The finite edge-primitive pentavalent graphs

Song-Tao Guo • Yan-Quan Feng • Cai Heng Li

Received: 13 December 2011 / Accepted: 17 November 2012 / Published online: 30 November 2012 © Springer Science+Business Media New York 2012

Abstract

A graph is edge-primitive if its automorphism group acts primitively on edges. Weiss (in J. Comb. Theory Ser. B 15, 269-288, 1973) determined edgeprimitive cubic graphs. In this paper, we classify edge-primitive pentavalent graphs. The same classification of those of valency 4 is also done.

Keywords Edge-primitive graph \cdot Symmetric graph $\cdot s$-Transitive graph

1 Introduction

Let G be a group acting on a set Ω. Denote by G_{α} the subgroup of G fixing the point α. G is said to be semiregular if $G_{\alpha}=1$ for each $\alpha \in \Omega$, and G is said to be regular if G is transitive and semiregular. A non-empty subset Δ of Ω is called a block for G if for each $g \in G$ either $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$. Clearly, the set Ω and the singletons $\{\alpha\}(\alpha \in \Omega)$ are blocks for G, called the trivial blocks. Any other block is said to be non-trivial. Suppose that Δ is a non-trivial block for G. Then $\left\{\Delta^{g} \mid g \in G\right\}$ is the system of imprimitivity of G containing Δ. A transitive group G is primitive if G has no non-trivial blocks on Ω.

Throughout this paper, we consider undirected finite graphs without loops or multiple edges. As usual, the notation $X=(V, E)$ denotes a graph with vertex set V and

[^0]edge set E, and $\operatorname{Aut}(X)$ denotes its automorphism group. If two vertices $u, v \in V$ are adjacent, $\{u, v\}$ denotes the edge between u and v. By $X_{1}(v)$, we mean the neighborhood of a vertex v in X, consisting of vertices which are adjacent to v.

Let $X=(V, E)$ be a graph and $G \leq \operatorname{Aut}(X)$. Then X is said to be G-locally primitive if the vertex stabilizer G_{v} acts primitively on $X_{1}(v)$ for each $v \in V$. A graph X is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V or E, respectively. If G is replaced by $\operatorname{Aut}(X)$, the graph X is simply said to be vertex-transitive or edge-transitive.

An s-arc in a graph is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ of vertices of the graph X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. A 0 -arc is a vertex and a 1 -arc is also called an arc for short. A graph X is said to be (G, s)-arc-transitive if $G \leq \operatorname{Aut}(X)$ is transitive on the set of s-arcs in X. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not $(G, s+1)$ -arc-transitive. A graph X is said to be s-arc-transitive or s-transitive if the graph is ($\operatorname{Aut}(X), s)$-arc-transitive or $(\operatorname{Aut}(X), s)$-transitive. A graph X is G-edge-primitive if $G \leq \operatorname{Aut}(X)$ acts primitively on the set of edges of X, and X is edge-primitive if it is $\operatorname{Aut}(X)$-edge-primitive.

Weiss [9] determined all edge-primitive cubic graphs, which are the complete bipartite graph $K_{3,3}$, the Heawood graph of order 14, the Biggs-Smith cubic distancetransitive graph of order 102 and the Tutte-Coxeter graph of order 30 (also known as Tutte's 8 -cage or the Levi graph). Giudici and Li [3] systematically analyzed edgeprimitive graphs via the O'Nan-Scott Theorem to determine the possible edge and vertex actions of such graphs, and determined all G-edge-primitive graphs for G an almost simple group with socle $\operatorname{PSL}(2, q)$, where q is a prime power and $q \neq 2,3$. Recently, the authors [4] classified edge-primitive tetravalent graphs, which are the complete graph K_{5}, the co-Heawood graph of order 14 (the complement graph of the Heawood graph with respect to the complete bipartite graph $K_{7,7}$), the complete bipartite graph $K_{4,4}$, and three coset graphs defined on the almost simple groups $\operatorname{Aut}(\operatorname{PSL}(3,3)), \operatorname{Aut}\left(\mathrm{M}_{12}\right)$ and $\operatorname{Aut}\left(G_{2}(3)\right)$, respectively. In [6], edge-primitive 4-arc-transitive graphs are classified. In this paper, we give a classification of edgeprimitive graphs of valency 5 .

