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Abstract A graph is edge-primitive if its automorphism group acts primitively on
edges. Weiss (in J. Comb. Theory Ser. B 15, 269–288, 1973) determined edge-
primitive cubic graphs. In this paper, we classify edge-primitive pentavalent graphs.
The same classification of those of valency 4 is also done.

Keywords Edge-primitive graph · Symmetric graph · s-Transitive graph

1 Introduction

Let G be a group acting on a set Ω . Denote by Gα the subgroup of G fixing the
point α. G is said to be semiregular if Gα = 1 for each α ∈ Ω , and G is said to
be regular if G is transitive and semiregular. A non-empty subset Δ of Ω is called
a block for G if for each g ∈ G either Δg = Δ or Δg ∩ Δ = ∅. Clearly, the set Ω

and the singletons {α} (α ∈ Ω) are blocks for G, called the trivial blocks. Any other
block is said to be non-trivial. Suppose that Δ is a non-trivial block for G. Then
{Δg | g ∈ G} is the system of imprimitivity of G containing Δ. A transitive group G

is primitive if G has no non-trivial blocks on Ω .
Throughout this paper, we consider undirected finite graphs without loops or mul-

tiple edges. As usual, the notation X = (V ,E) denotes a graph with vertex set V and
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edge set E, and Aut(X) denotes its automorphism group. If two vertices u ,v ∈ V are
adjacent, {u,v} denotes the edge between u and v. By X1(v), we mean the neighbor-
hood of a vertex v in X, consisting of vertices which are adjacent to v.

Let X = (V ,E) be a graph and G ≤ Aut(X). Then X is said to be G-locally
primitive if the vertex stabilizer Gv acts primitively on X1(v) for each v ∈ V . A graph
X is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V

or E, respectively. If G is replaced by Aut(X), the graph X is simply said to be
vertex-transitive or edge-transitive.

An s-arc in a graph is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices
of the graph X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 �= vi+1 for
1 ≤ i ≤ s − 1. A 0-arc is a vertex and a 1-arc is also called an arc for short. A graph
X is said to be (G, s)-arc-transitive if G ≤ Aut(X) is transitive on the set of s-arcs
in X. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not (G, s +1)-
arc-transitive. A graph X is said to be s-arc-transitive or s-transitive if the graph is
(Aut(X), s)-arc-transitive or (Aut(X), s)-transitive. A graph X is G-edge-primitive
if G ≤ Aut(X) acts primitively on the set of edges of X, and X is edge-primitive if it
is Aut(X)-edge-primitive.

Weiss [9] determined all edge-primitive cubic graphs, which are the complete bi-
partite graph K3,3, the Heawood graph of order 14, the Biggs–Smith cubic distance-
transitive graph of order 102 and the Tutte–Coxeter graph of order 30 (also known as
Tutte’s 8-cage or the Levi graph). Giudici and Li [3] systematically analyzed edge-
primitive graphs via the O’Nan–Scott Theorem to determine the possible edge and
vertex actions of such graphs, and determined all G-edge-primitive graphs for G an
almost simple group with socle PSL(2, q), where q is a prime power and q �= 2, 3.
Recently, the authors [4] classified edge-primitive tetravalent graphs, which are the
complete graph K5, the co-Heawood graph of order 14 (the complement graph of
the Heawood graph with respect to the complete bipartite graph K7,7), the complete
bipartite graph K4,4, and three coset graphs defined on the almost simple groups
Aut(PSL(3,3)), Aut(M12) and Aut(G2(3)), respectively. In [6], edge-primitive 4-
arc-transitive graphs are classified. In this paper, we give a classification of edge-
primitive graphs of valency 5.

Theorem 1.1 Let X be an edge-primitive pentavalent graph with an edge e = {u,v}
and let A = Aut(X). Then X is s-transitive with s ≥ 2, and X, s, A, Av and Ae are
listed in Table 1. Furthermore, such a graph X is uniquely determined by its number
of vertices.

From Theorem 1.1, we have the following corollary.

Corollary 1.2 All finite edge-primitive pentavalent graphs are 2-arc-transitive.

