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Abstract Recall that combinatorial 2s-designs admit a classical lower bound b ≥ (
v
s

)

on their number of blocks, and that a design meeting this bound is called tight.
A long-standing result of Bannai is that there exist only finitely many nontrivial
tight 2s-designs for each fixed s ≥ 5, although no concrete understanding of ‘finitely
many’ is given. Here, we use the Smith Bound on approximate polynomial zeros
to quantify this asymptotic nonexistence. Then, we outline and employ a computer
search over the remaining parameter sets to establish (as expected) that there are in
fact no such designs for 5 ≤ s ≤ 9, although the same analysis could in principle be
extended to larger s. Additionally, we obtain strong necessary conditions for exis-
tence in the difficult case s = 4.

Keywords Tight design · Symmetric design · Orthogonal polynomials ·
Delsarte theory

1 Introduction

Let v ≥ k ≥ t be positive integers and λ be a nonnegative integer. A t-(v, k, λ) design,
or simply a t-design, is a pair (V , B) where V is a v-set and B is a collection of k-
subsets of V such that any t-subset of V is contained in exactly λ elements of B.
The elements of V are points and the elements of B are blocks. Since t-designs are
also i-designs for i ≤ t , the parameter t is typically called the strength of the design
(when it is as large as possible). The number of blocks is usually denoted b and an
easy double-counting argument shows b = λ

(
v
t

)
/
(
k
t

)
.
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Suppose (V , B) is a t-(v, k, λ) design. Generalizing Fisher’s Inequality, Ray-
Chaudhuri and Wilson [10] showed that if t is even, say t = 2s, and v ≥ k + s,
then b ≥ (

v
s

)
. If equality holds in this bound, we say (V , B) is tight. The trivial tight

2s-designs are those with v = k + s, where each of the
(
v
k

) = (
v
s

)
k-subsets of V is

a block. The case of odd strength is investigated in [5]; however, it is impossible for
(2s − 1)-designs to be tight in the sense of having

(
v

s−1

)
blocks.

Returning to even strength, the full set of parameters v and k for which a tight 2s-
design exists has only been determined for s = 2,3. Note that, when s = 1, tight 2-
designs have b = v and are the ‘symmetric’ designs; see [6, 8] for surveys of this rich
(yet very challenging) topic. In 1975, Ito [7] published a proof that the only nontrivial
tight 4-designs are the Witt 4-(23,7,1) design and its complementary 4-(23,16,52)
design, but his proof was found to be incorrect. A few years later, Enomoto, Ito,
and Noda [4] proved the weaker result that there are finitely many nontrivial tight 4-
designs, though still believing Ito’s initial claim to be true. Finally, in 1978, Bremner
[2] successfully settled s = 2 by reaffirming Ito’s result. Peterson [9] proved in 1976
that there exist no nontrivial tight 6-designs.

Bannai [1] proved that there exist only finitely many nontrivial tight 2s-designs
for each s ≥ 5. The case s = 4 is quite open, and the ‘finitely many’ for s ≥ 5 is not
explicit and potentially grows with s. However, it is probably the case that there are
no unknown tight 2s-designs for s ≥ 2.

Central to these negative results is the concept of the intersection numbers of a
design. An integer 0 ≤ μ < k is an intersection number of a t-(v, k, λ) design (V , B)

if there exist different blocks B1,B2 ∈ B such that |B1 ∩ B2| = μ. The following
strong condition was discovered first by Ray-Chaudhuri and Wilson [10] and also
implicitly by Delsarte [3].

Proposition 1.1 ([3, 10]) If there exists a tight 2s-(v, k, λ) design, then the zeros of
the following degree s polynomial Ψs(x) are the intersection numbers of the design,
and hence they must all be nonnegative integers:

Ψs(x) =
s∑

i=0

(−1)s−i

(
v−s

i

)(
k−i
s−i

)(
k−1−i

s−i

)

(
s
i

)
(

x

i

)
. (1.1)

The polynomials Ψs are known as the Gegenbauer polynomials.
Since a 2s-design with v ≥ k + s induces at least s intersection numbers [10], it

follows that the zeros of Ψs must additionally be distinct integers for tight designs.
Note also that Ψs has no dependence on λ; indeed, for tight designs λ = (

v
s

)(
k
2s

)
/
(

v
2s

)

and is therefore uniquely determined by v and k.
Analogously, the Lloyd polynomials Le(x) are important for the characterization

of perfect e-error-correcting codes; see [13]. It is interesting that this characterization
of perfect codes was completed long ago, while the open problems mentioned before
Proposition 1.1 remain for tight designs. Our goal here is to revive the interest in tight
designs and take a modest step toward the full characterization of their parameters.

