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Abstract We give a general construction leading to different non-isomorphic fami-
lies Γn,q(K) of connected q-regular semisymmetric graphs of order 2qn+1 embedded
in PG(n + 1, q), for a prime power q = ph, using the linear representation of a par-
ticular point set K of size q contained in a hyperplane of PG(n+ 1, q). We show that,
when K is a normal rational curve with one point removed, the graphs Γn,q(K) are
isomorphic to the graphs constructed for q = ph in Lazebnik and Viglione (J. Graph
Theory 41, 249–258, 2002) and to the graphs constructed for q prime in Du et al.
(Eur. J. Comb. 24, 897–902, 2003). These graphs were known to be semisymmet-
ric but their full automorphism group was up to now unknown. For q ≥ n + 3 or
q = p = n + 2, n ≥ 2, we obtain their full automorphism group from our construc-
tion by showing that, for an arc K, every automorphism of Γn,q(K) is induced by a
collineation of the ambient space PG(n + 1, q). We also give some other examples
of semisymmetric graphs Γn,q(K) for which not every automorphism is induced by
a collineation of their ambient space.

Keywords Semisymmetric graph · Linear representation · Automorphism group ·
Arc · Normal rational curve

1 Introduction

In the following, all graphs are assumed to be finite and simple, i.e. they are undi-
rected graphs which contain no loops or multiple edges.
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Definition We say that a graph is vertex-transitive if its automorphism group acts
transitively on the vertices. Similarly, a graph is edge-transitive if its automorphism
group acts transitively on the edges. A graph is semisymmetric if it is regular and
edge-transitive but not vertex-transitive (see [10]).

One can easily prove that a semisymmetric graph must be bipartite with equal par-
tition sizes. Moreover, the automorphism group must be transitive on both partition
sets. General constructions of semisymmetric graphs are quite rare.

We construct several infinite families Γn,q(K) of semisymmetric graphs using
affine points and some selected lines of a projective space PG(n + 1, q). In Sect. 5
we show that the infinite series of semisymmetric graphs given in [19] is exactly one
of the families that we construct in this paper; the graphs in [9] are shown to be part
of the same series. Using our construction, in many cases, the structure of the full
automorphism group of the graphs Γn,q(K) can be clarified (at least for q ≥ n + 3
and q = p = n + 2). This structure was not given in [9, 19] where only part of the
automorphism group is constructed, enough to show edge-transitivity.

2 Construction and properties of the graph Γn,q(K)

Let PG(n, q) denote the n-dimensional projective space over the finite field Fq , q =
ph. Throughout this paper we assume n ≥ 2.

We wish to emphasise the distinction we will make between a subspace and a
subgeometry. A subspace of PG(n, q) is a projective space PG(m,q) contained in
PG(n, q), m ≤ n, over the same finite field Fq . An n-dimensional subgeometry of
PG(n, q) is a projective space PG(n, q0) contained in PG(n, q) over the finite field
Fq0 where Fq0 ⊆ Fq .

Definition Let K be a point set in H∞ = PG(n, q) and embed H∞ in PG(n + 1, q).
The linear representation T ∗

n (K) of K is a point-line incidence structure with natural
incidence, point set P and line set L as follows:

P : affine points of PG(n + 1, q) (i.e. the points of PG(n + 1, q) \ H∞),
L: lines of PG(n + 1, q) through a point of K, but not lying in H∞.

For more information on linear representations of geometries, we refer to [8].

Definition We denote the point-line incidence graph of T ∗
n (K) by Γn,q(K), i.e. the

bipartite graph with classes P and L and adjacency corresponding to the natural
incidence of the geometry.

Whenever we consider the incidence graph Γn,q(K) of some linear representation
T ∗

n (K) of K, we still regard the set of vertices as a set of points and lines in
PG(n+1, q). In this way we can use the inherited properties of this space and borrow
expressions such as the span of points, a subspace, incidence, and others.

We define the closure of a set of points in PG(n, q) as follows:
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Definition If a point set S contains a frame of PG(n, q), then its closure S consists
of the points of the smallest n-dimensional subgeometry of PG(n, q) containing all
points of S.

The closure S of a point set S can be constructed recursively as follows:

(i) determine the set A of all subspaces of PG(n, q) spanned by an arbitrary number
of points of S;

(ii) determine the set S of points P for which there exist two subspaces in A that
intersect only at P , if S �= S replace S by S and go to (i), otherwise stop.

This construction corresponds to the definition of a closure of a set of points in a
projective plane in [16, Chap. XI]. Here the authors show that if S is contained in a
projective plane and contains a quadrangle, the points of S form the smallest subplane
containing all points of S.

Result 2.1 [7, Corollary 4.3] The graph Γn,q(K) is connected if and only if the span
〈K〉 has dimension n.

Remark Suppose the set K spans a t-dimensional subspace PG(t, q) of H∞ =
PG(n, q), t < n. One can check that in this case the graph Γn,q(K) is a non-connected
graph with qn−t connected components, where each component is isomorphic to the
graph Γt,q(K). This explains why we will only consider graphs Γn,q(K) with set K
such that 〈K〉 = H∞.

Throughout this paper, we use the following theorems of [4].

Result 2.2 [4] Let |K| �= q or let K be a set of q points of H∞ such that every point
of H∞\K lies on at least one tangent line to K. Suppose α is an isomorphism between
Γn,q(K) and Γn,q(K′), for some set K′ in H∞, then α stabilises P .

Result 2.3 [4] Let q > 2. Let K and K′ be sets of q points such that K is equal to
H∞ and such that every point of H∞ lies on at least one tangent line to K. Consider
an isomorphism α between Γn,q(K) and Γn,q(K′). Then α is induced by an element
of the stabiliser P�L(n + 2, q)H∞ of H∞ mapping K onto K′.

Result 2.4 [4] Let q > 2 and let K be a set of q points such that K is equal to
H∞ and such that every point of H∞ lies on at least one tangent line to K. Then
Aut(Γn,q(K)) ∼= P�L(n + 2, q)K.

From Result 2.2 we now easily deduce the following corollary.

Corollary 2.5 If K is a set of q points of H∞ such that every point of H∞ lies on at
least one tangent line to K, then Γn,q(K) is not vertex-transitive.

Recall that if a group G has a normal subgroup N and the quotient G/N is iso-
morphic to some group H , we say that G is an extension of N by H . This is written
as G = N.H .
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An extension G = N.H which is a semidirect product is also called a split exten-
sion. This means that one can find a subgroup H ∼= H in G such that G = NH and
N ∩ H = {eG} and is denoted by G = N �H .

A perspectivity is an element of P�L(n + 2, q) which fixes a hyperplane of
PG(n + 1, q) pointwise, this hyperplane is called the axis. Every perspectivity also
has a centre, i.e. a point such that every line through it is stabilised. If this centre
belongs to the axis, such a perspectivity is called an elation.

The subgroup of P�L(n + 2, q) consisting of all perspectivities with axis H∞ is
written as Persp(H∞). A perspectivity φ is uniquely determined by its axis and centre
and one ordered pair (P,φ(P )) for a point P different from the centre and not on the
axis. Hence, one can easily count |Persp(H∞)| = qn+1(q − 1).

Result 2.6 [4] Let K be a point set spanning H∞ = PG(n, q). If the setwise sta-
bilisers P�L(n + 1, q)K and PGL(n + 1, q)K, respectively, fix a point of H∞,
then P�L(n + 2, q)K ∼= Persp(H∞) � P�L(n + 1, q)K and PGL(n + 2, q)K ∼=
Persp(H∞)� PGL(n + 1, q)K, respectively.

Result 2.7 [4] Let K be a point set spanning H∞ = PG(n, q), q = ph. If the setwise
stabiliser PGL(n + 1, q)K fixes a point of H∞, and P�L(n + 1, q)K ∼= PGL(n +
1, q)K � Aut(Fq0), for q0 = ph0 , h0|h or P�L(n + 1, q)K ∼= PGL(n + 1, q)K, then
P�L(n + 2, q)K ∼= Persp(H∞)� P�L(n + 1, q)K.

