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Abstract We study geometric and combinatorial properties of the degenerate flag va-
rieties of type A. These varieties are acted upon by the automorphism group of a cer-
tain representation of a type A quiver, containing a maximal torus T . Using the group
action, we describe the moment graphs, encoding the zero- and one-dimensional
T -orbits. We also study the smooth and singular loci of the degenerate flag vari-
eties. We show that the Euler characteristic of the smooth locus is equal to the large
Schröder number and the Poincaré polynomial is given by a natural statistics count-
ing the number of diagonal steps in a Schröder path. As an application we obtain
a new combinatorial description of the large and small Schröder numbers and their
q-analogues.
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1 Introduction

For n ≥ 1, let Fa
n+1 be the degenerate flag variety attached to the Lie algebra sln+1

(see [13, 14]). This is a flat degeneration of the classical flag variety, defined using
the PBW filtration on irreducible representations of sln+1 (see [17]). By construction,
the Fa

n+1 is acted upon by the degenerate Lie group SLa
n+1, which is the semi-direct

product of the Borel subgroup B and the abelian group G
N
a , where Ga is the ad-

ditive group of the field. In particular, G
N
a acts on Fa

n+1 with an open dense orbit.
The degenerate flag varieties are singular normal projective algebraic varieties, shar-
ing many nice properties with their classical analogues. In particular, they enjoy a
description in terms of linear algebra as subvarieties inside a product of Grassmann
varieties.

It has been observed in [9] that the degenerate flag varieties can be identified with
certain quiver Grassmannians of the equioriented quiver of type An. More precisely,
Fa

n+1 is isomorphic to the quiver Grassmannian GrdimA(A ⊕ A∗), where A and A∗
are the path algebra of the equioriented An quiver, resp. its dual. This observation
was used in two different ways: first, to get a deeper understanding of the geom-
etry and combinatorics of the degenerate flag varieties, and, second, to generalize
the results and constructions to a wider class of quiver Grassmannians. In this paper
we continue the study of the varieties Fa

n+1 using the techniques from the theory of
quiver Grassmannians. More concretely, we achieve two things: first, we describe the
combinatorial structure of the moment graph of Fa

n+1. Second, we describe explic-
itly the smooth and singular loci of the degenerate flag varieties. Let us give a brief
description of our results.

Recall that the notion of the moment graph attached to an algebraic variety X

acted upon by an algebraic torus was introduced in [6, 21]. This combinatorial object
captures the structure of zero- and one-dimensional orbits of T . It turns out to be very
useful for describing various geometric properties of X, such as cohomology and
intersection cohomology. Our first task is to describe the moment graph Γ of Fa

n+1.
We note that the automorphism group Aut(A⊕A∗) acts on Fa

n+1. The maximal torus
T of the automorphism group acts with a finite number of fixed points (this number
is equal to the normalized median Genocchi number, see [9, 13, 15]). It is proved
in [9] that there exists a codimension one subgroup A ⊂ Aut(A ⊕ A∗) containing
the torus T such that A-orbits through T -fixed points are affine cells that provide a
cellular decomposition of Fa

n+1. We describe A as a quotient of the Borel subgroup
of SL2n. Using this description, we prove the following theorem (for a more precise
formulation see Sect. 3):

Theorem 1.1 The number of one-dimensional T -orbits in Fa
n+1 is finite. The edges

of Γ correspond to the one-parameter subgroups of A.

We note that the structure of Γ has many common features with its classical ana-
logue (see [8, 22, 27]).

Our next goal is to describe the smooth locus of the degenerate flag varieties.
Since Fa

n+1 has a cellular decomposition by A-orbits of T -fixed points, it suffices to
decide which T -fixed points are smooth. We recall that the T -fixed points are labeled
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by collections S = (S1, . . . , Sn) of subsets of {1, . . . , n + 1} such that #Si = i and
Si ⊂ Si+1 ∪ {i + 1}. We denote the corresponding T -fixed point by pS.

Theorem 1.2 A point pS is smooth if and only if for all 1 ≤ j < i ≤ n, the condition
i ∈ Sj implies j + 1 ∈ Si . The number of smooth T -fixed points is given by the large
Schröder number rn.

We recall (see [20, 26]) that the large Schröder number rn is equal to the num-
ber of Schröder paths, i.e. subdiagonal lattice paths starting at (0,0) and ending at
(n,n) with the following steps allowed: (1,0), (0,1) and (1,1). In particular, Theo-
rem 1.2 implies that the Euler characteristic of the smooth locus of Fa

n+1 is equal to
rn. Moreover we prove the following theorem:

Theorem 1.3 The Poincaré polynomial of the smooth locus of Fa
n+1 is equal to the

(scaled) q-Schröder number qn(n−1)/2rn(q), where rn(q) is defined via the statistics
on Schröder paths, counting the number of (1,1) steps in a path.

As an application, we obtain a new proof of the statement that rn(q) is divisible
by 1 + q . The ratio is known to give a q-analogue of the small Schröder numbers.

Let us mention two more results of the paper. First, we prove that, for a general
Dynkin type quiver Q and a projective Q-module P and an injective Q-module I , the
quiver Grassmannian GrdimP (P ⊕ I ) is smooth in codimension 2. Second, we prove
that the smooth locus of Fa

n+1 can be described as the subvariety of points where the
desingularization map Rn+1 → Fa

n+1 (see [16]) is one-to-one.
Finally, we note that all the results of the paper can be generalized to the case of

the degenerate partial (parabolic) flag varieties.
Our paper is organized as follows:
In Sect. 1 we introduce the main objects and recall the main definitions and results

needed in the rest of the paper.
In Sect. 2 we describe the moment graph of the degenerate flag varieties.
In Sect. 3 we prove a criterion for smoothness of a T -fixed point and compute the

Euler characteristics and Poincaré polynomials.
In Appendix A we prove the regularity in codimension 2 of certain quiver Grass-

mannians.
In Appendix B we describe the smooth locus in terms of the desingularization.
In Appendix C we compute the moment graph for the degenerate flag variety Fa

4 .

2 Quiver Grassmannians and degenerate flag varieties

In this section we recall definitions and results on the degenerate flag varieties and
quiver Grassmannians to be used in the main body of the paper.

2.1 Degenerate flag varieties

Let Fn+1 be the complete flag variety for the group SLn+1, i.e. the quotient SLn+1/B

by the Borel subgroup B . This variety has an explicit realization as the subva-
riety of the product of Grassmannians

∏n
k=1 Grk(Cn+1) consisting of collections
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(V1, . . . , Vn) such that Vi ⊂ Vi+1 for all i. In [13, 14] flat degenerations Fa
n+1 of

the classical flag varieties were introduced. The degenerate flag varieties Fa
n+1 are

(typically singular) irreducible normal projective algebraic varieties, sharing many
nice properties with their classical analogues. In particular, they also have a very ex-
plicit description in linear algebra terms. Namely, let W be an (n + 1)-dimensional
vector space with a basis w1, . . . ,wn+1. Let prk : W → W be the projection opera-
tors defined by prkwk = 0 and prkwi = wi if i 
= k. The following lemma is proved
in [13], Theorem 2.1.

Lemma 2.1 The degenerate flag variety Fa
n+1 is a subvariety of the product of Grass-

mannians
∏n

k=1 Grk(W), consisting of collections (Vk)
n
k=1 such that

prk+1Vk ⊂ Vk+1 for all k = 1, . . . , n − 1.

Another important property of the varieties Fa
n+1 is that they admit a cellular de-

composition into a disjoint union of complex cells. Moreover, there exists an alge-
braic group A and a torus T ⊂ A acting on Fa

n+1 such that each cell contains exactly
one T -fixed point and the A-orbit through this point coincides with the cell. Let us
describe the combinatorics of the cells, postponing the description of the group ac-
tion to the next subsection. So let S = (S1, . . . , Sn) be a collection of subsets of the
set {1, . . . , n + 1} such that each Si contains i elements. Then the cells in Fa

n+1 are
labeled by the collections satisfying the following property:

Sk ⊂ Sk+1 ∪ {k + 1}, k = 1, . . . , n − 1. (2.1)

We call such collections admissible. The number of admissible collections (and hence
the Euler characteristic of Fa

n+1) is equal to the normalized median Genocchi num-
ber hn+1 (see [9, 13, 15]). We note that the correspondence between the admissible
collections and T -fixed points is very explicit. Namely, for a collection S we denote
by pS ∈ Fa

n+1 a point defined by

pS = (V1, . . . , Vn), Vk = span(wi, i ∈ Sk).

Clearly, such a point belongs to Fa
n+1 if and only if the collection S is admissible.

