The finite edge-primitive pentavalent graphs

Song-Tao Guo · Yan-Quan Feng · Cai Heng Li

Received: 13 December 2011 / Accepted: 17 November 2012 / Published online: 30 November 2012 © Springer Science+Business Media New York 2012

Abstract A graph is edge-primitive if its automorphism group acts primitively on edges. Weiss (in J. Comb. Theory Ser. B 15, 269–288, 1973) determined edge-primitive cubic graphs. In this paper, we classify edge-primitive pentavalent graphs. The same classification of those of valency 4 is also done.

Keywords Edge-primitive graph · Symmetric graph · *s*-Transitive graph

1 Introduction

Let *G* be a group acting on a set Ω . Denote by G_{α} the subgroup of *G* fixing the point α . *G* is said to be *semiregular* if $G_{\alpha} = 1$ for each $\alpha \in \Omega$, and *G* is said to be regular if *G* is transitive and semiregular. A non-empty subset Δ of Ω is called a *block* for *G* if for each $g \in G$ either $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$. Clearly, the set Ω and the singletons $\{\alpha\} (\alpha \in \Omega)$ are blocks for *G*, called the *trivial* blocks. Any other block is said to be *non-trivial*. Suppose that Δ is a non-trivial block for *G*. Then $\{\Delta^g \mid g \in G\}$ is the *system of imprimitivity* of *G* containing Δ . A transitive group *G* is *primitive* if *G* has no non-trivial blocks on Ω .

Throughout this paper, we consider undirected finite graphs without loops or multiple edges. As usual, the notation X = (V, E) denotes a graph with vertex set V and

S.-T. Guo \cdot Y.-Q. Feng (\boxtimes)

S.-T. Guo e-mail: gsongtao@gmail.com

C.H. Li School of Mathematics and Statistics, The University of Western Australia, Crawley 6009, WA, Australia e-mail: cai.heng.li@uwa.edu.au

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China e-mail: yqfeng@bjtu.edu.cn

edge set *E*, and Aut(*X*) denotes its automorphism group. If two vertices $u, v \in V$ are adjacent, $\{u, v\}$ denotes the edge between *u* and *v*. By $X_1(v)$, we mean the *neighborhood* of a vertex *v* in *X*, consisting of vertices which are adjacent to *v*.

Let X = (V, E) be a graph and $G \le Aut(X)$. Then X is said to be *G*-locally primitive if the vertex stabilizer G_v acts primitively on $X_1(v)$ for each $v \in V$. A graph X is said to be *G*-vertex-transitive or *G*-edge-transitive if G acts transitively on V or E, respectively. If G is replaced by Aut(X), the graph X is simply said to be vertex-transitive or edge-transitive.

An *s*-*arc* in a graph is an ordered (s + 1)-tuple $(v_0, v_1, \ldots, v_{s-1}, v_s)$ of vertices of the graph X such that v_{i-1} is adjacent to v_i for $1 \le i \le s$, and $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s - 1$. A 0-*arc* is a vertex and a 1-arc is also called an *arc* for short. A graph X is said to be (G, s)-*arc*-transitive if $G \le \operatorname{Aut}(X)$ is transitive on the set of s-arcs in X. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not (G, s + 1)arc-transitive. A graph X is said to be *s*-*arc*-transitive or *s*-transitive if the graph is $(\operatorname{Aut}(X), s)$ -arc-transitive or $(\operatorname{Aut}(X), s)$ -transitive. A graph X is *G*-edge-primitive if $G \le \operatorname{Aut}(X)$ acts primitively on the set of edges of X, and X is edge-primitive if it is $\operatorname{Aut}(X)$ -edge-primitive.

