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Abstract We define the shortest path poset SP(u, v) of a Bruhat interval [u,v], by
considering the shortest u–v paths in the Bruhat graph of a Coxeter group W , where
u,v ∈ W . We consider the case of SP(u, v) having a unique rising chain under a
reflection order and show that in this case SP(u, v) is a Gorenstein∗ poset. This allows
us to derive the nonnegativity of certain coefficients of the complete cd-index. We
furthermore show that the shortest path poset of an irreducible, finite Coxeter group
exhibits a symmetric chain decomposition.

Keywords Shortest paths · Bruhat graph · Bruhat order · ˜R-polynomials · Complete
cd-index

1 Introduction

Let (W,S) denote a Coxeter system with set of reflections T := {wsw−1 : s ∈ S,

w ∈ W }. The Bruhat graph of (W,S) is the directed graph B(W) := (V ,E) with
V = W and (u, v) ∈ E for u,v ∈ W if �(u) < �(v) and there exists t ∈ T such that
ut = v. Here, �(·) denotes the length function of (W,S). Furthermore, if u,v ∈ W ,
we denote the set of u–v paths of length (number of edges) k by Bk(u, v), and let
B(u, v) := ⋃

k Bk(u, v). As a convention, we will denote Δ ∈ Bk(u, v) in one of two
ways:

(i) Δ = (x0 = u < x1 < · · · < xk = v), with xi ∈ W , when we wish to refer to the
vertices of Δ, and

(ii) Δ = (t1, t2, . . . , tk), with ti ∈ T and xi−1ti = xi , with i = 1, . . . , k, when we
wish to refer to the edges that Δ traverses.
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One can define a partial order ≤, called the Bruhat order, as follows: u ≤ v if there
exists a directed u–v path in B(W). Bruhat intervals are endowed with many com-
binatorial properties; for example, they are Eulerian posets, that is, they are graded
posets in which every nontrivial interval has the same number of elements of even
rank as of odd rank.

A reflection order <T is a total order on T such that, for any Coxeter system of
the form (〈t1, t2〉, {t1, t2}) with t1, t2 ∈ T , either

t1 <T t1t2t1 <T t1t2t1t2t1 <T · · · <T t2t1t2t1t2 <T t2t1t2 < t2, or

t2 <T t2t1t2 <T t2t1t2t1t2 <T · · · <T t1t2t1t2t1 <T t1t2t1 < t1.

Reflection orders have been shown to exist and have proven to be an important
tool in the study of Coxeter groups (see, e.g., [11], [4, Chap. 5]). An initial section
AT of a reflection order <T is a subset of T satisfying a <T b for all a ∈ AT and
b ∈ T \ AT .

For w ∈ W , we define the negative set of w, denoted by N(w), to be the set of
reflections that shorten the length of w, i.e., N(w) := {t ∈ T | �(wt) < �(w)}. Notice
that if s1 · · · sk is a reduced expression for w, then N(w) = {t1, . . . , tk}, where ti =
sk · · · sk−i+2sk−i+1sk−i+2 · · · sk for i = 1, . . . , k. Furthermore, the total order defined
by

tk <w tk−1 <w · · · <w t1

is said to be induced by the reduced expression s1 · · · sk for w. Dyer showed that finite
initial sections are induced by reduced expressions.

Lemma 1 ([11], Lemma 2.11) AT is a finite initial section of a reflection order if and
only if AT = N(w) for some w ∈ W . In other words AT is a finite initial section of a
reflection order if and only if it is induced by a reduced expression for some w ∈ W .

Notice that [4, Proposition 2.3.1(i)] gives the existence of a unique longest-length
element w0 for finite W , that is, w0 ≥ w for all w ∈ W . Moreover, |N(w0)| =
�(w0) = |T | by [4, Proposition 2.3.2(iv)], and so we have the following corollary.

Corollary 1 If W is finite, then all reflection orders on T are induced by a choice of
reduced expression for w0.

Definition 1 (i) The poset P is said to be EL-labelable (Edge-wise Lexicographically
labelable) if there exists an edge labeling λ of P so that every subinterval [x, y] ∈ P

has a unique maximal chain that is rising. Furthermore, such a chain is lexicographi-
cally earlier than any other maximal chain of [x, y].

(ii) The λ above is called an EL-labeling of P .

In [12] and [11], Dyer proved two important consequences that follow from the
existence of reflection orders. One such consequence is the following theorem.