The outline is as follows. In Sect. 2, we review the work of Bannai in [1] on the
asymptotic structure of the zeros of Ψs . Extending this, we obtain some exact bounds
relevant to this analysis. Section 3 summarizes the techniques for exhausting small
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cases s ≥ 5, and Sect. 4 is devoted to a partial analysis of the case s = 4. An appendix
of tables following the main text will prove useful to the interested reader.

2 Bannai’s analysis and the Smith bound

2.1 Notation

Assuming a tight design, let xi , for i = −� s
2�, . . . , (0), . . . , � s

2�, denote the zeros
of Ψs listed in increasing order. For example, the zeros of Ψ4 and Ψ5 are denoted
x−2 < x−1 < x1 < x2 and x−2 < x−1 < x0 < x1 < x2, respectively.

An important parameter is the arithmetic mean of the zeros of Ψs(x), which we
will denote by α. From the coefficient of xs−1, we have

α = (k − s + 1)(k − s)

v − 2s + 1
+ s − 1

2
. (2.1)

It will be useful as in [1] to define the parameter α so that α = α + (s − 1)/2, that is,

α = (k − s + 1)(k − s)

v − 2s + 1
.

We also define

τ = v − 2s + 1

k − s + 1
.

Bannai [1] denoted this quantity by t , but we feel t should be reserved for the strength
of the design.

Note τ = 2 implies v = 2k + 1. Moreover, if v < 2k, we may complement blocks,
replacing k with v − k and obtain v > 2k. This is discussed further in Sect. 2.2.

Finally, put β = (1 − 1
τ
)
√

α. In terms of v and k,

β = (v − k − s)
√

(k − s + 1)(k − s)

(v − 2s + 1)3/2
.

In particular, β = 0 if and only if v = k + s, so in some sense β can be seen as
measuring the ‘nontriviality’ of a (tight) 2s-design. Note also that

k = τ 3(τ − 1)−2β2 + s, and (2.2)

v = τ 4(τ − 1)−2β2 + τ + 2s − 1. (2.3)

Bannai’s proof of the existence of only finitely many nontrivial tight 2s-designs,
s ≥ 5, is divided into cases according to this parameter β . In particular, he proves

• for any β0, there are only finitely many tight 2s-designs with β ≤ β0; and
• there exists β0 (depending only on s), such that there are no nontrivial tight 2s-

designs with β > β0.

Here, our main goal is to compute such a β0 explicitly for 5 ≤ s ≤ 9 and, by
searching across all pairs (v, k) for which β ≤ β0, show that there are in fact zero
nontrivial tight 2s-designs for these s.
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2.2 Symmetry with respect to the parameter τ

In the analytic work which follows, it is helpful to obtain a lower bound on τ . As
discussed above, we may complement blocks to assume v ≥ 2k. The following was
mentioned but not fully proven in [1].

Lemma 2.1 Let s ≥ 1. There are no tight 2s-designs with v = 2k.

Proof Suppose v = 2k. Then from (2.1), sα − (
s
2

) = sα = s(k−s+1)(k−s)
2(k−s)+1 . Without too

much effort, it can be seen that the least residue of s(k − s + 1)(k − s) (mod 2(k −
s) + 1), denoted here by rk,s , satisfies

rk,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(k − s) − s−4
4 if s ≡ 0 (mod 4);

k − s − s−2
4 if s ≡ 2 (mod 4);

k−s
2 − s−1

4 if s ≡ 1 (mod 4) and k is odd

or s ≡ 3 (mod 4) and k is even;
3
2 (k − s) − s−3

4 if s ≡ 3 (mod 4) and kis odd

or s ≡ 1 (mod 4) and k is even.

Since k − s ≥ s, it follows that in all cases rk,s is an integer lying strictly between 0
and 2(k − s) + 1, so sα − (

s
2

)
is not an integer. But the integrality of sα is necessary

for the existence of a tight design since it is the sum of the zeros of Ψs(x); therefore
there are no tight 2s-designs with v = 2k. �

Now, we are able to justify assuming that τ ≥ 2 for nonexistence of tight designs.

Proposition 2.2 Let s ≥ 1. If there exists a nontrivial tight 2s-design with τ < 2, then
there also exists a nontrivial tight 2s-design with τ ≥ 2.

Proof Suppose D is a nontrivial tight 2s-(v, k, λ) design with τ < 2. This means k ≤
v ≤ 2k−1 because v 
= 2k by Lemma 2.1, and so the complementary 2s-(v, v−k,λ′)
design of D is a nontrivial tight 2s-design with τ ≥ 2. �

Incidentally, Bannai and Peterson ruled out the case τ = 2, observing that it yields
symmetric zeros of Ψs about their mean α. This is a key observation.

Proposition 2.3 ([1, 9]) There does not exist any tight 2s-design with v = 2k + 1.