The following theorem is easy to prove. We will use it to show the edge-transitivity
of the constructed graphs.

Theorem 2.8 If the stabiliser P�L(n + 1, q)K of K in the full collineation group of
H∞ acts transitively on the points of K, then Γn,q(K) is an edge-transitive graph.

Proof Consider two edges (Ri,Li), i = 1,2, where Ri ∈ P , Li ∈ L, Ri ∈ Li , we
will construct a mapping from one edge to the other. Let Pi be Li ∩ H∞. Since
P�L(n+1, q)K acts transitively on K, we may take an element β of P�L(n+1, q)K
such that β(P1) = P2. This element extends to an element β ′ of (P�L(n+2, q)H∞)K
mapping P1 onto P2.

If β ′(R1) = R2, then β ′(L1) = L2, hence the statement follows. If β ′(R1) �= R2,
then let S be the point at infinity of the line β ′(R1)R2. There is a (unique) elation γ

with centre S and axis H∞ mapping β ′(R1) to R2. This elation maps β ′(L1) onto L2.
Since γ ◦ β ′ is an element of (P�L(n + 2, q)H∞)K mapping (R1,L1) onto (R2,L2),
the statement follows. �

The main goal of this paper is the construction of infinite families of semisym-
metric graphs. The results of [4] introduced in this section will enable us in some
cases to explicitly describe the automorphism group of the constructed graphs. Note
that, since a semisymmetric graph is regular, any graph Γn,q(K) that is semisym-
metric, necessarily has |K| = q . For this reason, we will investigate point sets of
size q in PG(n, q). Considering Theorem 2.8 we need point sets K of H∞ such that
P�L(n + 1, q)K acts transitively on the points of K.
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In Sect. 3, considering Result 2.4, we will look for point sets K such that the
closure K is equal to H∞. In Sect. 4 we will look for point sets K spanning H∞ such
that the closure K is equal to a subgeometry of H∞.

We give a brief overview of all constructions to come. We use the abbreviation
NRC for a normal rational curve, for its definition see Sect. 3. When the size of the
automorphism group is given, all automorphisms are geometric, i.e. induced by a
collineation of the ambient space. If the size is larger than a given bound, this means
there exist automorphisms that are not geometric.

K Condition |Aut(Γn,q (K))| Reference

Basis q = n + 1 hqn+1(q − 1)q! Section 3.1

Frame q = n + 2 hqn+1(q − 1)nq! Section 3.1, [19]

⊂NRC q ≥ n + 3 hqn+2(q − 1)2 Section 3.2, [9, 19] (q = p)

⊂non-classical arc q > 4 even hq5(q − 1)2 Section 3.3

⊂Glynn-arc q = 9 9682 Section 3.4

⊂Q−(3, q) q > 4 square >2hq5(q − 1)2 Section 4.1

⊂Tits-ovoid q = 22(2e+1) >hq5(q − 1)(
√

q − 1) Section 4.2

⊂Q+(3, q) q > 4 square >2hq5(q − 1)(
√

q − 1)2 Section 4.3

⊂cone VO q = q0
h >hq2n+1(q − 1)2|P�L(n, q0)O | Section 4.4

3 Families of semisymmetric graphs arising from arcs

We are in search of point sets K such that the closure K is equal to H∞ and such that
P�L(n + 1, q)K acts transitively on the points of K. An arc of size q turns out to be
an excellent choice.

Definition A k-arc in PG(n, q) is a set of k points, k ≥ n + 1, such that no n + 1
points lie on a hyperplane.

If A is a k-arc in PG(n, q), then k ≥ n + 1, hence, we will only consider the case
where q ≥ n+1. If q = n+1, then it is easy to see that an arc of size q in PG(n, q) is
a basis, if q = n+2, then every arc of size q is a frame. Hence, when q = n+1 or q =
n+ 2, all arcs of size q in PG(n, q) are P�L-equivalent. Because of the isomorphism
of the graph Γn,q(K) with other graphs (see Sect. 5), we will explicitly investigate
these cases, but the more interesting examples occur when q ≥ n + 3.

It is conjectured that an arc in PG(n, q), 3 ≤ n ≤ q − 3, has at most q + 1 points
(this is the well-known MDS-conjecture, in view of its coding-theoretical descrip-
tion). An example of an arc of size q + 1 is given by the normal rational curve.

Definition [15, Sect. 27.5] A normal rational curve in PG(n, q), 2 ≤ n ≤ q , is a
(q + 1)-arc PGL-equivalent to the (q + 1)-arc {(0, . . . ,0,1)} ∪ {(1, t, t2, t3, . . . , tn) |
t ∈ Fq}
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Remark There are results showing that, if n is sufficiently large w.r.t. q , an arc of size
q in PG(n, q) can be extended to an arc of size q + 1. Moreover, other results show
that for many values of q and n, all (q + 1)-arcs in PG(n, q) are normal rational
curves. The combination of these results leads to the understanding why there are
not many known examples of q-arcs in PG(n, q) that are not contained in a normal
rational curve. For an overview, we refer to [14].

We will construct different families of graphs, arising from non-P�L-equivalent
arcs of size q . Since these arcs satisfy the conditions of Result 2.3, we see that the
obtained graphs are non-isomorphic.

In view of Result 2.4, our first goal is to show that the closure of a set of q points
of an arc in PG(n, q), q ≥ n + 3 or q = p = n + 2 prime, is H∞. When n = 2, this
follows immediately. In the following lemmas, we deal with the case n ≥ 3.

Lemma 3.1 Let K be an arc of size q in PG(n, q), n ≥ 3. Let P1 and P2 be any two
points of K;

• if q = n + 2, there is at least one additional point in K (the closure of K) on the
line P1P2,

• if q ≥ n + 3, there are at least q/2 additional points in K on the line P1P2.

Proof Note that a k-space π , k ≤ n − 2, with k + 1 points of K, different from P1

and P2, does not intersect P1P2, since otherwise 〈π,P1P2〉 would be a (k + 1)-space
containing k + 3 points of K, contradicting the arc condition.

Let P3, . . . ,Pn+2 be n points of K, different from P1 and P2. The space
〈P3, . . . ,Pn+2〉 is a hyperplane of H∞, hence, it meets the line P1P2 in a point Q.
This point Q is contained in K but not contained in K since K is an arc. If q = n+ 2,
there is exactly one set {P3, . . . ,Pn+2} of n points of K, different from P1 and P2,
yielding an extra point in K on P1P2.

If n+ 3 ≤ q ≤ 2n+ 2, then let {P3, . . . ,Pn+3} be a set of n+ 1 points of K, differ-
ent from P1 and P2. Any subset with n points of {P3, . . . ,Pn+3} defines a hyperplane
intersecting P1P2 in a point Q �= P1,P2 contained in K. These points Q are all dif-
ferent since any two considered hyperplanes intersect in a (n − 2)-space with n − 1
points of K, and hence this space does not intersect P1P2. There are n + 1 such sub-
sets, so the line P1P2 contains q/2 ≤ n + 1 ≤ q − 2 additional points in K different
from P1 and P2.