Weiss [9] determined all edge-primitive cubic graphs, which are the complete bipartite graph $K_{3,3}$, the Heawood graph of order 14, the Biggs–Smith cubic distancetransitive graph of order 102 and the Tutte–Coxeter graph of order 30 (also known as Tutte's 8-cage or the Levi graph). Giudici and Li [3] systematically analyzed edgeprimitive graphs via the O'Nan–Scott Theorem to determine the possible edge and vertex actions of such graphs, and determined all *G*-edge-primitive graphs for *G* an almost simple group with socle PSL(2, *q*), where *q* is a prime power and $q \neq 2, 3$. Recently, the authors [4] classified edge-primitive tetravalent graphs, which are the complete graph K_5 , the co-Heawood graph of order 14 (the complement graph of the Heawood graph with respect to the complete bipartite graph $K_{7,7}$), the complete bipartite graph $K_{4,4}$, and three coset graphs defined on the almost simple groups Aut(PSL(3, 3)), Aut(M₁₂) and Aut($G_2(3)$), respectively. In [6], edge-primitive 4arc-transitive graphs are classified. In this paper, we give a classification of edgeprimitive graphs of valency 5.

Theorem 1.1 Let X be an edge-primitive pentavalent graph with an edge $e = \{u, v\}$ and let A = Aut(X). Then X is s-transitive with $s \ge 2$, and X, s, A, A_v and A_e are listed in Table 1. Furthermore, such a graph X is uniquely determined by its number of vertices.

From Theorem 1.1, we have the following corollary.

Corollary 1.2 All finite edge-primitive pentavalent graphs are 2-arc-transitive.

Remark Let X be an edge-primitive graph with an edge $e = \{u, v\}$ and let A = Aut(X). Weiss classified such graphs of valency 3 in 1973. However, since then there is no much progress in this line for small valencies. In this paper, we first reduce A to an almost simple group when X has valency 5 and Theorem 1.1 follows from the classification of finite primitive groups with solvable stabilizers given in [6]. The method does not work for valency greater than 5 because A_e can be non-solvable.

X	S	Α	A_v	A _e
Complete graph K_6	2	S ₆	S ₅	$s_4\times \mathbb{Z}_2$
PSL(2, p)-graph (Example 3.1)	2	PSL(2, p)	A5	S_4
PGL(2, p)-graph (Example 3.2)	2	PGL(2, p)	A ₅	S_4
Complete bipartite graph $K_{5,5}$	3	$S_5 \operatorname{wr} S_2$	$S_5 imes S_4$	$S_4 \operatorname{wr} S_2$
$J_3.\mathbb{Z}_2$ -graph (Example 3.3)	4	$J_3.\mathbb{Z}_2$	$\mathbb{Z}_2^4 \rtimes \Gamma L(2,4)$	$(\mathbb{Z}_2^4 \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$
$PSL(3, 4).D_{12}$ -graph (Example 3.4)	4	$PSL(3, 4).D_{12}$	$\mathbb{Z}_{2}^{\overline{4}} \rtimes \Gamma L(2,4)$	$(\mathbb{Z}_2^{\overline{4}} \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$
$PSp(4, 4).\mathbb{Z}_4$ -graph (Example 3.5)	5	$PSp(4, 4).\mathbb{Z}_4$	$\mathbb{Z}_2^{\overline{6}} \rtimes \Gamma L(2,4)$	$(\mathbb{Z}_2^{\overline{6}} \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$

Table 1 s-transitive edge-primitive pentavalent graphs

2 A reduction

Let X = (V, E) be a *G*-edge-primitive graph of valency 5 with an edge $e = \{u, v\}$. Then 2|E| = 5|V|, and *G* is a primitive permutation group on *E*. By [3, Lemmas 3.1 and 3.4], *X* is connected and *G*-arc-transitive. Thus, $5||G_v|$, but $5^2 \not| |G_v|$. In particular, *X* is *G*-locally primitive. Let $N = \text{Soc}(G) = T^k$, the socle of *G*. Then *T* is a simple group, *N* is transitive on *E*, and hence *N* has at most two orbits on *V*. If *N* has two orbits on *V*, denote by V_1 and V_2 these orbits. In this case, *X* is bipartite with V_1 and V_2 as its bipartition sets.

Lemma 2.1 The socle N is a minimal normal subgroup of G and is not semiregular on V, and the graph X is N-locally primitive. If $X \neq K_{5,5}$, T is non-abelian simple and if further $k \ge 2$, T is semiregular on V.