2.3 Hermite polynomials

Let Hs(x) denote the normalized Hermite polynomial of degree s defined recursively
by H0(x) = 1, H1(x) = x, and for s ≥ 2,

Hs(x) = xHs−1(x) − (s − 1)Hs−2(x).

Furthermore, let ξi , i = −� s
2�, . . . , (0), . . . , � s

2�, denote the zeros of Hs(x) listed in
increasing order. It is easily seen that ξ−i = −ξi for each i. See Appendix A for a
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table of Hs(x) and their zeros for 1 ≤ s ≤ 9. In particular, for the analytical work in
Sect. 3, we will make use of the following known estimates.

Proposition 2.4

(i) If s is odd and s ≥ 5, then ξ2
1 <

√
3.

(ii) If s is even and s ≥ 8, then ξ2
2 − ξ2

1 <
√

3.

(iii) If s = 6, then 1.0 <
ξ2

2 −ξ2
1

3 < 1.1, 3.5 <
ξ2

3 −ξ2
1

3 < 3.6, and 3.34634 <
ξ2

3 −ξ2
1

ξ2
2 −ξ2

1
< 3.34635.

Proof Items (i) and (ii) are referenced in Bannai’s Proposition 13 and proven on
page 126 of [12]. Item (iii) can be verified numerically. See Appendix A. (Note that
Bannai’s Proposition 13 (iii) actually contains an error.) �

A useful identity is

H ′
s(x) = sHs−1(x). (2.4)

For later reference we define, again as in [1],

λi = λi(τ ) =
(

1 − 2

τ

)2(ξ2
i

6
− s − 1

6

)
. (2.5)

Informally, Proposition 16 in [1] states that as β → ∞, the zeros xi of Ψs(x) approach
α + βξi + λi . That is, when suitably normalized, Ψs behaves like Hs for large β and
fixed τ .

2.4 The Smith bound

We now state a useful result for explicitly finding β0. Sometimes known as the Smith
bound, it is a consequence of the Gershgorin circle theorem.

Theorem 2.5 ([11]) Let P(z) be a monic polynomial of degree n and let ξ1, . . . , ξn

be distinct points approximating the zeros of P(z). Define the circles

Γi =
{
z : |z − ξi | ≤ n|P(ξi)|

|Q′(ξi)|
}
,

where Q(z) is the monic polynomial of degree n with zeros ξ1, . . . , ξn. Then the union
of the circular regions Γi contains all the zeros of P(z), and any connected com-
ponent consisting of just m circles Γi contains exactly m zeros of P(z) for each
1 ≤ m ≤ n.

Let s ≥ 1. For each i ∈ {−� s
2�, . . . , (0), . . . , � s

2�}, define the monic degree s poly-
nomial (in z)

G(i)
s (z) = s!

βs
(
v−s
s

)Ψs(α + βz + λi), (2.6)
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and put zi = (xi − α − λi)/β , the zero of G
(i)
s (z) corresponding to xi .

We will see from Propositions 2.6 and 2.7 that the zi are well-approximated by
the ξi as β → ∞, independently of τ .

Proposition 2.6 Let s ≥ 1. Then

|zi − ξi | ≤ |G(i)
s (ξi)|

|Hs−1(ξi)| .

Proof Simply apply Theorem 2.5 to the polynomial G
(i)
s (z), letting Q(z) = Hs(z),

to get

|zi − ξi | ≤ s|G(i)
s (ξi)|

|H ′
s(ξi)| .

The result now follows from (2.4). �

2.5 Bounding Gs in terms of β

In the next proposition, it is helpful to think of the G
(i)
s (ξi) as functions of β and τ .

Proposition 2.7 Let s ≥ 2. For each i ∈ {−� s
2�, . . . , (0), . . . , � s

2�}, there exist con-
stants Bi,Ci such that whenever β > Bi ,

∣∣G(i)
s (ξi)

∣∣ <
Ci

β2

for all τ ≥ 2.

The necessary ingredients for this result were proved in [1], although the bound
was not directly stated in this form. Therefore, we omit the proof and instead focus on
how to (carefully) obtain Bi and Ci for small s using some basic computer algebra.

Algorithm 2.8 For fixed s and i, we may obtain constants Bi and Ci in Proposi-
tion 2.7 by the following procedure.

1. Using (1.1), substitute (2.1), (2.2), (2.3), and (2.5) into (2.6). To defer floating-
point precision issues, we first replace ξi in (2.5) by a symbolic parameter r .

2. This results in an expression for G
(i)
s (r) as a rational function of β , say

G(i)
s (r)(β, τ ) = p(r,β, τ )

q(β, τ )
.

Here, the denominator is

q(β, τ ) = βs

(
v − s

s

)
= βs

(
τ 4(τ − 1)−2β2 + τ + s − 1

s

)
. (2.7)
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3. Observe that q is positive for β > 0 and τ ≥ 2, and that a lower bound on q is

q̃(β, τ ) = 1

s!β
3sτ 4s(τ − 1)−2s .