If q ≥ 2n + 2, then let P3, . . . ,Pn+1 be n − 1 points of K, different from P1 and
P2. Clearly, 〈P3, . . . ,Pn+1〉 is disjoint from P1P2. There are q − n − 1 points of
K different from all Pi , i = 1, . . . , n + 1. For every such point R, the hyperplane
〈P3, . . . ,Pn+1,R〉 intersects P1P2 in a point of K different from P1 and P2. Again,
all these points are different since two such hyperplanes intersect in 〈P3, . . . ,Pn+1〉.
The line P1P2 contains q − n − 1 ≥ q/2 points of K different from P1 and P2. �

Lemma 3.2 Let K be an arc of size q in PG(n, q), n ≥ 2. Let q ≥ n + 3 or q = p =
n + 2 and let μ∞ be a plane containing 3 points of K. Then every point of μ∞ is
contained in K.
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Proof Let P1,P2,P3 be 3 points of K and let μ∞ be the plane 〈P1,P2,P3〉 =
PG(2, q). Consider q ≥ n + 3. By Lemma 3.1, we know that there exist at least q/2
points in K on each of the lines P2P3, P1P3 and P1P2, different from P1, P2 and P3.
Consider the set S containing all these points and the points P1, P2 and P3. Its closure
S forms a subplane π of μ∞ consisting of only points of K. Since a proper subplane
of PG(2, q) contains at most

√
q + 1 < q/2 + 2 points of the line P1P2, we see that

π must be μ∞.
If q = n + 2 is prime, by Lemma 3.1, we find an extra point Qi ∈ K, i = 2,3, on

the line P1Pi . The closure of {P1,P2,P3,Q2,Q3} forms a subplane with all points
in K. By the fact that q is prime, this subplane equals μ∞ = PG(2, q). �

Lemma 3.3 Let L be a line such that every point is in K, let π∞ be a plane of H∞
through L, containing at least two points R1 and R2 of K outside L. Then every point
in the plane π∞ is in K.

Proof The closure of the set of points of K on the line L, together with the points R1
and R2 is clearly the plane π∞ itself. �

Lemma 3.4 For n ≥ 2, let q ≥ n + 3 or q = p = n + 2 and let K be an arc of size q

in PG(n, q), then K = PG(n, q).

Proof For n = 2, this easily follows. Let P1, . . . ,Pq be the points of K. By
Lemma 3.2, we know that every point of 〈P1,P2,P3〉 is in K. Suppose, by induc-
tion, that every point in 〈P1, . . . ,Pk〉, k ≤ n is in K. The point Pk+1 is not con-
tained in 〈P1, . . . ,Pk〉. There exists an additional point Q in K on the line P1Pk+1
by Lemma 3.1. Let S be a point of 〈P1, . . . ,Pk+1〉, not on the line P1Pk+1, and let
R be the intersection of the line SPk+1 with 〈P1, . . . ,Pk〉. Since every point on the
line RP1 is in K, and 〈RP1,Pk+1〉 contains the points Q and Pk+1 of K, Lemma 3.3
implies that the point S is in K, as are the points of P1Pk+1. This shows that every
point in 〈P1, . . . ,Pk+1〉 is in K. The lemma follows by induction and the fact that
H∞ = 〈P1, . . . ,Pn+1〉. �

Theorem 3.5 Let n = 2 and q odd or n ≥ 3, q ≥ n + 3 or q = p = n + 2, and let K
be an arc in PG(n, q), then Aut(Γn,q(K)) ∼= P�L(n + 2, q)K.

Proof It is clear that if n = 2, q odd or n ≥ 3, then every point of H∞ lies on a
tangent line to the arc. By Lemma 3.4, K equals PG(n, q). The theorem follows from
Result 2.4. �

3.1 K is a q-arc in PG(n, q) with q = n + 1 or q = n + 2

As noted before, a q-arc in PG(n, q) with q = n + 1 is a basis, a q-arc in PG(n, q)

with q = n + 2 is a frame. In these cases, the linear representation of a q-arc gives
rise to a semisymmetric graph, however, the description of the automorphism group
is different from the case q ≥ n + 3. In the following proof, we cannot use the same
techniques as in [4] to show that P�L(n + 2, q)K splits over Persp(H∞).

We introduce some definitions.
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Definition A permutation matrix is a square binary matrix that has exactly one en-
try 1 in each row and each column and 0’s elsewhere. A monomial matrix or gen-
eralised permutation matrix has exactly one non-zero entry in each row and each
column. The monomial matrices form a group.

Let PMon(q) denote the quotient group of the monomial matrices over Fq by the
scalar matrices. Let Sk denote the symmetric group of degree k, meaning the group
of all permutations of {1,2, . . . , k}.

Theorem 3.6 If K is a q-arc in PG(n, q), n ≥ 2, q = n + 1 or q = n + 2, with
(n, q) �= (2,4) then Γn,q(K) is a semisymmetric graph. The group P�L(n + 2, q)K
is a subgroup of Aut(Γn,q(K)) and is isomorphic to Persp(H∞) � P�L(n + 1, q)K,
where P�L(n + 1, q)K is isomorphic to

(i) Sq � Aut(Fq) if q = n + 2, having size hqn+1(q − 1)q!;
(ii) PMon(q)� Aut(Fq) if q = n + 1, having size hqn+1(q − 1)nq!.
Moreover, if q = n + 2 and q is prime, then Aut(Γn,q(K)) is isomorphic to P�L(n +
2, q)K.

Proof (i) If q = n + 2, then K is PGL-equivalent to the frame K′ of PG(n, q)

with points P1, . . . ,Pn+2, where Pi has coordinates vi , and v1 = (1,0, . . . ,0), v2 =
(0,1,0, . . . ,0), . . . , vn+1 = (0, . . . ,0,1), vn+2 = (−1,−1, . . . ,−1). Let Bk = (bij )k ,
1 ≤ k ≤ n + 1, be the matrix with bii = 1, i �= k, 1 ≤ i ≤ n + 1, bik = −1,
1 ≤ i ≤ n + 1, and bij = 0 for all other i, j . The considered action of Bk on the
points of PG(n, q) is by left-multiplication on the column vector of their coordinates.
Let Gper denote the subgroup of permutation matrices of GL(n+ 1, q), and consider
the subgroup G of GL(n+ 1, q), generated by the elements of Gper and the matrices
Bk , 1 ≤ k ≤ n + 1.

For every matrix B = (bij ), 1 ≤ i, j ≤ n + 1, in G, we can define a matrix A =
(aij ), 0 ≤ i, j ≤ n + 1, as the (n + 2) × (n + 2) matrix with a00 = 1, ai0 = a0j =
0 for i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n + 1. Let ˜G be the group obtained by
extending all matrices of G in this way. It is clear that the elements of G are exactly
the permutations of the elements of {v1, . . . , vn+2} and hence that ˜G is isomorphic to
PGL(n + 1, q)K ∼= Sq .

It follows that the only element of ˜G fixing K pointwise corresponds to the iden-
tity matrix, which implies that any element of Persp(H∞) contained in ˜G is trivial.
Hence, PGL(n + 2, q)K is isomorphic to Persp(H∞) � PGL(n + 1, q)K. Clearly,
PGL(n+ 1, q)K acts transitively on the points of K, hence by Theorem 2.8 the graph
Γn,q(K) is edge-transitive.

(ii) Now suppose q = n + 1. The group PSL(n + 1, q) is a subgroup of PGL(n +
1, q) and a quotient of SL(n + 1, q). When q = n + 1, all three groups have the
same order and thus are all isomorphic. Hence, PGL(n + 1, q) can be embedded in
PGL(n + 2, q)H∞ by taking all matrices B = (bij ), 1 ≤ i, j ≤ n + 1, of SL(n + 1, q)

and, as before, defining A = (aij ), 0 ≤ i, j ≤ n + 1, with a00 = 1, ai0 = a0j = 0 for
i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n + 1. An element of Persp(H∞) corresponds
to a matrix of the form D = (dij ), 0 ≤ i, j ≤ n + 1, with d0j = λj , 0 ≤ j ≤ n + 1,
dii = μ, 1 ≤ i ≤ n + 1, for some λj ,μ ∈ Fq , and dij = 0 otherwise. This implies that
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the group ˜G of matrices A defined in this way meets Persp(H∞) trivially. Hence,
PGL(n + 2, q)K is isomorphic to Persp(H∞)� PGL(n + 1, q)K.

Since q = n + 1, the curve K is PGL-equivalent to the set K′ of points
P1, . . . ,Pn+1 in PG(n, q), where Pi has coordinates vi , and v1 = (1,0, . . . ,0), v2 =
(0,1,0, . . . ,0), . . . , vn+1 = (0, . . . ,0,1). Using this, it is clear that PGL(n + 1, q)K
is isomorphic to the quotient group of monomial matrices by scalar matrices and that
PGL(n + 1, q)K acts transitively on K. Hence, Γn,q(K) is an edge-transitive graph.