Theorem 1.1 Let X be an edge-primitive pentavalent graph with an edge $e=\{u, v\}$ and let $A=\operatorname{Aut}(X)$. Then X is s-transitive with $s \geq 2$, and X, s, A, A_{v} and A_{e} are listed in Table 1. Furthermore, such a graph X is uniquely determined by its number of vertices.

From Theorem 1.1, we have the following corollary.

Corollary 1.2 All finite edge-primitive pentavalent graphs are 2-arc-transitive.

Remark Let X be an edge-primitive graph with an edge $e=\{u, v\}$ and let $A=$ $\operatorname{Aut}(X)$. Weiss classified such graphs of valency 3 in 1973. However, since then there is no much progress in this line for small valencies. In this paper, we first reduce A to an almost simple group when X has valency 5 and Theorem 1.1 follows from the classification of finite primitive groups with solvable stabilizers given in [6]. The method does not work for valency greater than 5 because A_{e} can be non-solvable.

Table $1 s$-transitive edge-primitive pentavalent graphs

X	s	A	A_{v}	A_{e}
Complete graph K_{6}	2	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4} \times \mathbb{Z}_{2}$
PSL(2, p)-graph (Example 3.1)	2	$\operatorname{PSL}(2, p)$	A_{5}	$\mathrm{~S}_{4}$
PGL(2, p)-graph (Example 3.2)	2	$\operatorname{PGL}(2, p)$	A_{5}	$\mathrm{~S}_{4}$
Complete bipartite graph $K_{5,5}$	3	$\mathrm{~S}_{5} \mathrm{wr}_{2}$	$\mathrm{~S}_{5} \times \mathrm{S}_{4}$	$\mathrm{~S}_{4} \mathrm{wr} \mathrm{S}_{2}$
$\mathrm{~J}_{3} \cdot \mathbb{Z}_{2}$-graph (Example 3.3)	4	$\mathrm{~J}_{3} \cdot \mathbb{Z}_{2}$	$\mathbb{Z}_{2}^{4} \rtimes \Gamma \mathrm{~L}(2,4)$	$\left(\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) \cdot \mathbb{Z}_{2}$
PSL(3, 4).D D_{12}-graph (Example 3.4)	4	$\operatorname{PSL}(3,4) \cdot D_{12}$	$\mathbb{Z}_{2}^{4} \rtimes \Gamma \mathrm{~L}(2,4)$	$\left(\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) \cdot \mathbb{Z}_{2}$
$\operatorname{PSp}(4,4) \cdot \mathbb{Z}_{4}$-graph (Example 3.5)	5	$\operatorname{PSp}(4,4) \cdot \mathbb{Z}_{4}$	$\mathbb{Z}_{2}^{6} \rtimes \Gamma \mathrm{~L}(2,4)$	$\left(\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) \cdot \mathbb{Z}_{2}$

2 A reduction

Let $X=(V, E)$ be a G-edge-primitive graph of valency 5 with an edge $e=\{u, v\}$. Then $2|E|=5|V|$, and G is a primitive permutation group on E. By [3, Lemmas 3.1 and 3.4], X is connected and G-arc-transitive. Thus, $5\left|\left|G_{v}\right|\right.$, but $\left.5^{2} X\right| G_{v} \mid$. In particular, X is G-locally primitive. Let $N=\operatorname{Soc}(G)=T^{k}$, the socle of G. Then T is a simple group, N is transitive on E, and hence N has at most two orbits on V. If N has two orbits on V, denote by V_{1} and V_{2} these orbits. In this case, X is bipartite with V_{1} and V_{2} as its bipartition sets.