Theorem 1 ([11], Proposition 4.3) Let [u,v] be a Bruhat interval. Then [u,v] is
EL-labelable.
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The second consequence is an alternative, non-recursive definition of the so-called
˜R-polynomials, which is discussed in Sect. 4.

Given a reflection order <T and a path Δ = (t1, t2, . . . , tk) ∈ Bk(u, v), the descent
set D<T

(Δ) of Δ under <T is defined as D<T
(Δ) := {i ∈ [k−1] : ti+1 <T ti}. A path

Δ is said to be <T -rising, or simply rising, if D<T
(Δ) = ∅. While the descent set of a

path depends on the choice of reflection order, the number of rising paths is the same
(cf. [4, Proposition 5.3.4]). That is,

Proposition 1 Let u,v ∈ W , with u ≤ v, and let <T , <′
T be two reflection orders.

Then
∣

∣

{

Γ ∈ B(u, v) : D<T
(Γ ) = ∅}∣

∣ = ∣

∣

{

Γ ∈ B(u, v) : D<′
T
(Γ ) = ∅}∣

∣.

Furthermore there exists at least one rising path in Bk(u, v) whenever
Bk(u, v) 
= ∅.

Proposition 2 ([6], Proposition 3.9) Let Δ be the lexicographically first path in
Bk(u, v) 
= ∅ under a reflection order <T . Then D<T

(Δ) = ∅, i.e., Δ is <T -rising.

Moreover, since the reverse of a reflection order is also a reflection order, it follows
that

∣

∣

{

Γ ∈ Bk(u, v) : D<T
(Γ ) = ∅}∣

∣ = ∣

∣

{

Γ ∈ Bk(u, v) : D<T
(Γ ) = [k − 1]}∣∣. (1)

The remainder of the paper is organized as follows: In Sect. 2 we define the short-
est path poset for Bruhat intervals. In Sect. 3 we recast the main result of [5] stating
that SP(W) := SP(e,w0) is the union of Boolean algebras, where W is a finite, ir-
reducible Coxeter group and w0 is its element of longest length, and prove that it
admits a symmetric chain decomposition. In Sect. 4 we prove that SP(u, v) is EL-
labelable, in fact Gorenstein∗, if there is a unique rising chain under a reflection
order. In Sect. 4.2 we derive the nonnegativity of certain coefficients of the complete
cd-index. Some of our results have appeared, without proof, in a FPSAC extended
abstract in [7].

2 Definition of the shortest path poset

We first need to have a notion of “distance” in B(u, v).

Definition 2 (i) Let Δ be a path of B(u, v) and w be a vertex of Δ. The distance of
w on Δ, denoted by dΔ(u,w), is the number of edges in the u–w path of Δ.

(ii) The shortest distance of [u,v], denoted by �s(u, v), is the length of the shortest
path of B(u, v). That is, �s(u, v) := min{� : B�(u, v) 
= ∅}. When the interval is clear
from the context, we simply write �s .

Lemma 2 Consider two paths Γ,Γ ′ ∈ B�s (u, v) and let x ∈ [u,v] be a vertex in both
paths. Then dΓ (u, x) = dΓ ′(u, x).
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Fig. 1 Illustrating the proof of
Proposition 3. Path Γi goes
through edge (xi−1 < xi) for
1 ≤ i ≤ k

Proof Let Γ = (x0 = u < x1 < x2 < · · · < x�s = v) and Γ ′ = (x′
0 = u < x′

1 < x′
2 <

· · · < x′
�s

= v). Since x is a vertex of both Γ and Γ ′, then xi = x and x′
j = x for some

0 ≤ i, j ≤ �s .
Notice that dΓ (u, x) = i and dΓ ′(u, x) = j . If the two distances are not equal, then

one of them is bigger. Suppose without loss of generality that i < j . Then (xi < x′
j+1)

is an edge in the Bruhat graph, and the path (x0 = u < · · · < xi = x < x′
j+1 < x′

j+2 <

x′
�s

= v) has length i + (�s − j) < �s . This contradicts the definition of �s . Thus
i = j . �

Proposition 3 By ignoring the directions of the edges, B�s (u, v) is the Hasse dia-
gram of a graded poset.

