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Abstract We study the graphs G for which their toric ideals IG are complete in-
tersections. In particular, we prove that for a connected graph G such that IG is a
complete intersection all of its blocks are bipartite except for at most two. We prove
that toric ideals of graphs which are complete intersections are circuit ideals. In this
case, the generators of the toric ideal correspond to even cycles of G except of at most
one generator, which corresponds to two edge disjoint odd cycles joint at a vertex or
with a path. We prove that the blocks of these graphs satisfy the odd cycle condi-
tion. Finally, we characterize all complete intersection toric ideals of graphs which
are normal.

Keywords Complete intersections · Graphs · Toric ideals

1 Introduction

The complete intersection property of the toric ideals of graphs was first studied by
L. Doering and T. Gunston in [4]. In 1998, A. Simis proved that for a bipartite graph
G for which the toric ideal IG is a complete intersection the number of chordless
cycles of G is equal to the number m − n + r , where m is the number of edges, n

the number of vertices, and r the number of connected components of the graph G;
see [19]. The following year, M. Katzman proved that for a bipartite graph G the
corresponding ideal IG is a complete intersection if and only if any two chordless
cycles have at most one edge in common; see [11]. Finally I. Gitler, E. Reyes, and
R. Villarreal completely determined the form of the bipartite graphs for which the
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Fig. 1 A planar complete
intersection graph

toric ideal IG is a complete intersection; see [5, 6]. They are the ring graphs. Given
a graph H , we call a path P an H -path if P is non-trivial and meets H exactly in its
ends. A graph G is a ring graph if each block of G which is not an edge or a vertex
can be constructed from a cycle by successively adding H -paths of length at least
two that meet graphs H already constructed in two adjacent vertices.

Theorem 1.1 (I. Gitler, E. Reyes, and R. Villarreal [6]) If G is a bipartite graph then
IG is a complete intersection if and only if G is a ring graph.

In this article, we try to characterize complete intersection toric ideals of a general
simple graph. Note that it is enough to answer the problem for a connected graph,
since for the toric ideal of a graph G to be a complete intersection it is enough that
for every connected component G′ of G the ideal IG′ is a complete intersection, and
conversely. In this article, we will assume that all graphs considered are connected,
except if stated otherwise.

The situation for a general graph is much more complicated than the case of a
bipartite graph. For example, bipartite complete intersection graphs are always pla-
nar, see [6, 11], but this is not the general case as the following example shows, see
also [11].

Let G be the graph with 11 edges and 8 vertices in Fig. 1. The height of the toric
ideal IG is three, see [23], and IG is generated by the binomials e1e5 − e2e4, e5e9 −
e6e8, e3e9e10 − e1e7e11, therefore it is a complete intersection. The graph G is a
subdivision of K3,3 and therefore it is not planar, see [12]. A subdivision of a graph
G is any graph that can be obtained from G by replacing edges by paths.

Note also that the ideal of a general graph is much more complicated than the ideal
of a bipartite graph. The generators of the toric ideal of a bipartite graph correspond
to chordless even cycles of the graph. While the generators of the general graph have
a more complicated structure, see Theorems 2.1, 2.7. The fact that the generators
of a complete intersection toric ideal are very simple is very interesting, all of them
correspond to even cycles with at most one exemption, see Theorem 5.4. Actually,
this is one of the properties that characterize complete intersection toric ideals of
graphs, see Theorem 5.5.

In the second section, we review several notions from graph theory that will be
useful in the sequel. We define the toric ideal of a graph and we recall several results
about the elements of the Graver basis, the circuits and the elements of a minimal
system of generators of the toric ideal of the graph. The third section contains basic
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results about complete intersections toric ideals of graphs. The fourth section contains
one of the main results of the article that in a graph G for which the toric ideal IG is a
complete intersection either all blocks are bipartite, or all blocks are bipartite except
for one, or all blocks are bipartite except for two. In the case that there are exactly
two non-bipartite blocks, they have a special position in the graph, the two blocks
are contiguous. The fifth section contains the result that complete intersection toric
ideals are circuit ideals and give a necessary and sufficient condition for a graph G to
be a complete intersection. The final section proves that biconnected complete inter-
sections graphs satisfy the odd cycle condition and gives a necessary and sufficient
condition for the edge ring of a complete intersection graph to be normal.

In the same problem, independently from us, I. Bermejo, I. García-Marco and
E. Reyes are working on providing combinatorial and algorithmic characterizations
of general graphs such that their toric ideals are complete intersections; see [1].

2 Toric ideals of graphs

Let A = {a1, . . . ,am} ⊆ N
n be a vector configuration in Q

n and NA := {l1a1 + · · · +
lmam | li ∈ N} the corresponding affine semigroup. We grade the polynomial ring
K[x1, . . . , xm] over any field K by the semigroup NA setting degA(xi) = ai for i =
1, . . . ,m. For u = (u1, . . . , um) ∈ N

m, we define the A-degree of the monomial xu :=
x

u1
1 · · ·xum

m to be

degA

(
xu) := u1a1 + · · · + umam ∈ NA.

The toric ideal IA associated to A is the prime ideal generated by all the binomials
xu − xv such that degA(xu) = degA(xv), see [22]. For such binomials, we define
degA(xu − xv) := degA(xu).

Let G be a simple finite connected graph on the vertex set V (G) = {v1, . . . , vn}
and let E(G) = {e1, . . . , em} be the set of edges of G. We denote by K[e1, . . . , em]
the polynomial ring in the m variables e1, . . . , em over a field K . We will associate
each edge e = {vi, vj } ∈ E(G) with ae = vi + vj in the free abelian group generated
by the vertices of G and let AG = {ae | e ∈ E(G)}. We denote by IG the toric ideal
IAG

in K[e1, . . . , em] and by degG the degAG
. By K[G] we denote the subalgebra

of K[v1, . . . , vn] generated by all quadratic monomials vivj such that e = {vi, vj } ∈
E(G). K[G] is an affine semigroup ring and it is called the edge ring of G.

A cut vertex (respectively, cut edge) is a vertex (respectively, edge) of the graph
whose removal increases the number of connected components of the remaining sub-
graph. A graph is called biconnected if it is connected and does not contain a cut
vertex. A block is a maximal biconnected subgraph of a given graph G.

A walk of length s connecting v1 ∈ V (G) and vs+1 ∈ V (G) is a finite sequence of
the form

w = ({v1, v2}, {v2, v3}, . . . , {vs, vs+1}
)

with each ej = {vj , vj+1} ∈ E(G), 1 ≤ j ≤ s. An even (respectively, odd) walk is
a walk of even (respectively, odd) length. The walk w is called closed if vs+1 = v1.



