Theorem 1.

Lemma 4 Let Γ = (X,R) be a connected graph of diameter D > 1. Let C be a
collection of cliques of Γ . Then the following hold.

(i) Let C,C′ ∈ C with C ∩ C′ �= ∅. Suppose α0(C),β0(C),α0(C
′) and β0(C

′) exist.
Then the valencies of the vertices in C ∪ C′ are the same.

(ii) If every edge is contained in at least one C ∈ C, and both α0(C) and β0(C) exist
for all C ∈ C, then Γ is regular with valency k = α0(C) + β0(C) for any C ∈ C.

Proof (i) For all x, y ∈ C, k(x) = β0(C) + α0(C) = k(y), and for all x′, y′ ∈ C′,
k(x′) = β0(C

′) + α0(C
′) = k(y′). Since C ∩ C′ �= ∅, the valency k(x) is constant on

C ∪ C′.
(ii) Since Γ is connected, the assertion follows from (i). �

Let Γ = (X,R) be a connected graph of diameter D and C a nonempty subset
of X with covering radius t (C). Let V = RX denote the real vector space consisting
of column vectors whose entries are indexed by X. For u,v ∈ V , 〈u,v〉 = uT v and
‖u‖ = √〈u,u〉. Let A ∈ MatX(R) be the adjacency matrix of Γ . Let θ0 > θ1 > · · · >
θr be all the distinct eigenvalues of A, and E0,E1, . . . ,Er ∈ R[A] the correspond-
ing primitive idempotents, where R[A] is the polynomial algebra in A over the real
number field. Thus,

E0 + E1 + · · · + Er = I, EiEj = δi,jEi, and

AEi = θiEi for i, j ∈ {0,1, . . . , r}.
For each i ∈ {0,1, . . . , t (C)}, let E∗

i (C) denote the projection onto the subspace of
V spanned by unit vectors corresponding to vertices in Γi(C). We let T (C) de-
note the subalgebra of MatX(R) generated by A and E∗

0 (C),E∗
1 (C), . . . ,E∗

t (C)(C).
Let 1 ∈ V be the all one vector. A T (C)-module W , i.e., a vector subspace of
V invariant under the action of T (C), is said to be thin if dimE∗

i (C)W ≤ 1 for
all i ∈ {0,1, . . . , t (C)}. T (C)1 is called the primary module of T (C). Note that
wi = E∗

i (C)1 is the characteristic vector of Γi(C) for i ∈ {0,1, . . . , t (C)} and
WC = Span(w0,w1, . . . ,wt (C)) ⊂ T (C)1. It is easy to see that if C is a completely
regular code with parameters γi, αi, βi (i = 0,1, . . . , t (C)), then

Awi = βi−1wi−1 + αiwi + γi+1wi+1 for i = 0,1, . . . , t (C).

Here w−1 = wt (C)+1 = 0, and β−1 and γt(C)+1 are indeterminate. Hence in this case
WC = T (C)1 and WC is a thin irreducible T (C)-module. See [15, Proposition 7.2].

The ideas and techniques of proofs of the following results are taken from the
lecture note by P. Terwilliger [16].

Proposition 5 Let Γ = (X,R) be a connected graph of diameter D > 1. Suppose
C,C′ are completely regular codes that are cliques of Γ with |C ∩ C′| = e > 0. Let
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W = WC = Span(w0,w1, . . . ,wt ), where wi = E∗
i (C)1,

Awi = βi−1wi−1 + αiwi + γi+1wi+1,

W ′ = WC′ = Span
(
w′

0,w
′
1, . . . ,w

′
t ′
)
, where w′

i = E∗
i

(
C′)1,

Aw′
i = β ′

i−1w
′
i−1 + α′

iw
′
i + γ ′

i+1w
′
i+1,

with t = t (C) and t ′ = t (C′). Then the following hold.