Proof Since B(u, v) is a directed, acyclic graph, the edges of paths in B�s (u, v) give
a partial order ≤s on the elements of [u,v] that are in a u–v path of length �s . This
partial order is defined by x ≤s y if and only if x = y or if there is a path (x = y0 <

y1 < · · · < yp = y) ∈ B(x, y) such that each edge (yi−1 < yi) is in a shortest u–v

path, for 0 < i ≤ p.
Let (x ≤s y) be an edge in B�s (u, v). Now, to prove the proposition we need to

show that x �s y. It suffices to show that there is no path (x0 = x < x1 < x2 < · · · <
xk = y) with k > 1 such that each edge (xi−1 < xi) is in some path Γi ∈ B�s (u, v) for
1 ≤ i ≤ k < �s (refer to Fig. 1).

Notice that if such a path existed, then B�s (u, v) (when ignoring directions) would
not be a Hasse diagram, as there would be edges that would not represent cover
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Fig. 2 B(B2) and SP(B2)

relations. So let us assume for the sake of contradiction that such a path exists. Then

dΓ (u, x) = dΓk
(u, xk−1), (2)

for otherwise one of them, say dΓ (u, x), is bigger than the other one. Thus there exists
a u–v path Γ ′ formed by the edges of Γk up to y and then continue on the edges of Γ .
Notice that the length of Γ ′ is dΓk

(u, y) + (�s − dΓ (u, y)) < �s . This contradicts the
definition of �s , and thus dΓ (u, x) = dΓk

(u, xk−1). Similarly, we obtain

dΓk−1(u, xk−2) = dΓk
(u, xk−1) − 1

dΓk−2(u, xk−3) = dΓk−1(u, xk−2) − 1

...

dΓ1(u, x) = dΓ2(u, x1) − 1.

Hence dΓ (u, x) = dΓ1(u, x1) = dΓ2(u, x2) − 1 = · · · = dΓk
(u, xk−1) − (k − 1).

However, since k > 1 this contradicts (2). Thus the edges of B�s (u, v) are the cover
relations of a poset. Moreover, notice that this poset is graded by r(x) := dΓ (u, x)

where Γ ∈ B�s (u, v) contains the vertex x. This is a well-defined rank function by
Lemma 2.

Finally, notice that if (x < y) is an edge in B�s (u, v) then there does not exist an
x–y path containing an element other than x and y. Thus x � y by definition. �

We call the poset in Proposition 3 the shortest path poset of u,v, which we denote
by SP(u, v). We consider the edges of SP(u, v) to be labeled by the corresponding
edges in B�s (u, v).

3 SP(W), for finite, irreducible Coxeter groups

Let W be a finite, irreducible Coxeter group. We let SP(W) := SP(e,w0). Figure 2
depicts B2 and SP(B2), respectively. The rank of SP(B2) is two since that is the length
of the shortest paths in B(B2).
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Fig. 3 SP(B3) has four copies of B3. Notice that while these copies intersect, each maximal chain is in a
unique Boolean poset

For any w ∈ W , one can write t1t2 · · · tn = w for some t1, t2, . . . , tn ∈ T . If n is
minimal, then we say that w is T -reduced, and that the absolute length of w is n. The
absolute length of w is denoted by �T (w).

Notice that for w ∈ W , if �T (w) = �, then t1t2 · · · t� = w for some reflections
t1, t2, . . . , t� in T , but this does not mean that (t1, t2, . . . , t�) is a (directed) path in
B(e,w). Nevertheless, it is shown in [5] that for finite W and w = w0, (t1, t2, . . . , t�),
and any of its permutations (tτ(1), tτ (2), . . . , tτ (�)), τ ∈ S�, is a path in B(W). To be
more specific, one has the following theorem.

Theorem 2 (Theorem 1.1, [5]) Let W be a finite Coxeter group and �0 = �T (w0),
the absolute length of the longest element of W . Then SP(W) is isomorphic to the
union of Boolean posets of rank �0.

We point out that the union of the Boolean posets could share more elements than
e and w0. For instance, consider SP(B3) depicted in Fig. 3. In addition to 123 and
1 2 3, there are other elements shared by more than one boolean copy; for instance,
123 and 123. Nonetheless each maximal chain belongs to a unique boolean copy.

3.1 Symmetric chain decomposition

A graded poset P of rank n admits a symmetric chain decomposition if it can be
partitioned into saturated chains C1,C2, . . . ,C� that are centrally symmetric, that is,
the rank of the minimum element equals the corank of the maximum element for
each Ci . Furthermore, P is said to admit a symmetric boolean decomposition if it
can be partitioned into pieces P1,P2, . . . ,Pk where each Pi is isomorphic to Bn−2ki

,
the Boolean algebra of rank n − 2ki , with ki being the rank of the minimum element
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of Pi . Examples of posets that exhibit symmetric boolean decompositions are the
noncrossing partitions of type A and B (see [17] and [9]).