In both cases, it is clear that K′ is stabilised by the Frobenius automorphism,
hence, using Result 2.6, it also follows that P�L(n + 2, q)K ∼= Persp(H∞) �

(PGL(n + 1, q)K � Aut(Fq)). The observation on the sizes follows from |Sq | = q!
and |PMon | = |Sq |.|(F∗

q)n|/(q − 1) = q!(q − 1)n−1.
Since through every point of H∞ there is a tangent line to K, Corollary 2.5 shows

that Γn,q(K) is not vertex-transitive. Since K spans H∞ and |K| = q , we get that
Γn,q(K) is semisymmetric.

The last part of the statement follows from Theorem 3.5. �

Remark For n = 2, q = 3, and K a basis is PG(2,3), we have shown, by using the
computer program GAP [12], that all automorphisms are induced by a collineation
of PG(3,3) so we have that the automorphism group of Γ2,3(K) is isomorphic to
P�L(4,3)K. For n = 3, q = 4, however, again using the computer, we find that
[Aut(Γn,q(K)) : P�L(n + 2, q)K] = 8. This implies that there exist automorphisms
of the graph Γ3,4(K) that are not collineations of PG(4,4). For n = 4, q = 5, this
index is already 7776. This might indicate that the general description of the full
automorphism group of Γn,q(K), with n + 1 = q and K a basis, is a hard problem.

3.2 K is contained in a normal rational curve and q ≥ n + 3

We will use the following theorem by Segre.

Result 3.7 [22] If q ≥ n + 2 and S is a set of n + 3 points in PG(n, q), no n + 1 of
which lie in a hyperplane, then there is a unique normal rational curve in PG(n, q)

containing the points of S.

Corollary 3.8 If K is a set of q points of a normal rational curve N in PG(n, q),
q ≥ n + 3, then N is the unique normal rational curve through the points of K.

The following theorem is well known, a proof can be found in e.g. [15, Theo-
rem 27.5.3].

Result 3.9 If q ≥ n + 2 and N is a normal rational curve in PG(n, q), then the
stabiliser of N in P�L(n + 1, q) is isomorphic to P�L(2, q) (in its faithful action on
q + 1 points).

These results enable us to give a construction for the following infinite two-parameter
family of semisymmetric graphs.

The subgroup of P�L(2, q) fixing one point in its natural action is isomorphic to
the affine semilinear group A�L(1, q) in dimension 1.
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Theorem 3.10 If K is a set of q points, contained in a normal rational curve of
PG(n, q), q = ph, n ≥ 3, q ≥ n+3, or n = 2, q odd, then Γn,q(K) is a semisymmetric
graph.

Moreover, Aut(Γn,q(K)) is isomorphic to Persp(H∞) � A�L(1, q) and has size
hqn+2(q − 1)2.

Proof Since |K| = q , the graph Γn,q(K) is q-regular. The set K is an arc span-
ning the space PG(n, q). It is clear that if n ≥ 3, or if q is odd, every point of
PG(n, q) lies on at least one tangent line to K. Hence, by Result 2.1, Corollary 2.5
and Theorem 3.5, Γn,q(K) is a connected non-vertex-transitive graph for which
Aut(Γn,q(K)) ∼= P�L(n + 2, q)K. By Corollary 3.8, K extends by a point P to a
unique normal rational curve N . Since P must be fixed by the stabiliser of K and
P�L(2, q)P ∼= A�L(1, q), we get P�L(n + 2, q)K ∼= Persp(H∞) � A�L(1, q), by
Result 2.6. The size of this group follows when considering that |Persp(H∞)| =
qn+1(q − 1) and |A�L(1, q)| = hq(q − 1). By Theorem 2.8 the graph Γn,q(K) is
edge-transitive and thus semisymmetric. �

3.3 K is contained in a non-classical arc in PG(3, q), q even

The (q +1)-arcs in PG(3, q), q even, have been classified, each of them has the same
stabiliser group as the normal rational curve.

Result 3.11 [6] In PG(3, q), q = 2h, h > 2, every (q + 1)-arc is PGL-equivalent
to some C(σ ) = {(1, x, xσ , xσ+1) | x ∈ Fq} ∪ {(0,0,0,1)} where σ is a generator of
Aut(Fq).

Result 3.12 [20] In PG(3, q), q = 2h, h > 2, the stabiliser of C(σ ) in P�L(4, q) is
isomorphic to P�L(2, q) (in its faithful action on q + 1 points).

The case q = 4 is already discussed in Sect. 3.1.

Result 3.13 [5] For any k-arc of PG(3, q), q = 2h, h > 1, we have k ≤ q + 1.

Result 3.14 [3] Let K be any k-arc in PG(3, q), q = 2h. If k > (q + 4)/2, then K is
contained in a unique complete arc.

Corollary 3.15 Consider a (q +1)-arc C(σ ) of PG(3, q), q = 2h, h > 2. If K is a set
of q points contained in C(σ ), then there is a unique (q + 1)-arc through the points
of K, namely C(σ ).

Proof Using Result 3.14, since q > (q + 4)/2, q > 4, we find a unique complete arc
through K. This arc has size at most q +1 by Result 3.13 and thus is equal to C(σ ). �

Theorem 3.16 If K is a set of q points contained in any (q + 1)-arc of PG(3, q),
q ≥ 8 even, then Γ3,q (K) is a semisymmetric graph.

Moreover, Aut(Γ3,q (K)) is isomorphic to Persp(H∞) � A�L(1, q) and has size
hq5(q − 1)2.
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Proof The proof goes in exactly the same way as the proof of Theorem 3.10, by
making use of Corollary 3.15 and Results 3.11 and 3.12. �

3.4 K is contained in the Glynn arc in PG(4,9)

In [11] Glynn constructs an example of an arc of size 10 in PG(4,9), which is not a
normal rational curve. We call this 10-arc the Glynn arc (of size 10). He also shows
that an arc in PG(4,9) of size 10 is a normal rational curve or a Glynn arc.

Result 3.17 [11] The stabiliser in P�L(5,9) of the Glynn arc of size 10 in PG(4,9)

is isomorphic to PGL(2,9).

Result 3.18 [2] A k-arc in PG(n, q), n ≥ 3, q odd and k ≥ 2
3 (q − 1)+n is contained

in a unique complete arc of PG(n, q).

Corollary 3.19 If K is a set of 9 points contained in a Glynn 10-arc C of PG(4,9),
then K is contained in a unique 10-arc, namely C.

Theorem 3.20 If K is a 9-arc contained in a Glynn 10-arc of PG(4,9), then Γ4,9(K)

is a semisymmetric graph.
Moreover, Aut(Γ4,9(K)) is isomorphic to Persp(H∞) � AGL(1,9) and has size

9682.

Proof Since |K| = 9, Γ4,9(K) is a 9-regular graph. The set K is an arc spanning
the space PG(4,9). It is clear that every point of PG(4,9) lies on at least one tan-
gent line to K. Hence, by Result 2.1, Corollary 2.5 and Theorem 3.5, Γ4,9(K) is
a connected non-vertex-transitive graph for which Aut(Γ4,9(K)) ∼= P�L(6,9)K. By
Corollary 3.19, K extends by a point P to a unique Glynn 10-arc C. By Result 2.6 we
have P�L(6,9)K ∼= Persp(H∞) � P�L(5,9)K. Since PGL(2,9)P ∼= AGL(1,9), we
find P�L(6,9)K ∼= Persp(H∞) � AGL(1,9). As before, the size easily follows. By
Theorem 2.8 the graph Γ4,9(K) is edge-transitive and thus semisymmetric. �

3.5 Using the dual arc construction

Let K = {P1, . . . ,Pk} be a k-arc in PG(n, q), k ≥ n + 4. Consider the respective
coordinates (a0j , . . . , anj ) of Pj , 1 ≤ j ≤ k, then the (n + 1) × k-matrix A = (aij )

determines a vector space (an MDS code) V1 = V (n + 1, q), which is a subspace of
V (k, q). The space V1 has a unique orthogonal complement V2 = V (k − n − 1, q)

in V (k, q). Then V2 is also an MDS code [21, p. 319]. A k-arc K̂ = {Ql, . . . ,Qk} of
PG(k − n − 2, q) with respective coordinates (b0j , . . . , bk−n−2,j ) of Qj , 1 ≤ j ≤ k,
such that the (k − n − 1) × k-matrix B = (bij ) generates V2, is called a dual k-arc K̂
of the k-arc K [27].

