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Abstract In 2007 Sami Assaf introduced dual equivalence graphs as a method for
demonstrating that a quasisymmetric function is Schur positive. The method involves
the creation of a graph whose vertices are weighted by Ira Gessel’s fundamental qua-
sisymmetric functions so that the sum of the weights of a connected component is a
single Schur function. In this paper, we improve on Assaf’s axiomatization of such
graphs, giving locally testable criteria that are more easily verified by computers. We
further advance the theory of dual equivalence graphs by describing a broader class of
graphs that correspond to an explicit Schur expansion in terms of Yamanouchi words.
Along the way, we demonstrate several symmetries in the structure of dual equiva-
lence graphs. We then apply these techniques to give explicit Schur expansions for
a family of Lascoux–Leclerc–Thibon polynomials. This family properly contains the
previously known case of polynomials indexed by two skew shapes, as was described
in a 1995 paper by Christophe Carré and Bernard Leclerc. As an immediate corollary,
we gain an explicit Schur expansion for a family of modified Macdonald polynomi-
als in terms of Yamanouchi words. This family includes all polynomials indexed by
shapes with at most three cells in the first row and at most two cells in the second
row, providing an extension to the combinatorial description of the two-column case
described in 2005 by James Haglund, Mark Haiman, and Nick Loehr.
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1 Introduction

Dual equivalence was developed and applied by Mark Haiman in [16] as an extension
of work done by Donald Knuth in [17]. Sami Assaf then introduced the theory of dual
equivalence graphs in her Ph.D. dissertation [1] and subsequent preprint [3]. In these
papers, she is able to associate a number of symmetric functions to dual equivalence
graphs and each component of a dual equivalence graph to a Schur function, thus
demonstrating Schur positivity. More recently, variations of dual equivalence graphs
are given for k-Schur functions in [4] and for the product of a Schubert polynomial
with a Schur polynomial in [5].

A key connection between dual equivalence graphs and symmetric functions is the
ring of quasisymmetric functions. The quasisymmetric functions were introduced by
Ira Gessel in [9] as part of his work on P -partitions. Currently there are a number of
functions that are easily expressed in terms of Gessel’s fundamental quasisymmetric
functions that are not easily expressed in terms of Schur functions. For example, such
an expansion for plethysms is described in [20], for Lascoux–Leclerc–Thibon (LLT)
polynomials in [14], for Macdonald polynomials in [13], and conjecturally for the
composition of the nabla operator with an elementary symmetric function in [14]. An
expressed goal of developing the theory of dual equivalence graphs is to create a tool
for turning such quasisymmetric expansions into explicit Schur expansions.

Previously, dual equivalence graphs were defined by five dual equivalence axioms
that are locally testable and one that is not. One of the main results of this paper is to
give an equivalent definition using only local conditions, as stated in Theorem 3.17.
Many graphs, while not satisfying all of these axioms, correspond to Schur posi-
tive expansions. In particular, those admitting a morphism onto a dual equivalence
graph, as described in Definition 2.6, are necessarily Schur positive. In Theorems 3.13
and 3.14 we give a classification of the set of graphs admitting such a morphism and
obeying the first dual equivalence axiom. In particular, Theorem 3.13 gives an ex-
plicit Schur expansion for the symmetric functions associated to such graphs in terms
of standardized Yamanouchi words.

The paper concludes by applying the above results to LLT polynomials in Theo-
rem 4.3. LLT polynomials were first introduced in [19] as a q-analogue to products of
Schur functions and were later given a description in terms of tuples of skew tableaux
in [14]. Corollary 4.4 then applies the results of [13] to give an explicit combinatorial
description for a family of modified Macdonald polynomials. First introduced in [21],
Macdonald polynomials are often defined as the set of q, t-symmetric functions that
satisfy certain orthogonality and triangularity conditions, as is well described in [22].
Part of the importance of Macdonald polynomials derives from the fact that they
specialize to a wide array of well-known functions, including Hall–Littlewood poly-
nomials and Jack polynomials (see [22] for details). In [15], Mark Haiman used geo-
metric and representation-theoretic techniques to prove that Macdonald polynomials
are Schur positive.

In some cases, nice Schur expansions for LLT and Macdonald polynomials are
already known. In particular, the set of LLT polynomials indexed by two skew shapes
was described in [6] and [28], and modified Macdonald polynomials indexed by
shapes with strictly less than three columns was described in [13] (which in turn drew
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on the earlier work in [6] and [28]). The first combinatorial description of the two col-
umn case was given in [7], but others were subsequently given in [18, 29], and [2].
In addition, an algorithm for finding the Schur expansion of Macdonald polynomials
indexed by shapes with at most four cells in the first row and at most two cells in
the second row was given in [30]. Finding a combinatorial interpretation for the three
column case is still an open problem, though there is a conjectured formula in [11].

This paper is broken into sections as follows. Section 2 reviews the necessary ma-
terial on partitions, tableaux, the Robinson–Schensted–Knuth correspondence, and
symmetric functions, before giving the necessary background on dual equivalence
graphs. Section 3 is dedicated to further developing the theory of dual equivalence
graphs, culminating in a new axiomatization for dual equivalence graphs in Theo-
rem 3.17. Section 4 applies the results of Sect. 3 to LLT polynomials and Macdonald
polynomials. The graph structure given to LLT polynomials in [3] is reviewed before
Theorem 4.11 classifies the set of LLT polynomials that correspond to dual equiva-
lence graphs. Theorem 4.3 states that said set of LLT polynomials have a Schur ex-
pansion indexed by standardized Yamanouchi words. This set strictly contains the
set of LLT polynomials indexed by two skew shapes. Corollary 4.4 then gives a
Schur expansion for modified Macdonald polynomials indexed by partition shapes
with strictly less than four boxes in the first row and strictly less than three boxes in
the second row.

2 Preliminaries

This section is dedicated to introducing the key notation and definitions that underlie
the rest of the paper. Particular attention is given to known results about dual equiva-
lence graphs.

2.1 Tableaux

A partition λ is a weakly decreasing finite sequence of nonnegative integers λ1 ≥
· · · ≥ λk ≥ 0. If

∑
λi = n, we say that λ is a partition of n and write λ � n. Partitions

are often expressed in terms of diagrams where λi is the number of boxes, or cells,
in the ith row, from bottom to top, as in the left diagram of Fig. 1. It is sometimes
useful to treat a diagram as a subset of the integer Cartesian plane with the bottom
left corner of the diagram at the origin. Given a partition λ, the conjugate partition
of λ, denoted λ̃, is defined by λ̃i := |{j : λj ≥ i}|. The diagram of λ̃ is obtained by
reflecting the diagram of λ over the main diagonal x = y in the Cartesian plane.

If the diagram of ρ is contained in the diagram of λ, equivalently ρi ≤ λi for
all i, then we may consider the skew diagram λ/ρ defined by omitting the boxes
of ρ from λ, as in the right skew diagram of Fig. 1. Here, λ/ρ is referred to as the

Fig. 1 The diagrams for (4,3,2,2) and (4,3,1,1)/(2,2)
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Fig. 2 On the left, a tableau with content reading word 438162957 and row reading word 483691257.
On the right, a skew tableau with content reading word 3214 and row reading word 3214

shape of the skew diagram. The number of cells of λ/ρ is called the size of λ/ρ and
is denoted by |λ/ρ|. If we need to distinguish the shape of a partition from a skew
shape, we will refer to it as a straight shape. We say that μ is a subdiagram of λ/ρ if
some translation of μ is contained in λ/ρ when considered as subsets of the Cartesian
plane.

A filling assigns a positive integer to each cell of a partition or skew shape,
usually written inside of the cell. Any filling of λ � n that assigns each value in
[n] = {1, . . . , n} exactly once is termed a bijective filling. We will primarily be con-
cerned with standard Young tableaux, or tableaux for short, which are bijective fill-
ings that are also increasing up columns and across rows from left to right (see Fig. 2).
The set of all standard Young tableaux of shape λ is denoted SYT(λ). The union of
all SYT(λ) over λ � n is denoted SYT(n). Similarly, the set of all skew tableaux
of shape λ/ρ is denoted SYT(λ/ρ). In general, all tableaux will be assumed to be
fillings of straight shapes unless stated otherwise.

The notion of a standard Young tableau extends to fillings of skew shapes, creating
skew tableaux, as seen in the right side of Fig. 2. The well-known process of jeu de
taquin slides gives a map from any skew tableau to a straight tableau via a sequence
of slide operations that move cells either west or south depending on the values in
the filling. For more information, see [8, Part I], [24, Ch. 3], or [25, Ch. 7]. Given a
(possibly skew) tableau T , define sh(T ) to be the shape of the underlying diagram
of T .

The content of a cell x, denoted c(x), is j − i, where j is the column of x, and i is
the row of x in Cartesian coordinates. In other words, each diagonal going southwest
to northeast has the same content, with the uppermost diagonal having the smallest
content. In a standard Young tableau, the 1-cell is located at the origin of the Cartesian
plane, and so has content 0. A connected skew shape having at most one cell of each
content is called a ribbon.

Define the content reading word of a tableau as the word retrieved by reading off
each entry from lowest content to highest, moving northeast along each diagonal, as
in Fig. 2. We also define the row reading word of a tableau by reading across rows
from left to right, starting with the top row and working down. The content reading
word and row reading word of a standard Young tableau are necessarily permutations.

The signature of a word (or permutation in one-line notation) is a string of 1’s
and −1’s, or +’s and −’s for short, where there is a + in the ith position if and
only if i comes before i + 1 in the word. If σi(w) = −1, then i is referred to as an
inverse descent of w. Notice that a word is one entry longer than its signature. We
may then define the signature of a tableau T , denoted σ(T ), as the signature of the
content reading word of T . For example, the signatures of the tableau in Fig. 2 are
+ − − + − + −+ and − − +, respectively. Given a fixed tableau, the row reading
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word and the content reading word always have the same signature (see [25, Ch. 7]
for details).

2.2 Knuth equivalence and the R–S–K correspondence

While we assume familiarity with the Robinson–Schensted–Knuth (R–S–K) corre-
spondence and jeu de taquin, we will use this section as a refresher and to set notation.
For a full treatment, see [8, Ch. 2–4], [24, Ch. 3], or [25, Ch. 7].

The R–S–K correspondence gives a bijection between permutations in Sn and
pairs of standard Young tableaux (P,Q), where P and Q have the same shape λ � n.
The first tableau is called the insertion tableau, and the latter is termed the recording
tableau. For the duration of this paper, P : Sn → SYT(n) and Q : Sn → SYT(n) will
be the functions taking a permutation to its insertion tableau and recording tableau,
respectively. These two functions are related by

Q(w) = P
(
w−1). (2.1)

A detailed proof of this fact can be found in [8, Ch. 4.1]. We then write sh(w) to
mean sh(P (w)).

For each tableau T with entries in [n], the set of permutations in Sn sent to T by
P is termed a Knuth equivalence class. Two words in the same Knuth equivalence
class are said to be Knuth equivalent. The equivalence relations of Knuth classes are
generated by the fundamental Knuth equivalences, denoted Kj for 1 < j < n. Each
Kj is defined as an involution that fixes all entries of w ∈ Sn except for those with
indices j − 1, j , and j + 1. Its action on these three entries can be written as

Kj(. . . xyz . . .) = (. . . xyz . . .), Kj (. . . zyx . . .) = (. . . zyx . . .),

Kj (. . . yxz . . .) = (. . . yzx . . .), Kj (. . . xzy . . .) = (. . . zxy . . .),
(2.2)

where x < y < z. In words, if the j −1, j , and j +1 entries are not strictly increasing
or strictly decreasing, then switch the location of the two extreme values.

A number of important constructions yield words from the same Knuth class.
Given a tableau T with row reading word w, then P(w) = T . The same can be shown
to be true for the content reading word of T , demonstrating that row and content read-
ing words are Knuth equivalent. In fact, the row and content reading words of a skew
tableau are also Knuth equivalent. Further, the row reading words (as well as content
reading words) of two skew tableaux related by a sequence of jeu de taquin slides
are Knuth equivalent. In particular, if v and w are the row reading words of skew
tableaux that are related by jeu de taquin, then sh(v) = sh(w). It also follows that
the row reading words of distinct tableaux (on straight shapes) are in different Knuth
classes and that there is exactly one such word per class (see [8, Ch. 2.1] for the
details of the proof).