Proof Let $1 \neq M \triangleleft G$. Suppose that *M* is semiregular on *V*. Then $M_v = 1$ and *M* is transitive on *E*, implying that *M* has at most two orbits on *V*. Thus, |V| = |M| or 2|M|. The edge-primitivity of *G* implies that *M* is transitive on *E*. It follows that $|E| \mid |M|$ and so $|E| \mid |V|$, which is impossible because $|E| = \frac{5|V|}{2}$. Thus, *M* is not semiregular on *V*. Note that $|X_1(v)| = 5$. Since $M \triangleleft G$ and *X* is *G*-arc-transitive, M_v is transitive on $X_1(v)$, and hence primitive on $X_1(v)$. Further, *X* is *M*-locally primitive. In particular, by taking M = N we see that *N* is not semiregular on *V* and *X* is *N*-locally primitive. If *G* has two distinct minimal normal subgroups, say N_1 and N_2 , then $N_1 \times N_2 \leq G$. By taking $M = N_1$ or N_2 , *X* is N_1 - and N_2 -locally primitive. This implies that $5 \mid |(N_1)_v|$ and $|(N_2)_v|$, forcing that $5^2 \mid |G_v|$, a contradiction. Thus, *N* is a minimal normal subgroup of *G*.

To prove the second part, let $X \neq K_{5,5}$. Suppose *T* is abelian. Then *N* is abelian and hence regular on *E*. It follows that $|N| = |E| = \frac{5|V|}{2}$. Recall that *N* is not semiregular. If *N* has one orbit on *V* then *N* is regular on *V*, a contradiction. It follows that *N* has two orbits on *V*, that is, V_1 and V_2 , and for $v \in V_1$, we have $N_v \neq 1$. Since *N* is abelian, N_v fixes every vertex in V_1 , forcing $X = K_{5,5}$, a contradiction. Thus, *N* is non-abelian. To finish the proof, we further let $k \ge 2$. Suppose that *T* is not semiregular on *V*. Write $N = T \times L$, where $L = T^{k-1}$. By the minimality of *N* in *G*, *L* is not semiregular on *V*.

Assume that N is transitive on V. Since T is not semiregular on V, $T_w \neq 1$ for every $w \in V$, and by the minimality of N in G, $L_w \neq 1$. By the vertex-transitivity and locally primitivity of N, we have $5 ||T_w|$ and $5 ||L_w|$. It follows that $5^2 ||N_w|$, which is impossible.

Now assume that *N* has two orbits on *V*. We may let $v \in V_1$ and $u \in V_2$. Suppose that $5 \not| |T_v|$ and $5 \not| |T_u|$. Then $5 \not| |T_w|$ and $5 \not| |T_x|$ for every $w \in V_1$ and every $x \in V_2$. Since *X* is *N*-locally primitive, T_w and T_x fix $X_1(w)$ and $X_1(x)$ pointwise, respectively. The connectivity of *X* implies that T_u and T_v fix every vertex in *V*. Then $T_u = T_v = 1$ and hence $T_w = T_x = 1$ for every $w \in V_1$ and every $x \in V_2$, contrary to the assumption that *T* is not semiregular on *V*. Thus, we may assume that $5 ||T_v|$ (note that we cannot deduce $5 ||T_v|$ by the locally primitivity of *N* when $T_v \neq 1$ because *N* has two orbits). By the minimality of *N*, $5 ||L_u|$.

Consider the orbits of *L*. Let $\{B_1, B_2, ..., B_m\}$ and $\{C_1, C_2, ..., C_n\}$ be the sets of orbits of *L* on V_1 and V_2 , respectively. We may assume that $v \in B_1$ and $u \in C_1$. Note that B_i and C_i are blocks of *N*. Since $5 ||L_u|$, L_u is transitive on $X_1(u)$. Thus, $X_1(u) \subseteq B_1$, and $X_1(x) \subseteq B_1$ for every $x \in C_1$ because B_1 and C_1 are orbits of *L*. The edge-transitivity of *N* implies that if there is an edge between C_i and B_1 then $X_1(x) \subseteq B_1$ for every $x \in C_i$. The connectivity of *X* implies that m = 1, that is, *L* is transitive on V_1 . Thus, $T_v = T_w$ for every vertex $w \in V_1$ because *L* commutes with *T*, which forces that $X = K_{5,5}$, a contradiction.