(i) There are polynomials p(λ),p′(λ) ∈ R[λ] such that

projW ′ w0 = p(A)
‖w0‖
‖w′

0‖
w′

0, projW w′
0 = p′(A)

‖w′
0‖

‖w0‖w0,

where with k = α0 + β0,

p(λ) = ‖w0‖2 − e

(k − ‖w′
0‖2 + 1)‖w0‖‖w′

0‖
λ + ke − ‖w0‖2(‖w′

0‖2 − 1)

(k − ‖w′
0‖2 + 1)‖w0‖‖w′

0‖
,

p′(λ) = ‖w′
0‖2 − e

(k − ‖w0‖2 + 1)‖w0‖‖w′
0‖

λ + ke − ‖w′
0‖2(‖w0‖2 − 1)

(k − ‖w0‖2 + 1)‖w0‖‖w′
0‖

.

(ii) p′(θi)mW(θi) = p(θi)mW ′(θi) for all i, where

mW(θi) = ‖Eiw0‖2

‖w0‖2
and mW ′(θi) = ‖Eiw

′
0‖2

‖w′
0‖2

.

(iii) If ‖w0‖ = ‖w′
0‖, i.e., |C| = |C′|, then mW(θi) = mW ′(θi) for all i.

Proof Since C ∩ C′ �= ∅, the valencies of the vertices in C ∪ C′ are the same by
Lemma 4. Let k = α0 + β0 = α′

0 + β ′
0 be the valency of vertices in C ∪ C′.

(i) Since Aw0 = α0w0 + γ1w1 with γ1 �= 0 and α0 = |C| − 1 = ‖w0‖2 − 1,

w1 = 1

γ1

(
A − (‖w0‖2 − 1

)
I
)
w0.

Since C′ ⊂ C ∪Γ (C), 〈w′
0,wi〉 = 0 for i = 2,3, . . . , t . Let projW w′

0 = ξ0w0 +ξ1w1.
By counting the edges between C and Γ (C) in two ways, we have

‖w1‖2 = 〈w1,w1〉 = ∣∣Γ (C)
∣∣ = β0|C|

γ1
= (k − ‖w0‖2 + 1)‖w0‖2

γ1
,

e = 〈w′
0,w0〉 = 〈projW w′

0,w0〉 = ξ0‖w0‖2, and

∥
∥w′

0

∥
∥2 − e = 〈

w′
0,w1

〉 = 〈
projW w′

0,w1
〉 = ξ1‖w1‖2 = ξ1

(k − ‖w0‖2 + 1)‖w0‖2

γ1
.
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Therefore,

projW w′
0

= ξ0w0 + ξ1w1

= e

‖w0‖2
w0 + γ1(‖w′

0‖2 − e)

(k − ‖w0‖2 + 1)‖w0‖2
· 1

γ1

(
A − (‖w0‖2 − 1

)
I
)
w0

= ‖w′
0‖

‖w0‖
( ‖w′

0‖2 − e

(k − ‖w0‖2 + 1)‖w0‖‖w′
0‖

A + ke − ‖w′
0‖2(‖w0‖2 − 1)

(k − ‖w0‖2 + 1)‖w0‖‖w′
0‖

I

)
w0

= p′(A)
‖w′

0‖
‖w0‖w0.

By symmetry we obtain the formula of projW ′ w0 as well.
(ii) Since Eiw0 ∈ W and A is a real symmetric matrix,

〈Eiw0,Eiw
′
0〉

‖w0‖‖w′
0‖

= 〈Eiw0,w
′
0〉

‖w0‖‖w′
0‖

= 〈Eiw0,projW w′
0〉

‖w0‖‖w′
0‖

= ‖w′
0‖

‖w0‖
〈Eiw0,p

′(A)w0〉
‖w0‖‖w′

0‖

= 〈p′(A)Eiw0,w0〉
‖w0‖2

= p′(θi)
〈Eiw0,Eiw0〉

‖w0‖2
= p′(θi)

‖Eiw0‖2

‖w0‖2

= p′(θi)mW(θi).

By symmetry we have (ii).
(iii) Suppose ‖w0‖ = ‖w′

0‖. Then p(λ) = p′(λ) by (i). Therefore mW(θi) =
mW ′(θi) for all i except possibly one i for which p(θi) = 0. Since

1 = 〈w0,w0〉
‖w0‖2

=
r∑

i=0

‖Eiw0‖2

‖w0‖2
=

r∑

i=0

mW(θi),

mW(θi) = mW ′(θi) for all i without an exception. �

Proposition 6 Let Γ = (X,R) be a connected graph of diameter D > 1. Suppose Γ

is regular of valency k. Let C,C′ be completely regular codes that are cliques in Γ

with C ∩ C′ �= ∅. If |C| = |C′|, then the parameters of C and C′ coincide.