354 J Algebr Comb (2013) 38:351–370

We call a walk w′ = (ej1 , . . . , ejt ) a subwalk of w if ej1 · · · ejt |e1 · · · es . A cycle is a
closed walk

({v1, v2}, {v2, v3}, . . . , {vs, v1}
)

with vi �= vj , for every 1 ≤ i < j ≤ s. For convenience, by w we denote the subgraph
of G with vertices the vertices of the walk and edges the edges of the walk w. Given
an even closed walk

w = (ei1, . . . , ei2q−1, ei2q
)

of the graph G, we denote by

E+(w) =
q∏

k=1

ei2k−1 = ew+
, E−(w) =

q∏

k=1

ei2k
= ew−

,

and by Bw the binomial

Bw =
q∏

k=1

ei2k−1 −
q∏

k=1

ei2k

belonging to the toric ideal IG; also by w+,w− we denote the exponent vec-
tors of the monomials E+(w),E−(w) and by w+,w− the sets {ei1, ei3, . . . , ei2q−1},
{ei2, ei4, . . . , ei2q

}, respectively. Actually, the toric ideal IG is generated by binomials
of this form, see [23]. An even closed walk w = (ei1, . . . , ei2q−1, ei2q

) is said to be
primitive if there exists no even closed subwalk ξ of w of smaller length such that
E+(ξ)|E+(w) and E−(ξ)|E−(w).

Every even primitive walk w = (ei1, . . . , ei2q
) partitions the set of edges of w in the

two sets w+ = {eij | j odd} and w− = {eij | j even}, otherwise if eik ∈ w+ ∩ w− then
for the even closed subwalk ξ = (eik , eik ) we have E+(ξ)|E+(w) and E−(ξ)|E−(w).
The edges of w+ are called odd edges of the walk and those of w− are called even.
A sink of a block B of the graph w is a common vertex of two odd or two even edges
of the walk w which belong to the block B.

A necessary and sufficient characterization of the primitive walks of a graph, were
given by E. Reyes, Ch. Tatakis and A. Thoma in [17, Theorem 3.2]:

Theorem 2.1 Let G a graph and w an even closed walk of G. The walk w is primitive
if and only if

(i) Every block of w is a cycle or a cut edge,
(ii) Every multiple edge of the walk w is a double edge of the walk and a cut edge

of w,
(iii) Every cut vertex of w belongs to exactly two blocks and it is a sink of both.

The following corollary was given by E. Reyes, Ch. Tatakis, and A. Thoma in [17,
Corollary 3.3] and it describes the underlying graph of a primitive walk, see Fig. 2.

Corollary 2.2 Let G be a graph and let W be a connected subgraph of G. The
subgraph W is the graph w of a primitive walk w if and only if
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Fig. 2 A primitive walk

(i) W is an even cycle or
(ii) W is not biconnected and

(a) Every block of W is a cycle or a cut edge and
(b) Every cut vertex of W belongs to exactly two blocks and separates the graph

in two parts, the total number of edges of the cyclic blocks in each part is
odd.

In this case, the walk w passes through every edge of the cyclic blocks exactly
once and from the cut edges twice.

A walk w is primitive if and only if the binomial Bw is primitive. The set of
primitive binomials form the Graver basis of the toric ideal IG. The Graver basis is
important to us because every element of a minimal generating set of IG belongs to
the Graver basis of IG, see [22]. We call a strongly primitive walk a primitive walk
that does not have two sinks with distance one in any cyclic block, or equivalently,
that does not have two adjacent cut vertices in any cyclic block. For example, the
walk in Fig. 1 is primitive but it is not strongly primitive, look, for example, at the
cycle with six edges. We say that a binomial is a minimal binomial if it belongs to at
least one minimal system of generators of IG.

Let H be a subset of V (G) and GH be the induced graph of H in G, which is the
graph with vertices the elements of the set H and edges the set of edges of G where
both vertices belong to H . For a given subgraph F of G, an edge f of the graph G

is called a chord of the subgraph F if the vertices of the edge f belong to V (F) and
f /∈ E(F). In other words, an edge is called a chord of the subgraph F if it belongs
to E(GV (F)) but not in E(F). A subgraph F is called chordless if F = GV (F). For
convenience, by Gw we denote the induced graph GV (w), where w is an even closed
walk.

Let w be an even closed walk ({v1, v2}, {v2, v3}, . . . , {v2q, v1}) and f = {vi, vj } a
chord of w. Then f breaks w into two walks:

w1 = (e1, . . . , ei−1, f, ej , . . . , e2q)
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and

w2 = (ei, . . . , ej−1, f ),

where es = {vs, vs+1}, 1 ≤ s ≤ 2q and e2q = {v2q, v1}. The two walks are both even
or both odd. A chord e = {vk, vl} is called a bridge of a primitive walk w if there
exist two different blocks B1, B2 of w such that vk ∈ B1 and vl ∈ B2. A chord is
called even (respectively, odd) if it is not a bridge and breaks the walk in two even
walks (respectively, odd). Thus we partition the set of chords of a primitive even walk
in three parts: bridges, even chords, and odd chords.

Definition 2.3 Let w = ({vi1, vi2}, {vi2, vi3}, . . . , {vi2q
, vi1}) be a primitive walk. Let

f = {vis , vij } and f ′ = {vis′ , vij ′ } be two odd chords (that means not bridges and
j − s, j ′ − s′ are even) with 1 ≤ s < j ≤ 2q and 1 ≤ s′ < j ′ ≤ 2q . We say that f and
f ′ cross effectively in w if s′ − s is odd (then necessarily j − s′, j ′ − j, j ′ − s are
odd) and either s < s′ < j < j ′ or s′ < s < j ′ < j .

Definition 2.4 We call an F4 of the walk w a cycle (e, f, e′, f ′) of length four which
consists of two edges e, e′ of the walk w both odd or both even, and two odd chords
f and f ′ which cross effectively in w.

Definition 2.5 Let w be a primitive walk and f,f ′ be two odd chords. We say that
f,f ′ cross strongly effectively in w if they cross effectively and they do not form an
F4 in w.

An F4, (e1, f1, e2, f2), separates the vertices of w into two parts, V (w1),V (w2),
since both edges e1, e2 of the F4 belong to the same block of w = (w1, e1,w2, e2).

Definition 2.6 We say that an odd chord f of a primitive walk w = (w1, e1,w2, e2)

crosses an F4, (e1, f1, e2, f2), if one of the vertices of f is in V (w1), the other in
V (w2), and f is different from f1, f2.

The next theorem by E. Reyes, Ch. Tatakis, and A. Thoma in [17, Theorem 4.13]
gives a necessary and sufficient characterization of minimal binomials of a toric ideal
of a graph. This is the main theorem that made the results of this paper possible.

Theorem 2.7 Let w be an even closed walk. Bw is a minimal binomial if and only
if

(i) w is strongly primitive,
(ii) All the chords of w are odd and there are not two of them which cross strongly

effectively and
(iii) No odd chord crosses an F4 of the walk w.

