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Abstract We classify the permutation groups of cyclic codes over a finite field. As
a special case, we find the permutation groups of non-primitive BCH codes of prime
length. In addition, the Sylow p-subgroup of the permutation group is given for many
cyclic codes of length pm. Several examples are given to illustrate the results.
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1 Introduction

The permutation groups of cyclic codes are of great theoretical and practical interest,
e.g. the permutation group can be used to find the weight distribution of a code [19],
and in decoding [16, 19]. They can also be used for cryptographic purposes such as
the McEliece cryptosystem and its variants [20]. Despite the significance of this prob-
lem, the permutation groups of cyclic codes are known for only a few subclasses such
as the Reed–Solomon codes, Reed–Muller codes and some BCH codes [3, 18]. The
other cases remain open. Recently, Bienert and Klopsch [4] studied the permutation
groups of cyclic codes in the binary case. They gave the primitive groups which can
be the permutation group of a binary cyclic code. Dobson and Witte [13, 14] con-
sidered the cyclic codes invariant under some transitive groups. Furthermore in some
cases they gave the Sylow p-subgroups of some transitive subgroups of Sp2 and Spm .
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In this paper we classify the permutation groups of cyclic codes. First we gen-
eralize the results of [4] concerning the doubly transitive permutation groups with
socle PSL(d, q) to the non-binary case. Then we use the classification of the dou-
bly transitive groups which contain a complete cycle, given by McSorley [21, 22],
and our previous results to determine the permutation groups in the doubly transitive
cases. This allows us to determine the permutation groups of the BCH codes in the
prime length case. Further, we give conditions on the primitivity of the permutation
groups which are based on the underlying field and the length of the code. For many
cyclic codes, we explicitly give the Sylow p-subgroups of the permutation groups
in the primitive and imprimitive cases. This is done using some subgroups of Spm

introduced by Brand [5]. Several examples are given to illustrate the results.

2 Preliminaries

Let Fq be a finite field. A linear code C of length n over Fq is a subspace of F
n
q .

A vector x = (x0, . . . , xn−1) ∈ C is said to be a codeword of C. Let I denote the
set {0,1, . . . , n − 1}, and let Sn be the symmetric group acting on I . Then Sn acts
naturally on a codeword of C as follows. If σ is a permutation of Sn, then

σ(x) = (xσ−1(0), . . . , xσ−1(n−1)), (x0, . . . , xn−1) ∈ C.

The permutation group of C is the subgroup of Sn given by

Per(C) = {
σ ∈ Sn |σ(C) = C

}
.

A linear code C over Fq is cyclic if T ∈ Per(C), where T = (0,1, . . . , n − 1) is
a complete cycle of length n. If C is cyclic then Per(C) is a transitive group. The
group AG(n) = {τa,b : a �= 0, (a, n) = 1, b ∈ Zn} is the subgroup of Sn formed by the
permutation defined as follows:

τa,b : Zn −→ Zn

x �−→ (ax + b) mod n.
(1)

The group AG(n) is called the group of affine transformations. The affine transfor-
mations Ma = τa,0 are called a multiplier. The affine group AGL(1,p) is the group
of affine transformations over Zp . The projective semi-linear group PΓ L(d, t) is the
semi-direct product of the projective linear group PGL(d, t) and the automorphism
group Z = Gal(Ft /Fp) of Ft , where t = ps,p prime, i.e.

PΓ L(d, t) = PGL(d, t) � Z.

Remark 1 The zero code, the entire space, and the repetition code and its dual are
called elementary codes. The permutation group of these codes is Sn [16, p. 1410].
Further, it was proven in [16, p. 1410] that there is no cyclic code with permutation
group equal to Alt (n).
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3 The permutation groups of cyclic codes

A doubly transitive group G has a unique minimal normal subgroup N which is
either regular and elementary abelian, or simple and primitive, and the centralizer of
N in G is equal to CG(N) = 1 [8, p. 202]. All simple groups which can occur as a
minimal normal subgroup of a doubly transitive group are known. This result is due to
the classification of finite simple groups [9]. Using this classification, McSorley [21]
gave the following result.