It should be noted that duality for arcs is a 1 − 1-correspondence between equiva-
lence classes of arcs, rather than a correspondence between arcs: with another order-
ing of K and choosing other coordinates for the points of K, we obtain the same set
of dual k-arcs.
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Result 3.21 [26, Theorem 2.1] A k-arc K in PG(n, q), k ≥ n + 4, and a dual k-arc
K̂ of K in PG(k − n − 2, q) have isomorphic collineation groups and isomorphic
projective groups.

The duality transformation maps normal rational curves to normal rational curves
and non-classical arcs to non-classical arcs. This implies that the arcs in Sects. 3.3
and 3.4 give rise to a different family of semisymmetric graphs. This follows from
the following theorem.

Theorem 3.22 Let K be a q-arc in H∞ = PG(n, q), q ≥ n + 4, and let K̂ be a dual
arc of K in Ĥ∞ = PG(q − n − 2, q). Suppose that one of the groups P�L(n + 1, q)K
or P�L(q − n − 1, q)K̂ fixes a point outside K, K̂, respectively, and acts transitively

on the points of K, K̂, respectively, then Γn,q(K) and Γq−n−2,q (K̂) are semisym-
metric, Aut(Γn,q(K)) ∼= Persp(H∞) � P�L(n + 1, q)K and Aut(Γq−n−2,q (K̂)) ∼=
Persp(Ĥ∞)� P�L(n + 1, q)K.

Proof In the same way as before, using Result 2.1, Corollary 2.5 and Theorem 3.5,
we see that Γn,q(K) and Γq−n−2,q (K̂) are connected non-vertex-transitive graphs for
which Aut(Γn,q(K)) ∼= P�L(n + 2, q)K and Aut(Γq−n−2,q (K̂)) ∼= P�L(q − n,q)K̂.

Suppose w.l.o.g. that P�L(n + 1, q)K fixes a point outside K, then by Result 2.6,
P�L(n+2, q)K ∼= Persp(H∞)�P�L(n+1, q)K. The embedding of P�L(n+1, q)K
in P�L(n + 2, q)K used to show this result was constructed by adding a 1 at the
lower right corner of every matrix B corresponding to an element (B, θ) of P�L(n+
1, q)K, for some θ ∈ Aut(Fq) to obtain a matrix B ′ corresponding to an element
(B ′, θ) of P�L(n + 2, q)K. This subgroup meets Persp(H∞) trivially, which implies
that in the group of matrices defining elements of P�L(n + 1, q)K, no proper scalar
multiple of the identity matrix occurs. Now, from the isomorphism of Result 3.21, it
follows that the group PGL(q − n− 1, q)K̂, which is isomorphic to PGL(n+ 1, q)K,
also contains no proper scalar multiple of the identity matrix. Hence, by embedding
P�L(q − n − 1, q)K̂ in P�L(q − n,q) in the same way (by adding a 1 at the lower

right corner), we see that it meets Persp(Ĥ∞) trivially. This implies that P�L(q −
n,q)K̂

∼= Persp(Ĥ∞)� P�L(n + 1, q)K.
We know that P�L(n + 1, q)K and P�L(q − n − 1, q)K̂ are permutation isomor-

phic, hence, if one of them acts transitively on the points of K or K̂, so does the other.
By Theorem 2.8, the graphs Γn,q(K) and Γq−n−2,q (K̂) are edge-transitive and hence
semisymmetric. �

If we restrict ourselves in the previous theorem to elements of the projective
groups, using Result 2.7 we get the following corollary.

Corollary 3.23 Let K be a q-arc in H∞ = PG(n, q), q ≥ n + 4, and let K̂ be a dual
arc of K in Ĥ∞ = PG(q − n− 2, q). Suppose that one of the groups PGL(n+ 1, q)K
or PGL(q − n − 1, q)K̂ fixes a point outside K, K̂, respectively, and acts transitively

on the points of K, K̂, respectively. Suppose P�L(n + 1, q)K ∼= PGL(n + 1, q)K �

Aut(Fq0) or P�L(q − n − 1, q)K̂
∼= PGL(q − n − 1, q)K̂ � Aut(Fq0), respectively,
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for q0 = ph0 , h0|h or P�L(n + 1, q)K ∼= PGL(n + 1, q)K, P�L(q − n − 1, q)K̂
∼=

PGL(q − n − 1, q)K̂, respectively. Then Γn,q(K) and Γq−n−2,q (K̂) are semisym-

metric, Aut(Γn,q(K)) ∼= Persp(H∞) � P�L(n + 1, q)K and Aut(Γq−n−2,q (K̂)) ∼=
Persp(Ĥ∞)� P�L(n + 1, q)K.

Consider the Glynn 10-arc contained in PG(4,9) and take any point P of this
10-arc; if we project the arc from P onto a PG(3,9) skew to P , then we obtain a
complete 9-arc of PG(3,9). In [11] the author also shows that all complete 9-arcs in
PG(3,9) can be obtained in this way, i.e. all complete 9-arc of PG(3,9) are P�L-
equivalent. It follows from [25] that the complete 9-arc in PG(3,9) is the dual of a
9-arc that is contained in the Glynn arc in PG(4,9). If we apply Theorem 3.22 to the
Glynn 10-arc, we obtain the following corollary. The size of the automorphism group
follows as before.

Corollary 3.24 If K is a complete 9-arc of PG(3,9), then Γ3,9(K) is a semisymmetric
graph. Moreover, Aut(Γ3,9(K)) is isomorphic to Persp(H∞) � AGL(1,9) and has
size 9582.

We can also apply Theorem 3.22 to the arcs of Sect. 3.3.

Corollary 3.25 Let K be an arc of size q contained in any (q + 1)-arc of PG(q −
4, q), q = 2h > 8, then Γq−4,q (K) is a semisymmetric graph.

Moreover, Aut(Γq−4,q (K)) is isomorphic to Persp(H∞)�A�L(1, q) and has size
hqq−2(q − 1)2.

4 Families of semisymmetric graphs arising from other sets

By Result 2.4, if K is a set of points such that its closure K is the whole space
H∞, then every automorphism of the graph Γn,q(K) is induced by a collineation
of its ambient space PG(n + 1, q). However, we do not need this property for the
construction of semisymmetric graphs. From the results and theorems of Sect. 2, the
following theorem clearly follows.

Theorem 4.1 Let K be a point set of H∞ = PG(n, q) of size q spanning H∞ such
that every point of H∞\K lies on at least one tangent line to K, and such that
P�L(n + 1, q)K acts transitively on the points of K. Then the graph Γn,q(K) is a
connected semisymmetric graph.

The subgroup of the automorphism group of the graph Γn,q(K) for which the
elements are induced by collineations of the space PG(n + 1, q) will be called the
geometric automorphism group of Γn,q(K).

We now give some examples of semisymmetric graphs for which K is a subge-
ometry of H∞. In the first three examples K is a Baer subgeometry, obviously this
only works if we look at a projective space over a field of square order. We will also
construct their geometric automorphism group.
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4.1 K is contained in an elliptic quadric

Let π be a Baer subgeometry PG(3,
√

q) embedded in H∞ = PG(3, q), q a square.
Let K denote the set of points of an elliptic quadric Q−(3,

√
q) in π with one point

removed. This set K has q points and clearly every point not in K lies on at least one
tangent line to K.

We introduce the definition of a cap and some results.

Definition A k-cap in PG(n, q) is a set of k points such that no 3 points lie on a line.