The support of a monomial xu of K[x1, . . . , xm] is supp(xu) := {i | xi divides xu}
and the support of a binomial B = xu − xv is supp(B) := supp(xu) ∪ supp(xv). An
irreducible binomial B belonging to IA is called a circuit of IA if there is no binomial
B ′ ∈ IA such that supp(B ′) � supp(B). A necessary and sufficient characterization of
circuits for toric ideals of graphs was given by R. Villarreal in [23, Proposition 4.2]:
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Theorem 2.8 Let G be a graph. The binomial B ∈ IG is circuit if and only if B = Bw ,
where w is:

(i) An even cycle, or
(ii) Two odd cycles intersecting in exactly one vertex, or

(iii) Two vertex disjoint odd cycles joined by a path.

3 Complete intersection graphs

The graph G is called bipartite if it does not contain an odd cycle. The height of IG is
equal to h = m − n + 1 if G is a bipartite graph or h = m − n if G is a non-bipartite
graph, where G is a connected graph, m is the number of edges of G, and n is the
number of its vertices, see [23]. The toric ideal of G is called a complete intersection
if it can be generated by h binomials. We say that a graph G is a complete intersection
if the ideal IG is a complete intersection.

The problem of determining complete intersection toric ideals has a long history
starting with J. Herzog in 1970 [10] and was finally solved by K. Fisher, W. Morris,
and J. Shapiro in 1997 [7]. For the history of this problem, see the introduction of
[14].

The next theorem says that the complete intersection property of a graph is a hered-
itary property, in the sense that it holds also for all induced subgraphs.

Theorem 3.1 The graph G is a complete intersection if and only if the graph GH is
a complete intersection for every H ⊂ V (G).

Proof Let Bw1 , . . . ,Bws be a minimal system of generators of IGH
, for some even

closed walks wi of G, 1 ≤ i ≤ s. A minimal generator Bw of IGH
is always a minimal

generator of IG since the property of being minimal generator depends only on the
induced graph Gw of w, see Theorem 2.7. Note that for a walk w of GH , the induced
graph Gw is the same in GH as in G. Therefore, we can extend Bw1 , . . . ,Bws to a
minimal system of generators Bw1 ,Bw2 , . . . ,Bwh

of IG, s ≤ h. The toric ideal IG is
complete intersection, therefore Bw1 , . . . ,Bwh

is a regular sequence. Since the ideal
IG in K[e1, . . . , em] is homogeneous and none of the variables is a zero divisor in
the edge ring K[G] = K[e1, . . . , em]/IG, the sequence Bw1 , . . . ,Bws is regular, and
therefore IGH

is a complete intersection toric ideal, see [18].
The converse is obvious since for H = V (G) we have G = GH . �

The next proposition gives a very useful property of complete intersection toric
ideals that will play a crucial role in the proofs of the theorems in the next sections.

Proposition 3.2 If G is a complete intersection and Bw1 , . . . ,Bws is a minimal set
of generators of the ideal IG then there are no two walks wi , wj , i �= j such that
w+

i ∩ w+
j �= ∅ and w−

i ∩ w−
j �= ∅, or w+

i ∩ w−
j �= ∅ and w−

i ∩ w+
j �= ∅.

Proof Let Bw1 = ew+
1 − ew−

1 , . . . ,Bws = ew+
s − ew−

s be a minimal set of generators
of the complete intersection toric ideal IG. Then the matrix M with rows w+

i − w−
i
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is mixed dominating, see Corollary 2.10 [8]. A matrix is called mixed if its every row
contains both a positive and a negative entry and dominating if it does not contain
a square mixed submatrix. Suppose that there exist Bw1 , . . . ,Bws , a minimal set of
generators, and two walks wi , wj , i �= j such that w+

i ∩ w+
j �= ∅ and w−

i ∩ w−
j �= ∅.

Let ek ∈ w+
i ∩ w+

j and el ∈ w−
i ∩ w−

j . Then the 2 × 2 square submatrix taken from
the i, j rows and k, l columns is mixed, contradicting the fact that M is dominating.
The proof of the other part is similar. �

It follows from Proposition 3.2 that if two edges are consecutive edges in two even
closed walks w1 and w2 in a complete intersection graph then both Bw1 , Bw2 cannot
belong to the same minimal system of generators of IG. Also note that you cannot
have in a minimal system of generators two circuits with two odd cycles and one
of the cycles being the same in both, since any cycle contains at least three edges,
and therefore there are at least two consecutive edges in common. For toric ideals
of graphs, Theorem 2.7 determines the form of a minimal binomial. Two minimal
binomials sometimes belong to a minimal system of generators of the toric ideal, but
for certain minimal binomials it is impossible to find a minimal system of generators
that contains both of them, see [3]. For a toric ideal IA, if two minimal binomials
have different A-degrees then there exists a minimal system of generators for IA that
contains both of them. But if they have the same A-degree, sometimes there exists
a minimal system of generators for IA that contains both of them and sometimes
not; for more details, look at [3]. For toric ideals of graphs, the situation is simpler.
Let Bw , Bw′ be two minimal generators of IG. Then there exist a minimal system
of generators for IG that contains both of them if and only if w and w′ are not F4-
equivalent, see [17].

Definition 3.3 Two primitive walks w,w′ differ by an F4, ξ = (e1, f1, e2, f2), if
w = (w1, e1,w2, e2) and w′ = (w1, f1,−w2, f2), where both w1,w2 are odd walks.
Two primitive walks w,w′ are F4-equivalent if either w = w′ or there exists a series
of walks w1 = w,w2, . . . ,wn−1,wn = w′ such that wi and wi+1 differ by an F4,
where 1 ≤ i ≤ n − 1.

For more information about minimal system of generators of toric ideals of graphs,
see [17].

4 On the blocks of a complete intersection graph

Theorem 4.2 is one of the main results of the article and proves that if a complete
intersection graph has n blocks then at least n − 2 of them are bipartite. In the case
that there are two non-bipartite blocks, they have to have a special position in the
graph, namely, they have to be contiguous.

Definition 4.1 Two blocks of a graph G are called contiguous if they have a common
cut vertex or there is a path from the one to the other in which each edge of the path
belongs to a different block.
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Let B(G) be the block tree of G, the bipartite graph with bipartition (B,S) where
B is the set of blocks of G and S is the set of cut vertices of G, {B, v} is an edge if
and only if v ∈ B. The leaves of the block tree are always blocks and are called end
blocks. Let Bk, Bi , Bl be blocks of a graph G. We call the block Bi an internal block
of Bk, Bl , if Bi is an internal vertex in the unique path defined by Bk, Bl in the tree
B(G). Every path from Bk to Bl passes from every internal block of Bk, Bl and has as
vertices at least the cut vertices which are vertices in the path (Bk, . . . , Bl ) in B(G).
In the case that Bi is an internal block of Bk , Bl we denote by yi,k and yi,l the cut
vertices of Bi which are also vertices of the unique path (Bk, . . . , Bl) in the block-
tree B(G). It follows from the definition and the above remarks that if the blocks Bk ,
Bl are contiguous then {yi,k, yi,l} is an edge of the graph G. Even more, there is a
unique chordless path between two contiguous blocks Bk , Bl , where every edge is in
the form {yi,k, yi,l}.