Proof We use the notation in the proof of Proposition 5. By Proposition 5(iii),
mW(θi) = mW ′(θi) for all i. Since EiEj = δi,jEi for i, j ∈ {0,1, . . . , r}, nonzero
vectors in the set {E0w0,E1w0, . . . ,Erw0} are perpendicular to each other, and
hence they form a linearly independent set of vectors. Since R[A]w0 = Span{E0w0,

E1w0, . . . ,Erw0}, dimR[A]w0 = dim(W) = t (C) + 1 is equal to the number of
i such that Eiw0 �= 0, we have t (C) = t (C′). Let t be this number. Let m(θi) =
mW(θi) = ‖Eiw0‖2/‖w0‖2, and let Rt [λ] be the set of all polynomials of degree at
most t . Then, for f,g ∈ Rt [λ],

〈f,g〉m =
r∑

i=0

f (θi)g(θi)m(θi)
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defines an inner product on Rt [λ]. Let q0, q1, . . . , qt be uniquely determined monic
orthogonal polynomials with respect to this inner product. Let p0,p1, . . . , pt ,pt+1

and p′
0,p

′
1, . . . , p

′
t , p

′
t+1 be polynomials defined by the following recursive relations:

p0 = 1, λpi = βi−1pi−1 + αipi + γi+1pi+1, for i = 0,1, . . . , t with p−1 = 0,

p′
0 = 1, λp′

i = β ′
i−1p

′
i−1 + α′

ip
′
i + γ ′

i+1p
′
i+1, for i = 0,1, . . . , t with p′−1 = 0.

Here, βi = βi(C), αi = αi(C), γi = γi(C), β ′
i = βi(C

′), α′
i = αi(C

′), γ ′
i = γi(C

′)
(i = 0,1, . . . , t), and assume γt+1 = γ ′

t+1 = 1, β−1 = β ′−1 = 0. Then we have
pi(A)w0 = wi , p′

i (A)w′
0 = w′

i and pt+1(A)w0 = p′
t+1(A)w′

0 = 0. Moreover, for
i, j ∈ {0,1, . . . , t + 1} with wt+1 = w′

t+1 = 0,

〈wi ,wj 〉 = 〈
pi(A)w0,pj (A)w0

〉

=
〈

pi(A)

r∑

h=0

Ehw0,pj (A)

r∑

h′=0

Eh′w0

〉

=
r∑

h=0

r∑

h′=0

pi(θh)pj (θh′)〈Ehw0,Eh′w0〉

=
r∑

h=0

pi(θh)pj (θh)m(θh)‖w0‖2

= 〈pi,pj 〉m‖w0‖2.

Therefore we have for i, j ∈ {0,1, . . . , t},

〈pi,pj 〉m = δi,j = 〈
p′

i , p
′
j

〉
m
,

and 〈pt+1,pt+1〉m = 〈p′
t+1,p

′
t+1〉m = 0. Considering the leading coefficients of pi

and pj , we have

γ1γ2 · · ·γipi = qi = γ ′
1γ

′
2 · · ·γ ′

i p
′
i for all i ∈ {0,1, . . . , t}.

In particular, q0, q2, . . . qt with qt+1, monic characteristic polynomial of A on W ,
satisfy

λqi = βi−1γiqi−1 + αiqi + qi+1 = β ′
i−1γ

′
i qi−1 + α′

iqi + qi+1 for i = 0,1,2, . . . , t.

Therefore we have

βi−1γi = β ′
i−1γ

′
i and αi = α′

i for i = 0,1,2, . . . , t.

Since Γ is regular of valency k, α0 = α′
0 implies β0 = k − α0 = k − α′

0 = β ′
0. Hence

we have γ1 = γ ′
1 by above. Since αi = α′

i for all i, by induction, we can conclude that
all parameters are equal. �
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Proof of Theorem 1 Let Γ be a completely regular clique graph with parameters
(s, c) with respect to C. Since every edge is contained in a member of C, Γ is regular
by Lemma 4. Now the fact that the parameters of completely regular codes C ∈ C do
not depend on C follows from Proposition 6. �

Example 1 The prism graph below has two types of completely regular cliques, i.e.,
triangles {a, b, c} and {d, e, f }, and edges {a,f }, {c, d} and {b, e}. Parameters are
different. If C = {a, b, c} and C′ = {a,f }, then p(λ) = 1

6λ and p′(λ) = 1
6 (λ − 1).