Lemma 1 A group G of degree n which is doubly transitive and contains a complete
cycle has socle N with N ≤ G ≤ Aut(N), and is equal to one of the cases in Table 1.

The arguments given in the following Lemma are similar to those for the binary
case [4, Theorem E, Part 3].

Lemma 2 Let C be a non-elementary cyclic code of length n = td−1
t−1 over a finite

field Fq , where q = rα and t is a prime power. If the group Per(C) satisfies

PGL(d, t) ≤ Per(C) ≤ PΓ L(d, t),

then t = ra for some a ≥ 1, d ≥ 3, and Per(C) = PΓ L(d, t).

Proof Assume d = 2. As the group PGL(2, t) acts 3-transitively on the 1-
dimensional projective space P

1(Ft ), we deduce from [22, Table 1 and Lemma 2],
that the underlying code is elementary, which is a contradiction. Hence d ≥ 3, and
from [22, Table 1 and Lemma 2], it must be that since C is non-elementary, t must
be equal to ra . Now let V denote the permutation module over Fr associated with the
natural action of PGL(d, t) on the (d − 1)-dimensional projective space P

d−1(Ft ).
Let U1 be a PGL(d, t)-submodule of V . Then U1 is PΓ L(d, t)-invariant. This is be-
cause, if σ is a generator of the cyclic group PΓ L(d, t)/PGL(d, t) � Gal(Ft /Fr ),
then U2 = Uσ

1 , regarded as a PGL(d, t)-module, is simply a twist of U1. Let Fr

Table 1 The doubly transitive groups that contain a complete cycle

G n N

AGL(1,p) p Cp

S4 4 C2 × C2

Sn,n ≥ 5 n Alt (n)

Alt (n), n odd and ≥ 5 n Alt (n)

PGL(d, t) ≤ G ≤ PΓ L(d, t) td−1
t−1 PSL(d, t)

(d, t) �= (2,2), (2,3), (2,4)

PSL(2,11) 11 PSL(2,11)

M11(Mathieu) 11 M11(Mathieu)

M23(Mathieu) 23 M23(Mathieu)
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be the algebraic closure of Fr . Then the composition factors of the FrPGL(d, t)-
modules U1 = Fr ⊗ U1 and U2 = Fr ⊗ U2 are the same. The submodules of the
FrPGL(d, t)-module V = Fr ⊗ V are uniquely determined by their composition
factors [1]. Then we have U1 = U2, which implies that U1 = U2, and therefore
Per(C) = PΓ L(d, t). �

The following theorem establishes the permutation group of a non-elementary
cyclic code of prime length over Fq , where q = rα .

Theorem 3 Let C be a non-elementary cyclic code of length p over Fq . Then Per(C)

is a primitive group, and one of the following holds:

(i) Per(C) is a solvable group of order pm with m a divisor of p − 1 and Cp ≤
Per(C) ≤ AGL(1,p), with p ≥ 5. Furthermore Per(C) contains a normal
Sylow p-subgroup.

(ii) If p = q , then Per(C) = AGL(1,p).
(iii) Per(C) = PSL(2,11) and q is a power of 3. C is either the [11,6] or [11,5]

code that is equivalent to the [11,6,5] ternary Golay code or its dual, respec-
tively.

(iv) Per(C) = M23 and q is a power of 2. C is either the [23,12] or [23,11] code
that is equivalent to the [23,12,7] binary Golay code or its dual, respectively.

(v) Per(C) = PΓ L(d, rdb
) where b ∈ N, d ≥ 3 is a prime number such that

(d, rdb − 1) = 1, and p = (rdb+1 − 1)/(rdb − 1).