Theorem 4.2 Let G be a graph. If G is complete intersection then either

(i) All blocks of G are bipartite, or
(ii) All blocks are bipartite except one, or

(iii) All blocks are bipartite except two which are contiguous.

Proof Let G be a complete intersection graph and let B1, . . . , Bt be its blocks.
We assume that G has three or more non-bipartite blocks and let three of them be
Bm, Bk, Bl . At least one of Bm, Bk, Bl is not an internal block of the other two, let
it be Bm. We denote by yi,j the cut vertex of Bi which is the second vertex of the
unique path (Bi , . . . , Bj ) in the block tree B(G), where i, j ∈ {m,k, l}. The block Bi ,
i ∈ {m,k, l}, is non-bipartite, therefore it contains at least one odd cycle, but it is bi-
connected, therefore through every point of it passes an odd cycle. We denote by ci,j

an odd cycle of the block Bi which contains the vertex yi,j and with the smallest num-
ber of edges. Let wm,k = (cm,k,pm,k, ck,m,−pm,k), wm,l = (cm,l,pm,l, cl,m,−pm,l),
where pm,k,pm,l are chordless paths from ym,k to yk,m and from ym,l to yl,m, respec-
tively, and we can choose cm,k = cm,l since Bm is not an internal block of the other
two. Note that whenever there is a path from a vertex to another one then there is a
chordless path between these two vertices.

We claim that the binomials Bwm,k
and Bwm,l

are minimal. First, Bwm,k
is a cir-

cuit, see Theorem 2.8, and therefore wm,k is primitive, actually strongly primitive,
see Theorem 2.7. Note that wm,k has no bridges, since bridges are chords of the walk
wm,k that have their vertices in different blocks of wm,k which is impossible since (a)
pm,k is chordless, thus there is no bridge from the blocks of the path to themselves,
(b) ym,k , yk,m are cut vertices, thus there is no bridge from the cycles to the path, and
(c) the odd cycles are of minimum length, therefore there is no chord of the cycles
incident to ym,k or yk,m. Also wm,k has no even chords since cm,k , ck,m are odd cy-
cles of minimum length. So all the chords of wm,k are odd. Note that the odd chords
of wm,k are chords of either the cycle cm,k or ck,m. There are no two of them which
cross effectively, except if they form an F4, otherwise there will be an other odd cycle
with strictly smaller number of edges than either cm,k or ck,m which passes from ym,k

or yk,m. Also no odd chord crosses an F4 of wm,k , since an odd chord that crosses
an F4 of wm,k is an even chord for an F4-equivalent walk of wm,k , which contradicts
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the minimallity of one of the cycles cm,k or ck,m. Therefore, by Theorem 2.7, Bwm,k

is minimal. Similarly for the binomial Bwm,l
. Note that degG(Bwm,k

) �= degG(Bwm,l
)

thus they may belong to the same minimal system of generators of IG. This contra-
dicts Proposition 3.2 since the cycle cm,k = cm,l is contained in both walks. So the
graph G has at most two non-bipartite blocks.

Suppose that we are in the case that G has exactly two non-bipartite blocks and
let them be B1 and B2. We will prove that the blocks B1 and B2 are contiguous.
Suppose not, then there exists at least one block Bt such that every path from B1 to
B2 has at least two edges in Bt , see the remarks after the definition of contiguity.
Let yt,1 and yt,2 be the cut vertices of Bt which are also vertices of the unique path
(B1, . . . , B2) in the block-tree B(G). Since yt,1 and yt,2 belong to the same block
Bt , there exist at least two internally disjoint paths of length at least two connecting
them. Note that {yt,1, yt,2} is not an edge of G, thus there are two different chordless
paths from yt,1 to yt,2. Thus there exist at least two different chordless paths from
y1,2 and y2,1. Therefore, by choosing the odd cycles c1,2 and c2,1 as in the above
construction, and the two chordless paths p1,p2 from y1,2 and y2,1 we get two even
walks w1 = (c1,2,p1, c2,1,−p1), w2 = (c1,2,p2, c2,1,−p2). As before, there are no
bridges in both w1,w2 and since all the chords of c1,2 and c2,1 are odd, there are no
two of them which cross effectively (except if they form an F4) and no odd chord
crosses an F4 of wm,k , each one of those paths will give a minimal generator of IG.
Note that degG(Bw1) �= degG(Bw2) thus they may belong to the same minimal system
of generators of IG. This contradicts Proposition 3.2 since the cycles c1,2 and c2,1 are
contained in both walks. So B1 and B2 are contiguous blocks. �

5 Circuit ideals and complete intersections

The first theorem of this section states an interesting property of toric ideals of graphs:
Complete intersection toric ideals of graphs are circuit ideals. Note that complete in-
tersection toric ideals usually do not have this property. For more information on
circuit ideals, see the article [2] by T. Bogart, A.N. Jensen, and R.R. Thomas; and
for toric ideals of homogeneous normal configurations generated by circuits, see the
article [13] by J. Martinez-Bernal and R.H. Villarreal. The configurations of vectors
arising from graphs are always homogeneous but not necessarily normal, even if the
graphs are complete intersections. Thus these results cannot be applied in the general
case of graphs. In the next section, we study normality and we determine all com-
plete intersection graphs for which their corresponding configurations of vectors are
normal, i.e., NA = ZA ∩ R+A.

Theorem 5.1 Let G be a graph. If G is a complete intersection then every minimal
generator of IG is a circuit.

Proof Suppose that IG is a complete intersection toric ideal that has a minimal gen-
erator Bw which is not a circuit. Since the binomial Bw is minimal it is also primitive.
Therefore, all of the blocks of w are cycles or cut edges, see Theorem 2.7. The end
blocks of w are always cyclic blocks and if there is more than one end block they are
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all odd cycles, see Corollary 2.2. Since Bw is not a circuit it has at least three cyclic
blocks from which at least two are end blocks and therefore odd, see Theorems 2.7
and 2.8, otherwise, if it has only one cyclic block then there is only one end block
in w and therefore w is an even cycle, and if it has exactly two cyclic blocks, they
should be end blocks and the cut edges should be internal blocks, thus in all cases w
is a circuit, see Theorem 2.8.

The graph G is a complete intersection; therefore, the induced graph Gw is a
complete intersection, by Theorem 3.1, where Gw is the induced graph of w in G.
Note that the walk w has no bridges, since Bw is a minimal generator, see Theo-
rem 2.7; therefore, there is a one-to-one correspondence between the blocks of w and
the blocks of Gw . Cut edges of w are cut edges of Gw , but cyclic blocks of w may
have chords in Gw . At least two of the blocks are non-bipartite since they have an
odd cycle. Therefore, by Theorem 4.2, there are exactly two. There are at least two
end blocks of w, and thus they are odd cycles. Therefore, the two non-bipartite blocks
are the only end blocks of the block graph of Gw , which means that the block tree
B(Gw) is a path, see Corollary 2.2. Let B1, B2 be the two odd cyclic blocks of w
and B3 be one of the other cyclic blocks, then B3 will be an internal block of B1, B2.
From Theorem 4.2, the two blocks B1, B2 are contiguous; therefore, there will be an
edge of the block B3 at the path which connects the two odd cycles B1, B2 of w. If
the edge belongs to the walk w then w is not strongly primitive, and if the edge does
not belong to w then it is a bridge of w since its vertices are cut vertices of w and thus
belong to two different blocks of w. In both cases, Theorem 2.7 implies that Bw is
not a minimal generator, a contradiction. Therefore, w has at most two cyclic blocks
and thus Bw is a circuit, see Theorem 2.1 and Theorem 2.8. �

The next proposition will be useful in the proof of Theorem 5.3.