Lemma 2.1 The socle N is a minimal normal subgroup of G and is not semiregular on V, and the graph X is N-locally primitive. If $X \neq K_{5,5}, T$ is non-abelian simple and if further $k \geq 2, T$ is semiregular on V.

Proof Let $1 \neq M \triangleleft G$. Suppose that M is semiregular on V. Then $M_{v}=1$ and M is transitive on E, implying that M has at most two orbits on V. Thus, $|V|=|M|$ or $2|M|$. The edge-primitivity of G implies that M is transitive on E. It follows that $|E|||M|$ and so $| E|||V|$, which is impossible because $| E|=\frac{5|V|}{2}$. Thus, M is not semiregular on V. Note that $\left|X_{1}(v)\right|=5$. Since $M \triangleleft G$ and X is G-arc-transitive, M_{v} is transitive on $X_{1}(v)$, and hence primitive on $X_{1}(v)$. Further, X is M-locally primitive. In particular, by taking $M=N$ we see that N is not semiregular on V and X is N-locally primitive. If G has two distinct minimal normal subgroups, say N_{1} and N_{2}, then $N_{1} \times N_{2} \leq G$. By taking $M=N_{1}$ or N_{2}, X is N_{1} - and N_{2}-locally primitive. This implies that $5\left|\left|\left(N_{1}\right)_{v}\right|\right.$ and $|\left(N_{2}\right)_{v} \mid$, forcing that $5^{2}| | G_{v} \mid$, a contradiction. Thus, N is a minimal normal subgroup of G.

To prove the second part, let $X \neq K_{5,5}$. Suppose T is abelian. Then N is abelian and hence regular on E. It follows that $|N|=|E|=\frac{5|V|}{2}$. Recall that N is not semiregular. If N has one orbit on V then N is regular on V, a contradiction. It follows that N has two orbits on V, that is, V_{1} and V_{2}, and for $v \in V_{1}$, we have $N_{v} \neq 1$. Since N is abelian, N_{v} fixes every vertex in V_{1}, forcing $X=K_{5,5}$, a contradiction. Thus, N is non-abelian. To finish the proof, we further let $k \geq 2$. Suppose that T is not semiregular on V. Write $N=T \times L$, where $L=T^{k-1}$. By the minimality of N in G, L is not semiregular on V.

Assume that N is transitive on V. Since T is not semiregular on $V, T_{w} \neq 1$ for every $w \in V$, and by the minimality of N in $G, L_{w} \neq 1$. By the vertex-transitivity
and locally primitivity of N, we have $5 \| T_{w} \mid$ and $5 \|\left|L_{w}\right|$. It follows that $5^{2}| | N_{w} \mid$, which is impossible.

Now assume that N has two orbits on V. We may let $v \in V_{1}$ and $u \in V_{2}$. Suppose that $5 \nmid\left|T_{v}\right|$ and $5 \nmid\left|T_{u}\right|$. Then $5 \nmid\left|T_{w}\right|$ and $5 X\left|T_{x}\right|$ for every $w \in V_{1}$ and every $x \in V_{2}$. Since X is N-locally primitive, T_{w} and T_{x} fix $X_{1}(w)$ and $X_{1}(x)$ pointwise, respectively. The connectivity of X implies that T_{u} and T_{v} fix every vertex in V. Then $T_{u}=T_{v}=1$ and hence $T_{w}=T_{x}=1$ for every $w \in V_{1}$ and every $x \in V_{2}$, contrary to the assumption that T is not semiregular on V. Thus, we may assume that $5\left|\left|T_{v}\right|\right.$ (note that we cannot deduce $5\left|\left|T_{v}\right|\right.$ by the locally primitivity of N when $T_{v} \neq 1$ because N has two orbits). By the minimality of $N, 5| | L_{u} \mid$.