Lemma 2.2 Let $X \neq K_{5,5}$. Then G_v is non-solvable and G is 2-arc-transitive.

Proof Since G is arc-transitive, let X be (G, s)-arc-transitive for some $s \ge 1$. Note that a transitive permutation group of prime degree is either solvable or 2-transitive. To prove the lemma, we only need to show that G_v is non-solvable. Suppose to the contrary that G_v is solvable. Then the primitive permutation group $G_v^{X_1(v)}$ of degree 5 is isomorphic to \mathbb{Z}_5 , D_{10} or F_{20} , and hence $G_{vu}^{X_1(v)}$ is a 2-group (the identity subgroup is also viewed as a 2-group). Let $G_v^{[1]}$ be the kernel of G_v acting on $X_1(v)$. By [6, Theorem 1.3], G_v is non-solvable for $s \ge 4$. Thus, $s \le 3$ and by [10, Theorems 4.6–4.7], $G_{uv}^{[1]} = G_u^{[1]} \cap G_v^{[1]} = 1$. Then $G_u^{[1]} \times G_v^{[1]} = G_u^{[1]}G_v^{[1]} \triangleleft G_{vu}$, and $G_v^{[1]} \cong G_u^{[1]} \cong G_u^{[1]} \cap G_v^{[1]} \cap G_v^{[1]} \cong (G_u^{[1]})^{X_1(v)} \triangleleft G_{vu}^{X_1(v)}$, implying that $G_v^{[1]}$ is a 2group. It follows that G_{vu} is a 2-group and hence G_e is a 2-group. The maximality of G_e in G implies that G_e is a Sylow 2-subgroup of G. Thus, |E| is odd and so is $\frac{1}{2}|V|$. Moreover, if $N = T^k$ with $k \ge 2$ then by Lemma 2.1, T is semiregular on V, which is impossible. Thus k = 1, and G is almost simple. By [11, Theorem], if the stabilizer of an arc-transitive automorphism group of a graph with prime valency p is solvable then its order is a divisor of $p(p-1)^2$. Thus, $|G_v| | 80$, which forces that $|G_e| | 32$. Since |G| is divisible by 5, by [6, Tables 14–20] we have G = PGL(2, 9), M₁₀, or PSL(2, 31), which is also impossible by the Atlas [1].

Let $X \neq K_{5,5}$ and $s \leq 3$. Note that $G_v^{[1]}$ is a $\{2, 3\}$ -group and hence solvable. By Lemma 2.2, $G_v^{X_1(v)}$ is non-solvable and so $G_v^{X_1(v)} = A_5$ or S_5 , which implies that $G_{vu}^{X_1(v)} = A_4$ or S_4 , respectively. If $G_v^{[1]} = 1$ then $G_v = A_5$ or S_5 . Now assume $G_v^{[1]} \neq 1$. Since $G_v^{[1]} \triangleleft G_{vu}$ and $G_v^{[1]} \cap G_u^{[1]} = 1$, $G_v^{[1]}$ is transitive on $X_1(u) \setminus \{v\}$.

We claim that G_v has a normal subgroup A_5 or S_5 and $G_v^{[1]} = A_4$ or S_4 . To prove it, let $H = \langle G_z^{[1]} | z \in X_1(v) \rangle$. Then $H \triangleleft G_v$. Since $G_v^{[1]} \cap G_u^{[1]} = 1$, the ac-