Proposition 5.2 Let G be a complete intersection graph and let Bw be a minimal
generator of IG. If w is not an even cycle then w is chordless.

Proof From Theorem 5.1, the walk w consists of two odd edge-disjoint cycles joint
at vertex or with a path, see Theorem 2.8. Thus w is of the form (c1,p, c2,−p),
where c1, c2 are odd cycles y1, y2 are points of c1 and c2, respectively, and p is a
path from y1 to y2; and it is possible that y1 = y2 and p is empty. Since the binomial
Bw is minimal, the walk w has no even chords and no bridges, see Theorem 2.7.
Suppose that the walk w had an odd chord e = {a, b}, then from the definition of
an odd chord, both vertices belong to the same cycle. Without loss of generality, we
can suppose that both vertices a, b belong to the cycle c1. Then c1 = (c11, c12, c13),
where c11, c12, c13 are nonempty paths from y1 to a, a to b and b to y1, respectively.
Among all possible such odd chords e, we choose the vertex a in such a way that
the length of c11 is as small as possible. If there are more than one odd chord with
one vertex a then we choose b such that c12 is as small as possible. By the choice
of a, the walk w1 = (c12, {b, a},−c11,p, c2,−p, c11) has no bridge from c12 to c11.
By the choice of b, there is no bridge from c12 to the vertex a. Note that for w1 it
is not possible to have another bridge since w has no bridges. Any chord of the odd
cycle (c12, e) is also a chord of w. Bw is minimal generator of IG; therefore, if there
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exist such chords then all of them are odd chords of w and no two of them cross
strongly effectively and no odd chord crosses an F4 of the walk w, see Theorem 2.7.
Therefore, also Bw1 is minimal. Note that degG(Bw) �= degG(Bw1) thus they may
belong to the same minimal system of generators of IG. This is a contradiction to
Proposition 3.2 since the cycle c2 is contained in both walks. Therefore, w has no
chord. �

Theorem 5.3 Let G be a biconnected complete intersection graph G. All minimal
generators of IG are in the form Bw where w is an even cycle.

Proof Theorem 5.1 implies that all generators are circuits, thus to prove the theorem
we will suppose that there is an even closed walk w = (c1,p, c2,−p) of G such that
Bw is a minimal generator of IG and we will arrive to a contradiction, where c1, c2
are odd cycles of G, p = (v1, . . . , vl) a path between them denoted by its vertices,
V (c1) ∩ V (p) = {v1}, V (c2) ∩ V (p) = {vl}, and V (c1) ∩ V (c2) = ∅, except in the
case that the path p is just a vertex, {v1}, and then V (c1) ∩ V (c2) = {v1}.

We claim that there is a path from c1 to c2 which is vertex disjoint from p. Sup-
pose not. Then, since v1 is not a cut vertex of G there must be at least one H -
path from V (c1) − {v1} to {v2, . . . , vl}, where H is the graph c1 ∪ c2 ∪ p. Con-
sider among all such H -paths those that for their end point vk the k is maxi-
mum, 2 ≤ k ≤ l. Among those let ζ be one of minimal length. Let z be the even
closed walk (c1, ζ, {vk, vk+1}, . . . , {vl−1, vl}, c2, {vl, vl−1}, . . . .{vk+1, vk},−ζ ). Then
degG(Bz) �= degG(Bw), except in the case that ζ consists of only one edge and k = 2.
But then this edge is a bridge of the walk w, contradicting the minimality of Bw , see
Theorem 2.7. Then the binomial Bz cannot be a minimal generator since w and z

share the cycle c2. Therefore, z must have at least a chord. But w is chordless, see
Proposition 5.2. There is no chord from c2 to ζ , otherwise there is a path from c1 to
c2 which is vertex disjoint from p. There is no chord from {vk, vk+1 . . . , vl−1, vl} to ζ

since the existence of a chord like that contradicts the choice of k. The only choice left
for a chord is from the cycle c1 to ζ . And since ζ is a path of minimal length any chord
should be from c1 to the second vertex of the path ζ , say x. Look at the induced graph
of c1 ∪ {x}. Since c1 is chordless any chord of c1 ∪ {x} is from c1 to x. There must
be at least two chords of c1 ∪ {x}, since also the first edge of ζ is a chord of c1 ∪ {x}.
Look at the chordless cycles passing through x, in the induced graph of c1 ∪ {x}. At
least one of the cycles is odd since c1 is odd and each one consists of edges of c1
and two chords passing through x. Let o be an odd such cycle, then the even closed
walk z′ = (o1, ζ

′, {vk, vk+1}, . . . , {vl−1, vl}, c2, {vl, vl−1}, . . . .{vk+1, vk},−ζ ′) has no
chords and bridges, where ζ ′ is the subpath of ζ from x to vk . Therefore, by Theo-
rem 2.7, Bz′ is a minimal generator of IG. But this is not possible since degG(Bw) �=
degG(Bz′) and z′ has a common cycle, the c2, with w.

Therefore, there is a path from c1 to c2 which is vertex disjoint from p. Let q =
(x1, y1, . . . , y2, x2) be one of minimal length, where the vertex x1 ∈ c1 and the vertex
x2 ∈ c2. Note that the length of q is greater than one, since otherwise it will be just an
edge which will be a bridge of w and then Bw will not be a minimal generator of IG.
Note also that it may be y1 = y2. Look at the graph induced by the graph w ∪ q. By
Proposition 5.2, w has no chords and the path q has minimal length. Therefore, the
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chords of w ∪ q are either edges from the cycle c1 to y1, or from the cycle c2 to y2
and from p to q except to the vertices x1, x2.