Remark Let X be an edge-primitive graph with an edge e = {u,v} and let A =
Aut(X). Weiss classified such graphs of valency 3 in 1973. However, since then there
is no much progress in this line for small valencies. In this paper, we first reduce
A to an almost simple group when X has valency 5 and Theorem 1.1 follows from
the classification of finite primitive groups with solvable stabilizers given in [6]. The
method does not work for valency greater than 5 because Ae can be non-solvable.
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Table 1 s-transitive edge-primitive pentavalent graphs

X s A Av Ae

Complete graph K6 2 S6 S5 S4 × Z2

PSL(2,p)-graph (Example 3.1) 2 PSL(2,p) A5 S4

PGL(2,p)-graph (Example 3.2) 2 PGL(2,p) A5 S4

Complete bipartite graph K5,5 3 S5 wr S2 S5 × S4 S4 wr S2

J3.Z2-graph (Example 3.3) 4 J3.Z2 Z
4
2�Γ L(2,4) (Z4

2�(A4�S3)).Z2

PSL(3,4).D12-graph (Example 3.4) 4 PSL(3,4).D12 Z
4
2�Γ L(2,4) (Z4

2�(A4�S3)).Z2

PSp(4,4).Z4-graph (Example 3.5) 5 PSp(4,4).Z4 Z
6
2�Γ L(2,4) (Z6

2�(A4�S3)).Z2

2 A reduction

Let X = (V ,E) be a G-edge-primitive graph of valency 5 with an edge e = {u,v}.
Then 2|E| = 5|V |, and G is a primitive permutation group on E. By [3, Lemmas 3.1
and 3.4], X is connected and G-arc-transitive. Thus, 5 | |Gv|, but 52 � | |Gv|. In par-
ticular, X is G-locally primitive. Let N = Soc(G) = T k , the socle of G. Then T is a
simple group, N is transitive on E, and hence N has at most two orbits on V . If N

has two orbits on V , denote by V1 and V2 these orbits. In this case, X is bipartite with
V1 and V2 as its bipartition sets.

Lemma 2.1 The socle N is a minimal normal subgroup of G and is not semiregular
on V , and the graph X is N -locally primitive. If X �= K5,5, T is non-abelian simple
and if further k ≥ 2, T is semiregular on V .

Proof Let 1 �= M � G. Suppose that M is semiregular on V . Then Mv = 1 and M

is transitive on E, implying that M has at most two orbits on V . Thus, |V | = |M|
or 2|M|. The edge-primitivity of G implies that M is transitive on E. It follows that
|E| | |M| and so |E| | |V |, which is impossible because |E| = 5|V |

2 . Thus, M is not
semiregular on V . Note that |X1(v)| = 5. Since M � G and X is G-arc-transitive,
Mv is transitive on X1(v), and hence primitive on X1(v). Further, X is M-locally
primitive. In particular, by taking M = N we see that N is not semiregular on V and
X is N -locally primitive. If G has two distinct minimal normal subgroups, say N1 and
N2, then N1 ×N2 ≤ G. By taking M = N1 or N2, X is N1- and N2-locally primitive.
This implies that 5 | |(N1)v| and |(N2)v|, forcing that 52 | |Gv|, a contradiction. Thus,
N is a minimal normal subgroup of G.

To prove the second part, let X �= K5,5. Suppose T is abelian. Then N is abelian
and hence regular on E. It follows that |N | = |E| = 5|V |

2 . Recall that N is not
semiregular. If N has one orbit on V then N is regular on V , a contradiction. It fol-
lows that N has two orbits on V , that is, V1 and V2, and for v ∈ V1, we have Nv �= 1.
Since N is abelian, Nv fixes every vertex in V1, forcing X = K5,5, a contradiction.
Thus, N is non-abelian. To finish the proof, we further let k ≥ 2. Suppose that T is
not semiregular on V . Write N = T × L, where L = T k−1. By the minimality of N

in G, L is not semiregular on V .
Assume that N is transitive on V . Since T is not semiregular on V , Tw �= 1 for

every w ∈ V , and by the minimality of N in G, Lw �= 1. By the vertex-transitivity
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and locally primitivity of N , we have 5 | |Tw| and 5 | |Lw|. It follows that 52 | |Nw|,
which is impossible.

Now assume that N has two orbits on V . We may let v ∈ V1 and u ∈ V2. Suppose
that 5 � | |Tv| and 5 � | |Tu|. Then 5 � | |Tw| and 5 � | |Tx | for every w ∈ V1 and every
x ∈ V2. Since X is N -locally primitive, Tw and Tx fix X1(w) and X1(x) pointwise,
respectively. The connectivity of X implies that Tu and Tv fix every vertex in V . Then
Tu = Tv = 1 and hence Tw = Tx = 1 for every w ∈ V1 and every x ∈ V2, contrary to
the assumption that T is not semiregular on V . Thus, we may assume that 5 | |Tv|
(note that we cannot deduce 5 | |Tv| by the locally primitivity of N when Tv �= 1
because N has two orbits). By the minimality of N , 5 | |Lu|.