� �
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Example 2 The following graph is 3-regular with 8 vertices. Both edges {a, b} and
{c, d} are completely regular but parameters are different. Note that these two edges
do not have a common vertex.
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3 Completely regular clique graphs

In this section, we prove Theorem 3. We need the following result.

Proposition 7 (A. Neumaier [13, Theorem 4.1]) Let Γ = (X,R) be a distance-
regular graph and let C be a nonempty subset of X with covering radius t = t (C).
For i = 0,1, . . . , t , let μi = |Γi(x) ∩ C| and λi = |Γi+1(x) ∩ C| when x ∈ Γi(C).

(i) C is completely regular if and only if μi and λi are independent of the choice of
x ∈ Γi(C).

(ii) Suppose C is completely regular with the parameters γi, αi, βi with i ∈
{1,2, . . . , t}. Then

γi = μici

μi−1
, αi = ai + λici+1

μi

− λi−1ci

μi−1
, and

βi = bi − (μi − μi−1 − λi−1)ci

μi−1
− λici+1

μi

.
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Proposition 8 Let Γ̃ = (X ∪ Y, R̃) be a distance-semiregular graph on X with pa-
rameters bX

i , cX
i with i = 0,1, . . . , dX . Let Γ be the bipartite half of Γ̃ on X. For

y ∈ Y , write Cy = Γ̃ (y) ⊂ X, and set C = {Cy | y ∈ Y }. Then the following hold.

(i) Γ is distance-regular.
(ii) Each element C ∈ C is a clique and a completely regular code in Γ .

(iii) Each edge in Γ is contained in cX
2 members of C. In particular, Γ = (X,R) is a

completely regular clique graph of parameters (bY
0 − 1, cX

2 ).

Proof (i) This is clear. See [14].
(ii) Since Γ is a distance-2-graph of Γ̃ , each Cy is a clique in Γ . Let C = Cy ∈ C.

We apply Proposition 7 to show that C is completely regular. Let x ∈ X with
∂Γ (x,C) = i. Then ∂Γ̃ (x, y) = 2i + 1. Hence

μi(x) = ∣∣Γi(x) ∩ C
∣∣ = ∣∣Γ̃2i (x) ∩ Γ̃ (y)

∣∣ = cX
2i+1.

Therefore μi(x) does not depend on the choice of x ∈ Γi(C). Since C is a clique,
λi(x) = |C| − μi(x) and λi(x) does not depend on the choice of x ∈ Γi(C) either.

(iii) For each edge {x1, x2} of Γ there exist cX
2 vertices y ∈ Y such that {x1, x2} ⊂

Cy . Thus we have the assertions. �

Let Γ = (X,R) be a completely regular clique graph with parameters (s, c) with
respect to C. The incidence graph of Γ is a bipartite graph Γ̃ = (X∪Y, R̃) with vertex
set X∪Y , where Y = C, and edge set R̃ = {(x, y) | x ∈ X,y ∈ Y such that x ∈ y}. Let
ci and bi be parameters of Γ if they exist. Let cX

i and bX
i denote the parameters of Γ̃

when the base vertex is in X and they exist. We define cY
i and bY

i similarly.

Lemma 9 Let Γ̃ = (X ∪Y, R̃) be the incidence graph of a completely regular clique
graph Γ = (X,R) with parameters (s, c) with respect to C. Then the following hold.

(i) Γ̃ is biregular of valencies (bX
0 , bY

0 ), where bX
0 = (β0 + s)c/s and bY

0 = s + 1.
Moreover, cX

1 = 1, cX
2 = c, cX

3 = γ1, bX
1 = s, bX

2 = β0c/s, bX
3 = s + 1 − γ1, and

bY
1 = bX

0 − 1.
(ii) Γ is edge regular with a1 = (s − 1) + β0(γ1 − 1)/s.