The following remark is in order (see, e.g., [15]):

Remark 1 If a poset P admits a symmetric boolean decomposition, then P admits a
symmetric chain decomposition.

Let P = {P1,P2, . . . ,Pk} be family of graded posets of rank n that do not share
any elements. Furthermore, denote the minimum and maximum elements of each Pi

bŷ0i ,̂1i , respectively, and let S(P ) denote the poset

S(P ) :=
k

∐

i=1

(̂0i ,̂1i ) ∪ {̂0,̂1},

wherê0 and̂1 are defined to be the minimum and maximal element of
∐k

i=1(
̂0i ,̂1i ),

respectively. Here, (̂0i ,̂1i ) denotes the poset Pi with its minimum and maximum
elements removed. Now we have the following lemma:

Lemma 3 If Pi , 1 ≤ i ≤ k, admits a symmetric boolean decomposition, then S(P )

admits a symmetric chain decomposition.

Proof Let C1, . . . ,Cq be a symmetric chain decomposition of P1 and let us assume,
without loss of generality, that C1 contains ̂11 and ̂01. Then C,C2, . . . ,Cq is a sym-
metric chain decomposition of (̂01,̂11), where C = C1 \ {̂01,̂01}. By Remark 1, each
(̂0j ,̂1j ), 2 ≤ j ≤ k, has a symmetric chain decomposition. Therefore there exists a
symmetric chain decomposition D1,D2, . . . ,Dr for

k
∐

j=2

(̂0j ,̂1j ).

Hence C ∪ {̂0,̂1},C2, . . . ,Cq,D1, . . . ,Dr is a symmetric chain decomposition of
S(P ). �

We are now ready to prove the following proposition.

Proposition 4 SP(W) exhibits a symmetric chain decomposition.

Proof By Theorem 2, SP(W) is the union of boolean posets. Thus one can re-
move cover relations from SP(W) to obtain a family of posets P = {P1, . . . ,Pk},
each one of them being isomorphic to a Boolean algebra of rank �T (w0), so that
SP(W) = S(P ) as sets. Lemma 3 yields the result that S(P ) has a symmetric chain
decomposition, and therefore so does SP(W). �

One question that arises from the previous proposition is the following: What
Bruhat intervals exhibit a symmetric boolean/chain decomposition? Billey [3] pro-
vides a sufficient condition for the existence of a symmetric chain decomposition for
intervals of the form [e,w], where w is an element of An or Bn.



592 J Algebr Comb (2013) 38:585–596

4 Unique rising shortest path

In this section we will show that if there is a unique rising path in B�s (u, v) then
SP(u, v) is a Gorenstein∗ poset. As a consequence, we derive nonnegativity of certain
coefficients of ˜ψu,v(c,d). We start with some topological definitions.

A simplicial complex Δ is said to be Cohen–Macaulay over K (K a field or Z) if
the reduced homology

˜Hi(linkΔF ;K) = 0 for all F ∈ Δ and i < dim linkΔF.

Here, linkΔF := {G ∈ Δ : G ∪ F ∈ Δ and G ∩ F = ∅}. A poset is said to be Cohen–
Macaulay if its order complex is Cohen–Macaulay. A poset is said to be Gorenstein∗
if it is Eulerian and Cohen–Macaulay (cf. [14, Sect. 2.1]).

It turns out that if a poset is EL-labelable, then it is Cohen–Macaulay for all K [19,
Theorem 4.1.9]. So to show that a poset is Gorenstein*, it is enough to show that it
is EL-labelable and Eulerian. This is the case for SP(u, v) if there is a unique rising
chain.

4.1 ˜R-polynomials

In the study of Coxeter groups, it is common to encounter the ˜R-polynomials, which
are defined in the proposition below.

Proposition 5 ([4], Proposition 5.3.2) Let u,v ∈ W with u ≤ v and �(vs) < �(v).
Then there exists a monic polynomial ˜R(α) of degree �(v) − �(u) given by

˜Ru,v(α) =
{

˜Rus,vs(α) if �(us) < �(u), and

˜Rus,vs(α) + α˜Ru,vs(α) otherwise.