2.2 Quiver Grassmannians

The construction above can be reformulated in the language of quiver Grassmannians
(see e.g. [7, 24, 25]). Let Q be the equioriented type An quiver with vertices labeled
by numbers from 1 to n and arrows i → i + 1, i = 1, . . . , n − 1:

Q : • → • → · · · → •
For a representation M of Q we denote by Mk the subspace of M attached to the
vertex k. For a pair 1 ≤ i ≤ j ≤ n let Ri,j be an indecomposable representation of
Q supported on the vertices i, . . . , j (i.e. (Ri,j )k = C for i ≤ k ≤ j and is trivial
otherwise). We have the following immediate lemma.
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Lemma 2.2

dim Hom(Ri,j ,Rk,l) =
{

1, if k ≤ i ≤ l ≤ j,

0, otherwise;

dim Ext1(Ri,j ,Rk,l) =
{

1, if i + 1 ≤ k ≤ j + 1 ≤ l,

0, otherwise.

We note that the representations R1,j are injective and the Ri,n are projective (note
that these are all indecomposable injective and projective representations of Q). We
set

Ik = R1,k, Pk = Rk,n, P =
n⊕

k=1

Pk, I =
n⊕

k=1

Ik.

Hence, P is isomorphic to the path algebra of Q and I is isomorphic to its linear dual.
For a dimension vector e = (e1, . . . , en) and a representation M of Q, we denote by
Gre(M) the quiver Grassmannian of e-dimensional subrepresentations of M . Then
by definition one gets

Fa
n+1 � GrdimP (P ⊕ I ). (2.2)

Remark 2.3 The representation P ⊕ I can be visualized by the following picture
(here n = 4). Each fat dot corresponds to a basis vector and two dots corresponding
to the vectors u and v are connected by an arrow u → v if u is mapped to v. The
quiver obtained in this way is called the coefficient-quiver of P ⊕ I .

• • • •
• • • •
• • • •
• • • •
• • • •

(2.3)

The isomorphism (2.2) has many important consequences. In particular the auto-
morphism group of the Q-module P ⊕ I acts on Fa

n+1. The group Aut(P ⊕ I ) is of

the form Aut(P ⊕ I ) = ( AutP Hom(I,P )

Hom(P,I ) Aut I

)
. The part Hom(I,P ) is one-dimensional

(Hom(I,P ) = Hom(In,P1)). We denote by A ⊂ Aut(P ⊕ I ) the subgroup

A =
(

AutP 0
Hom(P, I ) Aut I

)

.

The group A contains a torus T isomorphic to (C∗)2n, where each factor scales the
corresponding indecomposable summand in P ⊕ I . The importance of the group A

comes from the following lemma, proved in [9].
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Lemma 2.4 The group A acts on Fa
n+1 with a finite number of orbits. Each orbit is

a complex affine cell, containing exactly one T -fixed point. The orbits are labeled by
admissible collections.

For an admissible collection S we denote by CS the cell containing the T -fixed
point pS.

Remark 2.5 We note that T contains a one-parameter subgroup which acts by the
identity automorphism on the degenerate flag variety. Hence one gets a (2n − 1)-
dimensional torus acting effectively on Fa

n+1, while the maximal torus T c acting
on the classical flag variety Fn+1 is n-dimensional. We note that there is a natural
embedding T c ⊂ T . In fact recall that any point of Fa

n+1 is of the form (Vk)
n
k=1,

Vk ⊂ W � Cn+1. Hence any diagonal (in the basis wi ) matrix in SL(W) induces
an automorphism of the degenerate flag variety. Hence we obtain the embedding
T c ⊂ T .

Finally, we note that the torus T contains a one-dimensional sub-torus T0 with
the following properties: the set of T -fixed points coincides with the set of the T0-
fixed points and the attracting set of a fixed point p coincides the orbit Ap (which
is an affine cell) [9, Theorem 5.1]. The action of the one-dimensional torus can be
illustrated as follows (n = 4, the scalar λ ∈ C∗ is the parameter of the torus and the
power of λ corresponds to the scaling factor of the T0 action):

1 •

λ • •

λ2 • • •

λ3 • • • •

λ4 • • • •

λ5 • • •

λ6 • •

λ7 •

(2.4)

This picture is obtained from the picture (2.3) by putting the P -part on top of the
I -part.

We conclude this section by describing the action of the torus T on the tangent
space at a T -fixed point pS. Recall that the tangent space at pS is isomorphic to
Hom(pS,M/pS) where M = P ⊕ I ([9, Lemma 2.3], [7, 25]). Let θM be the co-
efficient quiver of M (see Remark 2.3) and let π : θM → Q be the natural projec-
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tion onto the An quiver Q. The coefficient quiver of M/pS is θM \ S. The vector
space Hom(pS,M/pS) has a distinguished basis, denoted by B, parameterized by
triples (A,f,B) where A is a predecessor-closed connected sub-quiver of S, B is a
successor-closed connected sub-quiver of θM \ S and f : A → B is a quiver isomor-
phism compatible with π (see [11]). For example, in the left-hand side of the picture
below

· · •
· • ·

• • • A
f

· · • B

λ3 λ3 λ3

λ4 λ4 1

λ5 λ1 λ1

λ2 λ2 λ2

(2.5)

the fat dots highlight the coefficient-quiver S of a T -fixed point pS of Fa
4 and the

frames highlight a distinguished basis vector of the tangent space at pS.

Proposition 2.6 Given a T -fixed point pS of Fa
n+1, the torus T acts on the tangent

space at pS diagonally in the basis B. Moreover the eigenvalues are (generically)
distinct.

Proof Given λ ∈ T and f ∈ Hom(pS,M/pS), (λ.f )(v) = λ.f (λ−1.v). Now, by def-
inition of T , each connected component R of θM has a weight wt(R) and hence a
basis vector (A,f,B) receives the weight wt(B)/wt(A). �

To illustrate the previous proposition, let us consider Fa
4 and the action of

T depicted in the right-hand side of (2.5). The tangent space at pS has di-
mension 7 and the torus acts in the standard basis B as the diagonal matrix
diag( 1

λ3
,

λ3
λ4

, λ2
λ4

,
λ3
λ1

, λ2
λ1

, 1
λ2

, λ4
λ5

). The one-dimensional torus T0 is given by putting

λi := λi . In particular its action on the tangent space at pS is given by the diagonal
matrix diag(λ−3, λ−1, λ−2, λ2, λ1, λ−2, λ−1). Notice that the eigenvalues of the T0

action are not distinct.

Corollary 2.7 The T -fixed one-dimensional vector subspaces of Hom(pS,M/pS)

are precisely the coordinate ones, i.e. those generated by standard basis vectors.

2.3 Partial flag varieties

The whole picture described above has a straightforward generalization to the case
of partial flag varieties. Namely, given a collection d = (d1, . . . , dk), where 1 ≤ d1 <

d2 < · · · < dk ≤ n, let Fd be the corresponding partial flag variety for SLn+1 (Fd
is a quotient of SLn+1 by a parabolic subgroup). Explicitly, Fd consists of collec-
tions (Vd1 , . . . , Vdk

) of subspaces of an (n + 1)-dimensional vector space W such
that dimVm = m and Vdi

⊂ Vdi+1 . These varieties can be degenerated in the same
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way as the complete flag variety (see [13, 14]). As a result one gets a variety Fa
d ,

consisting of collections of subspaces (Vd1 , . . . , Vdk
) of W such that dimVm = m and

prdi+1 · · ·prdi+1
Vdi

⊂ Vdi+1 , i = 1, . . . , k − 1.

These varieties are also certain quiver Grassmannians (see [9]). Namely, consider
the equioriented quiver of type Ak . Then the degenerate partial flag variety Fa

d is
isomorphic to

Gr(d1,...,dk)

(
P

d1
1 ⊕ P

d2−d1
2 ⊕ · · · ⊕ P

dk−dk−1
k ⊕ I

d2−d1
1 ⊕ · · · ⊕ I

dk−dk−1
k−1 ⊕ I

n+1−dk

k

)
,

(2.6)
where Pi and Ij are projective and injective modules of the Ak quiver. There is a
natural surjection Fa

n+1 → Fa
d , sending (Vi)

n
i=1 to (Vdj

)kj=1. The group A thus acts
on Fa

d; the orbits are affine cells containing exactly one T -fixed point. These T -fixed
points are parametrized by collections S = (Sd1 , . . . , Sdk

) of subsets of {1, . . . , n+ 1}
subject to the conditions #Sdi

= di and

Sdi
⊂ Sdi+1 ∪ {di + 1, . . . , di+1}, i = 1, . . . , k − 1. (2.7)

We call such collections d-admissible. As for the complete flags, the corresponding
T -fixed point pS = (Vd1 , . . . , Vdk

) is given by Vdi
= span(wj , j ∈ Sdi

).

3 The moment graph

In this section we study the combinatorics and geometry of the cellular decomposition
of the degenerate flag varieties.

3.1 The group action

Recall the group A acting on Fa
n+1. The following lemma is simple, but important for

us. Let B ⊂ GL2n be the Borel subgroup of lower-triangular matrices and N ⊂ B be
the subgroup of matrices (ai,j )i≥j such that ai,i = 1 and ai,j = 0 unless i − j > n.
For example, for n = 5 the group N looks as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
∗ 0 0 0 0 0 1 0 0 0
∗ ∗ 0 0 0 0 0 1 0 0
∗ ∗ ∗ 0 0 0 0 0 1 0
∗ ∗ ∗ ∗ 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Lemma 3.1 The group A is isomorphic to the quotient group B/N .