Next, we comment on the relationship between sh(w) and subwords of w, as is
well presented in [8, Ch. 3]. If sh(w) = λ, then the longest increasing subword of w

has length λ1, and the longest decreasing subword of w has length λ̃1. For instance,
if w = 15342, then sh(w) = (3,1,1), the longest increasing subword is 134, and
the longest decreasing words are 532 and 542. In particular, if two words are Knuth
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equivalent, then both of their longest increasing subwords have the same length. Fur-
thermore, if w and v are Knuth equivalent words in Sn, we may consider the restric-
tions of w and v to the consecutive values in some set S = {a, a + 1, . . . , b}, where
1 ≤ a < b ≤ n. Call these two subwords wS and vS , respectively. Then wS and vS are
Knuth equivalent, and so the longest increasing subwords of wS and vS both have the
same length. The proof of this last fact can be found in [8, Lem. 3].

Lastly, we define a particularly nice Knuth class. Let Uλ denote the tableau of
shape λ � n formed by filling cells with values 1 through n row by row from bottom
to top. Define SYam(λ) to be the set of w ∈ Sn such that P(w) = Uλ. There is,
however, a more direct way of deriving this set. A Yamanouchi word has entries in
the positive integers such that when read backwards there are always more 1’s than
2’s, more 2’s than 3’s, and more i’s than (i + 1)’s. For instance, 25432431121 is a
Yamanouchi word, but 231321 is not. The set Yam(λ) consists of all Yamanouchi
words where 1 occurs λ1 times, 2 occurs λ2 times, and so on. We may standardize a
word in Yam(λ) by replacing all of the 1’s with 1, . . . , λ1 in increasing reading order,
all of the 2’s with λ1 + 1, . . . , λ2 in reading order, et cetera. We call the resulting
words standardized Yamanouchi words. It is a simple exercise to verify that the set of
standardized Yamanouchi subwords derived from Yam(λ) is precisely SYam(λ).

2.3 Symmetric functions

The ring of symmetric functions has several well-known bases with ties to tableaux,
as is well laid out in [25, Ch. 7], [8, Part I], or [24, Ch. 4]. Of primary importance is
the basis of Schur functions, denoted {sλ}. We will take the unorthodox approach of
defining these functions using a result of Ira Gessel. While less immediately intuitive
than standard approaches, this definition contains the only properties that we need.
First, a preliminary definition:

Definition 2.1 Given any signature σ ∈ {±1}n−1, define the fundamental quasisym-
metric function Fσ (X) ∈ Z[x1, x2, . . .] by

Fσ (X) :=
∑

i1≤···≤in
ij =ij+1⇒σj =+1

xi1 · · ·xin .

The set of fundamental quasisymmetric functions of degree n forms a homoge-
neous basis for the vector space of degree n quasisymmetric functions. The ring of
quasisymmetric functions is created by allowing formal multiplication as power se-
ries. The extent that we need this ring to motivate our results is limited to a few facts.
The first is the promised definition of Schur functions.

Definition 2.2 ([9]) Given any skew shape λ/ρ, define

sλ/ρ(X) :=
∑

T ∈SYT(λ/ρ)

Fσ(T )(X), (2.3)

where sλ/ρ is termed a Schur function if λ/ρ is a straight shape and a skew Schur
function in general.
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Fig. 3 On the left, the shifted contents of a pair of skew diagrams. On the right, a standard filling of the
same tuple with shifted content word 453826179 and signature − − − + + + −+

While it is not obvious from this definition that Schur functions are symmetric
or that the Schur functions indexed by straight shapes form a basis for the ring of
symmetric functions, what we have gained from this definition is a clear connection to
the signatures of tableaux. Further, the quasisymmetric definition of Schur functions
is always a finite sum, unlike the more common sum over all semistandard tableaux
of a given shape.

The important Lascoux–Leclerc–Thibon (LLT) polynomials and Macdonald poly-
nomials (as introduced in [19] and [21], respectively) may also be expressed using
the sum of fundamental quasisymmetric polynomials. We now present these combi-
natorial definitions, as they will be needed in Sect. 4. The LLT polynomials, denoted
Gν(X;q), were originally described in terms of ribbon tableaux in [19]. We will in-
stead use the equivalent definition given in [14, Cor. 5.2.4], which defines Gν(X;q)

by using a k-tuple of skew shapes ν.
Given a k-tuple of skew shapes ν = (ν(0), . . . , ν(k−1)), we write |ν| = n if∑k−1
i=0 |ν(i)| = n. A standard filling T = (T (0), . . . , T (k−1)) of ν is a bijective fill-

ing of the diagram of ν with entries in [n] such that for all 0 ≤ i < k, each T (i) is
strictly increasing up columns and across rows from left to right. Denote the set of
standard fillings of ν as SYT(ν). Define the shifted content of a cell x in ν(i) as

c̃(x) = k · c(x) + i, (2.4)

where c(x) is the content of x in ν(i). The shifted content word of T is defined as the
word retrieved from reading off the values in the cells from lowest shifted content to
highest, reading northeast along diagonals of constant shifted content. We may then
define σ(T) as the signature of the shifted content word of T. For an example, see
Fig. 3.

Letting T(x) denote the entry in cell x, the set of k-inversions of T is

Invk(T) := {
(x, y) | k > c̃(y) − c̃(x) > 0 and T(x) > T(y)

}
. (2.5)

The k-inversion number of T is defined as

invk(T) := ∣
∣Invk(T)

∣
∣. (2.6)

If w is the shifted content word of T ∈ SYT(ν), and ν is a k-tuple, then the ν-inversion
number of w is defined as

invν(w) := invk(T). (2.7)

As an example, let T be as in Fig. 3. Denoting cells with their values in T,
Inv2(T) is comprised of the pairs (5,3), (3,2), and (8,2). Hence, inv2(T) =
invν(453826179) = 3.
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Fig. 4 An example of the bijection between standard fillings of shapes in TR(μ/ρ) and bijective fillings
of μ/ρ

Now define the set of LLT polynomials by

Gν(X;q) :=
∑

T∈SYT(ν)

q invk(T)Fσ(T)(X). (2.8)

Though LLT polynomials are known to be symmetric, with proofs in [19, Thm. 6.1]
and [13, Thm. 3.3], it is still challenging to expand them in terms of Schur functions.
A partial solution to this problem is given in Sect. 4.

We now move on to the definition of the modified Macdonald polynomials
H̃μ/ρ(X;q, t). We will use [13, Thm. 2.2] to give a strictly combinatorial definition.
To do this, we will first need to define several functions.

Given any skew shape μ/ρ with each cell represented by a pair (i, j) in Cartesian
coordinates, let TR(μ/ρ) be the set of tuples of ribbons ν = (ν(0), . . . , ν(k−1)) such
that ν(i) has a cell with content j if and only if (i,−j) is a cell in μ/ρ. There is then
a bijection between standard fillings of shapes in TR(μ/ρ) and bijective fillings of
μ/ρ given by turning each ribbon into a column of μ/ρ as demonstrated in Fig. 4.

Consider any k-tuple of ribbon shapes ν = (ν(0), . . . ,ν(k−1)) with some cell x ∈ν(i).
Define the arm of x and the leg of x, denoted a(x) and l(x) respectively, by

a(x) := ∣
∣
{
ν(j): j > i and there exists some y ∈ ν(j) such that c(x) = c(y)

}∣
∣, (2.9)

l(x) := ∣
∣
{
y: y ∈ ν(i) and c(y) < c(x)

}∣
∣. (2.10)

Here, c(x) and c(y) always refer to the content within the skew tableaux containing x

and y, respectively. As an example, if x is the cell containing a six in the left diagram
of Fig. 4, then a(x) = 2 and l(x) = 3.

We define a descent of ν to be any cell x in some ν(i) that has a cell directly below
it and define the descent set of ν as

Des(ν) := {x ∈ ν: x is a descent of ν}. (2.11)

For example, the descent set of the tuple of ribbon tableaux in Fig. 4 is the set of cells
with values in {4,6,7,9}. Given a standard filling T of ν, our final three statistics can
then be defined as

a(ν) :=
∑

x∈Des(ν)

a(x), (2.12)

inv(T) := invk(T) − a(ν), (2.13)
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maj(T) := maj(ν) :=
∑

x∈Des(ν)

1 + l(x). (2.14)

Using the left diagram in Fig. 4 as an example again, we have a(ν) = 3, inv(T) =
4 − 3 = 1, and maj(T) = 9. A simple proof that inv(T) is always nonnegative can be
found in [13, Sect. 2].

We are now able to define the modified Macdonald polynomials and show their
relationship with LLT polynomials:

H̃μ/ρ(X;q, t) :=
∑

ν∈TR(μ/ρ)
T∈SYT(ν)

q inv(T)tmaj(T)Fσ(T)

=
∑

ν∈TR(μ/ρ)

q−a(ν)tmaj(ν)Gν(X;q). (2.15)

By using this definition, results about LLT polynomials can be easily translated into
results about Macdonald polynomials.

Lastly, we will have use for the following symmetry of modified Macdonald poly-
nomials. It follows from results in [22] (see also [12, Eq. (2.30)]) that

H̃μ/ρ(X;q, t) = H̃μ̃/ρ̃(X; t, q). (2.16)

2.4 Dual equivalence graphs

We now provide the necessary definitions and results from [3]. We begin by recalling
Mark Haiman’s dual to the fundamental Knuth equivalences defined in (2.2).

Definition 2.3 Given a permutation in Sn expressed in one-line notation, define an
elementary dual equivalence as an involution di that interchanges the values i − 1, i,
and i + 1 as

di(. . . i − 1 . . . i . . . i + 1 . . .) = (. . . i − 1 . . . i . . . i + 1 . . .),

di(. . . i + 1 . . . i . . . i − 1 . . .) = (. . . i + 1 . . . i . . . i − 1 . . .),

di(. . . i . . . i − 1 . . . i + 1 . . .) = (. . . i + 1 . . . i − 1 . . . i . . .),

di(. . . i − 1 . . . i + 1 . . . i . . .) = (. . . i . . . i + 1 . . . i − 1 . . .).

(2.17)

Two words are dual equivalent if one may be transformed into the other by successive
elementary dual equivalences.

As an example, 21345 is dual equivalent to 51234 because d4(d3(d2(21345))) =
d4(d3(31245)) = d4(41235) = 51234. Notice that if i is between i −1 and i +1, then
di acts as the identity. It follows immediately from (2.2) and (2.17) that di is related
to Ki by

di(w) = (
Ki

(
w−1))−1

. (2.18)
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By (2.1) and (2.18), Q(w) = P(w−1) = P(Ki(w
−1)) = Q((Ki(w

−1))−1) =
Q(di(w)). Thus, Q is constant on dual equivalence classes.

We may also let di act on the entries of a tableau T by applying them to the row
reading word of T . It is not hard to check that the result is again a tableau of the same
shape. The transitivity of this action is described in the following theorem.

Theorem 2.4 ([16, Prop. 2.4]) Two standard Young tableaux on partition shapes are
dual equivalent if and only if they have the same shape.

If we rewrite Theorem 2.4 in terms of permutations, it states that dual equivalence
classes are precisely the set of permutations w satisfying Q(w) = T for some fixed
tableau T .

The same action of di on tableaux is defined by using the content reading word
instead of the row reading word. To see this, recall that the row reading word of a
tableau is Knuth equivalent to the content reading word of the same tableau. Given
any w ∈ Sn, it follows from [16, Lemma 2.3] that for all 1 < i, j < n,

Q
(
Kj ◦ di(w)

) = Q
(
Kj(w)

) = Q
(
di ◦ Kj(w)

)
. (2.19)

Applying (2.18) and (2.19), yields

P
(
di ◦ Kj(w)

) = Q
((

di ◦ Kj(w)
)−1) = Q

(
Ki

((
Kj(w)

)−1))

= Q
(
Ki ◦ dj

(
w−1)) = Q

(
dj ◦ Ki

(
w−1))

= Q
(
dj

((
di(w)

)−1)) = Q
((

Kj ◦ di(w)
)−1) = P

(
Kj ◦ di(w)

)
.