This is obtained by replacing each factor in the falling factorial of (2.7) by τ 4(τ −
1)−2β2.

4. The numerator p(r,β, τ ) is, for general r , a polynomial of degree 3s in β . How-
ever, for r = ξi , Proposition 2.7 shows the two top coefficients, namely of β3s and
β3s−1, vanish. Again, to maintain symbolic algebra, we artificially replace these
coefficients by zero and call this polynomial p̃(r, β, τ ).

5. We have

β2G(i)
s (r)(β, τ ) ≤ β2p̃(r, β, τ )

q̃(β, τ )
.

Note that for r = ξi , the right hand side is a polynomial in β−1.
6. Consider the coefficient κj (r, τ ) of β3s−j in β2p̃(r, β, τ ). With r = ξi , compute

(or upper-bound) the maxima

Mj = sup
τ≥2

|κj (ξi, τ )|
1
s! (τ − 1)−2sτ 4s

.

Then, estimating term-by-term,
∣∣β2G(i)

s (ξi)(β, τ )
∣∣ ≤ M0 + M1β

−1 + M2β
−2 + · · ·

for all τ ≥ 2.
7. Construct Bi,Ci so that β > Bi implies M0 + M1β

−1 + M2β
−2 + · · · ≤ Ci . Note

that with sufficiently large Bi and a safe choice of Ci , it suffices to estimate the
first few coefficients Mj .

We should remark that for small s, Algorithm 2.8—even the calculation of all
3s −1 coefficient maxima Mj —is essentially instantaneous on today’s personal com-
puters. Moreover, deferring the use of floating-point arithmetic to step 5—when τ is
eliminated—makes our subsequent use of floating-point numbers Mj quite mild. In-
deed, there is virtually no loss in taking Mj as (integer) ceilings of the suprema, so
that estimating for Ci can be performed in Q.

See Appendix B for the results of this calculation for each 5 ≤ s ≤ 9 and all rele-
vant indices i.

2.6 Bounding the zeros

We are now ready for our main result of this section. This is in Bannai’s paper [1],
but with no attempt to control β .

Proposition 2.9 Fix a positive integer s and i ∈ {−� s
2�, . . . , (0), . . . , � s

2�}. Put
yi = xi − α − βξi , where recall xi and ξi are corresponding roots of Ψs and Hs ,
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respectively. Let ε > 0 and define

β̂(i, ε) = max

{
Bi,

Ci

εDi

}
,

where Di = |Hs−1(ξi)|. Then for all β > β̂ and all τ ≥ 2,

|yi − λi | < ε.

Proof Observe that |yi − λi | = β|zi − ξi |, since

xi = α + βξi + yi = α + βzi + λi.

The estimate now follows easily from Propositions 2.6 and 2.7. �

3 The case s ≥ 5

3.1 Estimates for large β

The goal here is to provide formulas for the smallest β0 possible (see the end of
Sect. 2.1) using the Bi and Ci constructed in Algorithm 2.8. This task is simplified
under the conditions that Bi is independent of i and Ci = C−i . There is no loss of
generality in assuming this because we can simply take B to be the maximum of
the Bi and Ci = max{Ci,C−i}, and then redefine each Bi = B and Ci = C−i = Ci .
In fact, this is not necessary for our explicit constructions because the constants in
Appendix B satisfy the above conditions.

Again, for convenience, we denote |Hs−1(ξi)| by Di in the following proofs.

Proposition 3.1 Let s ≥ 5 be odd.

(i) There exists β1 such that, whenever β > β1,

|y1 + y−1 − 2y0| < 1.

(ii) There exists β2 such that, whenever β > β2,

|yi + y−i − yi−1 − y−(i−1)| < 1 + ξ2
i − ξ2

i−1

ξ2
i−1 − ξ2

i−2

|yi−1 + y−(i−1) − yi−2 − y−(i−2)|

for 2 ≤ i ≤ � s
2�.

(iii) There exists β0(s) such that, whenever β > β0(s) and yi + y−i − yi−1 − y−(i−1)

is an integer for 1 ≤ i ≤ � s
2�, it is necessarily the case that yi + y−i − yi−1 −

y−(i−1) = 0 for each i.
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Proof

(i) Observe that since τ ≥ 2,

0 ≤ 2(λ1 − λ0) =
(

1 − 2

τ

)2 ξ2
1

3
<

ξ2
1

3
. (3.1)

Define

ε0 = 1

2

(
1 − ξ2

1

3

)(
1 + C1D0

C0D1

)−1

and β1 = β̂(0, ε0).

If ε1 = ε0
C1D0
C0D1

, then

β̂(1, ε1) = β1 and 2ε0 + 2ε1 = 1 − ξ2
1

3
.