Proof Consider the isomorphism Aut(P ⊕ I ) � Aut(
⊕n

i=1 Pi ⊕ ⊕n
k=1 Ik). We note

that for any pair of indecomposable summands of P ⊕I the space of homomorphisms
between them is either one-dimensional or trivial. More precisely, let us introduce the
following notation for the indecomposable summands of P ⊕ I :

R1 = Pn,R2 = Pn−1, . . . ,Rn = P1, Rn+1 = In,Rn+2 = In−1, . . . ,R2n = I1. (3.1)

Then for two indecomposable summands Ri and Rj one has dim Hom(Ri,Rj ) = 1
if and only if i ≤ j and j − i ≤ n (see Lemma 2.2). Hence we obtain a surjection of
groups B → A and the kernel coincides with N . �

Remark 3.2 Let us fix a non-zero element γi,j ∈ Hom(Ri,Rj ) for each pair i, j with
i ≤ j , j − i ≤ n. Then any element g ∈ A can be uniquely written as a sum

∑
gi,j γi,j ,

defining a matrix in B . This produces a section A → B .

Remark 3.3 We note that the direct summands Ri in type A4 are visualized in (2.4).
Namely, R1 is represented by the only fat dot in the upper line, R2 is represented by
the two dots in the next to the upper line, and so on up to R8. In general, if i ≤ n, then
the dimension vector of Ri is (0, . . . ,0,1, . . . ,1) with i units and each non-zero (Ri)k
is spanned by wn+1−i . If i > n, then the dimension vector of Ri is (1, . . . ,1,0, . . . ,0)

with 2n − i + 1 units and each non-zero (Ri)k is spanned by w2n−i+2.

Recall that the T fixed points in Fa
n+1 are labeled by the admissible collections.

For an admissible collection S let pS be the corresponding T -fixed point and CS
be the cell containing pS. We know that CS = ApS. Our goal now is to describe a
unipotent subgroup US ⊂ A such that the map US → CS is one-to-one. Let a be the
Lie algebra of the group A. Then

a = Hom(P,P ) ⊕ Hom(I, I ) ⊕ Hom(P, I ).

The Lie algebra a is the quotient of the Borel subalgebra b ⊂ gl2n of lower-triangular
matrices by the ideal n consisting of matrices (aj,i)j≥i such that ai,j = 0 unless
j − i > n (this is exactly the Lie algebra of N ). In particular, the one-dimensional
hom-spaces Hom(Ri,Rj ), i ≤ j , j − i ≤ n between two indecomposable summands
of P ⊕ I correspond to the root vectors of the form Ej,i ∈ b (Ej,i are matrix units).
We have

a = t ⊕
⊕

1≤i<j≤2n
j−i≤n

ai,j ,

where t is the Lie algebra of the torus T and ai,j = Hom(Ri,Rj ).
Consider a pair Ri,Rj of direct summands of P ⊕I such that dim Hom(Ri,Rj ) =

1 and fix a non-zero γ ∈ Hom(Ri,Rj ).
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Definition 3.4 A pair of indices (i, j) (a pair of representations Ri,Rj ) is called
S-effective, if pS ∩ Ri 
= 0 and γ (pS ∩ Ri) does not sit inside pS.

Remark 3.5 S-effective pairs have the following geometric interpretation: they are in
bijection with standard basis vectors of the tangent space at pS on which T0 acts with
positive weight (see the end of Sect. 2.2). Let us prove this statement. In notation
(3.1), we denote by Rk the coefficient-quiver of Rk . Given an S-effective pair (i, j) a
non-zero γ ∈ Hom(Ri,Rj ) is determined (up to scalar multiplication) by a (unique)
triple (A,f,B). So A ⊂ Ri is predecessor-closed, B ⊂ Rj is successor closed and
f : A → B is a quiver isomorphism compatible with π (see Sect. 2.2). The sub-
representation γ (pS ∩Ri) ⊂ Rj determines the successor-closed sub-quiver f (S∩A)

of B . Since by definition γ (pS ∩Ri) does not sit inside pS, f (S∩A) strictly contains
S ∩B and the difference f (S ∩A) \ (S ∩B) is the coefficient quiver of the non trivial
quotient γ (pS ∩ Ri)/(γ (pS ∩ Ri) ∩ pS). The map

γ 
→ bγ := (
S ∩ A \ f −1(S ∩ B),f |S∩A\f −1(S∩B), f (S ∩ A) \ (S ∩ B)

)

gives a bijection between S-effective pairs and standard basis vectors of the tangent
space TpS(F

a
n+1) = Hom(pS,M/pS) on which T0 acts with a positive weight. To see

this we notice that S ∩ A is predecessor-closed in S and S ∩ B is successor closed
in B . Then f −1(S ∩ B) is successor closed in S ∩ A and hence S ∩ A \ f −1(S ∩ B)

is predecessor closed in S ∩ A and hence in S. We notice that S ∩ B coincides with
S∩Rj (otherwise S∩B would not be strictly contained in f (S∩A)). Since f (S∩A)

is successor closed in Rj and S ∩ B = S ∩ Rj , it follows that f (S ∩ A) \ (S ∩ B)

is successor closed in Rj \ (S ∩ Rj ) and hence in θM \ S. The quiver morphism
f |S∩A\f −1(S∩B) is a quiver isomorphism between S∩A\f −1(S∩B) and f (S∩A)\
(S∩B) compatible with π , since f is so. The image bγ of γ is hence a standard basis
vector of Hom(ps,M/pS). The action of T0 on bγ is given by λ.bγ = λj−ibγ . Since
γ 
= 0, then i ≤ j and hence bγ has positive weight. The map is hence well-defined
and injective. Let us show that it is surjective. Let b = (A′, f ′,B ′) be a standard basis
vector of Hom(pS,M/pS) on which T0 acts with a positive weight. Then there are
indices i and j such that A′ is a predecessor-closed sub-quiver of S ∩ Ri , and B ′ is a
successor-closed sub-quiver of Rj \ (Rj ∩ S). The torus T0 acts on b as λ.b = λj−ib

and hence j > i. We claim that j − i ≤ n. Indeed if j − i > n then π(Rj ) and π(Ri )

are disjoint in Q (otherwise Hom(Ri,Rj ) 
= 0 against the hypothesis j − i > n) and
hence the quiver isomorphism f ′ : A′ → B ′ could not exist. In view of Lemma 2.2
and the proof of Lemma 3.1, it follows that there is a non-zero standard basis vector
γ ∈ Hom(Ri,Rj ) defined by a triple (A,f,B). Notice that π(A) = π(B) = π(Ri) ∩
π(Rj ) ⊃ π(A′) = π(B ′). It follows that A′ ⊂ A, B ′ ⊂ B and f ′ = f |A′ . From this
we conclude that pS ∩ Ri 
= 0 and γ (pS ∩ Ri) does not sit inside pS and hence (i, j)

is an S-effective pair.

Let Ui,j ⊂ A be the one-parameter subgroup with the Lie algebra ai,j . The impor-
tance of effective pairs is explained by the following lemma:
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Lemma 3.6 If a pair (i, j) is not S-effective then Ui,jpS = pS. Otherwise, the map
Ui,j → Fa

n+1, g 
→ gpS is injective.

Proof Assume that a pair Ri,Rj is not S-effective and take a non trivial γ ∈
Hom(Ri,Rj ). By definition, γpS ⊂ pS and hence the exponent of the (scaled) op-
erator γ fixes pS. To prove the second claim we note that

exp(cγ )pS = (Id + cγ )pS.

Hence, if γpS does not sit inside pS, then all the points exp(cγ )pS, c ∈ C are differ-
ent. �

For an admissible S let aS ⊂ a be the subspace defined as the direct sum of one-
dimensional spaces Hom(Ri,Rj ) for all S-effective pairs Ri , Rj .

Lemma 3.7 The subspace aS is a Lie subalgebra of a.

Proof Let γ1 ∈ ai,j and γ2 ∈ ak,l , i > j , k > l be two elements such that [γ1, γ2] 
= 0.
Then either j = k or i = l. We work out the first case (the second is very similar). We
have [γ1, γ2] = γ1γ2 ∈ ai,l . Since γ2 is S-effective, we have

γ2(pS ∩ Rl) � pS ∩ Rk.

Now, since

γ1(pS ∩ Rj) � pS ∩ Ri

and j = k, we obtain

γ1γ2(pS ∩ Rl) � pS ∩ Ri

and hence γ1γ2 is S-effective. �

Let US be the Lie group of aS, i.e. US is generated by all Ui,j with S-effective
(i, j). We note that US is invariant with respect to the torus T action by conjugation.

Theorem 3.8 The map US → CS, g 
→ gpS is bijective and T -equivariant.