Proof A transitive group of prime degree is a primitive group [23, p. 195]. As a
consequence of a result of Burnside [13, Theorem 2], a transitive group of prime de-
gree is either a subgroup of AGL(1,p) or a doubly transitive group. In the first case
Cp ≤ Per(C) ≤ AGL(1,p), and if p = 2 or 3, AGL(1,p) = Sp . In this case, C is
elementary by Remark 1, which is a contradiction. Since Cp is normal in AGL(1,p)

and AGL(1,p)/Cp is abelian, Per(C) is a normal subgroup. By [11, Example 3.5.1]
G is solvable. If q = p, Roth and Seroussi [24] proved that any cyclic code of
prime length p over Fp must be an MDS code equivalent to an extended Reed–
Solomon code. Berger [2] proved that the permutation group of such codes is the
affine group AGL(1,p). In the doubly transitive cases, as C is non-elementary of
prime length p, by Lemma 1, Remark 1 and Lemma 2, we see that Per(C) is one of
M11, with p = 11, PSL(2,11) with p = 11, M23 with p = 23, or PΓ L(d, t) of de-
gree p = (td − 1)/(t − 1) and t a prime power. If Per(C) = M11, from [22, Table 1,
Lemma 2] C must be elementary, which is a contradiction. If Per(C) = PSL(2,11),
from [22, Table 1, Lemma 2 and (J)] q must be a power of 3, and there is a unique non-
elementary code over Fq contained in the dual of the repetition code. The [11,5,6]
dual of the ternary Golay code is contained in the repetition code and has permuta-
tion group PSL(2,11); its dual, an [11,6,5] code, intersects the dual of the repeti-
tion code in this [11,5,6] code and also has permutation group PSL(2,11). Part (ii)
then follows. Part (iii) is obtained in an analogous way from [22, Table 1, Lemma 2
and (I)]. For Part (iv), we have from Lemma 2 that Per(C) = PΓ L(d, t), t = ra for
some a ≥ 1 and d ≥ 3. A number theory argument [12, Lemma 3.1] gives the result
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Table 2 Permutation groups of some BCH codes of length p

q p δ Per(C) Per(C2) P er(C3)

2 17 2 C8 � C17 S17 S17

2 23 3 M23 M23 M23

2 41 2 C20 � C41 C20 � C41 C20 � C41

2 41 3 C20 � C41 S41 S41

2 43 5 C14 � C43 C14 � C43 C14 � C43

2 43 7 C14 � C43 S43 S43

3 13 2 C3 � C13 C3 � C13 C3 � C13

3 13 4 PΓ L(3,3) C3 � C13 C3 � C13

3 13 5 C3 � C13 C3 � C13 C3 � C13

3 23 3 C11 � C23 C11 � C23 C11 � C23

3 41 5 C8 � C41 C8 � C41 C8 � C41

4 43 9 C7 � C43 S43 S43

5 11 5 C5 � C11 C5 � C11 C5 � C11

11 5 3 C5 C2 � C5 C5

that if p is prime, then d must be a prime such that (d, ra − 1) = 1 and a = bd . The
result then follows. �

Remark 2 For p prime, the permutation group of a non-elementary BCH code of
length p over Fq is one of those listed in Theorem 3.

In Table 2, we give examples of permutation groups of BCH codes of length p over
Fq . Per(C) (respectively Per(C2) and Per(C3)), denotes the permutation group of
the narrow sense (b = 1) BCH code with designed distance δ (respectively BCH code
with designed distance δ and b = 2 and b = 3).

The following result is obtained by considering the permutation groups of cyclic
codes of composite length.

Theorem 4 Let C be a non-elementary cyclic code over Frα of composite length.
Then Per(C) is either

(i) an imprimitive group (in the case that n = pm, p a prime, the orbit of the sub-
group generated by T pm−1

and its conjugate form a complete block system of
Per(C));

or
(ii) Per(C) is a doubly transitive group equal to

PΓ L
(
d, ra

)
, with n = rad − 1

ra − 1
, d ≥ 3, a ≥ 1.