tion of $G_v^{[1]}$ on $X_1(u)\setminus\{v\}$ is non-trivial and so H has a non-trivial action on $X_1(v)$. Since $H^{X_1(v)} \leq G_v^{X_1(v)} = A_5$ or S_5 , we have $H^{X_1(v)} = A_5$ or S_5 . Then $H_{vu}^{X_1(v)} = A_4$ or S_4 , and so H contains a non-identity element h of order 3-power such that $h \in H_{vuw}$ for some $w \in X_1(u)$ with $w \neq v$. On the other hand, it is easy to show that $[H, G_v^{[1]}] \leq G_v^{[1]} \cap G_u^{[1]} = 1$, which implies that $H \cap G_v^{[1]} \leq Z(G_v^{[1]})$, the center of $G_v^{[1]}$. It follows that H commutes with $G_v^{[1]}$ and hence h fixes $X_1(u)$ pointwise because $G_v^{[1]}$ is transitive on $X_1(u)\setminus\{v\}$. Thus, $3||G_u^{[1]}|$ and $3||G_v^{[1]}|$. Since $G_v^{[1]} \approx G_v^{[1]}/G_{uv}^{[1]} \leq G_{vu}^{X_1(v)} = A_4$ or S_4 , we have $G_v^{[1]} = A_4$ or S_4 . Furthermore, $H \cap G_v^{[1]} \leq Z(G_v^{[1]}) = 1$, implying that $G_v^{[1]}H = G_v^{[1]} \times H$ and H is faithful on $X_1(v)$. Thus, $H = A_5$ or S_5 , as claimed.

Now it is easy to see that $|G_v: G_v^{[1]} \times H| = 1$ or 2 and we have the following lemma.

Lemma 2.3 Suppose that $X \neq K_{5,5}$ and X is connected (G, s)-transitive with $s \leq 3$. Then either

- (1) s = 2, and $G_v = A_5 \text{ or } S_5$, or
- (2) s = 3, and $G_v = A_4 \times A_5$, $S_4 \times S_5$, or $(A_4 \times A_5).\mathbb{Z}_2$.

In particular, this lemma tells us that G_v does not have a subnormal subgroup \mathbb{Z}_5 .

Lemma 2.4 Suppose that $X \neq K_{5,5}$ and X is connected (G, s)-transitive with $s \leq 3$. Then G is almost simple.

Proof Suppose that $1 \neq M \triangleleft N$ is regular on *E*. Then *X* is *M*-edge-transitive, and hence *M* has at most two orbits on *V*. Thus, $|M| = |E| = \frac{5|V|}{2}$ is divisible by |V| or $\frac{1}{2}|V|$, forcing that *M* has exactly two orbits on *V*, *X* is bipartite, and $|M_v| = 5$. It follows that $\mathbb{Z}_5 \cong M_v \triangleleft N_v \triangleleft G_v$, which is impossible by Lemma 2.3. Thus, *N* does not have a normal subgroup which is regular on *E*, and by O'Nan–Scott's theorem [2, Theorem 4.1A], *G* is almost simple, or of product action on *E*.

Suppose that *G* is of product action on *E*. Then by O'Nan–Scott's theorem, $N_e = T_e^k$, $T_e \neq 1$, and $k \ge 2$. Since $X \neq K_{5,5}$, by Lemma 2.1, $T_v = 1$. It follows that $T_e = \mathbb{Z}_2$ and $N_e = T_e^k = \mathbb{Z}_2^k$, which is impossible because $3 ||N_e|$ (Lemma 2.3). Thus, *G* is an almost simple group.

From Lemma 2.4 we find that if $X \neq K_{5,5}$ then the group *G* is almost simple, and the edge stabilizer G_e is a maximal subgroup, and $G_e = A_4.\mathbb{Z}_2$, $S_4.\mathbb{Z}_2$, $(A_4 \times A_4).\mathbb{Z}_2$, $(S_4 \times S_4).\mathbb{Z}_2$, or $((A_4 \times A_4).\mathbb{Z}_2).\mathbb{Z}_2$.

3 Classification

In this section, we prove Theorem 1.1. First, we introduce the so-called coset graph. Let *G* be a finite group, *H* a subgroup of *G* and $D = D^{-1}$ a union of several doublecosets of the form HgH with $g \notin H$. The *coset graph* X = Cos(G, H, D) of *G* with respect to *H* and *D* is defined to have vertex set V = [G : H], the set of the right cosets of *H* in *G*, and edge set $E = \{\{Hg, Hdg\} | g \in G, d \in D\}$. Then *X* is well defined and has valency |D|/|H|. Furthermore, *X* is connected if and only if *D* generates *G*. Note that *G* acts on *V* by right multiplication and so we can view G/H_G as a subgroup of Aut(*X*), where H_G is the largest normal subgroup of *G* contained in *H*. We may show that *G* acts transitively on the arcs of *X* if and only if D = HgH for some $g \in G \setminus H$ (see [7, 8]). The following two examples were described in [3, Sect. 8].