Consider the orbits of L. Let {B1,B2, . . . ,Bm} and {C1,C2, . . . ,Cn} be the sets
of orbits of L on V1 and V2, respectively. We may assume that v ∈ B1 and u ∈ C1.
Note that Bi and Ci are blocks of N . Since 5 | |Lu|, Lu is transitive on X1(u). Thus,
X1(u) ⊆ B1, and X1(x) ⊆ B1 for every x ∈ C1 because B1 and C1 are orbits of L.
The edge-transitivity of N implies that if there is an edge between Ci and B1 then
X1(x) ⊆ B1 for every x ∈ Ci . The connectivity of X implies that m = 1, that is, L is
transitive on V1. Thus, Tv = Tw for every vertex w ∈ V1 because L commutes with T ,
which forces that X = K5,5, a contradiction. �

Lemma 2.2 Let X �= K5,5. Then Gv is non-solvable and G is 2-arc-transitive.

Proof Since G is arc-transitive, let X be (G, s)-arc-transitive for some s ≥ 1. Note
that a transitive permutation group of prime degree is either solvable or 2-transitive.
To prove the lemma, we only need to show that Gv is non-solvable. Suppose to the
contrary that Gv is solvable. Then the primitive permutation group G

X1(v)
v of de-

gree 5 is isomorphic to Z5, D10 or F20, and hence G
X1(v)
vu is a 2-group (the identity

subgroup is also viewed as a 2-group). Let G
[1]
v be the kernel of Gv acting on X1(v).

By [6, Theorem 1.3], Gv is non-solvable for s ≥ 4. Thus, s ≤ 3 and by [10, The-
orems 4.6–4.7], G

[1]
uv = G

[1]
u ∩ G

[1]
v = 1. Then G

[1]
u × G

[1]
v = G

[1]
u G

[1]
v � Gvu, and

G
[1]
v

∼= G
[1]
u

∼= G
[1]
u /(G

[1]
u ∩ G

[1]
v ) ∼= (G

[1]
u )X1(v) � G

X1(v)
vu , implying that G

[1]
v is a 2-

group. It follows that Gvu is a 2-group and hence Ge is a 2-group. The maximality of
Ge in G implies that Ge is a Sylow 2-subgroup of G. Thus, |E| is odd and so is 1

2 |V |.
Moreover, if N = T k with k ≥ 2 then by Lemma 2.1, T is semiregular on V , which
is impossible. Thus k = 1, and G is almost simple. By [11, Theorem], if the stabilizer
of an arc-transitive automorphism group of a graph with prime valency p is solvable
then its order is a divisor of p(p − 1)2. Thus, |Gv| |80, which forces that |Ge| |32.
Since |G| is divisible by 5, by [6, Tables 14–20] we have G = PGL(2,9), M10, or
PSL(2,31), which is also impossible by the Atlas [1]. �

Let X �= K5,5 and s ≤ 3. Note that G
[1]
v is a {2,3}-group and hence solvable.

By Lemma 2.2, G
X1(v)
v is non-solvable and so G

X1(v)
v = A5 or S5, which implies

that G
X1(v)
vu = A4 or S4, respectively. If G

[1]
v = 1 then Gv = A5 or S5. Now assume

G
[1]
v �= 1. Since G

[1]
v � Gvu and G

[1]
v ∩ G

[1]
u = 1, G

[1]
v is transitive on X1(u)\{v}.

We claim that Gv has a normal subgroup A5 or S5 and G
[1]
v = A4 or S4. To

prove it, let H = 〈G[1]
z | z ∈ X1(v)〉. Then H � Gv . Since G

[1]
v ∩ G

[1]
u = 1, the ac-
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tion of G
[1]
v on X1(u)\{v} is non-trivial and so H has a non-trivial action on X1(v).