Proof First, we note that T -equivariance follows from TpS = pS. Now let us prove
that the map US → CS is surjective. Let us write an element g ∈ A as g = gSg1h,
where h ∈ T , gS ∈ US and g1 belongs to the subgroup of A, generated by Ui,j with
non S-effective (i, j). Then gpS = gSpS and hence we are done. Finally, let us prove
the injectivity. Assume that there exists g ∈ US such that gpS = pS. We identify g

with the corresponding lower-triangular matrix in GL2n with entries gi,j satisfying
gi,i = 1 and gi,j = 0 if i − j > n. Our goal is to prove that gi,j = 0 for all i > j .
Let p(S) = (V1, . . . , Vn) and assume that gi,j 
= 0 for i > j . Since g ∈ US, the pair
(i, j) is S-effective. Consider a non-zero element γ ∈ ai,j (so γ ∈ Hom(Ri,Rj )). Let
t = 1, . . . , n be a number such that Vt ∩ Ri 
= 0 and γVt ∩ Vt = 0. Choose a non-zero
vector w ∈ Vt ∩ Ri . Then gw /∈ Vt and hence gpS 
= pS. �
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Remark 3.9 We note that Theorem 3.8 is analogous to the corresponding theorem for
classical flag varieties, see e.g. [27], Lemma 3.2.

Proposition 3.10 The number of S-effective pairs (i, j) is equal to the sum NPI(S)+
NPP(S) + NII(S) of three numbers defined by:

• NPI(S) is the number of pairs 1 ≤ k < l ≤ n + 1 such that there exists t with
k ≤ t < l such that k ∈ St , l /∈ St .

• NPP(S) is the number of pairs 1 ≤ k < l ≤ n such that there exists t ≥ l such that
l ∈ St , k /∈ St .

• NII(S) is the number of pairs 2 ≤ k < l ≤ n + 1 such that there exists t < k such
that l ∈ St , k /∈ St .

Proof We divide S-effective pairs into three parts Ri,Rj ⊂ P , Ri,Rj ⊂ I and Ri ⊂
P,Rj ⊂ I . We claim that the number of S-effective pairs from the first (second, third)
part is equal to NPP(S) (NII(S), NPI(S)).

(i) The case Ri ⊂ P , Rj ⊂ I . Then 1 ≤ i ≤ n < j ≤ 2n. Since (i, j) is S-effective,
there exists an index t :n + 1 − i ≤ t ≤ 2n + 1 − j such that n + 1 − i ∈ St and
2(n + 1) − j /∈ St . Put k = n + 1 − i and l = 2(n + 1) − j .

(ii) The case Ri,Rj ⊂ P . Since (i, j) is S-effective then 1 ≤ i < j ≤ n and there is
an index t : t ≥ n+ 1 − i > n+ 1 − j such that n+ 1 − i ∈ St and n+ 1 − j /∈ St .
Put l = n + 1 − i and k = n + 1 − j .

(iii) The case Ri,Rj ⊂ I . Since (i, j) is S-effective then n + 1 ≤ i < j ≤ 2n and
there is an index t : t ≤ 2n + 1 − j < 2n + 1 − i such that 2(n + 1) − i ∈ St and
2(n + 1) − j /∈ St . Put l = 2(n + 1) − i and k = 2(n + 1) − j .

�

Corollary 3.11 The dimension of CS is equal to the sum NPI(S)+NPP(S)+NII(S).

Proof Thanks to Theorem 3.8 the dimension of the cell CS is equal to the number of
S-effective pairs Ri , Rj . Now Proposition 3.10 implies the corollary. �

Corollary 3.12 The Poincaré polynomial of Fa
n+1 is equal to the sum of the terms

qNPI(S)+NPP(S)+NII(S), where the sum runs over the set of admissible collections.

Remark 3.13 In [9, Theorem 5.1] it is shown that although Fa
n+1 is not smooth, the

one-dimensional sub-torus T0 of T still produces a Białynicki–Birula type cell de-
composition ([3], [10, Theorem 2.4.3]). In other words, the attracting set of a T0-fixed
point pS is a cell and it has dimension equal to the dimension of the positive part of
the tangent space at pS (the positive part is the vector subspace generated by vec-
tors on which T0 acts with positive weight). In view of Remark 3.5, this dimension
is precisely the number of S-effective pairs. Theorem 3.8 provides another and more
explicit proof of this fact.

Remark 3.14 From the discussion above (see Corollary 3.11 and Remark 3.5), the
dimension of the cell with center pS can be easily read off from S, viewed inside
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the coefficient quiver of P ⊕ I written in the form (2.4). Indeed in this diagram let us
color a vertex black if it belongs to S and white otherwise. In the ith column (counting
from left to right) there are precisely i black vertices. Some of them are sources of S.
For every such source t ∈ Si let us count the number wt of white vertices below it.
Let ci be the sum of the wt ’s. Then the dimension of the cell with center pS equals
the sum c1 + c2 + · · · + cn. For example let us consider the following T -fixed point
of Fa

5 :

•
◦ •

◦ • •
◦ ◦ • •
◦ ◦ ◦ ◦
• • •
◦ •
◦

then c1 = 2, c2 = 0, c3 = 2 and c4 = 2. The cell has hence dimension 6.

3.2 Moment graph

We briefly recall the definition of a moment graph (see [6, 21]). Let X be a projec-
tive algebraic variety acted upon by a torus T = (C∗)d with a fixed one-dimensional
sub-torus ı : C

∗ ⊂ T . Assume that the T action on X has finitely many fixed points
and one-dimensional orbits and any C

∗ fixed point is T -fixed (XT = XC
∗
). As-

sume further that X has a decomposition as a disjoint union of T -invariant affine
cells in such a way that each cell C contains exactly one C

∗-fixed point p and
C = {x ∈ X : limλ→0 ı(λ)x = p} (i.e. the cell consists of all points attracted by p,
see [3]). We denote this cell by Cp . The moment graph Γ has its set of vertices la-
beled by the T -fixed points. Two points p1 and p2 are connected by an edge in Γ if
there exists a one-dimensional T -orbit L such that L̄ = L � p1 � p2 (i.e. p1 and p2

are the T -fixed points in the closure of L). Thus the edges of Γ are labeled by the
one-dimensional T -orbits. We orient Γ by the following rule: for two vertices p1 and
p2 we say p1 ≥ p2 if Cp2 ⊂ C̄p1 . If there is an edge connecting p1 and p2 in Γ then
we put an arrow p1 → p2. Finally, one defines a labeling αL of the edges L of Γ by
the elements αL ∈ t∗, where t is the Lie algebra of the torus T . Namely, for an edge L

let Tx ⊂ T be the stabilizer of a point x ∈ L (obviously, Tx is independent of x ∈ L).
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Then the Lie algebra tx ⊂ t is a hyperplane. We define αL as a non-zero element in
the annihilator of tx .

Example 3.15 Here we give an example of the moment graph for the classical flag
variety F3 = SL3/B . The torus T has six fixed points labeled by pairs (S1, S2) of
subsets of {1,2,3} such that #S1 = 1, #S2 = 2 and S1 ⊂ S2. The moment graph of F3

looks as follows:

(1,12)

(2,12) (1,13)

(2,23) (3,13)

(3,23)

We note that usually the arrows in the moment graph direct from bottom to top. How-
ever, for our purposes it is more convenient to draw the vertices from top to bottom,
since in the degenerate situation the dense cell corresponds to the point (1,12), see
Example 3.17. This is not important in the classical situation due to the Chevalley
involution, but crucial in the degenerate case.

Our goal is to describe the moment graph of the degenerate flag varieties.

Remark 3.16 We note that the moment graphs turn out to be a powerful tool for
computing various cohomology groups of algebraic varieties (see [6, 18, 19, 21, 27]).
A crucial role is played by the notion of sheaves on moment graphs. In this paper we
do not discuss Γ -sheaves, but only describe the combinatorial structure of the graphs.
Computation of the (equivariant) cohomology as well as the (equivariant) intersection
cohomology of the degenerate flag varieties is an interesting open problem.

Example 3.17 Here we give a picture of the moment graph for the degenerate flag
variety Fa

3 . Recall that the T -fixed points are labeled by pairs (S1, S2) of subsets of
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the set {1,2,3} such that #S1 = 1, #S2 = 2 and S1 ⊂ S2 ∪ {2}.

(1,12)

(2,12) (1,13)

(3,23)

(2,23) (3,13)

(2,13)

The moment graph for the degenerate flag variety Fa
4 is computed in Appendix C.

We now give an explicit combinatorial description of the moment graph. We
identify the Lie algebra t of T with the diagonal traceless 2n × 2n matrices.
For a pair of indices i, j , 1 ≤ i < j ≤ 2n, we denote by αi,j ∈ t∗ the element
αi,j (diag(x1, . . . , x2n)) = xi − xj .

Theorem 3.18 The number of one-dimensional T -orbits in Fa
n+1 is finite. The orbits

are of the form Ui,jpS \ pS, where S is admissible and (i, j) is S-effective. The edge
in the moment graph, which corresponds to Ui,jpS \ pS is labeled by αi,j .