Consider the orbits of L. Let $\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ and $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be the sets of orbits of L on V_{1} and V_{2}, respectively. We may assume that $v \in B_{1}$ and $u \in C_{1}$. Note that B_{i} and C_{i} are blocks of N. Since $5\left|\left|L_{u}\right|, L_{u}\right.$ is transitive on $X_{1}(u)$. Thus, $X_{1}(u) \subseteq B_{1}$, and $X_{1}(x) \subseteq B_{1}$ for every $x \in C_{1}$ because B_{1} and C_{1} are orbits of L. The edge-transitivity of N implies that if there is an edge between C_{i} and B_{1} then $X_{1}(x) \subseteq B_{1}$ for every $x \in C_{i}$. The connectivity of X implies that $m=1$, that is, L is transitive on V_{1}. Thus, $T_{v}=T_{w}$ for every vertex $w \in V_{1}$ because L commutes with T, which forces that $X=K_{5,5}$, a contradiction.

Lemma 2.2 Let $X \neq K_{5,5}$. Then G_{v} is non-solvable and G is 2-arc-transitive.

Proof Since G is arc-transitive, let X be (G, s)-arc-transitive for some $s \geq 1$. Note that a transitive permutation group of prime degree is either solvable or 2-transitive. To prove the lemma, we only need to show that G_{v} is non-solvable. Suppose to the contrary that G_{v} is solvable. Then the primitive permutation group $G_{v}^{X_{1}(v)}$ of degree 5 is isomorphic to \mathbb{Z}_{5}, D_{10} or F_{20}, and hence $G_{v u}^{X_{1}(v)}$ is a 2-group (the identity subgroup is also viewed as a 2-group). Let $G_{v}^{[1]}$ be the kernel of G_{v} acting on $X_{1}(v)$. By [6, Theorem 1.3], G_{v} is non-solvable for $s \geq 4$. Thus, $s \leq 3$ and by [10, Theorems 4.6-4.7], $G_{u v}^{[1]}=G_{u}^{[1]} \cap G_{v}^{[1]}=1$. Then $G_{u}^{[1]} \times G_{v}^{[1]}=G_{u}^{[1]} G_{v}^{[1]} \triangleleft G_{v u}$, and $G_{v}^{[1]} \cong G_{u}^{[1]} \cong G_{u}^{[1]} /\left(G_{u}^{[1]} \cap G_{v}^{[1]}\right) \cong\left(G_{u}^{[1]}\right)^{X_{1}(v)} \triangleleft G_{v u}^{X_{1}(v)}$, implying that $G_{v}^{[1]}$ is a 2group. It follows that $G_{v u}$ is a 2-group and hence G_{e} is a 2-group. The maximality of G_{e} in G implies that G_{e} is a Sylow 2-subgroup of G. Thus, $|E|$ is odd and so is $\frac{1}{2}|V|$. Moreover, if $N=T^{k}$ with $k \geq 2$ then by Lemma 2.1, T is semiregular on V, which is impossible. Thus $k=1$, and G is almost simple. By [11, Theorem], if the stabilizer of an arc-transitive automorphism group of a graph with prime valency p is solvable then its order is a divisor of $p(p-1)^{2}$. Thus, $\left|G_{v}\right| \mid 80$, which forces that $\left|G_{e}\right| \mid 32$. Since $|G|$ is divisible by 5 , by $[6$, Tables $14-20]$ we have $G=\operatorname{PGL}(2,9), \mathrm{M}_{10}$, or $\operatorname{PSL}(2,31)$, which is also impossible by the Atlas [1].

Let $X \neq K_{5,5}$ and $s \leq 3$. Note that $G_{v}^{[1]}$ is a $\{2,3\}$-group and hence solvable. By Lemma 2.2, $G_{v}^{X_{1}(v)}$ is non-solvable and so $G_{v}^{X_{1}(v)}=\mathrm{A}_{5}$ or S_{5}, which implies that $G_{v u}^{X_{1}(v)}=\mathrm{A}_{4}$ or S_{4}, respectively. If $G_{v}^{[1]}=1$ then $G_{v}=\mathrm{A}_{5}$ or S_{5}. Now assume $G_{v}^{[1]} \neq 1$. Since $G_{v}^{[1]} \triangleleft G_{v u}$ and $G_{v}^{[1]} \cap G_{u}^{[1]}=1, G_{v}^{[1]}$ is transitive on $X_{1}(u) \backslash\{v\}$.