In particular,

P
(
di ◦ Kj(w)

) = P
(
Kj ◦ di(w)

) = P
(
di(w)

)
. (2.20)

Thus, the fact that the row reading word and content reading word of a tableau are in
the same Knuth class implies that they determine the same action of di on a tableau.

By definition, di is an involution, and so we define a graph on standard Young
tableaux by letting each nontrivial orbit of di define an edge colored by i. By Theo-
rem 2.4, the graph on SYT(n) with edges labeled by 1 < i < n has connected compo-
nents with vertices in SYT(λ) for each λ � n. We may further label each vertex with
its signature to create a standard dual equivalence graph that we will denote Gλ (see
Fig. 5).

Definition 2.2 and Theorem 2.4 determine the connection between Schur functions
and dual equivalence graphs as highlighted in [3, Cor. 3.10]. Given any standard dual
equivalence graph Gλ = (V ,σ,E),

∑

v∈V

Fσ(v) = sλ. (2.21)

Here, Gλ is an example of the following broader class of graphs.

Definition 2.5 An edge colored graph consists of the following data:
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1. a finite vertex set V .
2. a collection Ei of unordered pairs of distinct vertices in V for each i ∈ {m + 1,

. . . , n − 1}, where m and n are positive integers.
A signed colored graph is an edge colored graph with the following additional data:
3. a signature function σ : V → {±1}N−1 for some positive integer N ≥ n.

We denote a signed colored graph by G = (V ,σ,Em+1 ∪ · · · ∪ En−1) or simply G =
(V ,σ,E). If a signed colored graph has m = 1, as described above, then it is said to
have type (n,N) and is termed an (n,N)-signed colored graph.

For our purposes, whenever V is a set of permutations or tableaux, it will be as-
sumed that σ is the signature function defined in Sect. 2.1. To be explicit, we will
sometimes refer to this definition of the signature function as given by inverse de-
scents.

Signed colored graphs of different types may often be related by restricting some
of the data. For example, if G is an (n,N)-signed colored graph, M ≤ N , and m ≤ n,
then the (m,M)-restriction of G is the result of excluding Ei for i ≥ m and projecting
each signature onto its first M − 1 coordinates. The (m,M)-component of a vertex v

of G is the connected component containing v in the (m,M)-restriction of G.
In order to describe which signed colored graphs have the same structure as a

standard dual equivalence graph, we first need to define isomorphisms.

Definition 2.6 A map φ : G → H between edge colored graphs G = (V ,Em+1 ∪· · ·∪
En−1) and H = (V ′,E′

m+1 ∪ · · · ∪E′
n−1) is called a morphism if it preserves i-edges.

That is, {v,w} ∈ Ei implies {φ(v),φ(w)} ∈ E′
i for all v,w ∈ V and all m < i < n.

A map φ : G → H between signed colored graphs G = (V ,σ,Em+1 ∪ · · · ∪ En−1)

and H = (V ′, σ ′,E′
m+1 ∪· · ·∪E′

n−1) is called a morphism if it is a morphism of edge
colored graphs that also preserves signatures. That is, σ ′(φ(v)) = σ(v).

In both cases, a morphism is an isomorphism if it admits an inverse morphism.

Though the term morphism is given two different definitions above, the specific
definition should be clear from the context.

The next proposition can be thought of as stating that standard dual equivalence
graphs are unique up to isomorphism and have trivial automorphism groups.

Proposition 2.7 ([3, Proposition 3.11]) If φ : Gλ → Gμ is an isomorphism of signed
colored graphs, then λ = μ, and φ is the identity morphism.

Notice that in a standard dual equivalence graph, a vertex v is included in an i-edge
if and only if σ(v)i−1 = −σ(v)i , motivating the following definition.

Definition 2.8 Let G = (V ,σ,E) be a signed colored graph. We say that w ∈ V

admits an i-neighbor if σ(w)i−1 = −σ(w)i .

Before moving on to an abstract generalization of the structure inherent in any
standard dual equivalence graph, recall that a complete matching is a simple graph
such that every vertex is contained in exactly one edge.
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Definition 2.9 A signed colored graph G = (V ,σ,Em+1 ∪ · · · ∪ En−1) is a dual
equivalence graph if the following axioms hold:

(ax1): For m < i < n, each Ei is a complete matching on the vertices of V that admit
an i-neighbor.

(ax2): If {v,w} ∈ Ei , then σ(v)i = −σ(w)i , σ(v)i−1 = −σ(w)i−1, and σ(v)h =
σ(w)h for all h < i − 2 and all h > i + 1.

(ax3): For {v,w} ∈ Ei , if σi−2 is defined, then v or w (or both) admits an (i − 1)-
neighbor, and if σi+1 is defined, then v or w (or both) admits an (i + 1)-
neighbor.

(ax4): For all m + 1 < i < n, any component of the edge colored graph (V ,Ei−2 ∪
Ei−1 ∪ Ei) is isomorphic to a component of the restriction of some Gλ =
(V ′, σ ′,E′) to (V ′,E′

i−2 ∪ E′
i−1 ∪ E′

i ), where Ei−2 is omitted if i = m + 2
(see Figs. 6 and 7).

(ax5): For all 1 < i, j < n such that |i − j | > 2, if {v,w} ∈ Ei and {w,x} ∈ Ej , then
there exists y ∈ V such that {v, y} ∈ Ej and {x, y} ∈ Ei .

(ax6): For all m<i <n, any two vertices of a connected component of (V ,σ,Em+1 ∪
· · · ∪ Ei) may be connected by some path crossing at most one Ei edge.

A dual equivalence graph that is also an (n,N)-signed colored graph is said to have
type (n,N) and is termed an (n,N)-dual equivalence graph.

Remark 2.10 The following are immediate consequences of Definition 2.9:

1. A connected component of a dual equivalence graph is also a dual equivalence
graph.

2. For any m ≤ n and M ≤ N , the (m,M) restriction of an (n,N)-dual equivalence
graph is an (m,M)-dual equivalence graph.

3. If a signed colored graph has type (n,n) or if m + 1 < i < n − 1, then Axiom 3
is implied by Axioms 1, 2, and 4 on components of two consecutive colors. In
the presence of Axioms 1 and 2, Axiom 3 can be restated in terms of signatures
as follows. For {v,w} ∈ Ei , if σ(v)i−2 = −σ(w)i−2, then σ(v)i−2 = −σ(v)i−1
whenever i > 2, and if σ(v)i+1 = −σ(w)i+1, then σ(v)i+1 = −σ(v)i whenever
σi+1 is defined. This is the original definition of Axiom 3 used in [3].

4. It is an instructional exercise to check that if Axioms 1, 2, and 6 are obeyed, then
Axiom 4 on two consecutive colors implies Axiom 4 on three consecutive colors.

5. A signed colored graph G = (V ,σ,Em+1 ∪ · · · ∪ En−1) satisfies Axioms 1, 2, 3,
and 4 if and only if for any m < i < n, each component of (V ,σ,Ei−2 ∪ Ei−1 ∪
Ei) is isomorphic to a component of the restriction of some Gλ = (V ′, σ ′,E′) to
(V ′, σ ′,E′

i−2 ∪ E′
i−1 ∪ E′

i ), where E′
i−2 or E′

i−1 is omitted if i ≤ m + 2 or i =
m + 1, respectively. While this fact could be used to shorten the axiomatization,
in practice it is often necessary to check Axioms 1, 2, 3, and 4 separately.

The next two theorems link the definition of dual equivalence graphs with that of
standard dual equivalence graphs.

Theorem 2.11 ([3, Theorem 3.5]) For any λ � n, Gλ is an (n,n)-dual equivalence
graph.
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The converse is also true.

Theorem 2.12 ([3, Theorem 3.9]) Every connected component of an (n,n)-dual
equivalence graph is isomorphic to a unique Gλ.

The key to proving Theorem 2.12 is building an appropriate morphism. Some of
the same techniques will prove useful in this paper, and so we lay them out now.

Definition 2.13 Fix any partitions λ ⊂ μ with |λ| = n and |μ| = N and a skew
tableau A of shape μ/λ with entries n + 1, . . . ,N . Define the set of standard Young
tableaux augmented by A, denoted ASYT(λ,A), as the set of T ∈ SYT(μ) such that
the restriction of T to μ/λ is A. Further, define a signed colored graph Gλ,A on
ASYT(λ,A) with signature given by inverse descents and edges given by the non-
trivial orbits of di for 1 < i < n.

Remark 2.14 The graph Gλ,A is isomorphic to an (n,N)-component of Gμ, and every
(n,N)-component of Gμ is isomorphic to some Gλ,A, as is clear from the definition
of Gλ,A. By Part 1 of Remark 2.10 and Theorem 2.11, Gλ,A is therefore a dual equiv-
alence graph with (n,n)-restriction isomorphic to Gλ. Applying Theorem 2.12, every
(n,N)-component of an (N,N)-dual equivalence graph is isomorphic to Gλ,A for
some λ � n and some A such that |A| = N − n.

With the notion of augmentation it is possible, in some sense, to reverse the process
of restriction.

Proposition 2.15 ([3, Lemma 3.13]) Let G = (V ,σ,E) be a connected (n,N)-dual
equivalence graph, and let φ be a morphism from the (n,n)-restriction of G to Gλ

for some partition λ of n. Then φ extends to an isomorphism φ̃ : G → Gλ,A, where
A is a skew tableau such that |λ| + |A| = N . Furthermore, the position of the cell
containing n + 1 in A is unique.

Because of the uniqueness statement in Proposition 2.15, we can unambiguously
refer to the unique extension of a connected (n,n + 1)-dual equivalence graph to
a connected (n + 1, n + 1)-dual equivalence graph. That is, if an (n,n + 1)-dual
equivalence graph is as in Proposition 2.15, then the unique extension is isomorphic
to Gμ, where μ is the union of λ and the cell of A containing (n + 1).

Definition 2.16 Let G be a signed colored graph of type (n + 1, n + 1). Two distinct
components of the (n,n + 1)-restriction of G that are connected by an n-edge in G
are said to be neighbors in G.

While not explicitly stated in [3], the following is an immediate consequence of
the proof of Theorem 2.12.

Corollary 2.17 ([3, Theorem 3.14]) Let G be a connected (n + 1, n + 1)-signed col-
ored graph satisfying Axioms 1–5 whose (n,n + 1)-restriction is a dual equivalence
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graph. Let C be any component of the (n,n + 1)-restriction of G, and let the unique
extension of C be isomorphic to Gμ. Then C ∪ (∪B) is isomorphic to the (n,n + 1)

restriction of Gμ, where the union is over all B that are neighbors of C in G. Further-
more, there exists a morphism φ : G → Gμ.

3 The structure of dual equivalence graphs

The main results of this section are the classification of graphs satisfying Axiom 1
that admit a morphism onto a dual equivalence graph in Theorems 3.13 and 3.14,
the improved axiomatization of dual equivalence graphs given in Theorem 3.17, and
the more specific criterion for satisfying the dual equivalence axioms given in Corol-
lary 3.20. In the process, a number of smaller results about the structure of dual
equivalence graphs are highlighted.

3.1 Symmetries of dual equivalence graphs

We begin by giving notation for a useful signed colored graph. Let Gn denote the
(n,n)-signed colored graph with vertices indexed by the permutations in Sn, signature
function given by inverse descents, and i-edges given by the nontrivial orbits of di

for each 1 < i < n.
The following lemma is a natural extension of [16, Lemma 2.3]. It lays out a fun-

damental relationship between the dual equivalence and Knuth equivalence maps de-
fined in (2.2) and (2.17).