Proof Thanks to Theorem 3.8, we only need to describe the one-dimensional T -
orbits in US. It is easy to see that these are non-identity elements in Ui,j . �

Remark 3.19 Theorem 3.18 also follows from Corollary 2.7 and Remark 3.5. Indeed
in view of Corollary 2.7, the directions around pS of the one-dimensional T -orbits
containing pS are precisely the standard basis vectors of the tangent space TpS(F

a
n+1)

at pS. In particular the number of such T -orbits is bigger or equal than dimFa
n+1 and

it is equal if and only if pS is smooth. Any such curve � consists of three T -orbits � =
{pS} ∪ {�′} ∪ {pR}. The direction of � is fixed also by the one-dimensional torus T0.
In particular this standard basis vector of TpS(F

a
n+1) has either positive or negative

T0 weight. If the weight is positive then {pS} ∪ {�′} sits inside the attracting set of pS
which is the cell ApS and hence pR (and its attracting cell) is in the closure of this
cell. It follows that in the moment graph there is an arrow pS → pR. In particular
the number of arrows starting from pS in the moment graph, equals the number of
standard basis vector of TpS(F

a
n+1) on which T0 acts with positive weight. In view of

Remark 3.5 this number equals the number of S-effective pairs.
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Corollary 3.20 The dimension of a cell CS is equal to the number of edges in the
moment graph which are directed outwards the vertex pS.

The following theorem generalizes the results as above to the case of the degener-
ate partial flag varieties.

Theorem 3.21 The number of one-dimensional T orbits on Fa
d is finite. Each of these

orbits is covered by a one-dimensional T -orbit in Fa
n+1 via the surjection Fa

n+1 →
Fa

d . All the orbits are of the form Ui,jp \ p for some i, j and a T -fixed p ∈ Fa
d .

4 Smooth locus and the Schröder numbers

In this section we describe the smooth locus of the degenerate flag varieties Fa
n+1 and

compute Euler characteristics and Poincaré polynomials.

4.1 Smooth cells

Take a point N ∈ GrdimP (P ⊕ I ). Then N can be split as N = NP ⊕ NI , where
NP ⊂ P and NI ⊂ I , such that NI and P/NP are of the same dimension vector (see
[9, Theorem 1.3]).

Lemma 4.1 A point N in a quiver Grassmannian GrdimP (P ⊕ I ) is smooth if and
only if Ext1(NI ,P/NP ) = 0.

Proof Let 〈·, ·〉 be the Euler form of the quiver Q, given on a pair of dimen-
sion vectors d, e by 〈d, e〉 = ∑n

i=1 diei − ∑n−1
i=1 diei+1. Then 〈dimX,dimY 〉 =

dim Hom(X,Y ) − dim Ext1(X,Y ) for arbitrary representations X and Y of Q. By
[9, Theorem 1.1], we have

〈dimP,dim I 〉 = dim GrdimP (P ⊕ I ).

By the formula [9, Lemma 2.3] for the dimension of the tangent space TN to the point
N ∈ GrdimP (P ⊕ I ), we then have

dimTN = dim Hom(NI ⊕ NP ,P/NP ⊕ I/NI )

= 〈dimP,dim I 〉 − dim Ext1(NI ⊕ NP ,P/NP ⊕ I/NI ).

Since NP is projective and N/NI is injective, we obtain

dim Ext1(NI ⊕ NP ,P/NP ⊕ I/NI ) = dim Ext1(NI ,P/NP ).

Hence, the dimension of the tangent space at a point N is equal to the dimension of
the Grassmannian if and only if Ext1(NI ,P/NP ) vanishes. �

Recall that the quiver Grassmannian GrdimP (P ⊕ I ) can be decomposed into the
disjoint union of A-orbits of the form ApS. Hence all the points of the orbit are
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smooth or singular together with pS. So it suffices to understand what are the con-
ditions for an admissible collection S that guarantee the smoothness of pS. We use
Lemma 4.1 above.

Theorem 4.2 A point pS is smooth if and only if for all 1 ≤ j < i ≤ n, the condition
i ∈ Sj implies j + 1 ∈ Si .

Proof Given an admissible collection S = (Si)
n
i=1, we introduce the following num-

bers for all i = 1, . . . , n + 1:

ki = min{1 ≤ k < i : i ∈ Sk}, lj = min{j ≤ l ≤ n : j ∈ Sl}.
Recall the indecomposable representations Rk,l with the support on the interval [k, l].
A representation pS is isomorphic to the direct sum NI ⊕ NP , where NI ⊂ I and
NP ⊂ P . It is easy to see that

NI =
⊕

i

Rki ,i−1, P/NP =
⊕

j

Rj,lj −1.

The extension groups between the indecomposables are given by Lemma 2.2. Thus
we obtain 0 
= Ext1(NI ,P/NP ) if and only if there exist indices i and j such that
ki + 1 ≤ j ≤ i ≤ lj − 1. This holds (writing out the three inequalities) if and only if
there exist indices j ≤ i such that

min{1 ≤ k < i : i ∈ Sk} < j, min{j ≤ l ≤ n : j ∈ Sl} > i.

This translates into the condition that there exist j ≤ i such that i ∈ Sj−1, but j /∈ Si .
Conversely, this means that the orbit is smooth if and only if for all 1 ≤ j ≤ i ≤ n+1,
if i ∈ Sj−1, then j ∈ Si . Note that this condition is void in case j = 1 or i = n + 1, so
that we can replace j by j − 1, and obtain the assertion of theorem. �

In what follows we call an admissible collection S smooth iff pS is a smooth point.

4.2 The large Schröder numbers

Let rn be the nth large Schröder number, defined as the number of Schröder paths,
i.e. subdiagonal lattice paths from (0,0) to (n,n) consisting of the steps (0,1), (1,0)

or (1,1). The sequence r0, r1, r2, . . . starts with 1,2,6,22,90,394. Here are the six
Schröder paths for n = 2:

� � �

� � �

� � �

� � �

� � �

� � �

� � � �

� � �

� � �

�
� � �

� � �

� � �

� � �

� � �

� � �

� � � �

� � �

� � �

�
�

We note that (see e.g. [1, 5, 26])

rn = rn−1 +
n−1∑

k=0

rkrn−1−k.
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The small Schröder numbers sn are defined as halves of the large ones.
Recall that a collection S = (Sa)

n
a=1 of subsets of the set {1, . . . , n + 1} is smooth

if #Sa = a, Sa ⊂ Sa+1 and for all 1 ≤ a < b ≤ n the following condition holds (see
Theorem 4.2):

if b ∈ Sa, then a + 1 ∈ Sb.

Let LSn be the set of length n smooth collections and r̄n be the cardinality of LSn.

Proposition 4.3 The numbers r̄n satisfy the recursion

r̄n = r̄n−1 +
n−1∑

k=0

r̄k r̄n−1−k.

Proof We divide all smooth collections according to the values of S1. So first, let
S1 = {1}. Let us show that the number of such smooth collections is equal to r̄n−1.
Note that all Sa contain 1. For a = 1, . . . , n − 1 we set

S′
a = {i : i + 1 ∈ Sa+1} ⊂ {1, . . . , n}.

We claim that the collection (S′
a)

n−1
a=1 is smooth and all (length n − 1) smooth collec-

tions arise in this way. First, obviously, #S′
a = a and S′

a ⊂ S′
a+1. Now the conditions

(b ∈ Sa implies a + 1 ∈ Sb), 2 ≤ a < b ≤ n are equivalent to the conditions (b ∈ S′
a

implies a + 1 ∈ S′
b), 1 ≤ a < b ≤ n − 1.

Let LSk
n ⊂ LSn be the set of smooth collections satisfying S1 = {k}, 2 ≤ k ≤ n+ 1.

We want to show that the cardinality of LSk
n is equal to r̄k−2r̄n+1−k . To this end

we construct a bijection F : LSk
n → LSk−2 × LSn+1−k . For convenience, we write

F = (f, g), where

f : LSk
n → LSk−2, g : LSk

n → LSn+1−k.

First, since S1 ⊂ Sa for any a, we have k ∈ Sa , 2 ≤ a ≤ n. Now the conditions
k ∈ Sa for a = 1, . . . , k − 1 imply

{2, . . . , k} ⊂ Sa for all a ≥ k.

Given a collection S ∈ LSk
n, we define

g(S) = (
g(S)1, . . . , g(S)n+1−k

)

as follows:

g(S)a =
{

{i : 2 ≤ i ≤ n + 1 − k, i + k − 1 ∈ Sa+k−1}, if 1 /∈ Sa+k−1,

{1} ∪ {i : 2 ≤ i ≤ n + 1 − k, i + k − 1 ∈ Sa+k−1} otherwise.
(4.1)

We note that the image depends only on the sets Sa with a ≥ k.
Now, given a collection S ∈ LSk

n, we need to define

f (S) = (
f (S)1, . . . , f (S)k−2

)
.
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Let Sk = {2, . . . , k} ∪ {i} for some i = 1, k + 1, . . . , n + 1. We note that since k ∈
Sa ⊂ Sk for a < k, each Sa \ k for 2 ≤ a ≤ k − 1 is an (a − 1)-element subset of the
fixed set of cardinality k − 1 (this set is {2, . . . , k − 1} ∪ {i}). We now define the map
f as follows:

f (S)a =
{

{i : 1 ≤ i ≤ k − 2, i + 1 ∈ Sa+1}, if Sa+1 ⊂ {2, . . . , k},
{i : 1 ≤ i ≤ k − 2, i + 1 ∈ Sa+1} ∪ {k − 1}, otherwise.