Result 4.2 [1] A q-cap in PG(3,
√

q), q an odd square, is uniquely extendable to an
elliptic quadric Q−(3,

√
q).

Result 4.3 [23, Chap. IV] In PG(3,
√

q), q > 4 an even square, a k-cap with q −
4
√

q/2 + 1 < k < q + 1 lies on a unique complete (q + 1)-cap.

Result 4.4 [13, Sect. 15.3] The stabiliser in P�L(4,
√

q) of an elliptic quadric in
PG(3,

√
q) is P�O−(4,

√
q), which is isomorphic to P�L(2, q) (in its faithful action

on q + 1 points).

Theorem 4.5 The graph Γ3,q (K), q > 4 square, is semisymmetric. Moreover, the
geometric automorphism group is isomorphic to Persp(H∞)� (A�L(1, q)� 2) and
has size 2hq5(q − 1)2.

Proof Since K consists of q points spanning PG(3, q), the graph Γ3,q (K) is q-regular
and it is connected by Result 2.1. The graph Γ3,q (K) is not vertex-transitive by
Corollary 2.5. The geometric automorphism group of Γ3,q (K) is P�L(5, q)K. By Re-
sults 4.2 (q odd) and 4.3 (q even), the cap K extends uniquely to an elliptic quadric
in PG(3,

√
q) by a point P . This point is obviously fixed by the stabiliser of K and

hence, by Result 2.6, we find P�L(5, q)K ∼= Persp(H∞) � P�L(4, q)K. The group
stabilising K stabilises the subgeometry K, hence P�L(4, q)K ∼= P�L(4,

√
q)K �

(Aut(Fq)/Aut(F√
q)) ∼= P�L(4,

√
q)K � 2. The stabiliser of K stabilises the ellip-

tic quadric and fixes its point P , hence we find P�L(4,
√

q)K ∼= P�O−(4,
√

q)P ∼=
P�L(2, q)P ∼= A�L(1, q). Since A�L(1, q) acts transitively on the points of K,
the graph is semisymmetric. The size of this group follows from |Persp(H∞)| =
q4(q − 1) and |A�L(1, q)| = hq(q − 1). �

4.2 K is contained in a Tits-ovoid

Let π be a Baer subgeometry PG(3,
√

q) embedded in H∞ = PG(3, q), q = 22(2e+1),
e > 0. Let K denote the set of points of a Tits-ovoid in π with one point removed.
This set K has q points and forms a cap in PG(3, q).

The canonical form of a Tits-ovoid in PG(3,
√

q),
√

q = 22e+1 is
{(

1, s, t, st + sσ+2 + tσ
) ∣

∣ s, t ∈ F√
q

} ∪ {

(0,0,0,1)
}

,

where σ : F√
q → F√

q : x �→ x2e+1
. Let the set K correspond to the points of this

ovoid minus the point (0,0,0,1), then K is clearly stabilised by Aut(Fq).
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Result 4.6 [28] The stabiliser of K in PGL(4,
√

q) is the 2-transitive Suzuki simple
group Sz(

√
q).

Following the notation of [17, Chap. 11], the point stabiliser of Sz(
√

q) will be
denoted by FH. Since Sz(

√
q) is 2-transitive, the group FH is transitive.

Theorem 4.7 The graph Γ3,q (K), q = 22(2e+1), e > 0, is semisymmetric. Moreover,
the geometric automorphism group is isomorphic to Persp(H∞) � (FH� Aut(Fq))

and has size hq5(q − 1)(
√

q − 1).

Proof The proof works in almost the same way as for the elliptic quadric. The size
of the group follows when considering that |Persp(H∞)| = q4(q − 1) and |FH| =
q(

√
q − 1). �

4.3 K is contained in a hyperbolic quadric Q+(3, q)

Let π be a Baer subgeometry PG(3,
√

q) embedded in H∞ = PG(3, q), q > 4 square.
Let K denote the set of points of a hyperbolic quadric Q+(3,

√
q) in π with two lines

of different reguli removed. This set K has q points.

Result 4.8 [13, Sect. 15.3] The stabiliser in P�L(4,
√

q) of a hyperbolic quadric in
PG(3,

√
q) is P�O+(4,

√
q), which is isomorphic to ((PGL(2,

√
q)×PGL(2,

√
q))�

2)� Aut(F√
q) for

√
q > 2.

Corollary 4.9 For
√

q > 2, the stabiliser in P�L(4,
√

q) of a hyperbolic quadric
in PG(3,

√
q) fixing two lines of different reguli is isomorphic to ((AGL(1,

√
q) ×

AGL(1,
√

q))� 2)� Aut(F√
q).

Theorem 4.10 The graph Γ3,q (K), q = ph > 4 square, is semisymmetric. Moreover,
the geometric automorphism group is isomorphic to Persp(H∞)� ((AGL(2,

√
q) ×

AGL(2,
√

q))� 2)� Aut(Fq) and has size 2hq5(q − 1)(
√

q − 1)2.

Proof Since K consists of q points spanning PG(3, q), Γ3,q (K) is q-regular and
is connected by Result 2.1. Clearly, every point of PG(3, q) not in K lies on at
least one tangent to K, hence Γ3,q (K) is not vertex-transitive by Corollary 2.5.
The geometric automorphism group is P�L(5, q)K. Clearly, K extends uniquely
to a hyperbolic quadric in PG(3,

√
q) by adding the missing line of each regulus.

Since the intersection point of these lines will be fixed by the stabiliser of K, we
find by Result 2.6 that P�L(5, q)K ∼= Persp(H∞) � P�L(4, q)K. Since the group
stabilising the hyperbolic quadric also stabilises the subgeometry K = PG(3,

√
q)

and the canonical form of Q+(3,
√

q) is fixed by Aut(Fq), we find P�L(4, q)K ∼=
PGL(4,

√
q)K � Aut(Fq) ∼= ((AGL(1,

√
q) × AGL(1,

√
q))� 2)� Aut(Fq), by Re-

sult 2.7. Since (AGL(1,
√

q)× AGL(1,
√

q))� 2 acts transitively on the points of K,
the graph is semisymmetric. �
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4.4 K is contained in a cone

Let Π be a subgeometry PG(n, q0) embedded in H∞ = PG(n, q), q = qh
0 . Let π be

a hyperplane of Π . Consider a set O of qh−1
0 points of π . Let V be a point of Π\π

and let VO denote the set of points of the cone in Π with vertex V and base O. This
set minus its vertex V has q points.

For a vertex v in a graph Γ and a positive integer i we write Γi(v) for the set of
vertices at distance i from v.

Lemma 4.11 Let K be the cone VO of Π minus its vertex V , such that every point
of π\O lies on at least one tangent line to O, then ∀P ∈P,∀L ∈ L : Γn,q(K)4(P ) �

Γn,q(K)4(L).

Proof Let Γ = Γn,q(K). We will prove that, for every line L ∈ L, the set of vertices
Γ4(L) contains more than q −1 vertices that have all their neighbours in Γ3(L), while
for every point P ∈ P , there are exactly q − 1 vertices in the set Γ4(P ) that have all
their neighbours in Γ3(P ).

To prove the first claim, consider a line L ∈ L with L ∩ H∞ = P1 ∈K. Choose an
affine point Q on L and a point P2 ∈ K different from P1. Take a point R on QP2,
not equal to Q or P2, then clearly the line RP1 ∈ Γ4(L). We will show that RP1 has
all its neighbours in Γ3(L). Consider a neighbour S of RP1, i.e S ∈ RP1 \ {P1}. The
line SP2 meets L in a point T . Since T ∈ Γ1(L) and T P2 ∈ Γ2(L), it follows that
S ∈ Γ3(L). Clearly, any line M ∈ L through P1, such that 〈M,L〉 ∩ H∞ contains at
least two points in K, belongs to Γ4(L) and has all its neighbours in Γ3(L). Since the
points of K do not lie on one line, there are more than q − 1 such lines M .