Lemma 3.1 Given any w ∈ Sn and any 1 < i < n, 1 < j < n, we have Kj ◦ di(w) =
di ◦Kj(w) and σ(w) = σ(Kj (w)). In particular, Kj defines an automorphism of Gn.

Proof The fact that Kj preserves inverse descent sets follows from its definition
in (2.2). Thus, σ(w) = σ(Kj (w)). Now we prove that Kj commutes with di . Re-
call that the R–S–K correspondence provides a bijection that sends w ∈ Sn to a pair
of tableaux (P (w),Q(w)). Consider the effect that applying di and Kj to w has on
the pair (P (w),Q(w)). By (2.19) and (2.20),

(
P

(
di ◦ Kj(w)

)
,Q

(
di ◦ Kj(w)

)) = (
P

(
Kj ◦ di(w)

)
,Q

(
Kj ◦ di(w)

))
. (3.1)

Applying the inverse R–S–K correspondence to Sn yields Kj ◦ di(w) = di ◦ Kj(w),
as shown in Fig. 8.

To prove the last part of the lemma, notice that the above argument demonstrates
that Kj defines a morphism on Gn. Because Kj is its own inverse, the morphism must
be an isomorphism. �

Knuth equivalences, jeu de taquin, standard skew tableaux, and dual equivalence
graphs are all intimately related, as is demonstrated in the next theorem.

Theorem 3.2 The function P : Sn → SYT(n) induces a surjective morphism from Gn

to ∪λ�nGλ. This morphism restricts to an isomorphism from any given component of
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Gn to Gλ for some λ � n. In particular, if λ/ρ is a fixed skew shape and V is the set
of row reading words of skew tableaux in SYT(λ/ρ), then the restriction of Gn to V

is a dual equivalence graph.

Proof We begin by showing that P induces a morphism. As mentioned in Sect. 2.2,
each w ∈ Sn is in a Knuth class with the reading word of some T ∈ SYT(λ). Thus,
there is some sequence of fundamental Knuth equivalences, call it Kw , that takes
w to the row reading word of T . Recall from Sects. 2.1, 2.2, and 2.4 that P(w) =
P(Kw(w)) = T , di(P (Kw(w))) = P(di ◦ Kw(w)), and σ(P (w)) = σ(Kw(w)). By
Lemma 3.1, σ(Kw(w)) = σ(w), so P preserves signatures. Treating P(w) as a vertex
in Gλ = (V ,σ,E), P takes the vertices in some i-edge {w,di(w)} in Gn to

{
P(w),P

(
di(w)

)} = {
P

(
Kw(w)

)
,P

(
Kw ◦ di(w)

)}

= {
P

(
Kw(w)

)
,P

(
di ◦ Kw(w)

)}

= {
P

(
Kw(w)

)
, di

(
P

(
Kw(w)

))} ∈ Ei,

again by Lemma 3.1. Therefore, P induces a morphism from Gn to ∪Gλ. This
morphism is surjective because the R–S–K correspondence guarantees that every
T ∈ SYT(n) is the image of some w ∈ Sn under the action of P .

To prove the second statement in the theorem, it suffices to restrict the domain
to any component C in Gn and then explicitly create an inverse morphism from Gλ

to C. Because Q is constant on dual equivalence classes, Q evaluates to some fixed
tableau U on all of C. For any w ∈ C, P(w) = T if and only if the inverse R–S–K
correspondence sends (T ,U) to w. The desired inverse morphism is thus given by
sending the vertex T to the word corresponding to (T ,U) in the R–S–K correspon-
dence. This action takes P(w) to w and di(P (w)) = P(di(w)) to di(w), so it must
preserve edges. The same analysis as the previous paragraph demonstrates that this
action preserves signatures, so we have defined the desired inverse morphism.

For the last statement in the theorem, one can observe from the definition in (2.17)
that SYT(λ/ρ) is closed under dual equivalence for any fixed shape λ/ρ. Hence, re-
stricting Gn to the vertex set V is a restriction to a collection of connected components
of Gn. Thus, P takes each of these components to a standard dual equivalence graph,
completing the proof. �

In light of Theorem 3.2, it makes sense to extend the notation Gλ to the skew
case Gλ/ρ . That is, Gλ/ρ is the dual equivalence graph with vertices in SYT(λ/ρ),
edges given by nontrivial orbits of di , and signatures given by inverse descents. As
with standard dual equivalence graphs, the actions of di and σ are defined via the row
reading words of skew tableaux.

Remark 3.3 In the definition of Gλ/ρ , both σ and Ei are defined via row reading
words. Thus, Gλ/ρ is isomorphic to the signed colored graph induced by sending
each vertex to its row reading word. As with standard dual equivalence graphs, both
σ and Ei may be equivalently defined via content reading words. Thus, Gλ/ρ is also
isomorphic to the signed colored graph induced by sending each vertex to its content
reading word.
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Theorem 3.2 leads to a number of simple corollaries. The first is a well-known fact
(see [8, 24], or [25]), while the rest help to illuminate the structure of dual equivalence
graphs.

Corollary 3.4 (Littlewood–Richardson Rule) The skew Schur functions sν/λ are
Schur positive. Moreover, for all λ/ρ,

sλ/ρ =
∑

μ�|λ|−|ρ|
cλ
ρ,μsμ,

where cλ
ρ,μ = |{w ∈ SYam(μ) : w is the row reading word of a skew tableau in

SYT(λ/ρ)}|.

Proof By (2.21) and Theorem 3.2, we can interpret cλ
ρ,μ as the number of connected

components isomorphic to Gμ in Gλ/ρ . Applying Theorem 3.2, any component that is
isomorphic to Gμ has exactly one vertex vμ whose row reading word is mapped to Uμ

by P . Recall that SYam(μ) is defined to be the set of words w such that P(w) = Uμ.
Thus, cλ

ρ,μ = |{w ∈ SYam(μ) : w is the row reading word of a filling in SYT(λ/ρ)}|.
�

The next definition and corollary describe the effect of removing the signs and
edges with the lowest labels from a signed colored graph.

Definition 3.5 Fix some signed colored graph G = (V ,σ,Em+1 ∪ · · · ∪ En−1) and
positive integer h. Let H = (V ,σ ′,E′) be the signed colored graph defined by σ ′

i =
σi+h and E′

i = Ei+h whenever σi+h and Ei+h are defined in G, respectively. Then
H is termed the h-upward restriction of G. If h = 1, then H is termed the upward
restriction of G. The restriction of G to (V ,σ,Em+1 ∪ · · · ∪ En−2) is termed the
downward restriction of G.

Corollary 3.6 If G is a dual equivalence graph, then the h-upward restriction of G
is a dual equivalence graph.

Proof Without loss of generality, we may assume that G = (V ,σ,Em+1 ∪· · ·∪En−1)

is connected. Let H be the h-upward restriction of G. It follows immediately from
Definition 3.5 that H obeys Axioms 1, 2, 3, 4, and 5, so we need only demonstrate
Axiom 6. If h < m, then Definitions 2.9 and 3.5 guarantee that Axiom 6 holds for
G if and only if it holds for H. We may then restrict to the case where G has type
(n,n) by simply taking the (m − 1)-upward restriction. It thus suffices to consider
G = Gλ for some λ � n, by Theorem 2.12. Then H can be obtained by removing the
1 through h boxes from each vertex in Gλ and subtracting h from the values in all of
the remaining boxes, creating some dual equivalence graph ∪Gλ/ρ , where the union
is over all ρ contained in λ such that ρ � h. By Theorem 3.2, this union is a dual
equivalence graph. �

The upward and the downward restrictions of a dual equivalence graph are struc-
turally related, as is made precise in the following definition and corollary.
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Fig. 9 At left, a tableau and its color reversal. At right, Uλ for λ = (4,3,1,1) and its corresponding skew
tableau T ∈ SYT(μ/ρ)

Definition 3.7 Let G = (V ,σ,E), and let H = (V ,σ ′,E′) be signed colored graphs
such that

1. σ and σ ′ are maps onto {±1}N−1.
2. σi = σ ′

N−i for all 1 ≤ i < N .
3. Ei = E′

N+1−i whenever Ei or E′
N+1−i is defined.

Then H is termed the color reversal of G.

Corollary 3.8 Let G be an (n,n)-dual equivalence graph, and let H be the color
reversal of G. Then G is isomorphic to H.

Proof It suffices to only consider connected graphs. Applying Theorem 2.12 allows
us to further reduce to the case where G is an arbitrary Gλ. Let μ/ρ be the skew
shape given by rotating λ by 180◦, and let Gμ/ρ be the dual equivalence graph on
SYT(μ/ρ). The reader can check that Gμ/ρ is isomorphic to the color reversal of Gλ

by simply rotating any filling of λ and then reversing the order of the numbers in the
filling as in Fig. 9. In particular, Gμ/ρ is connected. To show that Gλ

∼= Gμ/ρ , recall
that Gμ/ρ is isomorphic to the signed colored graph induced by sending its vertices
to their row reading words with edges given by di and signature given by inverse
descents. Applying Theorem 3.2, Gμ/ρ

∼= Gλ if the row reading word of any vertex
v—and thus all vertices—in Gμ/ρ has sh(v) = λ.

Let T ∈ SYT(μ/ρ) be the skew tableau obtained by right justifying all of the rows
of Uλ and then top justifying all of the columns, as in the right side of Fig. 9. This
transformation from Uλ to T is achieved by jeu de taquin, which preserves the shape
of row reading words, as mentioned in Sect. 2.2. Therefore, the row reading word of
T has shape λ, completing the proof. �

Remark 3.9 Because color reversal acts as an isomorphism between dual equivalence
graphs, it induces an isomorphism between standard dual equivalence graphs. While
not proven here, it can be shown that this induced isomorphism acts on tableau via
the Schützenburger evacuation function as defined in [27, Sect. 3.20].
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3.2 Morphisms

In this section, we set out to describe various properties of morphisms between signed
colored graphs. We restrict our attention to graphs satisfying at least Axiom 1. For
this reason, we may abuse notation and treat each Ei as a function defined on those
vertices admitting an i-edge. That is, we write Ei(v) = w to mean that v is contained
in an i-edge with w �= v.

Lemma 3.10 Let G = (V ,σ,E) and H = (V ′, σ ′,E′) be nonempty signed colored
graphs satisfying Axiom 1. Also, suppose that there exists a morphism φ : G → H.
Then the following hold.

1. φ(Ei(v)) = w if and only if E′
i (φ(v)) = w.

2. If H is connected, then φ is surjective.
3. If φ is surjective and either G or H obey Axiom 2 or 3, they both do.
4. If φ is surjective and G obeys Axiom 4, 5, or 6, then H does as well.
5. If H is connected, then φ is an m to 1 map on vertices for some positive integer m.
6. If φ is a bijection from V to V ′, then φ is an isomorphism from G to H.

Proof We begin with Part 1 and continue in order. Morphisms preserve signatures,
so if either v or φ(v) does not admit an i-edge, then Axiom 1 implies that neither
is contained in an i-edge. Now suppose that {u,v} and {φ(v),w} are i-edges in G
and H, respectively. By Axiom 1, these are the only i-edges containing v and φ(v),
so by the definition of morphisms, φ(u) = w. That is, φ(Ei(v)) = E′

i (φ(v)). Thus,
Part 1 holds.

For Part 2, we apply Part 1. Choose any v ∈ G. All of the vertices connected to
φ(v) by an edge have a preimage in G by Part 1. Since H is connected, we may then
induct to reach any vertex in H by repeating this process.

Axioms 2 and 3 are concerned with the relationship between signatures and edges.
By the definition of a morphism, φ preserves signatures, and by Part 1, φ(Ei(v)) = w

if and only if E′
i (φ(v)) = w for each i where E′

i is defined. Hence, if either graph
obeys Axiom 2 or 3, they both do.

Proving Part 4 is a matter of repeatedly applying Part 1 to show that H inherits the
desired properties from G. As we will not need these properties for later results, we
leave the details to the reader.