(iii) If d(Γ ) > 1, then Γ is K2,1,1-free if and only if γ1 = 1 if and only if a1 = s − 1.
In this case c = 1, and each member of C is a maximal clique.

Proof (i) By Lemma 4(ii), Γ is regular of valency k = b0 = α0 + β0. By definition,
we have bY

0 = s + 1, cX
1 = 1, bX

1 = bY
0 − cX

1 = s ≥ 1, cX
2 = c and cX

3 = γ1. We show
that bX

0 exists.
Let x ∈ X and let

S = {(
x′, y

) ∈ X × Y | ∂Γ̃

(
x, x′) = 2, ∂Γ̃ (x, y) = ∂Γ̃

(
y, x′) = 1

}
.

By counting the cardinality of S, we have |S| = |Γ̃ (x)|bX
1 = b0c

X
2 . Hence bX

0 exists
and bX

0 = b0c
X
2 /bX

1 = kc/s.
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Hence Γ̃ is biregular. Therefore bX
i exists if and only if cX

i exists, bX
2i + cX

2i = bX
0 ,

bX
2i−1 + cX

2i−1 = bY
0 . Since α0 = s,

bX
2 = bX

0 − cX
2 = kc/s − c = c(k − s)/s = β0c/s.

The rest follow immediately.
(ii) Since b0 = bX

0 bX
1 /cX

2 and b1 = bX
2 bX

3 /cX
2 = β0(s + 1 − γ1)/s, we have

a1 = b0 − c1 − b1 = β0 + s − 1 − β0(s + 1 − γ1)/s = (s − 1) + β0(γ1 − 1)/s.

(iii) We first prove that Γ is K2,1,1-free if and only if γ1 = 1. Suppose Γ is K2,1,1-
free. Let y ∈ X, x, z ∈ Γ (y) with ∂(x, z) = 2 and {x, y} ⊂ C ∈ C. Since Γ is K2,1,1-
free, γ1 = |Γ (z) ∩ C| = 1. Conversely, suppose γ1 = 1. If x, y, z,w form a K2,1,1

with ∂(z,w) = 2 and {x, y} ⊂ C ∈ C, then either z or w is not in C. This contradicts
γ1 = 1.

By (ii) it is clear that γ1 = 1 is equivalent to a1 = s − 1.
Assume these three equivalent conditions. Then clearly c = 1 and each member of

C is a maximal clique. This proves (iii). �

Next we show that the incidence graph of a distance-regular completely regular
clique graph is distance-semiregular.

Proposition 10 Let Γ = (X,R) be a distance-regular graph of valency k and diam-
eter D. Suppose Γ is a completely regular clique graph with parameters (s, c) with
respect to C. Let t be the uniquely determined covering radius and γi, αi, βi with
i = 0,1, . . . , t the parameters of completely regular codes in C. Let Γ̃ = (X ∪ Y, R̃)

be its incidence graph with Y = C. Then the following hold.

(i) Γ̃ is distance-semiregular on X and Γ is a bipartite half of Γ̃ on X.
(ii) The diameter d(Γ̃ ) = 2D if t = t (C) = D − 1 and d(Γ̃ ) = 2D + 1 if t = t (C) =

D and the parameters of Γ̃ are as follows.

bY
0 = s + 1, bX

0 = kc/s, cX
1 = 1, cX

2 = c,

cX
2i+1 = γ1γ2 · · ·γi

c1c2 · · · ci

, cX
2j = c1c1 · · · cj−1cj c

γ1γ2 · · ·γj−1
, and

bX
2i+1 = s + 1 − cX

2i+1, bX
2j = kc/s − cX

2j

for i, j with 0 ≤ 2i + 1,2j ≤ d(Γ̃ ).