(4.2)
We note (this is important) that f1(S) depends only on S2, . . . , Sk−1.

Our first goal is to show that f (S) ∈ LSk−2 and g(S) ∈ LSn−k+1 for any S ∈ LSk
n.

By definition, g(S)a ⊂ g(S)a+1 for 1 ≤ a ≤ n − k and

g(S)a ∈ {1, . . . , n − k + 2}, #g(S)a = a for 1 ≤ a ≤ n − k + 1.

Let us show that for 1 ≤ a < b ≤ n − k + 1 the inclusion b ∈ g(S)a implies a + 1 ∈
g(S)b . Since b > 1, b ∈ g(S)a implies b + k − 1 ∈ Sa+k−1. Since S is smooth, we
obtain a + k ∈ Sb+k−1, which gives a + 1 ∈ g(S)b and we are done. Similarly, one
proves that f (S) ∈ LSk−2.

Finally, we have to prove that the map F = (f, g) : LSk
n → LSk−2 × LSn−k+1 is

one-to-one. Given an element (S′,S′′) ∈ LSk−2 ×LSn−k+1, we use formulas (4.1) and
(4.1) to reconstruct S such that F(S) = (S′,S′′). �

Corollary 4.4 The Euler characteristic of the smooth locus of Fa
n+1 is equal to the

nth Schröder number rn.

Finally, let us formulate the analogue of Theorem 4.2 for the degenerate partial
flag varieties. We omit the proof since it is very close to the proof of Theorem 4.2.
Recall that the T -fixed points in Fa

d are labeled by d-admissible collections S =
(Sd1 , . . . , Sdk

) (see (2.7)).

Theorem 4.5 A T -fixed point pS ∈ Fa
d is smooth if and only if the following condi-

tions hold: if b ∈ Sdi
and dj+1 ≥ b > dj for some j ≥ i, then {di + 1, . . . , di+1} ⊂

Sdj+1 .

4.3 Poincaré polynomials

There are several ways to define q-analogues of the Schröder numbers (see [1, 2,
5]). We will need the simplest one (see [5], page 37, polynomials dn(q)). They are
called Narayana polynomials there, but in other papers the same polynomials are
also referred to as Schröder polynomials, see e.g. [20]). For a Schröder path P let
diag(P ) be the number of the diagonal steps in P . Define rn(q) as the sum of the
terms qdiag(P ) over the set of Schröder paths P . Here are the first several polynomials

r0(q) = 1, r1(q) = 1 + q, r2(q) = 2 + 3q + q2,

r3(q) = 5 + 10q + 6q2 + q3, r4(q) = 14 + 35q + 30q2 + 10q3 + q4.
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Clearly, rn(0) is the nth Catalan number. Let P sm
n (q) be the Poincaré polynomial of

the smooth locus of Fa
n+1. Our goal here is to prove the following theorem:

Theorem 4.6 P sm
n (q) = qn(n−1)/2rn(q).

Recall (see [1, 5]) that

rn(q) = qrn−1(q) +
n−1∑

k=0

rk(q)rn−1−k(q). (4.3)

Proposition 4.7 The Poincaré polynomials of the smooth locus satisfy the following
recursion:

P sm
n (q) = qnP sm

n−1(q) +
n−1∑

l=0

q(l+1)(n−l)−1P sm
l (q)P sm

n−1−l (q). (4.4)

Proof First, let us consider smooth collections (S1, . . . , Sn) with S1 = 1. Then the
cells labeling such collections are in one-to-one correspondence with smooth collec-
tions S′ of length n − 1: S′

i = Si+1 \ {1}. We claim that

dimCS = dimCS′ + n. (4.5)

We use Proposition 3.10. Clearly, the terms NPP and NII for pS and p(S′) do coincide
and the difference of the terms NPI is equal to n (since S1 = {1}, in the definition of
NPI we can take t = 1, i = 1, j = 2, . . . , n + 1). Now (4.5) produces the first term of
the right hand side of (4.4).

Recall the bijection F = (f, g) : LSk
n → LSk−2 × LSn−k+1, k ≥ 2, from the set of

smooth collections with S1 = {k} to the product LSk−2 × LSn−k+1. Our goal is to
prove that

dimCS = dimCf (S) + dimCg(S) + (k − 1)(n + 2 − k) − 1 (4.6)

(after the shift l = k − 2 one gets the corresponding term in (4.4)). Recall that since
k ∈ S1 we have

{2, . . . , k} ⊂ Sm for all m ≥ k.

In particular, Sk = {2, . . . , k}∪{r} for some number r = 1, k+1, . . . , n+1. We claim
that

NPI(S) + NPP(S)

= NPI
(
f (S)

) + NPI
(
g(S)

) + NPP
(
f (S)

) + NPP
(
g(S)

) + (k − 1)(n + 1 − k),

and

NII(S) = NII
(
f (S)

) + NII
(
g(S)

) + k − 2.
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First, let us prove the first formula. Assume that 1 = r = Sk \ {2, . . . , k}. Then

NPI(S) = NPI
(
f (S)

) + NPI
(
g(S)

) + (k − 1)(n + 1 − k),

NPP(S) = NPP
(
f (S)

) + NPP
(
g(S)

)
.

Here the term (k − 1)(n + 1 − k) comes from the fact that in the definition of NPI(S)

one can take i = 2, . . . , k, j = k + 1, . . . , n + 1 and t = k. These possibilities are not
counted in NPI(f (S)) + NPI(g(S)). Now assume that r > k. Then one has

NPI(S) = NPI
(
f (S)

) + NPI
(
g(S)

) + (k − 1)(n − k),

NPP(S) = NPP
(
f (S)

) + NPP
(
g(S)

) + k − 1.

Here the term (k − 1)(n − k) comes from the fact that in the definition of NPI(S)

one can take i = 2, . . . , k, j ∈ {k + 1, . . . , n + 1} \ r and t = k. The term k − 1 in
the right hand side of the second equality comes from the fact that in the definition
of NPP(S) one can take i = 1, j = 2, . . . , k and t = k. All these possibilities are lost
when computing NPI(f (S)), NPI(g(S)), NPP(f (S)) and NPP(g(S)).

Now let us prove that

NII(S) = NII
(
f (S)

) + NII
(
g(S)

) + k − 2.

Here the argument is even simpler: the missing k − 2 comes from the following
possibilities for NII(S) missing in NII(f (S)) + NII(g(S)): i = 2, . . . , k − 1, j = k,
t = 1.

We thus obtain

dimCS = dimCf (S) + dimCg(S) + (k − 1)(n + 1 − k) + (k − 2),

which implies (4.6) as well as the proposition. �

Corollary 4.8 Theorem 4.6 holds.

Proof We note that P sm
1 (q) = 1+q = r1(q). Now the induction procedure combined

with (4.3) and Proposition 4.7 gives the desired result. �

Remark 4.9 It is natural to define a q, t-version hn+1(q, t) of the normalized median
Genocchi numbers as the sum over admissible collections S of the terms

qdimCS tdimTpSFa
n+1 t−n(n+1)/2.

Then the value hn(1,1) is exactly the normalized median Genocchi number and
hn+1(q,0) = qn(n−1)/2rn(q) is the (scaled) nth Schröder polynomial. Here are first
few q, t-Genocchi polynomials:

h2(q, t) = 1 + q, h3(q, t) = 2q + 3q2 + q3 + t,

h4(q, t) = q3(5 + 10q + 6q2 + q3) + tq
(
2q + 7q2 + 5q3) + t2(1 + q).
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4.4 Schröder numbers: from large to small

Recall the polynomials P sm
n (q), which are equal to qn(n−1)/2rn(q), rn(q) being the q-

Schröder polynomials. Recall (see [12, 20]) that the polynomials rn(q) are divisible
by 1 + q . The ratios are denoted by sn(q) (thus rn(q) = sn(q)(1 + q)). These are the
small q-Schröder polynomials. (In particular, sn(1) are the small Schröder numbers.)
Our goal here is to show that the divisibility of rn(q) by 1 + q has a very simple
and concrete explanation within our approach. We give two proofs: one is due to
the referee and uses the result from Appendix B. The second proof is based on the
existence of a certain involution on the set of smooth cells.

Theorem 4.10 The polynomials P sm
n (q) and thus rn(q) are divisible by 1 + q .