For Part 5, let φ−1(x) be the set of vertices in G mapped to x by φ. If E′
i (x) = y,

then Part 1 and Axiom 1 imply that the vertices in φ−1(x) share an i-edge with
distinct vertices in φ−1(y) and vice versa. Hence, |φ−1(x)| = |φ−1(y)|. Because H
is connected, we may induct from x to any vertex in H to show that the fiber over
every vertex in H has the same cardinality. That is, φ is an m to one map on vertices.

Part 6 requires the existence of an inverse morphism, which follows from Part 1
and bijectivity. �

Remark 3.11 Let φ : G → H be as in Lemma 3.10 and suppose that H is connected.
Then in the language of algebraic graph theory, Part 1 implies that φ is a covering
map. Here we use the definition of a covering map on graphs—a surjective map
that sends vertices to vertices and induces a bijection between edges containing v
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and edges containing φ(v) for each vertex v in G—though the topological definition
of a covering map can be made to apply as well. In this context, Parts 5 and 6 of
Lemma 3.10 are well-known properties of covering maps. For more details, see [10,
Sect. 6.8].

Corollary 3.12 If φ is any morphism from a connected dual equivalence graph to a
connected signed colored graph satisfying Axiom 1, then φ is an isomorphism.

Proof By Part 6 of Lemma 3.10, we need only show that φ is bijective. By Parts 2
and 5 of Lemma 3.10, φ is a surjective m to one map, so it suffices to show that
m = 1. Taking restrictions if necessary, we may then assume that φ is a map between
connected signed colored graphs of type (n,n). Applying Theorem 2.12 allows us
to assume that the domain of φ is some Gλ. Now notice that in Gλ there is only one
vertex with the signature of Uλ, implying that m = 1. Thus, φ is a bijection. �

In light of (2.21) and Part 5 of Lemma 3.10, it is natural to look for signed colored
graphs that admit a morphism onto a union of standard dual equivalence graphs. The
next theorem describes a class of signed colored graphs that admit such a morphism
and gives a formula for their Schur expansion.

Theorem 3.13 Let G = (V ,σ,E) be an (n,n)-signed colored graph satisfying the
following properties:

1. G obeys Axiom 1.
2. The vertices in V are indexed by a subset of Sn.
3. The signature function σ is given by inverse descent sets of permutations.
4. Ei(v) is Knuth equivalent to di(v) for all 1 < i < n and all v ∈ V admitting an

i-edge.

Then P : V → SYT(n) induces a morphism φ : G → ⋃
λ�n Gλ. Furthermore,

∑

v∈V

Fσ(v) =
∑

λ�n

∣
∣
{
V ∩ SYam(λ)

}∣
∣ · sλ.

Proof To show that P induces a morphism on G, first notice that Theorem 3.2 im-
plies that σ(P (w)) = σ(w) for all w ∈ V , so φ preserves signatures. Now choose
any w ∈ V admitting an i-edge, and let Kw be a composition of fundamental Knuth
equivalences such that Ei(w) = Kw ◦di(w). Because P is constant on Knuth classes,
di(P (w)) = di(P (Kw(w))). By Lemma 3.1 and Theorem 3.2, di commutes with Kw

and P . Thus,

di

(
P

(
Kw(w)

)) = P
(
di ◦ Kw(w)

) = P
(
Kw ◦ di(w)

) = P
(
Ei(w)

)
.

Hence, φ preserves edges and signatures, satisfying the definition of a morphism.
To verify the second part of the theorem, we may restrict the domain to φ−1(Gλ).

Applying (2.21), we need only show that |{V ∩ SYam(λ)}| is equal to the value of the
index m of this restriction, as stated in Part 5 of Lemma 3.10. By definition, SYam(λ)
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is the set of words mapped to Uλ by P , so m = |SYam(λ) ∩ V |, completing the
proof. �

Theorem 3.13 is close to a complete description of morphisms from (n,n)-signed
colored graphs satisfying Axiom 1 onto dual equivalence graphs. This is made precise
in the following theorem.

Theorem 3.14 Let G be an nonempty (n,n)-signed colored graph satisfying Axiom 1
and admitting a morphism φ : G → Gλ. Then G is isomorphic to the (n,n)-restriction
of some H = (V ′, σ ′,E′) satisfying the following properties:

1. H obeys Axiom 1.
2. The vertices in V ′ are indexed by a subset of SN for some N ≥ n.
3. The signature function σ : V → {±1}N−1 is given by inverse descent sets of per-

mutations.
4. Ei(v

′) is Knuth equivalent to di(v
′) for all 1 < i < n and all v′ ∈ V ′ admitting an

i-edge.

Proof By Parts 2 and 5 of Lemma 3.10, φ is a surjective m to 1 map. Choose any
μ ⊃ λ such that |SYT(μ)| ≥ m. Here, N = |μ|. Let A be any skew tableau of shape
μ/λ with the values n + 1, . . . ,N . Let G̃ = (V ,σ,E) be the (n,N)-signed colored
graph with the same vertex and edge set as G and with σ(v) defined for all v ∈ V as
the signature of φ(v) augmented by A. It is clear that G is the (n,n)-restriction of G̃,
so we will construct H to be isomorphic to G̃.

We will define H by finding an appropriate relabeling of the vertices of G̃. By the
construction of G̃, we may extend φ to a morphism φ̃ : G̃ → Gλ,A. Because |SYT(μ)|
is greater than or equal to the index m of φ̃, there exists an injective map on the
vertices in V , sending each vertex v to (φ̃(v), Tv) for some tableau Tv of shape μ.
Since φ̃(v) and Tv are the same shape, the inverse R–S–K correspondence takes each
pair to a unique permutation in SN . Let f be the injective function taking vertices
of V to these permutations in SN . We claim that if H = (V ′, σ ′,E′) is the signed
colored graph induced by letting f relabel the vertices of G̃, then H satisfies all of
the desired properties in the statement of the theorem.

First, G̃ ∼= H because G̃ and H only differ by the labeling of their vertex sets.
In particular, H inherits Axiom 1 from G̃. Choose any v ∈ V and v′ ∈ V ′ such that
f (v) = v′. To see that σ ′ agrees with the signature given by inverse descents, notice
that φ̃(v) = P(v′) by the construction of f . By the definition of a morphism, φ̃ pre-
serves signature, and by Theorem 3.2, the signature of P(v′) is equal to the signature
of v′ given by inverse descents. Thus σ ′ is given by inverse descents. Lastly, we show
that if {v,w} is an i-edge in G̃, then di(v

′) is in the Knuth class of E′
i (v

′) = f (w).
Applying Part 1 of Lemma 3.10 and Theorem 3.2 gives

P
(
f (w)

) = φ̃(w) = di

(
φ̃
(
v′)) = di

(
P

(
v′)) = P

(
di

(
v′)),

and so f (w) is in the Knuth class of di(v
′). �

Remark 3.15 Theorems 3.13 and 3.14 can both be extended to statements about
(n,N)-signed colored graphs with morphisms to augmented dual equivalence graphs.
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3.3 Local conditions for Axiom 6

Out of the six dual equivalence axioms, Axiom 6 is the only one that cannot be
checked by testing local criteria. In this section we will show that an equivalent ax-
iomatization is given by strengthening Axiom 4 and omitting Axiom 6.

Definition 3.16 A signed colored graph G = (V ,σ,Em+1 ∪ · · · ∪ En−1) is said to
obey Axiom 4+ if for all m + 1 < i < n, any component of the edge colored graph
(V ,Ei−3 ∪Ei−2 ∪Ei−1 ∪Ei) is isomorphic to a component of the restriction of some
Gλ = (V ′, σ ′,E′) to (V ′,E′

i−3 ∪ E′
i−2 ∪ E′

i−1 ∪ E′
i ), where Ei−3, Ei−2 is omitted if

i ≤ m + 3 or i = m + 2, respectively.

We now state the main result of this section. The proof is postponed until after a
necessary lemma.

Theorem 3.17 A signed colored graph satisfies Axioms 1, 2, 3, 4+, and 5 if and only
if it is a dual equivalence graph.

Remark 3.18

1. We may readily classify the set of edge colored graphs described in Defini-
tion 3.16, i.e., the set of edge colored graphs that arise as components of the re-
striction of some Gλ = (V ,σ,E) to (V ,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei) for all choices
1 < i < |λ|. Applying Corollary 3.6, each such edge colored graph is the result of
choosing an appropriate λ � 6, restricting Gλ = (V ′, σ ′,E′) to the edge colored
graph (V ′,E′), and adding a fixed nonnegative integer to each edge label.

2. A signed colored graph G = (V ,σ,Em+1 ∪ · · · ∪ En−1) satisfies Axioms 1, 2,
3, and 4+ if and only if, for any m < i < n, each component of (V ,σ,Ei−3 ∪
Ei−2 ∪ Ei−1 ∪ Ei) is isomorphic to a component of the restriction of some Gλ =
(V ′, σ ′,E′) to (V ′, σ ′,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei), where Ei−3,Ei−2, or Ei−1 is
omitted if i ≤ m + 3, i ≤ m + 2 or i = m + 1, respectively.

Lemma 3.19 Let G be a connected (n + 1, n + 1)-signed colored graph satisfying
Axioms 1, 2, 3, 4, and 5 whose downward restriction and upward restriction are both
dual equivalence graphs. Let C be any component of the downward restriction of G.
Additionally, suppose that for every pair of distinct (n,n + 1)-components A and B
that are neighbors of C in G, there exists a component of the upward restriction of G
whose vertex set intersects A nontrivially and intersects B nontrivially. Then G is a
dual equivalence graph.

Proof Consider any such A and B whose vertices are nontrivially intersected by
some component D of the upward restriction of G. Because D obeys Axiom 6, there
exists a path in G from a vertex in A to a vertex in B crossing a single n-edge, which
would be labeled as an (n − 1)-edge in D. Hence, A and B are neighbors in G.
Because A and B were chosen arbitrarily, all neighbors of C are pairwise neighbors
of each other in G.
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Next we show that every pair of vertices in G can be connected by a path contain-
ing at most one n-edge. By Corollary 2.17, every (n,n + 1)-component of G has the
same number of neighbors in G. Thus, if B is any neighbor of C in G, each neigh-
bor of B is either C or a neighbor of C in G. That is, C ∪ (∪B) contains all of the
vertices of G, where the union is over all B that neighbor C in G. Thus, all (n,n + 1)-
components of G are pairwise neighbors. In particular, any two vertices in G can be
connected by a path crossing at most one n-edge.

This property of paths in G, along with the hypothesis that the (n,n+1)-restriction
of G is a dual equivalence graph, guarantees that G satisfies Axiom 6. By assumption,
G also satisfies Axioms 1, 2, 3, 4, and 5, so G is a dual equivalence graph. �

Proof of Theorem 3.17 We begin with the forward implication by showing that any
signed colored graph satisfying Axioms 1, 2, 3, 4+, and 5 must also satisfy Axiom 6.
Because Axiom 6 is concerned with edge sets, it suffices to only consider signed
colored graphs of type (n,N), as in the proof of Corollary 3.6. We now proceed by
induction on n. Axiom 4+, when considered with Axioms 1, 2, and 3, implies that
the theorem holds for (n,N)-signed colored graphs with n ≤ 6. Now suppose that
the result holds for all (n,N)-signed colored graphs, and consider any (n+ 1, n+ 1)-
signed colored graph obeying Axioms 1, 2, 3, 4+, and 5. Call this graph G.

Choose any component C of the downward restriction of G. We will show that G
and C satisfy the hypotheses of Lemma 3.19. By assumption, G satisfies Axioms 1–5,
and by induction, the upward and downward restrictions of G are dual equivalence
graphs. It then remains to be shown that if A and B are any distinct neighbors of C
in G, then there exists a component D of the upward restriction of G that intersects
the vertices of A and B nontrivially.

Next, we label the vertices in G by tableaux. By Theorem 2.12, C is isomorphic
to some Gλ, and by Proposition 2.15, there is some Gμ isomorphic to the unique ex-
tension of C. Furthermore, Corollary 2.17 guarantees the existence of a morphism
from G to Gμ. Label the vertices of G, as well as the vertices of the downward restric-
tions of G, by the set of tableaux in SYT(μ) as given by the image of this morphism.
By Corollary 3.12, this morphism restricts to an isomorphism from any given compo-
nent of the downward restriction of G to some component of the downward restriction
of Gμ.