Consider now a point P ∈ P and a point T ∈ Γ4(P ). Look at the following min-
imal path of length 4 from T to P : the point T , a line Q1P1 ∈ Γ3(P ) containing
T for some P1 ∈ K, an affine point Q1 ∈ Γ2(P ), the line PP2 ∈ Γ1(P ) containing
Q1, for some P2 ∈ K different from P1, and finally the point P . Consider the point
R = PT ∩ H∞, then it follows from our construction that R lies on the line P1P2.
Since PR /∈ Γ1(P ), we have R not in K. First, suppose there is a tangent line of K
through R, say RP3, with P3 ∈K. The line T P3 is a neighbour of T . If T P3 belongs
to Γ3(P ), then there exists a line PT ′ through a point P4 ∈ K, with T ′ on T P3, which
implies that RP3 contains the point P4 ∈ K, a contradiction. Hence in this case there
are neighbours of T that do not belong to Γ3(P ). Now suppose there is no tangent
line of K through R, then by construction, R is the vertex V of the cone. A line
through V either contains 0 or q0 points of K, so in this case, any neighbour of T

belongs to Γ3(P ). There are exactly q − 1 points on the line V P different from P

and V . �

Corollary 4.12 The graph Γn,q(K) is not vertex-transitive.

Proof Since any graph automorphism preserves distance and hence neighbourhoods,
no automorphism of Γn,q(K) can map a vertex in P to a vertex in L. �

Denote the subgroup of P�L(n+1, q) consisting of the perspectivities with centre
V by Persp(V ).
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Lemma 4.13 Consider K, the point set of the cone VO in PG(n, q0), minus its ver-
tex V , where O spans π . If P�L(n, q0)O and PGL(n, q0)O , respectively, fix a point
of π , then P�L(n + 1, q)K ∼= Persp(V ) � P�L(n, q0)O � (Aut(Fq)/Aut(Fq0)) and
PGL(n + 1, q)K ∼= Persp(V )� PGL(n, q0)O , respectively.

Proof First, it should be noted that the Fq0 -span of O is π , the Fq0 -span of
K is Π , so P�L(n + 1, q)K and PGL(n + 1, q)K stabilise the subgeometry Π

of H∞. This implies that P�L(n + 1, q)K ∼= (P�L(n + 1, q)Π)K, and PGL(n +
1, q)K ∼= (PGL(n + 1, q)Π)K, respectively. Since P�L(n + 1, q)Π is clearly iso-
morphic to PGL(n + 1, q0)� (Aut(Fq)/Aut(Fq0)), we have that P�L(n + 1, q)K ∼=
P�L(n + 1, q0)K � (Aut(Fq)/Aut(Fq0)). Also, since PGL(n + 1, q)Π is isomorphic
to PGL(n + 1, q0), we have that PGL(n + 1, q)K ∼= PGL(n + 1, q0)K.

Let φ be an element of P�L(n + 1, q0)K, then φ preserves the lines through V .
Define the action of φ on π to be the mapping taking L ∩ π to φ(L) ∩ π .

The kernel of this action of P�L(n + 1, q0)K on π is clearly isomorphic to
Persp(V ), as it consists of all collineations fixing the lines through V . The im-
age of the action is isomorphic to P�L(n, q0)O , showing that P�L(n + 1, q0)K
is an extension of Persp(V ) by P�L(n, q0)O . To show that this extension splits,
we embed P�L(n, q0)O in P�L(n + 1, q0)K in such a way that it intersects triv-
ially with Persp(V ). By assumption, P�L(n, q0)O fixes a point P ∈ π . W.l.o.g.
let π be the hyperplane with equation X0 = 0 and let V be the point (1,0, . . . ,0).
Suppose that P has coordinates (0, c1, c2, . . . , cn), where the first non-zero coordi-
nate equals one. This implies that for each β ∈ P�L(n, q0)O , there exists a unique
n × n matrix B = (bij ), 1 ≤ i, j ≤ n, and θ ∈ Aut(Fq0) corresponding to β , such
that (c1, c2, . . . , cn)

θ .B = (c1, c2, . . . , cn). Moreover, the obtained matrices B form
a subgroup of �L(n, q0). Let Aβ = (aij ), 0 ≤ i, j ≤ n, be the (n + 1) × (n + 1)

matrix with a00 = 1, ai0 = a0j = 0 for i, j ≥ 1 and aij = bij for 1 ≤ i, j ≤ n. It
is clear that the semi-linear map (Aβ, θ) defines an element of P�L(n + 1, q0)K,
corresponding to a collineation α acting in the same way as β on H∞. If θ

is not the identity 1, then α is not a perspectivity. If θ = 1, then α fixes ev-
ery point on the line through P and V , thus fixes at least two affine points and
hence is not a perspectivity. This implies that the elements α form a subgroup of
P�L(n+1, q)K isomorphic to P�L(n, q0)O and intersecting Persp(V ) trivially. This
implies that P�L(n + 1, q0)K ∼= Persp(V )� P�L(n, q0)O , and we have seen before
that P�L(n+ 1, q)K ∼= P�L(n+ 1, q0)K� (Aut(Fq)/Aut(Fq0)). Since Persp(V ) in-
tersects trivially with the standard embedding of Aut(Fq)/Aut(Fq0), the claim fol-
lows.

The claim for PGL(n + 1, q)K can be proved in the same way. �

The following corollary follows easily when we take into account that Persp(V )

acts transitively on the points of each line through V .

Corollary 4.14 If P�L(n, q0)O acts transitively on O, then P�L(n + 1, q)K acts
transitively on K.

Theorem 4.15 Suppose that O spans π , that every point of π\O lies on a tangent
line to O and that P�L(n, q0)O acts transitively on O. Then the graph Γn,q(K)
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is semisymmetric. Moreover, the geometric automorphism group is isomorphic to
Persp(H∞)� Persp(V )� P�L(n, q0)O � (Aut(Fq)/Aut(Fq0)).

Proof Since K consists of q points spanning PG(n, q), Γn,q(K) is q-regular and is
connected by Result 2.1. The graph Γn,q(K) is not vertex-transitive by Lemma 4.11.
Clearly, P�L(n + 1, q)K stabilises the point V , so we find by Result 2.6 that
PGL(n + 2, q)K ∼= Persp(H∞)� PGL(n + 1, q)K. The expression for the geometric
automorphism group follows from Lemma 4.13. Since P�L(n + 1, q)K acts transi-
tively on the points of K, by Theorem 2.8, the graph is edge-transitive, and hence
semisymmetric. �

5 Isomorphisms of Γn,q(K) with other graphs

In this section, we will show that the graphs constructed by Du, Wang and Zhang [9],
and the graphs of Lazebnik and Viglione [19] belong to the family Γn,q(K), where K
is a q-arc contained in a normal rational curve (see Sect. 3.2).

5.1 The graph of Du, Wang and Zhang

If q = p prime, then the point of PG(n,p) with coordinates (0, . . . ,0,1) and the orbit
of the point P with coordinates (1,0, . . . ,0) under the element φ ∈ PGL(n+ 1,p) of
order p, defined by the matrix Aφ , form a normal rational curve N in PG(n,p) (see
[24]):

Aφ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0

· · ·
0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

When we use the orbit of P for the point set K at infinity, we obtain a reformula-
tion of the construction of the semisymmetric graphs found by Du, Wang and Zhang
in [9]. This shows that our construction of the graph Γn,p(K), with K a set of p

points, contained in a normal rational curve, contains their family (and extends their
construction to the case where q is not a prime). Moreover, the edge-transitive group
of automorphisms described by the authors is not the full automorphism group of the
graph: they only consider automorphisms induced by the group 〈φ〉 of order p acting
on the points of K, together with Persp(H∞).

5.2 The graph of Lazebnik and Viglione

In [19], the authors define the graph Λn,q as follows. Let Pn and Ln be two (n + 1)-
dimensional vector spaces over Fq , q = ph. The vertex set of Λn,q is Pn ∪ Ln, and
we declare a point (p) = (p1,p2, . . . , pn+1) adjacent to a line [l] = [l1, l2, . . . , ln+1]
if and only if the following n relations on their coordinates hold.

l2 + p2 = p1l1,
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l3 + p3 = p1l2,

...

ln+1 + pn+1 = p1ln.