Hence for β > β1,
∣
∣y1 + y−1 − 2y0 − 2(λ1 − λ0)

∣
∣ ≤ |y1 − λ1| + |y−1 − λ−1| + 2|y0 − λ0|,

< 2ε0 + 2ε1 = 1 − ξ2
1

3
.

By (3.1),

−
(

1 − ξ2
1

3

)
< y1 + y−1 − 2y0 < 1

and the claim follows.
(ii) For 2 ≤ i ≤ � s

2�, let

ai = ξ2
i − ξ2

i−1

ξ2
i−1 − ξ2

i−2

and εi = 1

2

(
1 + (1 + ai)

Ci−1Di

CiDi−1
+ ai

Ci−2Di

CiDi−2

)−1

.

Note if 2 ≤ i ≤ � s
2�, then

(λi − λi−1) = (λi−1 − λi−2)ai . (3.2)

Define β2 = max{β̂(i, εi) : 2 ≤ i ≤ � s
2�}. For β > β2 and working as in (i),

∣∣yi + y−i − yi−1 − y−(i−1) − 2(λi − λi−1)
∣∣ < 2εi

(
1 + Ci−1Di

CiDi−1

)
. (3.3)

Using (3.2) and (3.3) again with i − 1 replacing i,

|yi + y−i − yi−1 − y−(i−1)|

< 2εi

(
1 + Ci−1Di

CiDi−1

)
+ 2εiai

(
Ci−1Di

CiDi−1
+ Ci−2Di

CiDi−2

)

+ ai |yi−1 + y−(i−1) − yi−2 − y−(i−2)|
= 1 + ai |yi−1 + y−(i−1) − yi−2 − y−(i−2)|,
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as required.
(iii) Set β0(s) = max{β1, β2} and assume that β > β0(s) and yi + y−i − yi−1 −

y−(i−1) is an integer for 1 ≤ i ≤ � s
2�. By (i), y1 + y−1 − 2y0 = 0 since it is

an integer whose absolute value is less than 1. Assume that yi−1 + y−(i−1) −
yi−2 − y−(i−2) = 0 for some 2 ≤ i ≤ � s

2�. Then (ii) gives the result that |yi +
y−i − yi−1 − y−(i−1)| is also less than one and hence equal to 0 since it is an
integer, so by induction yi + y−i − yi−1 − y−(i−1) = 0 for 1 ≤ i ≤ � s

2�, and so
the proof is complete. �

Proposition 3.2 Let s ≥ 8 be even.

(i) There exists β1 such that, whenever β > β1,

|y2 + y−2 − y1 − y−1| < 1.

(ii) There exists β2 such that, whenever β > β2,

|yi + y−i − yi−1 − y−(i−1)| < 1 + ξ2
i − ξ2

i−1

ξ2
i−1 − ξ2

i−2

|yi−1 + y−(i−1) − yi−2 − y−(i−2)|

for 3 ≤ i ≤ � s
2�.

(iii) There exists β0(s) such that, whenever β > β0(s) and yi + y−i − yi−1 − y−(i−1)

is an integer for 2 ≤ i ≤ � s
2�, it is necessarily the case that yi + y−i − yi−1 −

y−(i−1) = 0 for each i.

Proof

(i) Since τ ≥ 2,

0 ≤ 2(λ2 − λ1) =
(

1 − 2

τ

)2 ξ2
2 − ξ2

1

3
<

ξ2
2 − ξ2

1

3
. (3.4)

Define

ε1 = 1

2

(
1 − ξ2

2 − ξ2
1

3

)(
1 + C2D1

C1D2

)−1

and β1 = β̂(1, ε1).

If ε2 = ε1
C2D1
C1D2

, then

β̂(2, ε2) = β1 and 2ε1 + 2ε2 = 1 − ξ2
2 − ξ2

1

3
.

Hence for β > β1,

∣∣y2 + y−2 − y1 − y−1 − 2(λ2 − λ1)
∣∣ < 2ε1 + 2ε2 = 1 − ξ2

2 − ξ2
1

3
.

By (3.4),

−
(

1 − ξ2
2 − ξ2

1

3

)
< y2 + y−2 − y1 − y−1 < 1

and the claim follows.
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(ii) Define εi and β2 in as in the proof of Proposition 3.1(ii), but omit i = 2.
(iii) Imitate the proof of Proposition 3.1(iii). �

In the case s = 6,
ξ2

2 −ξ2
1

3 > 1. Hence it is impossible to choose a β1 to guarantee
that y2 + y−2 − y1 − y−1 = 0 whenever it is an integer and β > β1. However, com-
bining the integrality requirements of y2 + y−2 − y1 − y−1 and y3 + y−3 − y1 − y−1
allows us to handle this case.