We may now associate the isomorphism types of A, B, and C to the position of
the cell containing n + 1 in fillings of μ, as in Fig. 10. It follows from Theorem 2.4
that the number of (n,n + 1)-components in Gμ is equal to the number of Northeast
corners of μ, with the isomorphism type of each (n,n+1)-component determined by
which Northeast corner is filled by n + 1. By Corollary 2.17, A can be described as
the unique neighbor of C whose tableaux have n + 1 in a particular Northeast corner
of μ. Since A, B, and C have distinct isomorphism types, they each have different
Northeast corners c1, c2, and c3, respectively, filled by n + 1.

To apply Lemma 3.19, it suffices to show that there is a tableau T ∈ SYT(μ)

from which n + 1 may be moved into each of these three Northeast corners while
staying in the vertex set of a component of the upper restriction, i.e., without crossing
a 2-edge. It is possible to use jeu de taquin to describe which cells n + 1 may be
moved to without crossing a 2-edge. Let S ∈ SYT(μ) be some vertex of Gμ. As in
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Fig. 10 The (4,4)-components of G(3,2) , at left, are represented via the cells containing 5, at right. Sig-
natures are omitted
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8 9

4 5 6
2 3 7

Jeu de Taquin

10

8 9

4 5
2 3 6 7

11

8 9 10

4 5 6
2 3 7

Jeu de Taquin

11

8 9

4 5 10

2 3 6 7

Fig. 11 On top, a filling chosen to lose the corner containing 6 to jeu de taquin. On bottom, a filling of a
nonstaircase shape that does not lose any Northeast corners to jeu de taquin

the proof of Corollary 3.6, the set of vertices in the same component of the upward
restriction of Gμ as S is described by the component of S after omitting the 1-cell
(for notational simplicity, we choose not to relabel the boxes). We may then perform
jeu de taquin to retrieve some unique tableau J (S) such that sh(J (S)) is a straight
shape. Any sequence of jeu de taquin slides acts on the row reading words of a filling
by a sequence of fundamental Knuth equivalences and so commutes with the action
of di by Lemma 3.1. Theorem 2.4 guarantees that n + 1 may then be moved to any
Northeast corner of sh(J (S)). In particular, if c is some Northeast corner of μ, x is
the value assigned to c by S, and x is also in a Northeast corner of J (S), then there
is a path in Gμ with no 2-edges that connects S to a tableau with the value n + 1 in c.
Therefore, to apply Lemma 3.19, we need only find T ∈ SYT(μ) such that the values
in c1, c2, and c3 are in Northeast corners of J (T ).

Having reduced the problem to a matter of jeu de taquin, we now consider two
cases. First, suppose that μ has at least four Northeast corners. Given c1, c2, and c3,
we are free to lose some fourth corner c4. By filling all boxes weakly southwest of
c4 with as low of values as possible, the fourth corner will always be moved, leaving
the three given corners unchanged, as in the left half of Fig. 11.

As a second case, suppose that μ is not a staircase shape, i.e., μ is not of shape
(μ1,μ1 − 1, . . . ,2,1). Then we claim that there exists some T ∈ SYT(μ) such that
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every value in a Northeast corner of T is in a Northeast corner of J (T ). Notice that
μ must contain some rectangle whose Northeast corner is not a Northeast corner of
μ but is either the most east cell in its row or the most north cell in its column. It is
easy to check that any filling of μ such that all values inside of the rectangle are less
than all values outside of the rectangle will suffice. See the right half of Fig. 11 for
an example.

We have shown that G is a dual equivalence graph if μ is not a staircase or has at
least four Northeast corners. There are only three staircase shapes that have strictly
less than four Northeast corners, all of which have size less than or equal to 6. All
shapes with size less than or equal to 6 are contained in the base case, so G is a dual
equivalence graph.

Assuming our inductive hypotheses, we have demonstrated that any (n+1, n+1)-
signed colored graph that satisfies Axioms 1, 2, 3, 4+, and 5 also satisfies Axiom 6.
An (n + 1,N)-signed colored graph obeys Axiom 6 if and only if its (n + 1, n + 1)-
restriction obeys Axiom 6, completing the inductive step. Hence, any signed colored
graph obeying Axioms 1, 2, 3, 4+, and 5 is a dual equivalence graph.

The reverse implication follows more quickly. If G = (V ,σ,E) is a dual equiva-
lence graph, then we need only show that G obeys Axiom 4+. As in Part 1 of Re-
mark 3.18, we may assume that G has type (n,n). By Theorem 2.12, G is isomorphic
to some Gλ, so Axiom 4+ follows immediately. Hence, every dual equivalence graph
satisfies Axioms 1, 2, 3, 4+, and 5, completing the proof. �

We have actually proven a slightly stronger—and sometimes easier to check—
condition. In the previous proof, Axiom 4+ was only invoked when considering the
staircase with six cells, while the usual Axiom 4 could have been used for the stair-
case with three cells. If we assume Axioms 1, 2, 3, 4, and 5, then the staircase with
six cells can only break Axiom 6 in a specific set of graphs. The (5,6)-components
of G(3,2,1) have three distinct isomorphism types. By Corollary 2.17, each of these
components is connected to two neighboring components. If Axiom 6 is not satisfied,
then Lemma 3.19 implies that these two components cannot be neighbors of each
other. Rather, the (5,6)-components must form a loop. The smallest example is pre-
sented in Fig. 12. In the figure, there are two copies of each (5,6)-component. For
each positive integer m ≥ 2, there is then a unique graph with m isomorphic copies
of each (5,6)-components, as in Fig. 13. We may then omit signatures and relabel
edges with elements in {i − 3, i − 2, i − 1, i}, as mentioned in Remark 3.18 for a full
description of how Axiom 4+ can break in the presence of Axioms 1, 2, 3, 4, and 5.

Let F be the set of edge colored graphs with edge sets Ei−3 ∪ · · · ∪ Ei that satisfy
Axioms 1, 2, 3, 4, and 5 but not Axiom 6. The following corollary reformulates
Theorem 3.17 in terms of F .

Corollary 3.20 Let G = (V ,σ,Em+1 ∪ · · · ∪ En−1) be a signed colored graph
satisfying Axioms 1, 2, 3, 4, and 5. Then G is a dual equivalence graph if and
only if for all m + 4 < i < n, the restriction of G to the edge colored graph
(V ,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei) has no components isomorphic to an element of F .

Remark 3.21 For any edge colored graph in F , every vertex shares an edge with at
least two other vertices. We may then give yet another characterization of dual equiv-
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alence graphs. Let G = (V ,σ,Em+1 ∪ · · · ∪En−1) be a signed colored graph obeying
Axioms 1, 2, 3, 4, and 5. Choose C to be any component of the restriction of G to the
edge colored graph (V ,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei) such that m + 3 < i < n and the
vertices of C all have at least two adjacent vertices in C. Then G is a dual equivalence
graph if and only if C is not in F for any choice of C. This characterization of dual
equivalence graphs is used in the computer verification of Theorem 4.11.

4 LLT and Macdonald polynomials

In this section we show that a family of LLT polynomials can be generated as a sum
over vertices of a dual equivalence graph, and we provide a simple Schur expansion
for polynomials in this family. Along the way, we recall Assaf’s set of signed colored
graphs associated to LLT polynomials and classify which ones are dual equivalence
graphs.

4.1 The Schur expansion of Gν(X;q) when diam(ν) ≤ 3

Recall the notation and vocabulary introduced in Sect. 2.3 on LLT polynomials and
Macdonald polynomials. To state the main theorem of this section, we will also need
the following definition.

Definition 4.1 Given a k-tuple of skew shapes ν, let S(ν) be the set of distinct shifted
contents of the cells in ν. Define the diameter of ν, denoted diam(ν), as

diam(ν) := max
{|R| : R ⊂ S(ν) and |x − y| ≤ k for all x, y ∈ R

}
.

See Fig. 14 for an example.

Remark 4.2 If ν = (ν(0), . . . , ν(k−1)) is a tuple of skew shapes, it follows from Defi-
nition 4.1 that diam(ν) ≤ k + 1. There are many examples where this bound is sharp.
For instance, if ν is a k-tuple of straight shapes where ν(0) has as least two columns
and |ν(i)| ≥ 1 for all 1 ≤ i ≤ k −1, then diam(ν) = k +1. In Fig. 14, ν3 is an example
of such a tuple.

ν1 =
⎛

⎜
⎝

,

⎞

⎟
⎠ ν2 =

⎛

⎜
⎝

, ,

⎞

⎟
⎠

ν3 =
⎛

⎜
⎝

, ,

⎞

⎟
⎠

Fig. 14 The tuples ν1 and ν2 have diameter 3. The tuple ν3 has diameter 4
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To further ease the presentation of the following results, we define two sets,

T(ν, λ) := {
T ∈ SYT(ν): the shifted content word of T is in SYam(λ)

}
, (4.1)

T (μ/ρ,λ) := {
T ∈ SYT(μ/ρ): the content reading word of T is in SYam(λ)

}
.

(4.2)

We are now able to present the main theorem of this section.

Theorem 4.3 Let ν be any k-tuple of skew shapes with diam(ν) ≤ 3. Then

Gν(X;q) =
∑

λ�|ν|

∑

T∈T(ν,λ)

q invk(T)sλ.

The proof of Theorem 4.3 is postponed until Sect. 4.2. As mentioned in Re-
mark 4.2, the set of ν such that diam(ν) ≤ 3 properly contains the set of ν that are
2-tuples.

The next corollary follows immediately by applying Theorem 4.3 to the definition
of modified Macdonald polynomials in (2.15). We also use the fact that tuples of
ribbons in TR(μ/ρ) have diameter less than or equal to three if and only if μ/ρ does
not contain (3,3) or (4) as a subdiagram. This fact is easily shown by noticing that
the cells of every tuple of ribbons in TR(μ/ρ) have the same set of distinct shifted
contents.

Corollary 4.4 Let μ/ρ be a skew shape not containing (3,3) or (4) as a subdiagram.
Then

H̃μ/ρ(X;q, t) =
∑

λ�|μ/ρ|

∑

T ∈T (μ/ρ,λ)

q inv(T )tmaj(T )sλ.

In particular, Corollary 4.4 applies to all H̃μ(X;q, t) with μ1 ≤ 3 where μ2 ≤ 2.

Remark 4.5 The conditions on ν and μ/ρ in Theorem 4.3 and Corollary 4.4, re-
spectively, are sharp in the following sense. Let λ = (2,2) and ν = ((2), (1), (1)) or
((1), (1), (1), (1)). In particular, diam(ν) = 4, and ν has the diagram

(
, ,

)
or

(
, , ,

)
.

Then

Gν(X;q)|q2sλ
= 1 and

∑

T∈T(ν,λ)

q invk(T )sλ|q2sλ
= 0. (4.3)

If λ = (2,2) and μ = (4), then

H̃μ(X;q, t)|q2sρ
= 1 and

∑

T ∈T (μ,λ)

q inv(T )tmaj(T )sλ|q2sλ
= 0. (4.4)

If λ = (4,2) and μ = (3,3), then

H̃μ(X;q, t)|q2sρ
= 1 and

∑

T ∈T (μ,λ)

q inv(T )tmaj(T )sλ|q2sλ
= 0. (4.5)
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Corollary 4.6 Let μ/ρ be a skew shape not containing (2,2,2) or (1,1,1,1) as a
subdiagram. Then

H̃μ/ρ(X;q, t) =
∑

λ�|μ/ρ|

∑

T ∈T (μ̃/ρ̃,λ)

qmaj(T )t inv(T )sλ.

Proof The corollary follows from (2.16) and Corollary 4.4. �

In particular, Corollary 4.6 applies to all H̃μ(X;q, t) where μ has at most three
rows and μ3 ≤ 1.