We claim that G_{v} has a normal subgroup A_{5} or S_{5} and $G_{v}^{[1]}=\mathrm{A}_{4}$ or S_{4}. To prove it, let $H=\left\langle G_{z}^{[1]} \mid z \in X_{1}(v)\right\rangle$. Then $H \triangleleft G_{v}$. Since $G_{v}^{[1]} \cap G_{u}^{[1]}=1$, the ac-
tion of $G_{v}^{[1]}$ on $X_{1}(u) \backslash\{v\}$ is non-trivial and so H has a non-trivial action on $X_{1}(v)$. Since $H^{X_{1}(v)} \unlhd G_{v}^{X_{1}(v)}=\mathrm{A}_{5}$ or S_{5}, we have $H^{X_{1}(v)}=\mathrm{A}_{5}$ or S_{5}. Then $H_{v u}^{X_{1}(v)}=\mathrm{A}_{4}$ or S_{4}, and so H contains a non-identity element h of order 3-power such that $h \in H_{v u w}$ for some $w \in X_{1}(u)$ with $w \neq v$. On the other hand, it is easy to show that $\left[H, G_{v}^{[1]}\right] \leq G_{v}^{[1]} \cap G_{u}^{[1]}=1$, which implies that $H \cap G_{v}^{[1]} \leq Z\left(G_{v}^{[1]}\right)$, the center of $G_{v}^{[1]}$. It follows that H commutes with $G_{v}^{[1]}$ and hence h fixes $X_{1}(u)$ pointwise because $G_{v}^{[1]}$ is transitive on $X_{1}(u) \backslash\{v\}$. Thus, $3 \| G_{u}^{[1]} \mid$ and $3 \| G_{v}^{[1]} \mid$. Since $G_{v}^{[1]} \cong G_{v}^{[1]} / G_{u v}^{[1]} \unlhd G_{v u}^{X_{1}(v)}=\mathrm{A}_{4}$ or S_{4}, we have $G_{v}^{[1]}=\mathrm{A}_{4}$ or S_{4}. Furthermore, $H \cap G_{v}^{[1]} \leq Z\left(G_{v}^{[1]}\right)=1$, implying that $G_{v}^{[1]} H=G_{v}^{[1]} \times H$ and H is faithful on $X_{1}(v)$. Thus, $H=\mathrm{A}_{5}$ or S_{5}, as claimed.

Now it is easy to see that $\left|G_{v}: G_{v}^{[1]} \times H\right|=1$ or 2 and we have the following lemma.

Lemma 2.3 Suppose that $X \neq K_{5,5}$ and X is connected (G, s)-transitive with $s \leq 3$. Then either
(1) $s=2$, and $G_{v}=\mathrm{A}_{5}$ or S_{5}, or
(2) $s=3$, and $G_{v}=\mathrm{A}_{4} \times \mathrm{A}_{5}, \mathrm{~S}_{4} \times \mathrm{S}_{5}$, or $\left(\mathrm{A}_{4} \times \mathrm{A}_{5}\right) . \mathbb{Z}_{2}$.

In particular, this lemma tells us that G_{v} does not have a subnormal subgroup \mathbb{Z}_{5}.
Lemma 2.4 Suppose that $X \neq K_{5,5}$ and X is connected (G, s)-transitive with $s \leq 3$. Then G is almost simple.

Proof Suppose that $1 \neq M \triangleleft N$ is regular on E. Then X is M-edge-transitive, and hence M has at most two orbits on V. Thus, $|M|=|E|=\frac{5|V|}{2}$ is divisible by $|V|$ or $\frac{1}{2}|V|$, forcing that M has exactly two orbits on V, X is bipartite, and $\left|M_{v}\right|=5$. It follows that $\mathbb{Z}_{5} \cong M_{v} \triangleleft N_{v} \triangleleft G_{v}$, which is impossible by Lemma 2.3. Thus, N does not have a normal subgroup which is regular on E, and by O'Nan-Scott's theorem [2, Theorem 4.1A], G is almost simple, or of product action on E.