Proposition 3.3 Let s = 6. There exists β0(6) such that, whenever β > β0(6) and
(y2 + y−2 − y1 − y−1), (y3 + y−3 − y1 − y−1) are both integers, it is necessarily the
case that y2 + y−2 − y1 − y−1 = y3 + y−3 − y1 − y−1 = 0.

Proof Observe

0 ≤ 2(λ2 − λ1) <
ξ2

2 − ξ2
1

3
< 1.1 and 0 ≤ 2(λ3 − λ1) <

ξ2
3 − ξ2

1

3
< 3.6

by Proposition 2.4(iii). Let a = ξ2
3 −ξ2

1
ξ2

2 −ξ2
1

and define

ε1 = 1

2
(a − 3)

(
1 + a + a

C2D1

C1D2
+ C3D1

C1D3

)−1

and β0(6) = β̂(1, ε1).

Then, with

ε2 = 2ε1

(
1 + C2D1

C1D2

)
and ε3 = 2ε1

(
1 + C3D1

C1D3

)
,

we have

ε2a + ε3 = a − 3,

0 < ε2 < (a − 3)/a ≈ 0.10350, and

0 < ε3 < a − 3 ≈ 0.34635.

Assume β > β0(6). Then |y2 + y−2 − y1 − y−1 − 2(λ2 − λ1)| < ε2 implies

y2 + y−2 − y1 − y−1 ∈ {0,1}.
Likewise, |y3 + y−3 − y1 − y−1 − 2(λ3 − λ1)| < ε3 implies

y3 + y−3 − y1 − y−1 ∈ {0,1,2,3}. (3.5)

If y2 +y−2 −y1 −y−1 = 0, then 2(λ2 −λ1) < ε2 and so 0 ≤ 2(λ3 −λ1) < ε2a. Hence
y3 +y−3 −y1 −y−1 < ε2a + ε3 = a − 3 ≈ 0.34635, and so y3 +y−3 −y1 −y−1 = 0.

On the other hand, suppose y2 +y−2 −y1 −y−1 = 1. Then 2(λ2 −λ1) > 1−ε2 and
so 2(λ3 −λ1) > (1− ε2)a = a − ε2a. Hence y3 +y−3 −y1 −y−1 > a − ε2a − ε3 = 3,
a contradiction to (3.5).
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It follows that y2 + y−2 − y1 − y−1 = y3 + y−3 − y1 − y−1 = 0. �

To summarize, we have the following reworking of Proposition 17 in [1], but with
explicit β0.

Theorem 3.4 For each s ≥ 5, there are no tight 2s-designs with β > β0(s).

Proof Suppose x−� s
2 � < · · · < x� s

2 � are the intersection numbers of a tight 2s-design
with β > β0(s). By Proposition 2.2, we may assume τ ≥ 2. Then, since ξ−i = −ξi

and λ−i = λi , we have xi + x−i − xj − x−j = yi + y−i − yj − y−j , and this im-
plies that yi + y−i − yj − y−j is an integer for each i, j ∈ {(0),1,2, . . . , � s

2�}. By
Propositions 3.1(iii), 3.2(iii) and 3.3, these integers must vanish. Specifically,

Case 1: s odd and ≥ 5 implies yi + y−i − yi−1 − y−(i−1) = 0 for 1 ≤ i ≤ � s
2�.

Case 2: s even and ≥ 8 implies yi + y−i − yi−1 − y−(i−1) = 0 for 2 ≤ i ≤ � s
2�.

Case 3: s = 6 implies y2 + y−2 − y1 − y−1 = y3 + y−3 − y1 − y−1 = 0.

In each case, the xi are symmetric about their arithmetic mean α. By Proposition 2
in [1], this implies v = 2k + 1. Proposition 2.3 says this is impossible, and the proof
is therefore complete. �

3.2 Searching over small β

We now turn to small values of β , for which the problem becomes finite.

Algorithm 3.5 To exclude tight 2s-designs with β ≤ β0, we may implement the
following steps.

1. Compute β0 from the Bi,Ci as in the previous section.
2. By Propositions 2.2 and 2.3, we may restrict attention to τ > 2. Since α =

β2/(1 − 1
τ
)2, it follows that α < 4β2

0 . Now, since α = (
sα + (

s
2

))
/s and sα

is an integer, we have α ∈ 1
s
Z. This gives an explicit finite number of admissible

α, as Bannai observed in [1].
3. Note that, under the assumption of a tight design, the expression

(
s

2

)
α

(
α + 2ατ − α + 2

ατ 2 + τ + 1

)
(3.6)

is an integer. This is because Proposition 5 in [1] asserts that the coefficient of
xs−2 in the monic polynomial s!Ψs(x)/

(
v−s
s

)
is

(
s

2

)
α

(
α + 2ατ − α + 2

ατ 2 + τ + 1

)
+

(
s

3

)(
3α + 3s − 1

4

)
,

and the latter term is always an integer.
4. Fix α as in Step 2. Put n = k − s = ατ and define

gα(n) :=
(

s

2

)
α2

(
1 + 2n − α + 2

n2 + n + α

)
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as in (3.6). As τ > 2, we may take nmin(α) = max{s, �2α�+1} as a lower bound
for n.