Example 3.1 Let *p* be a prime and let G = PSL(2, p) with $p \equiv \pm 1, \pm 9 \pmod{40}$. Then by [3, Proposition 8.5], *G* has a subgroup $H = A_5$ and one conjugacy class of maximal subgroups $K = S_4$ such that $K \cap H = A_4$. Take an involution $g \in K \setminus H$. Define the pentavalent PSL(2, *p*)-graph as Cos(G, H, HgH). Then the PSL(2, *p*)-graph is edge-primitive and has automorphism group PSL(2, *p*). Furthermore, any connected *G*-edge-primitive pentavalent graph is isomorphic to the PSL(2, *p*)-graph.

Example 3.2 Let *p* be a prime and let G = PGL(2, p) with $p \equiv \pm 11, \pm 19 \pmod{40}$. Then by [3, Proposition 8.5], *G* has a subgroup $H = A_5$ and one conjugacy class of maximal subgroups $K = S_4$ such that $K \cap H = A_4$. Take an involution $g \in K \setminus H$. Define the pentavalent PGL(2, *p*)-graph as Cos(G, H, HgH). Then the PGL(2, *p*)-graph is an edge-primitive graph and has automorphism group PGL(2, *p*). Furthermore, any connected *G*-edge-primitive pentavalent graph is isomorphic to the PGL(2, *p*)-graph.

Now we construct an edge-primitive graph, which was given by Weiss [12].

Example 3.3 Let $G = \operatorname{Aut}(J_3) = J_3.\mathbb{Z}_2$. Then by the Atlas [1], *G* has maximal subgroups $H = \mathbb{Z}_2^4 \rtimes \Gamma L(2, 4)$ and $K = (\mathbb{Z}_2^4 \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$ such that $K \cap H = \mathbb{Z}_2^4 \rtimes (A_4 \rtimes S_3)$. Define the pentavalent $J_3.\mathbb{Z}_2$ -graph as $\operatorname{Cos}(G, H, HgH)$, where $g \in K \setminus H$. Then this is a 4-transitive edge-primitive graph, and has automorphism group $J_3.\mathbb{Z}_2$. Furthermore, any connected *G*-edge-primitive pentavalent graph is isomorphic to the $J_3.\mathbb{Z}_2$ -graph.

The following two edge-primitive pentavalent graphs are extracted from [5, Sect. 2].

Example 3.4 Let $G = \text{Aut}(\text{PSL}(3, 4)) = \text{PSL}(3, 4).D_{12}$. By the Atlas [1], *G* has a maximal subgroup $K = (\mathbb{Z}_2^4 \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$ and a subgroup $H = \mathbb{Z}_2^4 \rtimes \Gamma L(2, 4)$ such that $K \cap H = \mathbb{Z}_2^4 \rtimes (A_4 \rtimes S_3)$. Define the pentavalent $\text{PSL}(3, 4).D_{12}$ -graph as Cos(G, H, HgH), where $g \in K \setminus H$. Then this is a 4-transitive edge-primitive graph and has automorphism group $\text{PSL}(3, 4).D_{12}$. Furthermore, any connected *G*-edge-primitive pentavalent graph is isomorphic to the $\text{PSL}(3, 4).D_{12}$ -graph.

Example 3.5 Let $G = \text{Aut}(\text{PSp}(4, 4)) = \text{PSp}(4, 4).\mathbb{Z}_4$. By the Atlas [1], G has a maximal subgroup $K = (\mathbb{Z}_2^6 \rtimes (A_4 \rtimes S_3)).\mathbb{Z}_2$ and a subgroup $H = \mathbb{Z}_2^6 \rtimes \Gamma L(2, 4)$ such that $K \cap H = \mathbb{Z}_2^6 \rtimes (A_4 \rtimes S_3)$. Define the pentavalent $\text{PSp}(4, 4).\mathbb{Z}_4$ -graph as Cos(G, H, HgH), where $g \in K \setminus H$. Then this is a 5-transitive edge-primitive graph

and has automorphism group $PSp(4, 4).\mathbb{Z}_4$. Furthermore, any connected *G*-edgeprimitive pentavalent graph is isomorphic to the $PSp(4, 4).\mathbb{Z}_4$ -graph.