4.2 LLT graphs

The goal of this section is to prove Theorem 4.3. We begin by following [3] in defin-
ing an involution that will provide the edge sets of a signed colored graph. In this
section, ν will always denote a k-tuple of skew shapes whose sizes sum to |ν| = n.
Also, w will always denote a permutation in Sn.

Let the involution d̃i : Sn → Sn act by permuting the entries i − 1, i, and i + 1 as
defined by

d̃i (. . . i − 1 . . . i . . . i + 1 . . .) = (. . . i − 1 . . . i . . . i + 1 . . .),

d̃i(. . . i + 1 . . . i . . . i − 1 . . .) = (. . . i + 1 . . . i . . . i − 1 . . .),

d̃i(. . . i . . . i − 1 . . . i + 1 . . .) = (. . . i − 1 . . . i + 1 . . . i . . .),

d̃i(. . . i . . . i + 1 . . . i − 1 . . .) = (. . . i + 1 . . . i − 1 . . . i . . .).

(4.6)

For instance, d̃3 ◦ d̃2(4123) = d̃3(4123) = 3142.
To decide when to apply di and when to use d̃i , we appeal to the shifted content.

Numbering the cells of a fixed ν from 1 to n in shifted content reading order, let c̃i be
the shifted content of the ith cell. Define the weakly increasing word τ = τ1τ2 · · · τn

by

τi = max
{
j ∈ [n]: c̃j − c̃i ≤ k

}
. (4.7)

See Fig. 15 for an example. To emphasize the relationship between τ and ν, we will
sometimes write τ = τ(ν). Notice that there are finitely many possible τ of any fixed
length n. Specifically, τ will always satisfy τn = n and i ≤ τi ≤ τi+1 for all i < n. In
fact, the number of possible τ is the nth Catalan number (for details on the Catalan
numbers and an extensive list on where they arise in mathematics, see [26]). Next, let
m(i) be the index of the value in {i − 1, i, i + 1} that occurs first in w, and let M(i)

be the index of the value in {i − 1, i, i + 1} that occurs last in w. We now define the
desired involution,
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Fig. 15 On the left, the shifted contents of a pair of skew diagrams with τ = 456667899. On the right,
a standard filling of the same tuple with shifted content word 534826179
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Fig. 16 A portion of Lν with signatures omitted. Here ν = ((2), (2), (1), (1))

D
(τ)
i (w) :=

{
di(w), τm(i) < M(i),

d̃i(w), τm(i) ≥ M(i).
(4.8)

As an example, we may take τ = 456667899 and w = 534826179, as in Fig. 15.
Then D

(τ)
3 (w) = d̃3(w) = 542836179 and D

(τ)
5 (w) = d5(w) = 634825179.

We may generalize Gn by defining G(τ )
n as the (n,n)-signed colored graph with

vertex set indexed by Sn, signature function given by inverse descents, and each edge
set Ei given by the nontrivial orbits of D

(τ)
i . Direct inspection shows that if τ = τ(ν),

then D
(τ)
i takes shifted content words of standard fillings of ν to shifted content words

of other standard fillings of ν. Thus, D
(τ)
i has a well-defined action on SYT(ν) in-

herited from the action of D
(τ)
i on shifted content words. We may then define the

following subgraph of G(τ )
n .

Definition 4.7 Given some tuple of skew shapes ν, the LLT graph Lν = (V ,σ,E) is
defined to be the (n,n)-signed colored graph with the following data:

1. V = {w ∈ Sn : w is the shifted content word of some T ∈ SYT(ν)}.
2. The signature function σ is given by the inverse descent sets of w ∈ V .
3. The edge sets Ei are defined by the nontrivial orbits of D

(τ)
i for all 1 < i < |ν|,

where τ = τ(ν).

Example 4.8 Consider ν = ((2), (2), (1), (1)). A portion of the LLT graph Lν is pre-
sented in Fig. 16. Here, Lν is a subgraph of G(τ )

6 with τ = 566666. The entire con-
nected component of the vertices in Fig. 16 has 47 vertices. In the figure, the edge
{312654,412653} is defined by the action of d3 and d4, while all other edges are
defined by the action of d̃i for 1 < i < 6.
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Remark 4.9

1. If ν = (λ/ρ) is a 1-tuple, then each T ∈ SYT(ν) corresponds to a unique T ∈
SYT(λ/ρ) in the obvious fashion. In particular, the shifted content word of T is
equal to the content reading word of T . By Remark 3.3, Gλ/ρ

∼= Lν . In the case of
straight shapes, ν = (λ), Theorem 3.2 implies that P : Sn → SYT(n) induces an
isomorphism from Lν to Gλ.

2. Given some w in the vertex set of Lν , we may readily describe the component of
w in a restriction of Lν . Let w be the shifted content word of T ∈ SYT(ν), and
let C be the (m,m)-component of w in Lν . The isomorphism type of C can be
found by removing the cells of T containing values in {m + 1, . . . , n}, creating
some T′ ∈ SYT(ν′) with shifted content word w′. Then C is isomorphic to the
component of w′ in Lν′ .

Similarly, if C is the component of w in the h-upward restriction of Lν , then
the isomorphism type of C can be found by removing the cells of T containing
values in {1, . . . , h} and subtracting h from each of the remaining cells, creating
some T′ ∈ SYT(ν′) with shifted content word w′. Then C is isomorphic to the
component of w′ in Lν′ .

In both cases above, ν′ is a tuple of skew shapes, so restrictions take compo-
nents of LLT graphs to components of other LLT graphs. Furthermore, diam(ν′) ≤
diam(ν) since ν′ is obtained by removing cells from ν.

While LLT graphs do not necessarily satisfy Axiom 4 or Axiom 6, as can be seen
in Example 4.8, they do satisfy a subset of the dual equivalence axioms. This is made
precise in the following proposition and theorem.

Proposition 4.10 ([3, Prop. 4.6]) Any LLT graph Lν obeys Axioms 1, 2, 3, and 5.
Furthermore, the invν statistic is constant on each connected component of Lν .

With Proposition 4.10 in mind, it is natural to try to classify which LLT graphs
satisfy all of the dual equivalence axioms. This classification is accomplished in the
following theorem.

Theorem 4.11 The LLT graph Lν is a dual equivalence graph if and only if
diam(ν) ≤ 3.

Proof First suppose that diam(ν) ≤ 3. By Proposition 4.10, Lν obeys Axioms 1, 2,
3, and 5. By Theorem 3.17, we need only show that Lν satisfies Axiom 4+ to prove
that Lν is a dual equivalence graph.

We begin by showing that Lν obeys Axiom 4. Applying the same logic as Part 1
of Remark 3.18, we may use restrictions to only consider signed colored graphs of
type (5,5). By Part 2 of Remark 4.9, each connected component of any such re-
striction is a component of Lμ for some μ with diam(μ) ≤ 3. We may then reduce

to the case where |ν| = 5 and diam(ν) ≤ 3. It thus suffices to consider G(τ )
5 for all

τ = τ(ν) with ν satisfying these properties, in which case, it can be checked explic-
itly that all components of G(τ )

5 that are contained in some Lν with diam(ν) ≤ 3
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are dual equivalence graphs. This fact is verified via computer at Springer site
(Electronic supplementary material), cited as [23].

To demonstrate Axiom 4+, we may similarly inspect G(τ )
6 for all τ that are derived

from ν with |ν| = 6 and diam(ν) ≤ 3. It is possible to explicitly check that Lν is a
dual equivalence graph by showing that the components of G(τ )

6 that satisfy Axiom 4
also satisfy the hypotheses of Corollary 3.20. This fact is also verified via computer
at [23]. Thus, Lν is a dual equivalence graph whenever diam(ν) ≤ 3.

Now suppose that diam(ν) ≥ 4. By the definition of diameter, there exist four
cells of ν whose shifted contents are distinct and differ by at most k. If we label
these four cells c1, c2, c3, and c4 in shifted content reading order, then c1, c2, and c3

must occur in different skew tableaux of ν. Similarly, c2, c3, and c4 occur in different
skew tableaux of ν. There is then some value of i and some standard filling of ν with
values i, i−1, i+2, i+1 or i+1, i+2, i−1, i in c1, c2, c3, and c4, respectively. Call
the shifted content word of this standard filling w. Direct computation shows that w

and D
(τ)
i (w) = d̃i (w) are contained in distinct (i + 1)-edges. That is, the restriction

of Lν to the edge colored graph (V ,Ei ∪ Ei+1) contains a component with at least
three distinct edges. Therefore, Lν violates Axiom 4 and is not a dual equivalence
graph. �

Remark 4.12 By applying [2, Prop. 5.3], it can be proven that Lν is a dual equivalence
graph whenever ν is a pair of ribbons. Both the previous theorem and the following
lemma can be viewed as extensions of this fact.

While the previous theorem describes which LLT graphs are dual equivalence
graphs, there are other cases in which only specific components of an LLT graph
are dual equivalence graphs. Sometimes, we may even give an explicit isomor-
phism from a component of an LLT graph to a standard dual equivalence graph.
The next three results describe cases where such an explicit isomorphism ex-
ists.

Lemma 4.13 Let C = (V ,σ,E) be a component of G(τ )
n such that D

(τ)
i never acts on

w ∈ V nontrivially via d̃i unless i − 1, i, and i + 1 have adjacent indices in w. Then
C is a dual equivalence graph, and P : V → SYT(n) induces an isomorphism from C
to some standard dual equivalence graph Gλ.

Proof By Proposition 4.10, C satisfies Axioms 1, 2, 3, and 5. By Theorem 3.17, we
need only demonstrate that C satisfies Axiom 4+ to show that C is a dual equivalence
graph. As in the proof of Theorem 4.11, we may reduce to the case where C has
type (6,6). The requirement on the action of D

(τ)
i allows us to further reduce to the

case where τ satisfies τi ≤ i + 2 for all 1 ≤ i ≤ n. In order to show that C is a dual
equivalence graph, it is thus sufficient to check that G(τ )

6 is a dual equivalence graph
for all τ of length 6 with τi ≤ i + 2. This fact is verified via computer at [23].

To demonstrate that P induces a morphism, we show that C satisfies the hypothe-
ses of Theorem 3.13. That is, we need to show that Ei(w) is in the Knuth class of
di(w) for all w ∈ V and all 1 < i < n. When D

(τ)
i acts via di , this edge requirement

http://dx.doi.org/10.1007/s10801-013-0452-y
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is clearly satisfied. Now notice that if D
(τ)
i acts via d̃i , then the restriction on in-

dices implies that d̃i = Kj ◦ di for some j . Hence, Ei(w) is in the same Knuth class
as di(w). Thus, P induces a morphism between connected dual equivalence graphs.
This morphism must be an isomorphism by Corollary 3.12. �

Lemma 4.13 may be readily applied to LLT graphs because every LLT graph is a
subgraph of some G(τ )

n . While this lemma does give a particularly nice isomorphism,
it does not apply in the more general case of LLT graphs indexed by tuples of shapes
with diameter at most 3, as in Theorem 4.3. Instead, we will first need to identify
specific components of LLT graphs satisfying the hypotheses of Lemma 4.13.

Lemma 4.14 Let ν be a tuple of skew shapes such that |ν| = n and diam(ν) ≤ 3. Let
C = (V ,σ,E) be a connected component of Lν , let τ = τ(ν), and let v be any vertex
in C. If sh(v) has strictly less than three rows, then D

(τ)
i never acts on any vertex

w ∈ V nontrivially via d̃i unless i − 1, i, and i + 1 have adjacent indices in w.

Proof Let v be the shifted content word of T = (T (0), . . . , T (k−1)) ∈ SYT(ν). We
claim that it is enough to show that D

(τ)
i never acts on v nontrivially via d̃i unless

i − 1, i, and i + 1 have adjacent indices in v. In this case, D
(τ)
i acts on v as the

identity, di , or Kj ◦ di for some j , as was mentioned in the proof of Lemma 4.13.