5. Since g′
α(n) < 0 for all n ≥ nmin(α), it suffices to loop on integers n from

nmin(α) until nmax(α), where gα(nmax(α)) ≤ �(s
2

)
α2� + 1. Any pairs (k, v)

which give integral gα(n) are obtained by k = n + s and v = n2+n
α

+ 2s − 1.
6. In principle, at this point the zeros of Ψs for these pairs (k, v) can be analyzed.

However, in practice we found it sufficient in all cases to merely see that λ =(
v
s

)(
k
2s

)
/
(

v
2s

)
was never even an integer.

We wrote a C program that implements Algorithm 3.5 for a given s and β0, but
with an important optimization. For n near nmax(α), |g′

α(n)| is very small so it would
be inefficient to loop over n in this region. Therefore, the program loops over integer
values of gα(n) from �gα(nmax(α))� and checks the integrality of the corresponding
n until the derivative becomes larger than a certain threshold (in absolute value), at
which point it begins looping over n from nmin to a much smaller nmax. The program
is available by contacting the authors.

Our calculations of β0 in step 1 are displayed in Appendix B. We can report that
the method succeeds for 5 ≤ s ≤ 9, and probably much higher s. We have chosen
to avoid continued searches for s > 9 until new ideas are obtained. In particular, it
would be interesting if s ≥ s0 could be excluded for nontrivial tight 2s-designs.

Theorem 3.6 For each 5 ≤ s ≤ 9, there are no nontrivial tight 2s-designs.

4 The case s = 4

The same analytic approach that is successful for s ≥ 5 fails when s = 4. We can only
guarantee that

0 ≤ 2(λ2 − λ1) <
ξ2

2 − ξ2
1

3
= √

8/3 ≈ 1.63299

when τ ≥ 2, and so there does not exist β0 such that |y2 + y−2 − y1 − y−1| < 1 for
all β > β0.

However, it is possible to bound |y2 + y−2 − y1 − y−1| away from 2. Let

ε1 = 1

2

(
2 − √

8/3
)(

1 + C2D1

C1D2

)−1

and β�(4) = β̂(1, ε1).

Then the existence of a tight 8-design with β > β�(4) and τ ≥ 2 implies y2 + y−2 −
y1 − y−1 = 1 and 2(λ2 − λ1) ≈ 1, for which

τ = v − 7

k − 3
≈ 2

1 − 4
√

3/8
≈ 9.1971905725.

We are able to obtain more precise conditions in the following result.
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Proposition 4.1 If there exists a nontrivial tight 8-design with parameters v and k,
then k > 25,000 and f (k, v) = 0, where f (k, v) is as in Appendix C.

Proof We first used Algorithm 3.5 to find that there are no nontrivial tight 8-designs
with β ≤ β�(4). Thus, any tight 8-design with τ ≥ 2 must have x2 +x−2 −x1 −x−1 =
y2 + y−2 − y1 − y−1 = 1. Consider the monic and root-centered polynomial

F(x) = 24Ψ4(x + α)
/(

v − 4

4

)
= x4 + p1x

3 + p2x
2 + p3x + p4.

By Eq. (15) in [9], we have

p2 = −5

2
− 6(k − 3)(k − 4)(v − k − 3)(v − k − 4)

(v − 6)(v − 7)2
,

p3 = −4(k − 3)(k − 4)(v − k − 3)(v − k − 4)(v − 2k + 1)(v − 2k − 1)

(v − 5)(v − 6)(v − 7)3
, (4.1)

p4 = 9

16
+ 3

2
· (k − 3)(k − 4)(v − k − 3)(v − k − 4)g(k, v)

(v − 4)(v − 5)(v − 6)(v − 7)4
,

where g(k, v) is as in Appendix C. Assuming x2 + x−2 − x1 − x−1 = 1, the roots of
F(x) must be r1 −1/4, r2 +1/4,−r1 −1/4,−r2 +1/4 where r1 −1/4 = x1 −α and
r2 + 1/4 = x2 − α (note that r1, r2 ∈ 1

4Z). Expanding,

x4 + p2x
2 + p3x + p4

= x4 +
(

−1

8
− r2

1 − r2
2

)
x2 +

(
r2

1

2
− r2

2

2

)
x +

(
r2

1 − 1

16

)(
r2

2 − 1

16

)
,

which yields

p4 =
(

p2

2
+ 1

8

)2

− p2
3. (4.2)