Proof of Theorem 1.1 The graph X has an edge $e = \{v, u\}$, and is A-edge-primitive, where A = Aut(X). Clearly, $K_{5,5}$ is 3-transitive and edge-primitive. Now assume $X \neq K_{5,5}$. By [3, Lemmas 3.1 and 3.4], X is a connected (A, s)-transitive graph for $s \ge 1$.

Let $s \leq 3$. By Lemma 2.4, T = Soc(A) is a non-abelian simple group. Note that A_e is a {2, 3}-group and hence solvable. By [6, Theorem 1.1], A has a normal subgroup B which is minimal under the condition that $B_e = B \cap A_e$ is maximal in B, and the pairs (B, B_e) are given in [6, Tables 14–20]. Since $B \leq A$, the edge-primitivity of A implies that B is edge-transitive and hence edge-primitive by the maximality of B_e in B. Again by [3, Lemma 3.4], X is B-arc-transitive, and by Lemma 2.2, B is 2- or 3-transitive and B_v is non-solvable. Clearly, Soc(B) = T. By Lemma 2.3, $B_e = A_4.\mathbb{Z}_2$, $S_4.\mathbb{Z}_2$, $(A_4 \times A_4).\mathbb{Z}_2$, $(S_4 \times S_4).\mathbb{Z}_2$, or $((A_4 \times A_4).\mathbb{Z}_2).\mathbb{Z}_2$. Checking the pairs (B, B_e) listed in [6, Tables 14–20], we have $T = A_6 = \text{PSL}(2, 9)$, PSL(2, p) with p a prime $(p \equiv \pm 1 \pmod{8}$ or $p \equiv \pm 11, \pm 19 \pmod{40}$, or PSL(3, 2), we have T = PSL(2, 9) or PSL(2, p) $(p \equiv \pm 1 \pmod{8})$, or $p \equiv \pm 11, \pm 19 \pmod{40}$. Since X has valency 5, by [3, Theorem 1.3], X is isomorphic to K_6 , the PSL(2, p)-graph or the PGL(2, p)-graph.

Let $s \ge 4$. By [6, Theorem 1.3], X is isomorphic to the $J_3.\mathbb{Z}_2$ -graph, the PSL(3, 4). D_{12} -graph or the PSp(4, 4). \mathbb{Z}_4 -graph.

Acknowledgements This work was partially supported by the National Natural Science Foundation of China (11171020, 11231008) and also by an ARC Discovery Project grant.

References

- Conway, H.J., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Oxford (1985)
- 2. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)
- Giudici, M., Li, C.H.: On finite edge-primitive and edge-quasiprimitive graphs. J. Comb. Theory, Ser. B 100, 275–298 (2010)
- Guo, S.T., Feng, Y.Q., Li, C.H.: Edge-primitive tetravalent graphs. J. Comb. Theory Ser. B (submitted)
- 5. Li, C.H.: The finite vertex-primitive and vertex-biprimitive *s*-transitive graphs for $s \ge 4$. Trans. Am. Math. Soc. **353**, 3511–3529 (2001)
- Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and edge-primitive s-arc transitive graphs. Proc. Lond. Math. Soc. 103, 441–472 (2011)
- Lorimer, P.: Vertex-transitive graphs: Symmetric graphs of prime valency. J. Graph Theory 8, 55–68 (1984)
- 8. Sabidussi, G.: Vertex-transitive graphs. Monatshefte Math. 68, 426–438 (1964)
- 9. Weiss, R.M.: Kantenprimitive Graphen vom Grad drei. J. Comb. Theory, Ser. B 15, 269–288 (1973)
- 10. Weiss, R.M.: s-Transitive graphs. Algebr. Methods Graph Theory 2, 827-847 (1981)
- Weiss, R.M.: An application of *p*-factorization methods to symmetric graphs. Math. Proc. Camb. Philos. Soc. 85, 43–48 (1979)
- Weiss, R.M.: A characterization and another construction of Janko's group J₃. Trans. Am. Math. Soc. 298, 621–633 (1986)