In the following theorem, we will show that the graph Λn,q is isomorphic to the
graph Γn,q(K), where K is contained in a normal rational curve; hence, Γn,q(K)

provides an embedding of the Lazebnik–Viglione graph in PG(n + 1, q). It should
be noted that in [19], the authors provide some automorphisms, acting on the graph
Λn,q , to show that this graph is semisymmetric. From the isomorphism with Γn,q(K)

it follows that P�L(n + 2, q)K is also the full automorphism group of the Lazebnik–
Viglione graph when q ≥ n + 3 or q = p = n + 2.

Theorem 5.1 Λn,q
∼= Γn,q(K), where K is a q-arc contained in a normal rational

curve.

Proof The graph Λn,q is isomorphic to the graph Λ′
n,q obtained by reversing the role

of the points and the lines in the definition of Λn,q . So, Λ′
n,q is the bipartite graph

with parts Pn and Ln, where (p1, . . . , pn+1) ∈ Pn is incident with (l1, . . . , ln+1) ∈
Ln if and only if pi+1 + li+1 = l1pi for all 1 ≤ i ≤ n. Let � = (l1, . . . , ln+1) be a
vertex of Λ′

n,q , then the points, incident with � form a line of AG(n + 1, q): suppose
(p1, . . . , pn+1) and (p′

1, . . . , p
′
n+1) are vertices, adjacent with �, then so is the vertex

(p1 + λ(p′
1 − p1), . . . , pn+1 + λ(p′

n+1 − pn+1)), for any λ ∈ Fq .
Now let (p1, . . . , pn+1) and (p′

1, . . . , p
′
n+1) be vertices of Λ′

n,q and embed
these points of AG(n + 1, q) in PG(n + 1, q), by identifying (p1, . . . , pn+1) with
(1,p1, . . . , pn+1). The line L determined by these points meets the hyperplane
at infinity with equation X0 = 0 of AG(n + 1, q) in the point P∞ = (0,p1 −
p′

1, . . . , pn+1 − p′
n+1). Now the affine point set of L is a vertex of Λ′

n,q if and only if
there is an element (l1, . . . , ln+1) ∈ Ln such that for all 1 ≤ i ≤ n:

pi+1 + li+1 = l1pi,

p′
i+1 + li+1 = l1p

′
i .

This implies that there exists some l1 ∈ Fq such that pi+1 −p′
i+1 = l1(pi −p′

i ) for all
1 ≤ i ≤ n. Hence, the point P∞ has coordinates (0,1, l1, l

2
1, . . . , ln1 ), which implies

that all the vertices (l1, . . . , ln+1) of Λ′
n,q define a line in PG(n+1, q) through a point

of the standard normal rational curve K, minus the point (0, . . . ,0,1). This is exactly
the description of the graph Γn,q(K). �

Corollary 5.2 The automorphism group Aut(Λn,q) of the graph Λn,q is isomorphic
to the edge-transitive group P�L(n + 2, q)K. Moreover:

• If q ≥ n + 3, q = ph, p prime, n ≥ 3 or n = 2 and q odd, then Aut(Λn,q) has size
hqn+2(q − 1)2;

• If q = p = n + 2, then Aut(Λn,q) has size qn+1(q − 1)q!.
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5.3 The graph of Wenger and cycles in Γn,q(K)

We use the symbol Ck for a cycle of length k. The infinite family of graphs Hn(q)

introduced in [18] and [29] are clearly isomorphic to the graphs Λn−1,q of Sect. 5.2,
and thus isomorphic to the graphs Γn−1,q (K), where K is a q-arc contained in a
normal rational curve. Wenger [29] proved that the graphs H2(p), H3(p), H5(p) do
not contain a C4, C6, C10, respectively, for any prime p. In [18] the authors notice
that, for a prime power q (implicitly assuming n ≥ 5), the graph Hn(q) contains no
C10 and prove it has girth 8 for n ≥ 3.

We now prove a similar theorem for the graph Γn,q(K) using its geometric prop-
erties.

Theorem 5.3 Let K be any arc in PG(n, q), q ≥ n + 1, then the graph Γn,q(K) does
not contain a C4, C6 and has girth 8. For n = 2 and |K| ≥ 4 or n = 3, q > 4 and
|K| ≥ 5, the graph Γn,q(K) contains cycles of length 10. If n ≥ 4, the graph Γn,q(K)

is C10-free.

Proof Since Γn,q(K) is bipartite, every cycle has even length. Note that a cycle C2k

of Γn,q(K) contains k points of P and k lines of L. Since there is at most one line of
L through any two affine points, the graph does not contain a C4. Suppose Γn,q(K)

contains a C6, R1 ∼ R1R2 ∼ R2 ∼ R2R3 ∼ R3 ∼ R3R1, Ri ∈ P , RiRj ∈ L. Clearly,
the affine points R1,R2,R3 are not collinear. The plane 〈R1,R2,R3〉 intersects H∞
in a line. The lines R1R2, R2R3 and R3R1 define three different points of K, all lying
on this line, a contradiction since K is an arc.

Consider two points P1,P2 ∈ K and a plane π through P1P2 not contained in
H∞. For i = 1,2 consider distinct lines Li through P1 and distinct lines Mi through
P2, different from P1P2. Define the intersection points Rij = Li ∩ Mj . The path
R11 ∼ L1 ∼ R12 ∼ M2 ∼ R22 ∼ L2 ∼ R21 ∼ M1 is a cycle C8. Since Γn,q(K) does
not contain a C4 or C6, it has girth 8.

Let K be an arc in PG(2, q) and let P1,P2,P3,P4 be four points of K. Let R1 be
an affine point. Let π be a plane through P3P4, not through R1. Let R2 be π ∩ R1P2
and R5 be π ∩ R1P1. For q > 2, we can choose an affine point R3 on R2P3, different
from R2, but not lying on the line P4R5. Let R4 be the point R3P4 ∩ R5P3. Then
R1 ∼ R1R2 ∼ · · · ∼ R5 ∼ R5R1, Ri ∈ P , RiRj ∈ L, is a cycle of length 10.

Suppose n = 3 and |K| ≥ 5. For q > 4, one can consider five points P1, . . . ,P5
in PG(4, q) disjoint from H∞ forming a basis of PG(4, q). The five points P1P2 ∩
H∞, . . . ,P4P5 ∩ H∞,P5P1 ∩ H∞ form a frame of H∞. Any five points of an arc
in PG(3, q) form a frame and all frames are PGL-equivalent. Hence, we can assume
w.l.o.g. that these five points of H∞ belong to K. It is clear that P1 ∼ P1P2 ∼ · · · ∼
P5 ∼ P5P1, Pi ∈P , PiPj ∈ L, is a cycle of length 10.

Now let n ≥ 4, let K be an arc and assume Γn,q(K) contains a C10, R1 ∼ R1R2 ∼
· · · ∼ R5 ∼ R5R1, Ri ∈ P , RiRj ∈ L. Note that two lines at distance 2 intersect H∞
in different points of K; hence the five lines intersect H∞ in at least three different
points of K. The space π = 〈R1,R2,R3,R4,R5〉 has dimension at most 4 and at least
3, so intersects H∞ in at most a 3-space, containing at most 4 points of K. Hence
there are at least two lines of our set intersecting in a point of K, these lines are not
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at distance two of each other, so without loss of generality, assume these are the lines
R1R2 and R3R4. It follows that π is a 3-space, intersecting H∞ in a plane containing
3 points of K. However, the points R1,R2,R3 and R4 lie in a plane containing two
points P1 and P2 of K. The point R5 does not lie in this plane, so the lines R4R5 and
R5R1 intersect H∞ in two new points P3 and P4. The points P1,P2,P3 and P4 lie in
a plane of H∞, a contradiction since K is an arc. �
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