Since HX1(v) � G
X1(v)
v = A5 or S5, we have HX1(v) = A5 or S5. Then H

X1(v)
vu = A4

or S4, and so H contains a non-identity element h of order 3-power such that
h ∈ Hvuw for some w ∈ X1(u) with w �= v. On the other hand, it is easy to show
that [H,G

[1]
v ] ≤ G

[1]
v ∩ G

[1]
u = 1, which implies that H ∩ G

[1]
v ≤ Z(G

[1]
v ), the cen-

ter of G
[1]
v . It follows that H commutes with G

[1]
v and hence h fixes X1(u) point-

wise because G
[1]
v is transitive on X1(u)\{v}. Thus, 3 | |G[1]

u | and 3 | |G[1]
v |. Since

G
[1]
v

∼= G
[1]
v /G

[1]
uv � G

X1(v)
vu = A4 or S4, we have G

[1]
v = A4 or S4. Furthermore,

H ∩ G
[1]
v ≤ Z(G

[1]
v ) = 1, implying that G

[1]
v H = G

[1]
v × H and H is faithful on

X1(v). Thus, H = A5 or S5, as claimed.
Now it is easy to see that |Gv : G

[1]
v × H | = 1 or 2 and we have the following

lemma.

Lemma 2.3 Suppose that X �= K5,5 and X is connected (G, s)-transitive with s ≤ 3.
Then either

(1) s = 2, and Gv = A5 or S5, or
(2) s = 3, and Gv = A4 × A5, S4 × S5, or (A4 × A5).Z2.

In particular, this lemma tells us that Gv does not have a subnormal subgroup Z5.

Lemma 2.4 Suppose that X �= K5,5 and X is connected (G, s)-transitive with s ≤ 3.
Then G is almost simple.

Proof Suppose that 1 �= M � N is regular on E. Then X is M-edge-transitive, and
hence M has at most two orbits on V . Thus, |M| = |E| = 5|V |

2 is divisible by |V | or
1
2 |V |, forcing that M has exactly two orbits on V , X is bipartite, and |Mv| = 5. It
follows that Z5 ∼= Mv � Nv � Gv , which is impossible by Lemma 2.3. Thus, N does
not have a normal subgroup which is regular on E, and by O’Nan–Scott’s theorem
[2, Theorem 4.1A], G is almost simple, or of product action on E.

Suppose that G is of product action on E. Then by O’Nan–Scott’s theorem,
Ne = T k

e , Te �= 1, and k ≥ 2. Since X �= K5,5, by Lemma 2.1, Tv = 1. It follows that
Te = Z2 and Ne = T k

e = Z
k
2, which is impossible because 3 | |Ne| (Lemma 2.3). Thus,

G is an almost simple group. �

From Lemma 2.4 we find that if X �= K5,5 then the group G is almost simple, and
the edge stabilizer Ge is a maximal subgroup, and Ge = A4.Z2, S4.Z2, (A4 ×A4).Z2,
(S4 × S4).Z2, or ((A4 × A4).Z2).Z2.

3 Classification

In this section, we prove Theorem 1.1. First, we introduce the so-called coset graph.
Let G be a finite group, H a subgroup of G and D = D−1 a union of several double-
cosets of the form HgH with g /∈ H . The coset graph X = Cos(G,H,D) of G

with respect to H and D is defined to have vertex set V = [G : H ], the set of the
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right cosets of H in G, and edge set E = {{Hg,Hdg} | g ∈ G,d ∈ D}. Then X is
well defined and has valency |D|/|H |. Furthermore, X is connected if and only if D

generates G. Note that G acts on V by right multiplication and so we can view G/HG

as a subgroup of Aut(X), where HG is the largest normal subgroup of G contained
in H . We may show that G acts transitively on the arcs of X if and only if D = HgH

for some g ∈ G\H (see [7, 8]). The following two examples were described in [3,
Sect. 8].

Example 3.1 Let p be a prime and let G = PSL(2,p) with p ≡ ±1, ±9 (mod 40).
Then by [3, Proposition 8.5], G has a subgroup H = A5 and one conjugacy class of
maximal subgroups K = S4 such that K ∩ H = A4. Take an involution g ∈ K\H .
Define the pentavalent PSL(2,p)-graph as Cos(G,H,HgH). Then the PSL(2,p)-
graph is edge-primitive and has automorphism group PSL(2,p). Furthermore, any
connected G-edge-primitive pentavalent graph is isomorphic to the PSL(2,p)-graph.