We claim that there are chords from the cycle c1 to y1. Suppose not. Let c11 be
the path of greater length from v1 to x1 on the cycle c1 and c12 be the path of smaller
length from v1 to x1 on the circle c1. Note that the cycle c1 is odd and also the length
of c11 is greater than one. Denote by c21 the path from x2 to v2 such that the cycle
w′ = (c11, q, c21,−p) is even. There exists such a path since the cycle c2 is odd.
Consider c to be the smallest even cycle of the form (c11, c

′) and the edges of it
being edges or chords of w′. Note that there exists such a cycle since w′ is of that
form. Note that c is a cycle; therefore, it has no bridges and it is strongly primitive.
Also from the minimality of the length of c among even cycles of the form (c11, c

′),
c has no even chord and no two odd chords which cross strongly effectively and
no odd chord that crosses an F4 of c. Otherwise the proofs of Propositions 4.8 and
4.12 of [17] show that there exist two smaller even cycles and one of them is of the
form (c11, c

′′) since there are no chords from c11. Then Bc is a minimal generator
of IG. Note that degG(Bw) �= degG(Bc) thus they may belong to the same minimal
system of generators of IG. This contradicts Proposition 3.2 since the edges of c11
are contained in both walks and the length of c11 is greater than one.

Therefore, there exist chords from the cycle c1 to y1 and similarly from the
cycle c2 to y2. Let (u1,1, u1,2, . . . , u1,s1) be the cycle c1 denoted by its vertices,
where u1,1 = v1. We consider all chords from the cycle c1 to y1 together with
the edge {x1, y1} and denote them by e1 = {y1, u1,i1}, . . . , et1 = {y1, u1,it1

}, where
i1 < · · · < it1 . Then the cycles c1,j = (y1, u1,ij , u1,ij +1, . . . , u1,ij+1), for 1 ≤ j ≤
t1 − 1, and c1,t1 = (y1, u1,it1

, u1,it1 +1, . . . , u1,s1 , u1,1, . . . , u1,i1) are chordless. If one
of them were even then, since it does not have any chords, the corresponding bino-
mial would be a minimal generator of IG, see Theorem 2.7. But it cannot have two
consecutive edges which are in w+ or w−; therefore, the only choice for the cycle is
(y1, u1,s1 , u1,1, u1,2).

Similarly, there cannot be two consecutive odd cycles c1,j , c1,j+1 since then
the cycle c = (y1, u1,ij , u1,ij +1, . . . , u1,ij+1 , u1,ij+1+1, u1,ij+2) is even with only one
odd chord; therefore, the corresponding binomial is a minimal generator, see Theo-
rem 2.7. But c cannot have two consecutive edges which are in w+ or w−; therefore,
the only choice for the resulting cycle is (y1, u1,s1, u1,1, u1,2), and the two original
cycles where (y1, u1,1, u1,2) and (y1, u1,s1 , u1,1). Since the cycle c1 is odd and each
cycle c1,j consists of a part of c1 and two new edges, the number of odd cycles c1,j

must be odd. And since among these cycles at most one can be even, then the number
of odd cycles cannot be greater than or equal to three since then you can find two
consecutive cycles different from (y1, u1,1, u1,2) and (y1, u1,s1, u1,1). But then there
is only one choice left, one cycle is even, the (y1, u1,s1 , u1,1, u1,2), and one odd, the
(y1, u1,2, u1,3, . . . , u1,s1).

A similar statement is also true for y2 and the cycle c2. The even closed walk z =
(y1, u1,2, u1,3, . . . , u1,s1 , y1, ξ

′, y2, u2,2, u2,3, . . . , u2,s2 , y2,−ξ ′, y1) has no chords or
bridges; therefore, Bz is a minimal generator of IG, see Theorem 2.7, where ξ ′ is the
subpath of q from y1 to y2. But then from Proposition 3.2 and that fact that Bw is a
minimal generator we conclude that s1 = 3 = s2.

Look at the graph z ∪ w, the only chords of the graph can be from the path p

to the path ξ ′. Let e = {a, b} be the nearest chord to the vertex u1,1, if there exists
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one, otherwise call e the chord {a = u2,1, b = u2,3}. By the choice of the edge e,
the cycle o = (u1,1, . . . , a, b, . . . , y1, u1,3, u1,2) has only two chords, {u1,2, y1} and
{u1,1, u1,3}.

There are two cases. The first case: the cycle o = (u1,1, . . . , a, b, . . . , y1, u1,3, u1,2)

is even. In this case, the two chords {u1,2, y1}, {u1,1, u1,3} form an F4 of the even
closed walk o. Then Bo is a minimal generator of IG, see Theorem 2.7. But this
is impossible since the minimal generators Bw , Bo have two consecutive edges
in common, {u1,3, u1,2} and {u1,2, u1,1}, and degG(Bw) �= degG(Bo), see Proposi-
tion 3.2.

The second case: the cycle o is odd, then the cycles o1 = (u1,1, . . . , a, b, . . . , y1,

u1,2), o2 = (u1,1, . . . , a, b, . . . , y1, u1,3) are both chordless and even. But then the
Bo1 ,Bo2 are minimal generators of IG. But this contradicts Proposition 3.2 since the
two cycles have all edges in common except for two and degG(Bo1) �= degG(Bo2).

We conclude that all minimal generators of IG are of the form Bw where w is an
even cycle. �

Theorem 5.4 Let G be a complete intersection graph. All minimal generators, ex-
cept for at most one, of IG are of the form Bw where w is an even cycle. The possible
exceptional generator is a circuit whose two odd cycles belong to two different con-
tiguous blocks.

Proof In the case that all blocks of G are bipartite or all except one, there is no
generator of the form Bw where w = (c1,p, c2,−p) with c1, c2 odd cycles, see The-
orem 5.3. In the case that G has two contiguous non-bipartite blocks, say B1, B2,
according to the proof of Theorem 4.2, there is one generator of the form Bw , where
w = (c1,p, c2,−p) is an even closed walk, where c1, c2 are odd chordless cycles
of B1, B2 that are passing through y1,2 and y2,1, respectively, and p is the unique
chordless path between them. Suppose that there is another generator of the form
Bw′ where w′ is not an even cycle. Then from Theorem 5.3, w′ is not contained in
the blocks B1 or B2. So w′ consists of an odd chordless cycle c′

1 in the block B1,
see Proposition 5.2, an odd chordless cycle c′

2 in the block B2 and a path ξ from
the one to the other. The path ξ consists of three paths. A chordless path p1 is from
the cycle c′

1 to y1,2, the second is p (since otherwise the path ξ has a chord which
plays the role of a bridge and destroys the minimality of the generator Bw′ , see The-
orem 2.7), and finally, a chordless path p2 is from the cycle c′

2 to y2,1. Some of them
may be empty. But then for the even closed walk w′′ = (c′

1,p1,p, c2,−p,−p1) we
know that (i) the two odd cycles c′

1, c2 are chordless, (ii) the path (p1,p) is chord-
less, (iii) there is no chord from c′

1 to p since c′
1 is in the block B1, (iv) there

is no chord from c2 to p since c2 is in the block B2, and (v) there is no chord
from c′

1 to p1 since then it will be a bridge of w′ which is impossible by Theo-
rem 2.7. Combining all these, Theorem 2.7 says that Bw′′ is a minimal generator.
The walks w′′ and w have more than two consecutive edges in common and Bw′′ ,
Bw are minimal generators and degG(Bw′′) �= degG(Bw), thus they may belong to
the same minimal system of generators of IG, contradicting Proposition 3.2. Thus
there is no other generator of the form Bw′ where w′ is not an even cycle, except
for Bw . �
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The proof of the Theorem 5.4 shows that in the case that the complete intersection
graph has two non-bipartite contiguous blocks the odd chordless cycle c1 passing
through y1,2 is a unique cycle with this property. The same is true for the cycle c2.