Proof The group Per(C) contains a complete cycle and has composite degree.
Hence from a theorem of Burnside and Schur [25, p. 65], Per(C) is either imprim-
itive or doubly transitive. If it is imprimitive and n = pm, by [7, Chap. XVI, Theo-
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rem VIII] Per(C) contains an intransitive normal subgroup generated by T pm−1
and

its conjugates. By [25, Proposition 7.1] the orbit of such a subgroup forms a complete
block system of Per(C).

In the doubly transitive case, we have from Lemma 1 that the only cases when the
socle can be abelian are N = Cp and N = C2 × C2. In these cases, Per(C) must be
equal to AGL(1,p) or S4, which is impossible. Since the socle is not abelian and
the degree is not prime, this leads to the only solution given by row six of Table 1 in
Lemma 1. Hence from Lemma 2, Part (ii) follows. �

4 The permutation group of cyclic codes of prime power length

In this section, we consider the permutation groups of cyclic codes of length pm,
where p is an odd prime.

Lemma 5 Let q be a prime power, p an odd prime, and z the largest integer such
that pz|(qt − 1), with t the order of q modulo p. If z = 1 we have

ordpm(q) = pm−1t.

Proof Let t be the order of q modulo p, and u = qt ≡ 1 mod p. Assume that z = 1,
or equivalently u �= 1 mod p2. It is well known from elementary number theory [10,
p. 87] that u mod pm is an element of order pm−1 in the group (Zpm)∗ if and only if
u �= 1 mod p2. Hence ordpm(q) = pm−1t . �

According to Brillhart et al. [6], it is unusual to have z > 1.

Proposition 6 Let n = pm and q = rα a prime power with (q,n) = 1, and C a cyclic
code of length n over Fq . Let Mq be the multiplier defined by Mq(i) = iq mod pm.
Then the group Per(C) contains the subgroup K = 〈T ,Mq〉 of order pm ordpm(q).
Let pl , with l ≥ m be the p-part of the order of K . Then a Sylow p-subgroup P of
Per(C) has order ps such that

l ≤ s ≤ pm−1 + pm−2 + · · · + 1.

If z = 1, then s ≥ 2m − 1.

Proof By the definition of a cyclic code, we have T ∈ Per(C). It is obvious that each
cyclotomic class modulo n over Fq is invariant under the permutation Mq . This can
be deduced from the fact that the polynomial f (x) ∈ Fq [x] satisfies f (xq) = f (x)q .
Thus Mq ∈ Per(C). The order of Mq is equal to ordn(q), hence K = 〈T ,Mq〉 is
a subgroup of Per(C) of order nordn(q). Since n = pm, the order of K has p-
part pl with l ≤ m. Let P be a Sylow p-subgroup of Per(C) which contains T .
Then P is a p-subgroup of Spm . From Sylow’s Theorem, P is contained in a Sylow
p-subgroup of Spm . It is well known that a Sylow p-subgroup of Spm is of order

ppm−1+pm−2+···+1 [23, Kalužnin’s Theorem]. Since P also contains the subgroup of
K of order pl , then l ≤ s ≤ pm−1 + pm−2 + · · · + 1. If z = 1, then by Lemma 5 the
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order of the group K is ordp(q)p2m−1. This shows that p2m−1 divides |Per(C)|, so
Per(C) contains a p-subgroup of order at least p2m−1. �

Theorem 7 Let C be a non-elementary cyclic code of length pm over Frα , with
m ≥ 1. Then the following hold:

(i) If p � α and p � (d, ra − 1), then Per(C) = PΓ L(d, ra), a ≥ 1, d ≥ 3, if and
only if the Sylow p-subgroup of Per(C) is of order pm.