The ˜R-polynomials are used, among other things, to define the R-polynomials,
and these are used to define the Kazhdan–Lusztig polynomials from representation
theory (see [4]). That is one of the reasons why the ˜R-polynomials are of interest.

Dyer used reflection orders to provide a non-recursive definition of the ˜R-polyno-
mials.

Theorem 3 ([12], Theorem 2.3) If u ≤ v, then

˜Ru,v(α) =
∑

Δ∈B(u,v)
D(Δ)=∅

α�(Δ).

Dyer’s theorem states that the ˜Ru,v(α) is simply the generating function of the
rising paths in B(u, v). Using this interpretation, we are able to derive the following
inequality.

Theorem 4 If u ≤ x ≤ v, then ˜Ru,x(α)˜Rx,v(α) ≤ ˜Ru,v(α) (coefficientwise).
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Proof The inequality is equivalent to saying that there are more rising paths in
B(u, v) than rising paths in B(u,x) times the number of rising paths of B(x, v).
So it is enough to find an injection

ϕx : R(u, x) × R(x, v) −→ R(u, v),

where R(y, z) = {Γ ∈ B(y, z) : D(Γ ) = ∅}.
Consider a reflection order <x with initial section N(x). Let (t1, . . . , tp) be a <x -

rising path of B(u,x) and let (r1, . . . , rq) be a <x -rising path of B(x, v). Since tp ∈
N(x) and r1 
∈ N(x), it follows that tp <x r1. Hence the path (t1, . . . , tp, r1, . . . rq) is
a <x -rising path of B(u, v). By Proposition 1, the number of rising paths is the same
under any reflection order. Hence the desired injection ϕx is given by concatenating
a <x -rising path in B(u,x) and a <x -rising path in B(x, v). �

We no longer need a specific reflection order, and thus from now on we fix a
reflection order <T .

Theorem 4 generalizes the following results due to Brenti. All the inequalities are
coefficientwise.

Corollary 2

1. [10, Theorem 5.4] If u ≤ x ≤ v, then

α�(v)−�(x)
˜Ru,x(α) ≤ ˜Ru,v(α).

2. [10, Corollary 5.5] If W is finite and u ≤ x ≤ y ≤ v, then

α�(v)−�(y)+�(x)−�(u)
˜Rx,y(α) ≤ ˜Ru,v(α).

3. [10, Theorem 5.6] Let x, y, z ∈ W be such that y ≤ z in Bruhat order and x ≤ y

in weak Bruhat order (this is a coarsening of the Bruhat order). Then

α�(y)−�(x)
˜Ry,z(α) ≤ ˜Rx,z(α).

All these inequalities are special cases of Theorem 4. For instance, the first in-
equality follows immediately from

˜Ru,x(α)˜Rx,v(α) ≤ ˜Ru,v(α) and α�(v)−�(x) ≤ ˜Rx,v(α).

The second inequality follows from

˜Ru,x(α)˜Rx,y(α)˜Ry,v(α) ≤ ˜Ru,v(α),

α�(v)−�(y) ≤ ˜Ry,v(α), and α�(x)−�(u) ≤ ˜Ru,x(α).

Finally, the last inequality follows from

˜Rx,y(α)˜Ry,z(α) ≤ ˜Rx,z(α) and α�(y)−�(x) ≤ ˜Rx,y(α).

Of special interest for our purposes is the following inequality.



594 J Algebr Comb (2013) 38:585–596

Proposition 6 If u ≤ x ≤ y ≤ v then |R(x, y)| ≤ |R(u, v)|.

Proof Since the interval [u,v] is graded, it is enough to show that the result holds
when u�x ≤ y or u ≤ y �v. Either of these cases follow from Theorem 4 since then
˜Ru,x(α) = 1 or ˜Ry,v(α) = 1, respectively. �

This proposition is a very important ingredient in the proof of the main result of
this paper, which now follows.

Theorem 5 Suppose that SP(u, v) has a unique maximal, rising chain. Then SP(u, v)

is a Gorenstein∗ poset.

Proof We verify that SP(u, v) is EL-labelable (cf. Definition 1(i)). Proposition 2
gives the result that any subinterval of SP(u, v) has at least one rising chain: the
lexicographically first one. Moreover, Proposition 6 states that the number of rising
chains in any subinterval of SP(u, v) can be at most one. Thus any subinterval of
SP(u, v) has a unique rising path that is lexicographically first, and so SP(u, v) is
EL-labelable.