Example 3.2 Let p be a prime and let G = PGL(2,p) with p ≡ ±11, ±19 (mod 40).
Then by [3, Proposition 8.5], G has a subgroup H = A5 and one conjugacy class of
maximal subgroups K = S4 such that K ∩ H = A4. Take an involution g ∈ K\H .
Define the pentavalent PGL(2,p)-graph as Cos(G,H,HgH). Then the PGL(2,p)-
graph is an edge-primitive graph and has automorphism group PGL(2,p). Fur-
thermore, any connected G-edge-primitive pentavalent graph is isomorphic to the
PGL(2,p)-graph.

Now we construct an edge-primitive graph, which was given by Weiss [12].

Example 3.3 Let G = Aut(J3) = J3.Z2. Then by the Atlas [1], G has maximal sub-
groups H = Z

4
2 � Γ L(2,4) and K = (Z4

2 � (A4 � S3)).Z2 such that K ∩ H =
Z

4
2 � (A4 � S3). Define the pentavalent J3.Z2-graph as Cos(G,H,HgH), where

g ∈ K\H . Then this is a 4-transitive edge-primitive graph, and has automorphism
group J3.Z2. Furthermore, any connected G-edge-primitive pentavalent graph is iso-
morphic to the J3.Z2-graph.

The following two edge-primitive pentavalent graphs are extracted from [5,
Sect. 2].

Example 3.4 Let G = Aut(PSL(3,4)) = PSL(3,4).D12. By the Atlas [1], G has a
maximal subgroup K = (Z4

2 � (A4 � S3)).Z2 and a subgroup H = Z
4
2 � Γ L(2,4)

such that K ∩ H = Z
4
2 � (A4 � S3). Define the pentavalent PSL(3,4).D12-graph as

Cos(G,H,HgH), where g ∈ K\H . Then this is a 4-transitive edge-primitive graph
and has automorphism group PSL(3,4).D12. Furthermore, any connected G-edge-
primitive pentavalent graph is isomorphic to the PSL(3,4).D12-graph.

Example 3.5 Let G = Aut(PSp(4,4)) = PSp(4,4).Z4. By the Atlas [1], G has a
maximal subgroup K = (Z6

2 � (A4 � S3)).Z2 and a subgroup H = Z
6
2 � Γ L(2,4)

such that K ∩ H = Z
6
2 � (A4 � S3). Define the pentavalent PSp(4,4).Z4-graph as

Cos(G,H,HgH), where g ∈ K\H . Then this is a 5-transitive edge-primitive graph
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and has automorphism group PSp(4,4).Z4. Furthermore, any connected G-edge-
primitive pentavalent graph is isomorphic to the PSp(4,4).Z4-graph.

Proof of Theorem 1.1 The graph X has an edge e = {v,u}, and is A-edge-primitive,
where A = Aut(X). Clearly, K5,5 is 3-transitive and edge-primitive. Now assume
X �= K5,5. By [3, Lemmas 3.1 and 3.4], X is a connected (A, s)-transitive graph for
s ≥ 1.

Let s ≤ 3. By Lemma 2.4, T = Soc(A) is a non-abelian simple group. Note that
Ae is a {2,3}-group and hence solvable. By [6, Theorem 1.1], A has a normal sub-
group B which is minimal under the condition that Be = B ∩Ae is maximal in B , and
the pairs (B,Be) are given in [6, Tables 14–20]. Since B � A, the edge-primitivity
of A implies that B is edge-transitive and hence edge-primitive by the maximality
of Be in B . Again by [3, Lemma 3.4], X is B-arc-transitive, and by Lemma 2.2,
B is 2- or 3-transitive and Bv is non-solvable. Clearly, Soc(B) = T . By Lemma 2.3,
Be = A4.Z2, S4.Z2, (A4 × A4).Z2, (S4 × S4).Z2, or ((A4 × A4).Z2).Z2. Checking
the pairs (B,Be) listed in [6, Tables 14–20], we have T = A6 = PSL(2,9), PSL(2,p)

with p a prime (p ≡ ±1 (mod 8) or p ≡ ±11, ±19 (mod 40)), or PSL(3,2).
Since 5 � | |PSL(3,2)|, we have T = PSL(2,9) or PSL(2,p) (p ≡ ±1 (mod 8), or
p ≡ ±11, ±19 (mod 40)). Since X has valency 5, by [3, Theorem 1.3], X is isomor-
phic to K6, the PSL(2,p)-graph or the PGL(2,p)-graph.

Let s ≥ 4. By [6, Theorem 1.3], X is isomorphic to the J3.Z2-graph, the
PSL(3,4).D12-graph or the PSp(4,4).Z4-graph. �
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