(ii) If p ≥ 5, α = 1 and r = p, m > 1, then Per(C) is an imprimitive group which
admits a complete system formed by the orbit of the subgroup generated by
T pm−1

and its conjugate. It also contains a transitive normal Sylow p-subgroup
of order ps with m < s ≤ pm−1 + pm−2 + · · · + 1.

(iii) If z = 1, p � α and p � (d, ra − 1), then Per(C) is an imprimitive group which
contains a transitive normal Sylow p-subgroup of order ps , with 2m − 1 ≤ s ≤
pm−1 + pm−2 + · · · + 1. Furthermore, Per(C) admits a complete block system
formed by the orbit of the subgroup generated by T pm−1

and its conjugate.

Proof For Part (i), we know that the socle of PΓ L(d, ra) is the group PSL(d, ra)

of order rad(d−1)/2

(d,ra−1)

∏d
i=2(r

ai − 1). From a lemma of Zsigmondy [17, Chap. IX, The-

orem 8.3], except for the cases d = 2, ra = 2b − 1 and d = 6, ra = 2, there exists a
prime q0 such that q0 divides rad −1, but does not divide rai −1, for 1 ≤ i < d . From
Lemma 2, we cannot have d = 2. The case d = 6 and ra = 2 does not give a prime

power. Hence if n = pm = rad−1
ra−1 , there is a q0 which divides (rad −1) = (ra −1)pm.

Since q0 does not divide ra − 1, then q0 divides pm, and hence q0 = p and pm is the
p-part of the order of PSL(d, ra). Also, since p � ra − 1, we have p � (d, ra − 1).
Hence if (α,p) = 1, pm is also in the p-part of the order of PΓ L(d, ra), and the
result follows.

Conversely, if Per(C) has Sylow p-subgroup P of order pm, we can assume
that T ∈ P , which gives the equality P = 〈T 〉. Assume that in this case Per(C) is
imprimitive. Then by [13, Theorem 33], P is normal. P is then the minimal normal
subgroup which is transitive and abelian. From [25, p. 17] Per(C) is primitive, which
is impossible. Thus if P = 〈T 〉, the group Per(C) is equal to PΓ L(d, ra), which
is possible only if [PΓ L(d, ra) : PSL(d, ra)] is prime to p, i.e, (p,α) = 1 and
p � (d, ra − 1).

For Part (ii), from Theorem 4 if Per(C) is primitive, then it is doubly transitive

and equal to PΓ L(d, ra) with n = rad−1
ra−1 , d ≥ 3 and a ≥ 1. From [13, Lemma 22], if

Per(C) is doubly transitive with non abelian socle, then Soc(P er(C)) = Alt (pm).
Hence from Remark 1 the code is elementary, which is a contradiction. Therefore,
Per(C) is imprimitive, and then by Part (i) the order of the Sylow p-subgroup is ps

with s > m. The second inequality then follows by Proposition 6.
For Part (iii), if z = 1 then from Proposition 6, we find that the order of a Sylow p-

subgroup of Per(C) is at least p2m−1. If Per(C) is doubly transitive, by Theorem 4 it
is equal to PΓ L(d, ra), with d ≥ 3. By assuming p � α and p � (d, ra −1), we obtain
from Part (i) that a Sylow p-subgroup of Per(C) has order pm, which is impossible.
Hence Per(C) is an imprimitive group. From [13, Theorem 33] Per(C) contains a
transitive normal Sylow p-subgroup, hence the result follows. �
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Example 1 The narrow sense BCH code of length 25 over F3 with designed distance
3 has a permutation group which is the imprimitive group S5 � S5. The narrow sense
BCH code of length 9 over F5 with designed distance 2 has a permutation group
which is the imprimitive group S3 � S3. The binary [7,4,3] Hamming code has per-
mutation group PΓ L(3,2), which contains a Sylow 7-subgroup of order 7.