For a block B, we denote by IB the toric ideal IG ∩ K[ei |ei ∈ B], see [22].
The following result describes when a toric ideal IG is a complete intersection.

Theorem 5.5 Let G be a graph and let B1, . . . , Bk be its blocks. IG is a complete
intersection toric ideal if and only if

(i) All minimal generators, except for at most one, of IG are of the form Bw where
w is an even cycle and

(ii) The ideals IBi
are complete intersection toric ideals for all 1 ≤ i ≤ k.

Proof Let G be a graph such that the toric ideal IG is a complete intersection. The
first condition follows from Theorem 5.4 and the second from Theorem 3.1 by choos-
ing H = V (Bi ).
Conversely, let G be a graph and let B1, . . . , Bk be its blocks such that IBi

is a com-
plete intersection toric ideal for all 1 ≤ i ≤ k. Note that every even cycle belongs to
a unique block and all generators of the ideals IBi

correspond to even cycles, see
Theorem 5.3. The number of minimal generators of the block Bi is mi − ni + 1 if Bi

is bipartite and mi − ni if not. Therefore, the total number of minimal generators of
IG of the form Bw , where w is an even cycle is

k∑

i=1

(mi − ni + 1) − j,

where j is the number of non-bipartite blocks. Note that
∑k

i=1 mi = m since every
edge belongs to a unique block. Also

∑k
i=1 ni = n + ∑c

i=1(deg(vi) − 1), where vi

are cut vertices, deg(vi) is the degree of vi as a vertex in the block tree B(G) and c

is the number of cut vertices, since each cut vertex vi belongs to deg(vi) blocks. The
block tree B(G) is bipartite with bipartition (B,S), where B is the set of blocks of G

and S is the set of cut vertices of G. Therefore,
∑c

i=1 deg(vi) is the number of edges
of the tree B(G) which is k + c − 1. Combining all these facts, we have that the total
number of minimal generators of IG of the form Bw , where w is an even cycle, is
m − n − ∑c

i=1 deg(vi) + c + k − j = m − n + 1 − j .
We consider the following cases:
In the case j = 0, the graph is bipartite and the total number of generators is

m − n + 1 since all minimal generators of IG are of the form Bw , where w is an even
cycle. This means that G is a complete intersection.

In the case j = 1, the graph is not bipartite and the total number of generators is
m − n since all minimal generators are of the form Bw , where w is an even cycle.
Therefore, G is a complete intersection.

In the case j = 2, the graph is not bipartite, thus its height is m−n and the number
of the minimal generators of the form Bw , where w is an even cycle, is m − n − 1 so
there must be exactly one more which is not of that form from condition (i) and thus
the total number of minimal generators is m − n and G is a complete intersection.
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In the case j > 2, the graph is not bipartite, thus its height is m−n and the number
of the minimal generators of the form Bw , where w is an even cycle, is m−n+ 1 − j

so there must be exactly one more which is not of that form from condition (i) and
thus the total number of minimal generators is m − n + 2 − j , which is less than the
height, a contradiction to the generalized Krull’s principal ideal theorem.

Therefore, in all possible cases, G is a complete intersection. �

Theorems 4.2 and 5.5, combined with the result of I. Gitler, E. Reyes, and R. Vil-
larreal [5, 6] that the bipartite complete intersections graphs are the ring graphs, give
the following corollary.

Corollary 5.6 Let G be a graph. If G is a complete intersection then either

(i) All blocks of G are bipartite ring graphs, or
(ii) All blocks are bipartite ring graphs except for one, or

(iii) All blocks are bipartite ring graphs except for two which are contiguous.

This result characterizes almost completely, except of at most two blocks, the com-
plete intersection graphs. In the next section, we will give properties of those one or
two blocks which are not bipartite ring graphs.

6 The odd cycle condition and normality

In this section, we present Theorems 6.3 and 6.4 that are interesting on their own
since they give us information about complete intersection graphs. But also they can
be used to provide a necessary and sufficient condition for the edge ring of a com-
plete intersection graph to be normal, see Theorem 6.7. The normalization of the edge
subring K[G] was described explicitly by A. Simis, W.V. Vasconcelos and R.V. Vil-
larreal in [20] and by H. Ohsugi and T. Hibi in [15]. H. Ohsugi and T. Hibi related
the normality of K[G] with the odd cycle condition.

Definition 6.1 We say that a graph G satisfies the odd cycle condition if for arbitrary
two odd chordless cycles c1 and c2 in G, either c1, c2 have a common vertex or there
exists an edge of G joining a vertex of c1 with a vertex of c2.

For information about graphs satisfying the odd cycle condition, see [9, 16], and [21].

Theorem 6.2 (H. Ohsugi and T. Hibi [15]) Let G be a graph. Then the following
conditions are equivalent:

• The edge ring K[G] is normal;
• The graph G satisfies the odd cycle condition.

Theorem 6.3 Let G be a biconnected complete intersection graph G. The graph G

satisfies the odd cycle condition and so the edge ring K[G] is always normal.
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Proof Let c1, c2 be two odd chordless cycles of G which have no common ver-
tex. We will prove that the subgraph c1 ∪ c2 has a chord. Suppose not. Let p =
(y1, x1, . . . , x2, y2) be the shortest path from c1 to c2, denoted by its vertices.
The length of p is greater than one, so it may be that x1 = x2. The subgraph
c1 ∪ c2 ∪ p has chords, otherwise the walk (c1,p, c2,−p) defines a minimal gen-
erator, which contradicts Theorem 5.3. Since p is the shortest path, it is chordless
and there is no chord in c1 ∪ c2. Therefore, all the chords of c1 ∪ c2 ∪ p should
be from the cycle c1 to x1 and from the cycle c2 to x2. Let (u1,1, u1,2, . . . , u1,s1)

be the cycle c1 denoted by its vertices, where u1,1 = y1. We consider all chords
from the cycle c1 to x1 together with the edge {x1, y1} and denote them by e1 =
{x1, u1,i1}, . . . , et1 = {x1, u1,it1

}, where 1 = i1 < · · · < it1 . In the case that t1 > 1,
the cycles c1,j = (x1, u1,ij , u1,ij +1, . . . , u1,ij+1), for 1 ≤ j ≤ t1 − 1, and c1,t1 =
(x1, u1,it1

, u1,it1 +1, . . . , u1,s1 , u1,1) are chordless and at least one of them is odd, say
c1,j , since c1 is odd. Similarly, if t2 > 1 there must be an odd chordless cycle of the
form c2,k .