Suppose that G is of product action on E. Then by O'Nan-Scott's theorem, $N_{e}=T_{e}^{k}, T_{e} \neq 1$, and $k \geq 2$. Since $X \neq K_{5,5}$, by Lemma 2.1, $T_{v}=1$. It follows that $T_{e}=\mathbb{Z}_{2}$ and $N_{e}=T_{e}^{k}=\mathbb{Z}_{2}^{k}$, which is impossible because $3\left|\left|N_{e}\right|\right.$ (Lemma 2.3). Thus, G is an almost simple group.

From Lemma 2.4 we find that if $X \neq K_{5,5}$ then the group G is almost simple, and the edge stabilizer G_{e} is a maximal subgroup, and $G_{e}=\mathrm{A}_{4} \cdot \mathbb{Z}_{2}, \mathrm{~S}_{4} \cdot \mathbb{Z}_{2},\left(\mathrm{~A}_{4} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2}$, $\left(\mathrm{S}_{4} \times \mathrm{S}_{4}\right) \cdot \mathbb{Z}_{2}$, or $\left(\left(\mathrm{A}_{4} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2}\right) \cdot \mathbb{Z}_{2}$.

3 Classification

In this section, we prove Theorem 1.1. First, we introduce the so-called coset graph. Let G be a finite group, H a subgroup of G and $D=D^{-1}$ a union of several doublecosets of the form $H g H$ with $g \notin H$. The coset $\operatorname{graph} X=\operatorname{Cos}(G, H, D)$ of G with respect to H and D is defined to have vertex set $V=[G: H]$, the set of the
right cosets of H in G, and edge set $E=\{\{H g, H d g\} \mid g \in G, d \in D\}$. Then X is well defined and has valency $|D| /|H|$. Furthermore, X is connected if and only if D generates G. Note that G acts on V by right multiplication and so we can view G / H_{G} as a subgroup of $\operatorname{Aut}(X)$, where H_{G} is the largest normal subgroup of G contained in H. We may show that G acts transitively on the arcs of X if and only if $D=H g H$ for some $g \in G \backslash H$ (see [7, 8]). The following two examples were described in [3, Sect. 8].

Example 3.1 Let p be a prime and let $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 1, \pm 9(\bmod 40)$. Then by [3, Proposition 8.5], G has a subgroup $H=\mathrm{A}_{5}$ and one conjugacy class of maximal subgroups $K=\mathrm{S}_{4}$ such that $K \cap H=\mathrm{A}_{4}$. Take an involution $g \in K \backslash H$. Define the pentavalent $\operatorname{PSL}(2, p)$-graph as $\operatorname{Cos}(G, H, H g H)$. Then the $\operatorname{PSL}(2, p)$ graph is edge-primitive and has automorphism group $\operatorname{PSL}(2, p)$. Furthermore, any connected G-edge-primitive pentavalent graph is isomorphic to the $\operatorname{PSL}(2, p)$-graph.

Example 3.2 Let p be a prime and let $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 11, \pm 19(\bmod 40)$. Then by [3, Proposition 8.5], G has a subgroup $H=\mathrm{A}_{5}$ and one conjugacy class of maximal subgroups $K=\mathrm{S}_{4}$ such that $K \cap H=\mathrm{A}_{4}$. Take an involution $g \in K \backslash H$. Define the pentavalent $\operatorname{PGL}(2, p)$-graph as $\operatorname{Cos}(G, H, H g H)$. Then the $\operatorname{PGL}(2, p)$ graph is an edge-primitive graph and has automorphism group PGL($2, p$). Furthermore, any connected G-edge-primitive pentavalent graph is isomorphic to the PGL(2, p)-graph.