Proof According to Theorem B.1 there exists an embedding of the smooth locus of
Fa

n into the desingularization Rn (see [16] and Appendix B for more details). Re-
call that a point of Rn is represented by a collection of subspaces Vi,j and the map
(Vi,j )1≤i≤j≤n−1 
→ V1,n−1 is a fibration Rn → P

1 (recall that V1,n−1 is a subspace
of the two-dimensional space span(w1,wn)). We thus obtain a composition map ρ

from the smooth locus of Fa
n onto P

1, which is SL2-equivariant, where the group SL2
acts naturally on the two-dimensional space span(w1,wn). Therefore, the map ρ is
a cellular fibration and P sm

n (q) is divisible by the Poincaré polynomial of P
1, which

equals 1 + q . �

We now give the second proof of the theorem above.

Theorem 4.11 There exists a fixed-point free involution σ on the set of smooth col-
lections. For any smooth collection S and the corresponding cell CS one has

dimCS = dimCσS ± 1.

Proof Consider the map w : {1, . . . , n + 1} → {1, . . . , n + 1}, which interchanges 1
and n + 1 and stabilizes all other elements. Define a map σ by the formula

σ(S1, . . . , Sn) = (wS1, . . . ,wSn).

First, we note that σ maps each smooth S to a smooth collection. Second, since w2

is the identity map, σ 2 = Id. Third, let us show that σ is fixed-point free. In fact, a
smooth S is fixed by σ if and only if for all k = 1, . . . , n the set Sk either contains both
1 and n+1 or does not contain any of these elements. We note that #Sn = n and hence
Sn contains at least one of the elements 1, n+1. If σS = S, then Sn ⊃ {1, n+1}. Now
let 1 ≤ k < n be a number such that {1, n + 1} is contained in Sk+1 but not in Sk+1

(since #S1 = 1 such k does exist). If σS = S, then we have 1, n + 1 /∈ Sk . Since S
is smooth, Sk ⊂ Sk+1 and therefore Sk+1 contains two non-intersecting sets Sk and
{1, n + 1}. This contradicts with #Sk+1 = k + 1.

Now let S be a smooth collection. Let k be a number such that 1 ∈ Sk \ Sk−1 and,
similarly, let l be a number such that n + 1 ∈ Sl \ Sl−1. As we proved above, k 
= l.
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Assume that k < l. We claim that

dimCS = dimCσS + 1.

Recall that dimCS is the sum of three numbers NPI(S)+NPP(S)+NII(S) (see Propo-
sition 3.10). First, we note that a pair i = 1, j = n + 1 adds one to NPI(S), but not
to NPI(σS). Second, each pair i, j with 1 < i, j < n + 1, either shows up for both
S and σS in the dimension counting as in Proposition 3.10 or does not show up for
both cells. Now let us look at other pairs and compute the difference between the
dimensions of CS and that of CσS.

Take m satisfying k ≤ m < l and consider j such that j > m, j /∈ Sm. Then a
pair i = 1, j adds one to NPI(S), but not to NPI(σS) (since 1 ∈ Sm, but 1 /∈ (σS)m).
However, let us look at a pair i = m, j = n + 1. Since n + 1 ∈ (σS)m \ Sm, the pair
(m,n + 1) adds one to NII(σS), but not to NII(S).

Now take m satisfying k ≤ m < l and consider i such that i ≤ m, i ∈ Sm. Then
a pair i, j = n + 1 adds one to NPI(S), but not to NPI(σS) (since n + 1 /∈ Sm, but
n + 1 ∈ (σS)m). However, let us look at a pair i = 1, j = m. Since 1 ∈ Sm \ (σS)m,
the pair (1,m) adds one to NPP(σS), but not to NPP(S).

Summarizing, the difference

NPI(S) + NPP(S) + NII(S) − NPI(σS) − NPP(σS) − NII(σS)

is equal to one (coming from the pair i = 1, j = n + 1). This implies the second
statement of the theorem. �

Corollary 4.12 The polynomials P sm
n (q) and rn(q) are divisible by 1 + q . The ratio

P sm
n (q)/(1+q) is equal to the sum of the terms qdimCS taken over smooth S satisfying

the following conditions for all m = 1, . . . , n: if 1 ∈ Sm then n + 1 ∈ Sm.

Proof The Theorem above states that P sm
n (q) is equal to the sum over the orbits of

the involution σ of the terms qd(1 + q), where d is the minimum of the dimensions
of the cells corresponding to the collections in the orbit. But we know that dimCS =
dimCσS − 1 if there exists m such that n + 1 ∈ Sm, but 1 /∈ Sm. This implies the
corollary. �

Let us relabel the smooth collections as follows. To a smooth collection S we
attach a permutation π ∈ Sn+1 by the formula π(m) = Sm \ Sm−1. Then S is smooth
if and only if the corresponding permutation satisfies the following conditions for all
1 ≤ a < b ≤ n:

if π−1(b) ≤ a then π−1(a + 1) ≤ b.

Corollary 4.13 The number of permutations, corresponding to smooth collections,
is equal to the large Schröder number. The number of such permutations satisfying
π−1(n + 1) < π−1(1) is equal to the small Schröder number.
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Appendix A: Regularity in codimension 2

We consider the Grassmannian GrdimP (P ⊕ I ) for P a projective and I an injective
representation over a Dynkin quiver Q. Recall that a variety X is said to be regular
in codimension d if there exists a codimension d + 1 subvariety Y ⊂ X such that all
points of X \Y are smooth. For example, normal varieties are regular in codimension
one. In [9] it is proved that quiver Grassmannians GrdimP (P ⊕ I ) are normal. We
now prove a stronger statement.

Theorem A.1 GrdimP (P ⊕ I ) is regular in codimension 2.

Proof Recall that the group A ⊂ Aut(P ⊕ I ) acts on GrdimP (P ⊕ I ) with orbits
parametrized by pairs of representations NI , QP of the same dimension vector such
that NI is a subrepresentation of I and QP is a quotient of P . Assume that an or-
bit, parametrized by a pair (NI ,QP ) of dimension vector f, and admitting exact se-
quences

0 → NI → I → QI → 0, 0 → Np → P → QP → 0,

is a singular codimension 2 stratum. Using the codimension formula of the proof of
[9, Theorem 4.5], this means that

〈f, f〉 + [NI ,NI ]1 + [QP ,QP ]1 = 2 and [NI ,QP ]1 
= 0

(we use the abbreviations [X,Y ] = dim Hom(X,Y ) and [X,Y ]1 = dim Ext1(X,Y )).
If 〈f, f〉 = 0, then f = 0, thus NI = 0 = QP , and all extension groups are zero, a
contradiction. If 〈f, f〉 = 2, then [NI ,NI ]1 = 0 = [QP ,QP ]1, thus both NI and QP

are isomorphic to the unique exceptional representation G of dimension vector f. In
particular, [NI ,QP ]1 = [G,G]1 = 0, a contradiction. Thus we have 〈f, f〉 = 1 and
(without loss of generality) [NI ,NI ]1 = 0 and [QP ,QP ]1 = 1. Thus f is a root and
NI is the corresponding indecomposable. QP is a minimal degeneration of NI , thus
by [4, Theorem 4.5]) there exists a non-split short exact sequence

0 → U → NI → V → 0

such that both U and V are indecomposable, and QP � U ⊕ V . In particular,
[V,U ]1 
= 0, thus [U,V ]1 = 0 since Dynkin quivers are representation-directed. We
thus have 1 = [QP ,QP ]1 = [U ⊕ V,U ⊕ V ]1 = [V,U ]1. From [NI ,NI ]1 = 0 it
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follows that [NI ,V ]1 = 0 using the above exact sequence, thus 0 
= [NI ,QP ]1 =
[NI ,U ⊕ V ]1 = [NI ,U ]1. Applying Hom(_,U) to the above sequence yields

Hom(U,U) → Ext1(V ,U) → Ext1(NI ,U) → Ext1(U,U) = 0.

The first two terms in this sequence are both one-dimensional. The connecting map is
non-zero since the above exact sequence is non-split, thus it is invertible. This implies
that [NI ,U ]1 = 0, a contradiction. �

Appendix B: Desingularization and the smooth locus

Let πn+1 : Rn+1 → Fa
n+1 be the desingularization of the degenerate flag variety of

type An of [16]. Our goal here is to prove the following theorem.

Theorem B.1 π−1
n+1(x) is a single point iff x is a smooth point of Fa

n+1.

Recall that Rn+1 can be explicitly realized as follows. Let W be an (n + 1)-
dimensional space with a basis (w1, . . . ,wn+1). For a pair 1 ≤ i ≤ j ≤ n, let
Wn+1

i,j = span(w1, . . . ,wi,wj+1, . . . ,wn+1). Then Rn is the variety of collections

(Vi,j )1≤i≤j≤n such that Vi,j ∈ Gri (W
n+1
i,j ) and Vi,j ⊂ Vi+1,j and prj+1Vi,j ⊂ Vi,j+1.

Lemma B.2 Rn+1 can be embedded into Fa
n+1 × Rn in such a way that πn+1 is

simply the projection to the first factor.