Proof Let μi with i = 0,1, . . . , t be the numbers defined in Proposition 7.
(i) For y ∈ Y , a subset Γ̃ (y) of X forms a clique of Γ in C by defini-

tion. We write Cy = Γ̃ (y). Since Γ̃ is biregular by Lemma 9 (i), bX
i exists if

and only if cX
i exists, and bX

2i + cX
2i = bX

0 and bX
2i−1 + cX

2i−1 = bY
0 . Moreover, if

bX
0 , bX

1 , . . . , bX
i−1, c

X
1 , cX

2 , . . . , cX
i exist, kX

i =|Γ̃i(x)|=(bX
0 bX

1 · · ·bX
i−1)/(c

X
1 cX

2 · · · cX
i )

does not depend on the choice of x ∈ X.
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Let y ∈ Y and x ∈ Γi(Cy). Then ∂Γ̃ (x, y) = 2i + 1 and

c2i+1(x, y) = ∣∣Γ̃2i (x) ∩ Γ̃ (y)
∣∣ = ∣∣Γi(x) ∩ Cy

∣∣ = μi.

Therefore cX
2i+1 and hence bX

2i+1 exists for all i.
Now suppose bX

0 , bX
1 , . . . , bX

2i+1, c
X
0 , cX

1 , . . . , cX
2i+1 exist for i ≥ 1. For x′ ∈

Γi+1(x), by counting the cardinality of the set

S = {(
x′′, y

) ∣∣ y ∈ Γ̃2i+1(x) ∩ Γ̃
(
x′), x′′ ∈ Γ̃2i (x) ∩ Γ̃ (y)

}

= {(
x′′, y

) ∣∣ x′′ ∈ Γi(x) ∩ Γ
(
x′), y ∈ Γ̃

(
x′) ∩ Γ̃

(
x′′)}

we have ci+1c
X
2 = cX

2i+1|Γ̃2i+1(x) ∩ Γ̃ (x′)| = cX
2i+1c2i+2(x, x′). Thus cX

2i+2 exists
and

cX
2i+2 = ci+1c

X
2 /cX

2i+1.

By induction, we have that Γ̃ is distance-semiregular on X.
(ii) Note that μ0 = 1. Now by Proposition 7,

cX
2i+1 = μi = γ1γ2 · · ·γi

c1c2 · · · ci

, and cX
2i+2 = ci+1c

X
2

cX
2i+1

= c1c1 · · · cici+1c

γ1γ2 · · ·γi

.

Thus we have the assertion. �

Theorem 3 now follows directly from Propositions 8 and 10.

4 Notes

It is useful to define the notion of completely regular clique graphs in terms of an
incidence structure.

Definition 2 Let I = (X,Y, I ) be an incidence structure, where X and Y are finite
set and I a relation on X×Y . Let Γ = (X,R) be the collinearity graph of I with ver-
tex set X and edge set R = {{x, x′} ⊂ X | x �= x′ and there exists y ∈ Y such that xIy

and x′Iy}. Then I is said to be a CRC geometry with parameters (s, c), if the fol-
lowing are satisfied.

(i) For each y ∈ Y , let Cy = {x ∈ X | xIy}. Then Cy is a completely regular code of
Γ of size s + 1 ≥ 2.

(ii) For each distinct x, x′ ∈ X, |{y ∈ Y | xIy and x′Iy}| ∈ {0, c} and c ≥ 1.

Let Γ = (X,R) be one of the Johnson graphs or the Grassmann graphs of diam-
eter D. Then for each i ∈ {0,1, . . . ,D − 1} and x, y ∈ X with ∂(x, y) = i we can
choose a geodetically closed completely regular code Cx,y of diameter i containing
x and y. Define Ci = {Cx,y | x, y ∈ X with ∂(x, y) = i} and Ci+1 similarly. Then the
pair (Ci ,Ci+1) defines a CRC geometry when incidence is defined by inclusion.

We conclude this paper by proposing three problems related to completely regular
clique graphs.
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Problem 1 Prove or disprove that completely regular clique graphs are distance-
regular.

Problem 2 Classify completely regular clique graphs with respect to C such that
there is a nonempty collection C′ of completely regular codes of width two such that
(C,C′,⊂) is a CRC geometry when incidence is defined by inclusion.

Problem 3 Characterize connected graphs Γ = (X,R) with the following proper-
ties.

(i) There is a nonempty collection C of cliques of size s + 1 and that for each
C ∈ C and x ∈ C, T (C)cx is a thin irreducible T (C)-module, where cx =
x̂ − 1

|C|
∑

y∈C ŷ ∈ CX . Here ẑ is a unit vector in CX corresponding to a vertex z.
(ii) Each edge is contained in exactly c members of C and c ≥ 1.
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