We now give the Sylow p-group of Per(C) for several cases. Let p be an odd
prime. For n < p − 1, we define the following subsets of Spm :

Qn = {f : Zpm → Zpm |f (x) = ∑n
i=0 aix

i, ai ∈ Zpm for each i, (p, a1) = 1, and
pm−1 divides ai for i = 2,3, . . . , n}.

Qn
1 = {f ∈ Qn|f (x) = ∑n

i=0 aix
i, with a1 ≡ 1 mod pm−1}.

The sets Qn and Qn
1 are subgroups of Spm [5, Lemma 2.1]. Note that Q1 =

AG(pm).
The following lemma will be used later. Note that the proof is similar to that of

[15, Lemmas 2.4, 2.5].

Lemma 8 If 1 ≤ n < p − 1, then

(i) |Qn| = (p − 1)p2m+n−2 and |Qn
1| = pm+n.

(ii) AG(pm) = NSpm (〈T 〉).
(iii) NSpm (Qn

1) = Qn+1.

Proof For Part (i), by [5, Lemma 3.2], the map (a0, . . . , an) −→ f , where f (x) =∑n
i=0 aix

i is injective if n < p − 1. Thus in Qn, the coefficients of a0 can take pr

different values, and a1 can take pm−1(p − 1) values. For 2 ≤ i ≤ n, ai can take p

values. From these results we have |Qn| = p2m+n−2(p − 1). For Qn
1 , the coefficients

of a0 can take pm different values, and ai for 1 ≤ i ≤ n can take p values, hence
|Qn

1 | = pm+n.
Now we prove that AG(pm) = NSpm (〈T 〉). Let σ be an element of NSpm (〈T 〉).

Then, there is a j ∈ Zn \ {0} such that σT σ−1 = T j , or equivalently σT = T jσ .
Hence σT (0) = σ(1) = T jσ (0) = σ(0) + j and σT (1) = σ(1) + j = σ(0) + 2j .
Therefore σ(k) = σ(0) + kj for any k ∈ Zn. Then (j, n) = 1 follows from the fact
that the order of T equals the order of T j .

Now we prove Part (iii).
(⊆ part) Let h ∈ Npm(Qn

1) and g = h−1T h. As T ∈ Qn
1, it must be that g ∈ Qn

1.
Since the order of g is equal to the order of T (which is pm), from [5, Lemma 3.6]
there exists f ∈ Qn+1 such that f −1gf = T . Thus f −1h−1T hf = T . The only ele-
ments of Spm which commute with T (a complete cycle of length pm), are the powers
of T . Thus hf = T j for some j . Since Qn+1 is a subgroup of Spm and 〈T 〉 ≤ Qn+1,
then h ∈ Qn+1. Hence Npm(Qn

1) ≤ Qn+1.
(⊇ part) Let h ∈ Qn

1, where h(x) = ∑n
i=0 hix

i , with h1 ≡ 1 mod pm−1 and

pm−1|hi , for 2 ≤ i ≤ n. Let g ∈ Qn+1 where g(x) = ∑n+1
i=0 gix

i , with p � g1 and
pm−1|gi for 2 ≤ i ≤ n. We have

hg(x) =
n∑

i=0

hi

(
n+1∑

j=0

gjx
j

)i

= h0 + h1

n+1∑

i=0

gjx
j +

n∑

i=2

hi

(
n+1∑

j=0

gjx
j

)i

.
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Since pm−1|hi , for i ≥ 2 and pm−1|gj for j ≥ 2, any terms in
∑n

i=2 hi(
∑n+1

j=0 gjx
j )i

involving gj for j ≥ 2 vanish modulo pm. Therefore we have

hg(x) = h0 + h1

n+1∑

j=0

gjx
j +

n∑

i=2

hi(g0 + g1x)i .