Now we construct an edge-primitive graph, which was given by Weiss [12].
Example 3.3 Let $G=\operatorname{Aut}\left(\mathrm{J}_{3}\right)=\mathrm{J}_{3} . \mathbb{Z}_{2}$. Then by the Atlas [1], G has maximal subgroups $H=\mathbb{Z}_{2}^{4} \rtimes \Gamma \mathrm{~L}(2,4)$ and $K=\left(\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) . \mathbb{Z}_{2}$ such that $K \cap H=$ $\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)$. Define the pentavalent $\mathrm{J}_{3} \cdot \mathbb{Z}_{2}$-graph as $\operatorname{Cos}(G, H, H g H)$, where $g \in K \backslash H$. Then this is a 4-transitive edge-primitive graph, and has automorphism group $\mathrm{J}_{3} . \mathbb{Z}_{2}$. Furthermore, any connected G-edge-primitive pentavalent graph is isomorphic to the $\mathrm{J}_{3} \cdot \mathbb{Z}_{2}$-graph.

The following two edge-primitive pentavalent graphs are extracted from [5, Sect. 2].

Example 3.4 Let $G=\operatorname{Aut}(\operatorname{PSL}(3,4))=\operatorname{PSL}(3,4) . D_{12}$. By the Atlas [1], G has a maximal subgroup $K=\left(\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) . \mathbb{Z}_{2}$ and a subgroup $H=\mathbb{Z}_{2}^{4} \rtimes \Gamma \mathrm{~L}(2,4)$ such that $K \cap H=\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)$. Define the pentavalent $\operatorname{PSL}(3,4) . D_{12}$-graph as $\operatorname{Cos}(G, H, H g H)$, where $g \in K \backslash H$. Then this is a 4-transitive edge-primitive graph and has automorphism group $\operatorname{PSL}(3,4) . D_{12}$. Furthermore, any connected G-edgeprimitive pentavalent graph is isomorphic to the $\operatorname{PSL}(3,4) \cdot D_{12}$-graph.

Example 3.5 Let $G=\operatorname{Aut}(\operatorname{PSp}(4,4))=\operatorname{PSp}(4,4) . \mathbb{Z}_{4}$. By the Atlas [1], G has a maximal subgroup $K=\left(\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)\right) . \mathbb{Z}_{2}$ and a subgroup $H=\mathbb{Z}_{2}^{6} \rtimes \Gamma \mathrm{~L}(2,4)$ such that $K \cap H=\mathbb{Z}_{2}^{6} \rtimes\left(\mathrm{~A}_{4} \rtimes \mathrm{~S}_{3}\right)$. Define the pentavalent $\operatorname{PSp}(4,4) . \mathbb{Z}_{4}$-graph as $\operatorname{Cos}(G, H, H g H)$, where $g \in K \backslash H$. Then this is a 5-transitive edge-primitive graph
and has automorphism group $\operatorname{PSp}(4,4) \cdot \mathbb{Z}_{4}$. Furthermore, any connected G-edgeprimitive pentavalent graph is isomorphic to the $\mathrm{PSp}(4,4) \cdot \mathbb{Z}_{4}$-graph.

Proof of Theorem 1.1 The graph X has an edge $e=\{v, u\}$, and is A-edge-primitive, where $A=\operatorname{Aut}(X)$. Clearly, $K_{5,5}$ is 3-transitive and edge-primitive. Now assume $X \neq K_{5,5}$. By [3, Lemmas 3.1 and 3.4], X is a connected (A, s)-transitive graph for $s \geq 1$.