In the case t1 > 1 and t2 > 1, let w be the even closed path (c1,j , x1, . . . , x2, c2,k).
In the case t1 = 1 and t2 > 1, let w be the even closed path (c1, y1, x1, . . . , x2, c2,k).
In the case t1 > 1 and t2 = 1, let w be the even closed path (c1,j , x1, . . . , x2, y2, c2).
In the case t1 = 1 and t2 = 1, let w be the even closed path (c1, y1, x1, . . . , x2,

y2, c2).

In all cases w is chordless; therefore, by Theorem 2.7, the binomial Bw is a mini-
mal generator of IG, contradicting Theorem 5.3. We conclude that G satisfies the odd
cycle condition. �

Theorem 6.4 Let G be a complete intersection graph such that it contains two non-
bipartite blocks B1, B2. Both B1, B2 contain exactly one odd chordless cycle passing
through the cut point y1,2 and y2,1, respectively. If any of them contained another odd
chordless cycle then this cycle would have distance one from the cut point y1,2 if it is
in B1 or y2,1 if it is in B2.

Proof Let G be a complete intersection graph such that it contains two non-
bipartite blocks B1, B2. The two blocks are contiguous, see Theorem 4.2. Accord-
ing to the proof of Theorem 4.2, there is one generator of the form Bw , where
w = (c1,p, c2,−p) is an even closed walk, where c1, c2 are the odd chordless cy-
cles of B1, B2 which are passing through y1,2 and y2,1, respectively, and p is the
unique chordless path between them. Let c1 = ({y1,2, y1}, ξ1, {y2, y1,2}), where ξ1
is a path from y1 to y2. Suppose that the block B1 contains another odd chordless
cycle. Let c be an odd chordless cycle different from c1 and ξ be a path of small-
est length from c to y1,2. Look at the even closed walk w′ = (c, ξ,p, c2,−p,−ξ).
Then Bw′ is not a minimal generator since it has a common cycle, c2, with w and
degG(Bw′) �= degG(Bw). Since c, c2 are chordless cycles, ξ and p are chordless paths
and c, ξ belong to the block B1, c2 belongs to the block B2 and each edge of p be-
longs to a different block; therefore, there must be at least one chord (bridge of w′),
say e, from the cycle c to the path ξ , see Theorem 2.7. And since ξ is a path of
smallest length from c to y1,2, any chord should be from c to the second vertex of ξ ,
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Fig. 3 A block of type T4

let it be x. So, certainly c does not pass through y1,2 and this implies that c1 is the
only odd chordless cycle which belongs to the block B1 which passes through y1,2.
Look at the induced graph of c ∪ {x}. Since c is chordless, any chord of c ∪ {x} is
from c to x. Let (u1, u2, . . . , us) be the cycle c denoted by its vertices. We consider
all chords from the cycle c to x and denote them by e1 = {x,ui1}, . . . , et = {x,uit },
where i1 < · · · < it . Note that t ≥ 2, since e is a chord of c ∪ {x} and the first edge
of the path ξ is also a chord of c ∪ {x}. The cycles oj = (x,uij , uij +1, . . . , uij+1, x),
for 1 ≤ j ≤ t − 1, and ot = (x,uit , uit+1, . . . , us, u1, . . . , ui1, x) are chordless and at
least one of them is odd since c is odd. Without loss of generality, we can suppose that
it is o1. But then, the even closed walk w′′ = (o1, ξ

′,p, c2,−p,−ξ ′) has no chords
and bridges, where ξ ′ is the subpath of ξ from x to y1,2. Therefore, by Theorem 2.7,
Bw′′ is a minimal generator of IG. But this is not possible since w′′ has a common
cycle, c2, with w, except if Bw′′ = Bw . Therefore, o1 has to be c1, ξ ′ = ∅, ui1 = y1,
ui2 = y2, and x = y1,2. Therefore, c has distance one from y1,2. �

Definition 6.5 We say that a block is of type Ti if it has i chordless odd cycles.

A bipartite block is of type T0, while in a complete intersection graph the non-
bipartite blocks may be of higher type than T1. For example, the graph in Fig. 3 is of
type T4 and it is complete intersection, since IG = (e1e3 − e2e4, e4e6 − e5e7, e3e5 −
e8e9) and h = 9 − 6 = 3.

Definition 6.6
Two non-bipartite blocks are called strongly contiguous if

• Both are of type T1 and they have distance at most one, or
• One is of type T1 and the other of greater type and they have a common cut vertex.

It is easy to see that strongly contiguous blocks are always contiguous. The next
theorem completely determines the form of the complete intersection graphs G for
which their edge ring K[G] is normal.

Theorem 6.7 Let G be a complete intersection graph. Then G is normal if and only
if G has at most one non-bipartite block or two which are strongly contiguous.

Proof Let G be a complete intersection graph such that K[G] is normal, then G

satisfies the odd cycle property. From Theorem 4.2 we know that G has at most one
non-bipartite block or two which are contiguous. In the first case, we have nothing to
prove. Suppose that we are in the case that there are two contiguous blocks B1, B2.
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Fig. 4 The example

In the case that both are of type T1, from Theorem 6.4, they have exactly one odd
chordless cycle each, passing through y1,2 and y2,1, respectively. Since G satisfies
the odd cycle property, the two blocks B1, B2 have to have distance at most one.

In the case that one is of type T1 and the other of greater type, say B1 is the first
and B2 the second, the block B1 has only one odd chordless cycle passing through
y1,2, the block B2 has more than one chordless cycle, one is passing through y2,1
and the others have distance one from y2,1, by Theorem 6.4. Since G satisfies the
odd cycle property, the two blocks have to have a common (cut) vertex, y1,2 = y2,1.
Finally, it is impossible to have both B1, B2 of type greater than T1, since in this case
there is an odd chordless cycle in B1 with distance one from y1,2 and there is an
odd chordless cycle in B2 with distance one from y2,1. So these two odd cycles have
distance at least two, contradicting the odd cycle property. So in all possible cases,
the two blocks are strongly contiguous.

For the converse, in the case that the graph G has at most one non-bipartite block,
Theorem 6.3 implies that G satisfies the odd cycle property and thus K[G] is normal.
In the case that G has two non-bipartite blocks which are strongly contiguous, Theo-
rem 6.4 implies that G satisfies the odd cycle condition and thus K[G] is normal. �

For example, consider the graph G in Fig. 4 with seven vertices v1, v2, . . . , v7 and
nine edges e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v1}, e4 = {v1, v4}, e5 = {v4, v5},
e6 = {v5, v6}, e7 = {v6, v4}, e8 = {v6, v7}, e9 = {v5, v7}. The graph G has two non-
bipartite blocks which are contiguous. The one is of type T1 and the other of type
T2 and they have distance one. Therefore, they are not strongly contiguous. From
Theorem 5.5, the graph G is a complete intersection graph and the toric ideal is
generated by the two circuits e1e3e5e7 − e2e

2
4e6 and e5e8 − e7e9. It follows from

Theorem 6.7 that the edge ring K[G] is not normal, but note that the ideal IG is
generated by circuits with a square-free term, see Theorem 3.2 of [13].
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