By [5, Lemma 2.1], we have

g−1(x) =
n+1∑

i=1

bix
i with b1 = g−1

1 and bi = −gig
−(i+1)
1 for 2 ≤ j ≤ n + 1. (2)

We now compute g−1hg in order to prove that it is in Qn
1 . This is given by

g−1hg(x) =
n+1∑

k=1

bk

(

h0 + h1

n+1∑

j=0

gjx
j +

n∑

i=2

hi(g0 + g1x)i − g0

)k

= b1

(

h0 + h1

n+1∑

j=0

gjx
j +

n∑

i=2

hi(g0 + g1x)i − g0

)

+
n+1∑

k=2

bk

(

h0 + h1

n+1∑

j=0

gjx
j +

n∑

i=2

hi(g0 + g1x)i − g0

)k

.

As pm−1|gj for j ≥ 2, we have pm−1|bk for k ≥ 2. Furthermore, pm−1|hi for i ≥ 2,
and thus

g−1hg(x) = b1

(

h0 + h1

n+1∑

j=0

gjx
j +

n+1∑

j=0

hi(g0 + g1x)i − g0

)

+
n+1∑

k=2

bk

(
h0 + h1(g0 + g1x) − g0

)k
.

Let g−1hg(x) = ∑n+1
m=0 cmxm, and note that cn+1 = b1h1gn+1 + bn+1(h1g1)n + 1.

Then by replacing the bi with their values from (2), we obtain

cn+1 = g−1
1 h1gn+1 − gn+1g

−(n+2)
1 hn+1

1 gn+1
1 = g−1

1 h1
(
gn+1 − gn+1h

n
1

)
.

As h1 ≡ 1 mod pm−1, we have hn
1 ≡ 1 mod pm−1. In addition, since pm−1|gn+1, we

have gn+1h
n
1 ≡ gn+1 mod pm. Therefore, cn+1 = 0, and also pm−1|ci for 2 ≤ i ≤ n.

Then we only need to show that c1 ≡ 1 mod pm−1. Since gj ≡ 0 mod pm−1 for
j ≥ 2, hi ≡ 0 mod pm−1 for i ≥ 2, and bk ≡ 0 mod pm−1 for k ≥ 2, then c1 ≡
b1h1g1 mod pm−1. Finally, as b1 = g−1

1 , we have c1 ≡ h1 ≡ 1 mod pm−1. �

Lemma 9 Let 1 ≤ n < p − 1. If P is a p-subgroup of Spm with Qn
1 � P ≤ Qn+1,

then P = Qn+1
1 .
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Proof By Lemma 8 Part (ii), we have Qn
1 � Qn+1. Hence we can consider Q =

Qn+1/Qn
1 , which is of order pm−1(p − 1) by Lemma 8. Let N be the number of

Sylow p-subgroups of Q. Then by Sylow’s Theorem, N ≡ 1 mod p and N divides
pm−1(p − 1). Hence N = 1, so there exists a unique Sylow p-subgroup P ′ of Q

which is normal. From the condition on P above, the image P of P in Q is also
a Sylow p-subgroup of Q. Since there is a unique Sylow p-subgroup P ′ = P , by

Lemma 8 the image Q
n+1
1 of Qn+1

1 in Q is a Sylow p-subgroup of Q. Hence Q
n+1
1 =

P = P ′. As Qn
1 � P and Qn

1 ≤ Qn+1
1 , the result follows. �

Theorem 10 The group Q1
1 is a normal subgroup of Q1 and is the unique subgroup

of Spm of order pm+1 which contains T .

Proof It is obvious that T ∈ Q1
1. By Lemma 8, |Q1

1| = pm+1. Consider now an ele-
ment g of Q1, g(x) = b0 + b1x with b0, b1 ∈ Zpm and (b1,p) = 1. It is not difficult
to check that the inverse of g in Q1 is given by g−1(x) = −b−1

1 b0 + b−1
1 x. Consider

f ∈ Q1
1, so that f (x) = a0 + a1x with a0, a1 ∈ Zpm , (a1,p) = 1 and a1 ≡ 1 mod pm.