Substituting (4.1) into (4.2) results in the equation f (k, v) = 0. �

It is possible to apply the Mordell-Weil Theorem to the Diophantine equation
f (k, v) = 0 and obtain a crude finiteness result. We omit the details. In any case, some
very recent work of Ziqing Xiang has used careful estimates on the curve f (k, v) = 0
to completely rule out the existence of nontrivial tight 8-designs.
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Appendix A: Hermite polynomials Hs(x) and their zeros, 1 ≤ s ≤ 9

s Hs(x)

1 x

2 x2 − 1
3 x3 − 3x

4 x4 − 6x2 + 3
5 x5 − 10x3 + 15x

6 x6 − 15x4 + 45x2 − 15
7 x7 − 21x5 + 105x3 − 105x

8 x8 − 28x6 + 210x4 − 420x2 + 105
9 x9 − 36x7 + 378x5 − 1260x3 + 945x

Note: In the following table, the values of Di = |Hs−1(ξi)| are rounded down.

s i ξi for Hs(x) Di ≥
1 0 0 1

2 1 1 1

3 0 0 1
1

√
3 2

4 1
√

3 − √
6 = 0.7420 1.817

2
√

3 + √
6 = 2.3344 5.718

5 0 0 3

1
√

5 − √
10 = 1.3556 4.649

2
√

5 + √
10 = 2.8570 20.64

6 1 0.61670659019 6.994
2 1.88917587775 15.02
3 3.32425743355 88.46

s i ξi Di ≥
7 0 0 15

1 1.1544 20.69
2 2.3668 57.82
3 3.7504 433.1

8 1 0.5391 41.09
2 1.6365 73.30
3 2.8025 255.7
4 4.1445 2365

9 0 0 105
1 1.0233 135.4
2 2.0768 299.5
3 3.2054 1267
4 4.5127 14159

Appendix B: Constants Bi and Ci obtained from Algorithm 2.8 and values
of β0(s)

Notes: For convenience, Bi was chosen independently of i and Ci was taken with
Ci = C−i .
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s Bi Ci , i = (0),1, . . . , � s
2� β0(s) β�(s)

4 10 2,14 19.35
5 10 1,12,88 33.76
6 100 11,63,558 156.96
7 10 6,93,458,4649 86.55
8 100 100,501,2561,30779 106.77
9 100 9,773,3186,17732,247789 146.37

Appendix C: The f (k,v) and g(k,v) used in Proposition 4.1

f (k, v) = −3408102864 + 1506333312k2 + 974873344k4 − 488998144k6

+ 62323584k8 − 3309568k10 + 65536k12 + 9310949028v

− 1506333312kv − 4733985888k2v − 1949746688k3v − 1015706784k4v

+ 1466994432k5v + 511604992k6v − 249294336k7v − 49810560k8v

+ 16547840k9v + 1744896k10v − 393216k11v − 16384k12v

− 11097146016v2 + 4733985888kv2 + 6922441360k2v2

+ 2031413568k3v2 − 1428764528k4v2 − 1534814976k5v2

+ 209662720k6v2 + 199242240k7v2 − 21567744k8v2 − 8724480k9v2

+ 786432k10v2 + 98304k11v2 + 7281931941v3 − 5947568016kv3

− 4944873072k2v3 + 412538336k3v3 + 1856597696k4v3

+ 243542016k5v3 − 293538048k6v3 − 13016064k7v3 + 17194752k8v3

− 327680k9v3 − 253952k10v3 − 2755473732v4 + 3929166288kv4

+ 1497511456k2v4 − 1155170432k3v4 − 582955856k4v4

+ 183266304k5v4 + 58253568k6v4 − 16432128k7v4 − 1102464k8v4

+ 368640k9v4 + 544096980v5 − 1459281552kv5 + 28759472k2v5

+ 469164960k3v5 − 7038496k4v5 − 59703552k5v5 + 6536960k6v5

+ 2050560k7v5 − 328320k8v5 − 18769932v6 + 293023248kv6

− 127930016k2v6 − 58917568k3v6 + 27050224k4v6 + 1258752k5v6

− 1642240k6v6 + 182784k7v6 − 14780538v7 − 24513072kv7

+ 27560816k2v7 − 2875616k3v7 − 2296192k4v7 + 698880k5v7

− 61184k6v7 + 2961396v8 − 764688kv8 − 1582560k2v8 + 772608k3v8
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− 143664k4v8 + 10752k5v8 − 191952v9 + 203472kv9 − 52816k2v9

+ 7520k3v9 − 640k4v9 + 972v10 − 2352kv10 + 336k2v10 + 45v11,

g(k, v) = 2k4v − 26k4 − 4k3v2 + 52k3v + 2k2v3 − 20k2v2 − 120k2v + 258k2

− 6kv3 + 120kv2 − 258kv + v4 − 23v3 + 123v2 − 433v + 764.
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