Thus sh(D
(τ)
i (v)) = sh(v). In particular, D

(τ)
i (v) satisfies the same hypotheses as v,

and, recursively, so does every vertex of C.
We may recharacterize the condition that sh(v) has strictly less than three rows

in terms of the values in v. If P(v) has strictly less than three rows, then v has no
decreasing subword of length 3, as noted in Sect. 2.2. Suppose that D

(τ)
i (v) = d̃i (v) �=

v for some fixed choice of i, and let a, b, and c be the values i − 1, i, and i + 1 given
in the order they appear in v. Because D

(τ)
i acts nontrivially on v, either a > b or

b > c. Hence, there cannot be any value strictly greater than i + 1 that occurs before
a in v or any value strictly less than i − 1 that occurs after c in v.

We can now show that a, b, and c occur consecutively in v by considering shifted
contents. Let c̃(x) denote the shifted content of the cell of T containing the value x.
Suppose that there is a value x that appears after a in v with c̃(a) = c̃(x). That is,
x occurs above a on the same diagonal of some skew tableau T (j) of T. Then there is
a value y that occurs directly north of a and directly west of x in T (j). It follows that
y > i + 1 ≥ a, and y occurs before a in v, a contradiction. Similarly, there cannot be
a value x that occurs before c in v with c̃(c) = c̃(x). In particular, c̃(a) < c̃(b) < c̃(c).

Because diam(ν) ≤ 3, the cells of ν can occupy at most one shifted content strictly
between c̃(a) and c̃(c), so it suffices to show that there is exactly one cell in ν with
shifted content c̃(b). Otherwise, there must be a cell on the same diagonal as b in
some skew tableau of T. There is then a value z in a cell either directly north of b or
directly south of b with c̃(z) = c̃(b) − k or c̃(z) = c̃(b) + k, respectively. Also, z > b

or z < b, respectively. Because D
(τ)
i (v) = d̃i (v) �= v, c̃(c) − c̃(a) ≤ k. Using the fact

that c̃(a) < c̃(b) < c̃(c), it follows that c̃(b) − k < c̃(a) and c̃(c) − c̃(b) < k. Thus,
z is greater than i + 1 and occurs before a in v, or z is less than i − 1 and occurs after
c in v, forcing a contradiction. Therefore, a, b, and c occur consecutively in v. �
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Corollary 4.15 Let ν be a tuple of skew shapes such that |ν| = n and diam(ν) ≤ 3.
Let C = (V ,σ,E) be a connected component of Lν , and let w be any vertex in C.
If λ = sh(w) has strictly less than three rows, then P : V → SYT(n) induces an
isomorphism from C to the standard dual equivalence graph Gλ.

Proof The corollary follows immediately from Lemmas 4.13 and 4.14. �

We now change our focus from finding isomorphism types to finding a set of
vertices to represent the components of an LLT graph. The following lemma is crucial
to the proof of Theorem 4.3.

Lemma 4.16 Let μ and ν be tuples of skew shapes such that diam(μ), diam(ν) ≤ 3
and |μ| = |ν| = n. Let C and D be connected components of Lμ and Lν , respectively,
and let φ : C → D be an isomorphism. If w is a vertex in C and λ � n, then w ∈
SYam(λ) if and only if φ(w) ∈ SYam(λ).

Proof Suppose, for the sake of contradiction, that v = φ(w) ∈ SYam(λ) and w /∈
SYam(λ). We begin by setting some definitions. Let P(w) = T . In particular,
P(φ(w)) = Uλ �= T . Consider the lowest value that does not occur in the same cell
of T and Uλ. By signature considerations, this value must be in a lower row of T

than in Uλ. Let m be the smallest number such that some entry of the mth row of Uλ

occurs in a lower row of T (see Fig. 17 for an example). Now define

p =
m−2∑

j=1

λj , q = λm−1 + λm, Si = p + i, and S = {S1, S2, . . . , Sq}. (4.9)

That is, S is the set of values in rows m − 1 and m of Uλ. Notice that m > 1, so S is
nonempty. Let wS and vS be the subwords of w and v, respectively, with values in S.

We now consider the longest increasing subwords of wS and vS . Because v is
Knuth equivalent to the row reading word of Uλ, we may restrict the row reading word
of Uλ to values in S in order to find the longest increasing subword of vS , as described
in Sect. 2.2. Specifically, the longest increasing subword of vS has length λm−1. Sim-
ilarly, we may restrict the row reading word of T to find the longest increasing sub-
word of wS . By the definitions of m and S, the values S1 through Sλm−1 occur in row
m − 1 of T , while the value Sq occurs no higher than row m − 1 of T . Hence, the
row reading word of T has S1S2 · · ·Sλm−1Sq as an increasing subword (see Fig. 17 for
an example). In particular, if l is the length of the longest increasing subword of wS ,
then l > λm−1. We will use these facts about wS and vS to create a contradiction to
the assumption that T �= Uλ.

Consider the (q, q)-component of w in the p-upward restriction of C. Call this
component C′. We proceed by finding the isomorphism type of C′ in two different
ways. First, we may find the isomorphism type of C′ in the manner described by
Part 2 of Remark 4.9. Specifically, consider T ∈ SYT(μ) such that w is the shifted
content word of T. Remove the cells of T not containing values in S and then subtract
p from each of the remaining cells, creating some T′ of shape μ′ with shifted content
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T =
7
4 5 6
1 2 3 8 9

U(3,3,3) =
7 8 9
4 5 6
1 2 3

Fig. 17 An example where T has the same signature as U(3,3,3) . Here, m = 3, p = 3, q = 6,
S = {4,5,6,7,8,9}, l = 5, and the subword S1S2 · · ·Sλm−1Sq = 4569

word w′. Then C′ is isomorphic to the component of Lμ′ containing w′. Here, w′ can
also be found by subtracting p from each entry in wS .

To find the isomorphism type of the component of w′ in Lμ′ , we will apply Corol-
lary 4.15. The signature of w′ is equal to the restriction of the signature of w to the
coordinates S1 through Sq−1. The signature of w is equal to the signature of v, which
is equal to the signature of Uλ. Thus, the signature of w′ is equal to the restriction
of the signature of Uλ to the coordinates S1 through Sq−1. In particular, the signa-
ture of w′ has exactly one −1, implying that P(w′) has exactly two rows. Applying
Corollary 4.15, P induces an isomorphism from C′ to the standard dual equivalence
graph Gsh(w′). The length of the first row in sh(w′) is the length of the longest in-
creasing subword in w′, as noted in Sect. 2.2. The length of this subword is equal to
the length of the longest increasing subword of wS , which we know to have length
l > λm−1. Since sh(w′) has exactly two rows, it follows that sh(w′) = (l, q − l).
Therefore, C′ ∼= G(l,q−l).

Alternatively, we may find the isomorphism type of C′ by applying the same re-
strictions to D. Let D′ be the (q, q)-component of v in the p-upward restriction of D.
In particular, C′ ∼= D′. As before, D′ is isomorphic to the component of some Lν′ con-
taining the vertex v′, where v′ is obtained by subtracting p from each of the values
in vS . Also, as before, sh(v′) has two rows. Therefore Corollary 4.15 guarantees that
D′ ∼= Gsh(v′). The length of the longest increasing subword of v′ is equal to the length
of the longest increasing subword of vS , which we know to have length λm−1. Thus,
sh(v′) = (λm−1, λm). Since l > λm−1, C′ ∼= G(l,q−l) � G(λm−1,λm)

∼= D′, a contradic-
tion. Therefore, w ∈ SYam(λ) whenever v = φ(w) ∈ SYam(λ).

We still need to prove that φ(w) ∈ SYam(λ) whenever w ∈ SYam(λ). This follows
via symmetry by considering w as the image of φ(w) under the isomorphism φ−1.
Thus, w ∈ SYam(λ) if and only if φ(w) ∈ SYam(λ). �

Proof of Theorem 4.3 We begin by reducing Theorem 4.3 to a statement about signed
colored graphs. Let V1,V2, . . . , Vm be the vertex sets of the connected components
of Lν = (V ,σ,E). Applying (2.8) and Definition 4.7, we have

Gν(X;q) =
∑

T∈SYT(ν)

q invk(T)Fσ(T)(X) =
∑

v∈V

q invν (v)Fσ(v)(X)

=
m∑

j=1

∑

v∈Vj

q invν (v)Fσ(v)(X), (4.10)

where it should be noted that the signature function σ changes between the first and
second sums. Specifically, σ changes from the signature function on standard fillings
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of ν to the signature function given by the inverse descents of the permutations in the
vertex set of L. The second equality then follows because the signature of a standard
filling of ν is defined via the signature of its row reading word.

To further simplify (4.10), we turn our attention to the individual components of
Lν when diam(ν) ≤ 3. Let C = (Vj , σ,E) be a connected component of Lν , and
choose any fixed vj ∈ Vj . By Proposition 4.10, the invν statistic is constant on Vj .
By Theorems 2.12 and 4.11, C is isomorphic to Gλ for some λ � |ν|. From (2.21) it
follows that

∑

v∈Vj

q invν (v)Fσ(v)(X) = q invν (vj )sλ. (4.11)

To prove Theorem 4.3, we need only guarantee that there is a unique choice of
vj ∈ Vj such that vj is a standardized Yamanouchi word and, moreover, that this
choice of vj is in SYam(λ).

We will find such a vj explicitly by applying Lemma 4.16. Consider the LLT
graph Lλ, where λ is the 1-tuple (λ). It follows from Part 2 of Remark 4.9 that
diam(λ) ≤ 2. By Part 1 of Remark 4.9, P induces an isomorphism from Lλ to Gλ. In
particular, the vertex set of Lλ has exactly one vertex w such that P(w) = Uλ. Thus,
w ∈ SYam(λ), and w is the only vertex of Lλ that is a standardized Yamanouchi
word. Because C is isomorphic to Gλ, and Gλ is isomorphic to Lλ, there exists an iso-
morphism φ : Lλ → C. Applying Lemma 4.16, we get that vj = φ(w) is the unique
standardized Yamanouchi word in Vj . �

5 Conclusion

There are a number of persistent open questions involving dual equivalence graphs.
We conclude by mentioning some of these questions as possibilities for further re-
search.

Can dual equivalence graphs be used to give nice Schur expansions for symmetric
functions other than LLT and Macdonald polynomials? Many functions have known
expansions in terms of fundamental quasisymmetric functions but are lacking nice de-
scriptions for their Schur expansions. As was the case with LLT polynomials, it may
be possible to apply dual equivalence graphs to find Schur expansions for such func-
tions. Examples include plethysms of Schur functions and k-Schur functions. The
former is described in [20], while the latter has already seen some progress in [4].
Though currently unproven, the shuffle conjecture provides another example. This
conjecture describes the composition of the nabla operator with an elementary sym-
metric function in terms of two statistics and fundamental quasisymmetric functions.
This sum, in turn, is equal to a sum of LLT polynomials with an additional statis-
tic. It may then be possible to use the results of Sect. 4 as an aid to understanding
the combinatorics of the shuffle conjecture. For the original statement of the shuffle
conjecture, along with proofs of the facts mentioned above, see [14].

Is there a good description of when a component of an LLT graph is a dual equiv-
alence graph? While Theorem 4.11 classifies when an LLT graph is a dual equiv-
alence graph, it makes no claims about specific components of LLT graphs in the
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diam(ν) ≥ 4 case. Similarly, there is currently no good description for when a spe-
cific component of G(τ )

n is a dual equivalence graph.
Is there an axiomatic description for when a signed colored graph admits a mor-

phism onto a standard dual equivalence graph? While Theorem 3.13 gives one crite-
rion for when a signed colored graph admits a morphism onto a standard dual equiv-
alence graph, a more axiomatic description would be desirable. Such a description
would necessarily provide sufficient conditions for when a signed colored graph cor-
responds to a positive integer multiple of a Schur function.

Can the axiomatization of dual equivalence graphs be generalized to an axiom-
atization of the family of signed colored graphs that correspond to Schur positive
functions? Such an axiomatization would necessarily be less strict than the one given
for dual equivalence graphs and would thus be satisfied by a larger set of signed
colored graphs. An axiomatization of this family of graphs could provide expanded
methods for proving the Schur positivity of a variety of symmetric functions.
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