We then have g−1fg(x) = g−1(a0 + a1(b0 + b1x)) = (−b0 + a0 + a1b0)b
−1
1 + a1x.

This proves that g−1fg(x) ∈ Q1
1. Hence Q1

1 is normal in Q1. Now let S be a sub-
group of Q1 of order pm+1 which contains T . Thus 〈T 〉 has index p in S, and thus
〈T 〉 is maximal in S. Furthermore, 〈T 〉�S, because any subgroup of a p-group of in-
dex p must be normal. Therefore we have S = NS(T ) ≤ NSpm (T ), and by Lemma 8,

S ≤ NSpm (T ) = AG(pm) = Q1. Thus, such an S must be a subgroup of Q1. It is

clear that Q1
1 is not abelian, and S cannot be abelian since it is a transitive group. If

this were the case it would have to be a regular group [23, Theorem 1.6.3], and thus
|S| = pm, which is impossible. Furthermore, the p-groups which contain a cyclic
maximal subgroup are known [23, Theorem 5.3.4]. If these groups are not abelian or
p �= 2, they have the following special forms:

Q1
1 = 〈

x,T
∣∣ xp = 1; x−1T x = T 1+pm−1 〉

,

and

S = 〈
y,T

∣∣ yp = 1; y−1Ty = T 1+pm−1 〉
.

However, the conditions on x and y give

x−1T x = y−1Ty ⇐⇒ Tyx−1 = yx−1T ,

so the only elements of Spm which commute with T (a complete cycle of length pm),
are the powers of T . Thus yx−1 = T j for some j . Since the order of yx−1 is p, the
only choices for j are j = pm or j = pm−1. For both choices we get S = Q1

1, namely

j = pm gives x = y−1 (so S = Q1
1), and j = pm−1 gives x = T −pm−1

y. Thus we
have x ∈ 〈y,T 〉, so that 〈x,T 〉 = 〈y,T 〉, and hence S = Q1

1. �

Theorem 11 Let p be an odd prime, q = rα a prime power, C a cyclic code over Fq

of length pm, and P a Sylow p-subgroup of Per(C) of order ps such that T ∈ P .
Then the following hold:
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(a) If p � α and p � (d, ra − 1), then s = m, and P = 〈T 〉 if and only if Per(C) =
PΓ L(d, ra), d ≥ 3,

(b) If p ≥ 5, α = 1 and r = p, m > 1, then Per(C) is an imprimitve group and P is
normal of order ps , s > m. If m < s ≤ p + m − 1, then we have P = Qs−m

1 .
(c) If z = 1, p � α and p � (d, ra − 1), then Per(C) is an imprimitve group and P is

normal of order ps ≥ p2m−1. Furthermore, if 2m − 1 < s ≤ p + m − 1, then we
have P = Qs−m

1 .

Proof Statement (a) and the first parts of (b) and (c) follow from Theorem 7. We thus
only need prove that if s < p + m − 1, then P = Qs−m

1 . Assume s ≤ p + m − 1, so
that P contains a p-subgroup P ′ of order pm+1. By Theorem 10, we obtain P ′ = Q1

1.

Let j ≥ 1 be the largest integer such that Q
j

1 ≤ P . If j = p −1, by Lemma 8 we have

|Qp−1
1 | = pp+m−1. Thus Q

p−1
1 is a subgroup of P of the same order as P , and hence

P = Q
p−1
1 , so we can assume that 1 ≤ j < p − 1. If Q

j

1 � P , then Q
j

1 � NP (Q
j

1)

and by Lemma 8, NP (Q
j

1) ≤ Q
j+1
1 . Since Q

j

1 � NP (Q
j

1) ≤ Q
j+1
1 , by Lemma 8

Np(Q
j

1) = Q
j+1
1 , which contradicts the choice of j . �
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