We just showed that SP(u, v) is Cohen–Macaulay, as it is EL-labelable, and need
only show that SP(u, v) is Eulerian. Notice that any interval of rank 2 of SP(u, v)

has two atoms, for otherwise there must be more than one rising chain in some in-
terval (of rank 2) by (1). Thus SP(u, v) is thin (as are Bruhat intervals; see e.g., [4,
Lemma 2.7.3] and [4, Theorem 2.7.7]). Therefore the poset P = SP(u, v) \ {u,v} is
pure and thin. Hence by [19, Theorem 3.1.12], SP(u, v) is the face poset of a reg-
ular CW-decomposition of an (�s − 2)-sphere that is homeomorphic to Δ(P ), the
order complex of P . In particular SP(u, v) must be Eulerian. Hence, SP(u, v) is a
Gorenstein∗ poset. �

We finish this section with the following two conjectures.

Conjecture 1 If SP(u, v) has a unique rising chain, then SP(u, v) is a lattice.

This conjecture is inspired by an unpublished result due to Dyer [13] stating that if
all paths of the Bruhat graph of [u,v] have length �(v) − �(u), then [u,v] is a lattice
(in fact, he showed that [u,v] is isomorphic to the face poset of a polytope).

Furthermore, we believe a stronger conjecture is true.

Conjecture 2 If SP(u, v) has a unique rising chain, then SP(u, v) is isomorphic to
a Bruhat interval.

We point out that intervals [u,v] for which their shortest path poset SP(u, v) has
a unique rising chain appear frequently. For example, there are 37,467 intervals in
S6 having a unique rising chain, with SP(u, v) 
= [u,v] (so the rank of [u,v] is at
least three and the rank of SP(u, v) is at least one). For this computer search, we used
Stembridge’s Maple package [18].
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4.2 Nonnegativity consequences for the complete cd-index

Billera and Brenti’s complete cd-index ˜ψu,v(c,d) encodes the distribution of the de-
scent sets of [u,v]. The complete cd-index is a non-homogeneous polynomial whose
terms have degree one less than the lengths of the paths of B(u, v). The terms of
highest degree of ˜ψu,v(c,d) correspond to the cd-index of the Eulerian poset [u,v],
which encodes the flag h-vector of [u,v]. For details, the reader is referred to [2], [1,
Sect. 4]. The complete cd-index provides a combinatorial definition of the Kazhdan–
Lusztig polynomials, and its study might shed some light on open problems regarding
the coefficients of these polynomials.

It has been conjectured that the coefficients of ˜ψu,v(c,d) are nonnegative [2, Con-
jecture 6.1]. There is a stronger conjecture for lower intervals, namely ˜ψe,v(1,1) ≤
ΦB�(v)

(1,1), where ΦB�(v)
denotes the cd-index of [e, v] as an Eulerian poset (see [1,

Conjecture 3]). Our results allow us to conclude that certain terms of ˜ψu,v(c,d) are
nonnegative. If [c�s−1]˜ψu,v(c,d) denotes the coefficient of c�s−1, where �s is the
shortest distance of [u,v], then we have:

Proposition 7 If [c�s−1]˜ψu,v(c,d) = 1, the terms of degree �s − 1 in ˜ψu,v(c,d) are
nonnegative.

Proof If [c�s−1]˜ψu,v(c,d) = 1, Theorem 5 shows that SP(u, v) is Gorenstein*.
Therefore, the terms of degree �s − 1 in ˜ψu,v(c,d) coincide with the cd-index of
SP(u, v) as an Eulerian poset. Furthermore, the cd-index of Gorenstein∗ posets is
nonnegative (see [16]) and therefore the terms of ˜ψu,v(c,d) of degree �s − 1 are also
nonnegative. �

In [5], we obtain a stronger result for finite, irreducible Coxeter groups. Namely,
we are able to compute the lowest-degree terms of ψu,w0(c,d) in terms of the cd-
index of Boolean algebras.

5 Further directions

In general, SP(u, v) will have more than one rising chain. We would like to find
a procedure that would allow us to partition SP(u, v) into pieces P1, . . . ,Pk , each
one of which has a unique rising chain. A possible approach would be to “flip” the
descents of a chain of SP(u, v) into ascents (see [2, Sect. 6]). If each piece Pi satisfies
enough properties, we hope to conclude that the terms of lowest degree of ˜ψu,v(c,d)

are the sum of nonnegative terms contributed by each Pi . There is evidence, both
computational and theoretical, supporting this approach (see [8, Chap. 4]).
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