Let $s \leq 3$. By Lemma $2.4, T=\operatorname{Soc}(A)$ is a non-abelian simple group. Note that A_{e} is a $\{2,3\}$-group and hence solvable. By [6, Theorem 1.1], A has a normal subgroup B which is minimal under the condition that $B_{e}=B \cap A_{e}$ is maximal in B, and the pairs $\left(B, B_{e}\right)$ are given in [6, Tables 14-20]. Since $B \unlhd A$, the edge-primitivity of A implies that B is edge-transitive and hence edge-primitive by the maximality of B_{e} in B. Again by [3, Lemma 3.4], X is B-arc-transitive, and by Lemma 2.2, B is 2- or 3-transitive and B_{v} is non-solvable. Clearly, $\operatorname{Soc}(B)=T$. By Lemma 2.3, $B_{e}=\mathrm{A}_{4} \cdot \mathbb{Z}_{2}, \mathrm{~S}_{4} \cdot \mathbb{Z}_{2},\left(\mathrm{~A}_{4} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2},\left(\mathrm{~S}_{4} \times \mathrm{S}_{4}\right) \cdot \mathbb{Z}_{2}$, or $\left(\left(\mathrm{A}_{4} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2}\right) \cdot \mathbb{Z}_{2}$. Checking the pairs $\left(B, B_{e}\right)$ listed in $[6$, Tables $14-20]$, we have $T=\mathrm{A}_{6}=\operatorname{PSL}(2,9), \operatorname{PSL}(2, p)$ with p a prime $(p \equiv \pm 1(\bmod 8)$ or $p \equiv \pm 11, \pm 19(\bmod 40))$, or $\operatorname{PSL}(3,2)$. Since $5 \nmid \operatorname{PSL}(3,2) \mid$, we have $T=\operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2, p)(p \equiv \pm 1(\bmod 8)$, or $p \equiv \pm 11, \pm 19(\bmod 40))$. Since X has valency 5 , by [3, Theorem 1.3], X is isomorphic to K_{6}, the $\operatorname{PSL}(2, p)$-graph or the $\operatorname{PGL}(2, p)$-graph.

Let $s \geq 4$. By [6, Theorem 1.3], X is isomorphic to the $\mathrm{J}_{3} . \mathbb{Z}_{2}$-graph, the $\operatorname{PSL}(3,4) \cdot D_{12}$-graph or the $\operatorname{PSp}(4,4) \cdot \mathbb{Z}_{4}$-graph.

Acknowledgements This work was partially supported by the National Natural Science Foundation of China $(11171020,11231008)$ and also by an ARC Discovery Project grant.

References

1. Conway, H.J., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Oxford (1985)
2. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)
3. Giudici, M., Li, C.H.: On finite edge-primitive and edge-quasiprimitive graphs. J. Comb. Theory, Ser. B 100, 275-298 (2010)
4. Guo, S.T., Feng, Y.Q., Li, C.H.: Edge-primitive tetravalent graphs. J. Comb. Theory Ser. B (submitted)
5. Li, C.H.: The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$. Trans. Am. Math. Soc. 353, 3511-3529 (2001)
6. Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and edge-primitive s-arc transitive graphs. Proc. Lond. Math. Soc. 103, 441-472 (2011)
7. Lorimer, P.: Vertex-transitive graphs: Symmetric graphs of prime valency. J. Graph Theory 8, 55-68 (1984)
8. Sabidussi, G.: Vertex-transitive graphs. Monatshefte Math. 68, 426-438 (1964)
9. Weiss, R.M.: Kantenprimitive Graphen vom Grad drei. J. Comb. Theory, Ser. B 15, 269-288 (1973)
10. Weiss, R.M.: s-Transitive graphs. Algebr. Methods Graph Theory 2, 827-847 (1981)
11. Weiss, R.M.: An application of p-factorization methods to symmetric graphs. Math. Proc. Camb. Philos. Soc. 85, 43-48 (1979)
12. Weiss, R.M.: A characterization and another construction of Janko's group J3. Trans. Am. Math. Soc. 298, 621-633 (1986)

[^0]: S.-T. Guo • Y.-Q. Feng (\triangle)

 Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China
 e-mail: yqfeng @bjtu.edu.cn
 S.-T. Guo
 e-mail: gsongtao@gmail.com
 C.H. Li

 School of Mathematics and Statistics, The University of Western Australia, Crawley 6009, WA, Australia
 e-mail: cai.heng.li@uwa.edu.au