Proof We first note that the map πn+1 : Rn+1 → Fa
n+1 is explicitly given by

(Vi,j )i≤j 
→ (Vi,i )
n
i=1. Now consider the forgetful map

(Vi,j )1≤i≤j≤n → (Vi,j )1≤i<j≤n

(the diagonal terms Vi,i are omitted). We claim that the image is isomorphic to Rn.
Namely, for a pair 1 ≤ i < j ≤ n, we consider the “shift” map shi,j : Wn+1

i,j → Wn
i,j−1

given by

shi,jwk =
{

wk, if k ≤ i,

wk−1, if k > j.

Then for a point (Vi,j )i≤j ∈ Rn+1, the collection
(
V ′

i,j

)
1≤i≤j≤n−1 = (shi,j+1Vi,j+1)1≤i≤j≤n−1

belongs to Rn. We denote the map Rn+1 → Rn by ψn+1. Now the embedding
Rn+1 → Fa

n+1 × Rn is given by the map A = (πn+1,ψn+1). �

Lemma B.3 Let S be a length n smooth collection. Then

πnψn+1π
−1
n+1pS ⊂ Fa

n

is a single point. Moreover, it is a smooth torus fixed point.
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Proof Recall that

pS = (
(pS)i

)n

i=1, (pS)i = span(wa : a ∈ Si).

Our first goal is to prove that there exists a unique way to define spaces (Vi,i+1)
n−1
i=1

such that there exists a point in Rn+1 with the diagonal components being (pS)i and
the (i, i + 1)-st components being Vi,i+1. In fact, fix some i with 1 ≤ i ≤ n − 1. We
need Vi,i+1 such that dimVi,i+1 = i and

pri+1(pS)i ⊂ Vi,i+1 ⊂ Wn+1
i,i+1 ∩ (pS)i+1.

If i + 1 /∈ Si , then dimpri+1(pS)i = i and hence Vi,i+1 = pri+1(pS)i . If i + 1 ∈ Si ,
then since S is smooth, we have i + 1 ∈ Si+1. Therefore the intersection

Wn+1
i,i+1 ∩ (pS)i+1 = span(wa : a 
= i + 1) ∩ span(wa : a ∈ Si+1)

is i-dimensional and hence Vi,i+1 is forced to coincide with this intersection. Note
that in both cases Vi,i+1 is the linear span of some basis vectors. We denote by
Si,i+1 ⊂ {1, . . . , i, i + 2, . . . , n + 1} the set of indices of these vectors, i.e.

Vi,i+1 = span(wa : a ∈ Si,i+1).

We note that Si,i+1 ⊂ Si+1 and Si ⊂ Si,i+1 ∪ {i + 1}.
We identify the collection of subspaces (Vi,i+1)

n−1
i=1 constructed above with the

point (shi,i+1Vi,i+1)
n−1
i=1 ∈ Fa

n . As mentioned above, each component of this point is
a linear span of basis vectors and thus (shi,i+1Vi,i+1)

n−1
i=1 = p(S̄) for some collection

S̄ = (S̄1, . . . , S̄n−1). Explicitly,

S̄i = {a : a ∈ Si,i+1, a ≤ i} ∪ {a − 1 : a ∈ Si,i+1, a > i + 1}.
Our goal is to prove that this collection is smooth. In fact, assume b ∈ S̄a for some
1 ≤ a < b ≤ n − 1. Then since b > a we have b + 1 ∈ Sa,a+1. We consider two
cases: b + 1 ∈ Sa and b + 1 /∈ Sa . If b + 1 ∈ Sa , then a + 1 ∈ Sb+1 (S is smooth).
Since Sa ⊂ Sb+1, we have b + 1 ∈ Sb+1. Therefore, Sb,b+1 = Sb+1 \ {b + 1} and, in
particular, a + 1 ∈ Sb,b+1. Since a + 1 ≤ b, this implies a + 1 ∈ S̄b . Now assume
b + 1 /∈ Sa . Then Sa,a+1 
= Sa and hence a + 1 ∈ Sa . This implies a + 1 ∈ Sb and so
a + 1 ∈ Sb,b+1 (because wa+1 = prb+1wa+1 ∈ Vb,b+1). We thus arrive at a + 1 ∈ S̄b,
which means that S̄ is smooth. �

Corollary B.4 The map πn+1 is one-to-one over the smooth locus of Fa
n+1.

Proof We note that since the fibers over any two points of a given cell in Fa
n+1 are

isomorphic, it suffices to prove that the fiber is a single point over a smooth torus fixed
point. Let S be a smooth collection and p(S̄) = πnψn+1π

−1
n+1. Since S̄ is smooth, our

corollary follows by induction on n. �

To complete the proof of Theorem B.1, we need to show that the fiber over a non-
smooth point has positive dimension. It suffices to prove that if a collection S is not
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smooth, then the preimage of pS has positive dimension. We first prove the following
lemma.

Lemma B.5 Assume that Sa is not a subset of Sa+1 for some a. Then the dimension
of the fiber π−1

n+1pS is positive.

Proof Assume that pS is the image of (Vi,j )1≤i≤j≤n. Let us look at possible sets
Va,a+1. We know that

pra+1(pS)a ⊂ Va,a+1 ⊂ (pS)a+1 ∩ span(wi : i 
= a + 1). (B.1)

Since Sa is not a subset of Sa+1 and Sa ⊂ Sa+1 ∪ {a + 1}, we obtain a + 1 ∈ Sa ,
a + 1 /∈ Sa+1. Therefore,

dim pra+1(pS)a = a − 1, dim(pS)a+1 ∩ span(wi : i 
= a + 1) = a + 1.

Thus the choice of Vi,i+1 as in (B.1) is equivalent to the choice of a point in P
1.

Therefore the preimage π−1
n+1pS is at least one-dimensional. �

Corollary B.6 If S is not smooth, then the dimension of the fiber π−1
n+1pS is positive.

Proof Let k ≥ 1 be a minimal number such that there exists a number a, 1 ≤ a ≤
n − k such that a + k ∈ Sa , but a + 1 /∈ Sa+k . We prove our corollary by induction
on k. First, we note that the case k = 1 means that Sa /∈ Sa+1 and we are done by the
lemma above. Now let k > 1. Since k > 1 the sets Sa,a+1 satisfying

Sa ∪ {a + 1} ⊂ Sa,a+1 ⊂ Sa+1

are defined uniquely. Now define a length n − 1 collection S̄ as above:

S̄i = {l : l ∈ Si,i+1, l ≤ i} ∪ {l − 1 : l ∈ Si,i+1, l > i + 1}.

Since a + k ∈ Sa and k > 1 we obtain a + k − 1 ∈ S̄a . Also, since a + 1 /∈ Sa+k , we
obtain a +1 /∈ S̄a+k and hence a +1 /∈ S̄a+k−1 (since k > 1 we have Sa+k−1 ⊂ Sa+k).
This proves that k becomes k − 1 for S̄. By the inductive assumption we know that
the preimage π−1

n p(S̄) is positive-dimensional. But π−1
n+1pS = π−1

n p(S̄) and we are
done. �

Appendix C

In this appendix we compute the moment graph of Fa
4 . The T -fixed points of Fa

4
are listed in Fig. 1. Recall that such points are parameterized by successor-closed



186 J Algebr Comb (2013) 38:159–189

Fig. 1 The T -fixed points of F a
4

subquivers of the following quiver:

3 ·
2 · ·
1 · · ·
4 · · ·
3 · ·
2 ·

(C.1)

having one vertex in the first column, two in the second and three vertices in the third
column.

Figure 2 shows the moment graph of the degenerate flag variety Fa
4 (we used Bern-

hard Keller’s quiver mutation applet to draw the picture [23]). The 22 smooth torus
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Fig. 2 The moment graph of F a
4 . The vertices are labeled according to Fig. 1. The highlighted vertices

correspond to the smooth T -fixed points
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Fig. 3 The moment graph
around vertex (22)

fixed points are highlighted by a frame. These are the vertices adjacent to precisely
6 = dimFa

4 edges. An edge pS–pR of the moment graph corresponds to a T -fixed
curve between pS and pR in Fa

4 whose direction around pS and pR is given by a
standard basis vector of the tangent space at them. The edge is oriented pS → pR if
and only if the direction around pS has positive T0-weight and it is labeled by the
corresponding S-effective pair (see Theorem 3.18 and Remark 3.5).

To illustrate, let us describe in detail the graph around vertex (22). There are 7
edges connected to this vertex as depicted in Fig. 3. In particular this T -fixed point is
not smooth.

The arrow (20) → (22) corresponds to the following curve (in the basis (C.1))

(〈v1〉, 〈v1, v3〉, 〈v3 + λv2, v1, v4〉
)

λ ∈ P
1.

For λ = 0 one gets the starting point (20) of α, for λ = ∞ one gets the end point
(22) of α. Its direction around (22) has negative T0 weight while around (20) it
has positive weight. The corresponding (20)-effective pair is (1,2). The remaining
labelings of Fig. 3 are obtained similarly.
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