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Abstract A block character of a finite symmetric group is a positive definite function
which depends only on the number of cycles in a permutation. We describe the cone
of block characters by identifying its extreme rays, and find relations of the characters
to descent representations and the coinvariant algebra of Sn. The decomposition of
extreme block characters into the sum of characters of irreducible representations
gives rise to certain limit shape theorems for random Young diagrams. We also study
counterparts of the block characters for the infinite symmetric group S∞, along with
their connection to the Thoma characters of the infinite linear group GL∞(q) over a
Galois field.
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1 Introduction

Let G be a group. Under a character of G, we shall understand a positive-definite
class function χ : G → C. A character which satisfies χ(e) = 1 will be called nor-
malized.

The work on the paper started in 1999 when Sergei Kerov (1946–2000) was visiting the first author
at the University of Göttingen.
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For g �→ Rg , a finite-dimensional matrix representation of G, the trace

χ(g) = Trace(Rg)

is a character. For a finite or, more generally, compact group, the set of normalized
characters is a simplex whose extreme points are normalized traces g �→ χ(g)/χ(e)

of irreducible representations of G. For infinite groups, the connection is more deli-
cate since there are many infinite-dimensional representations and the matrix traces
are of no use. A classical construction associates extreme normalized characters with
factor representations of finite von Neumann type, see [8, 34]. Yet another approach
exploits spherical representations of the Gelfand pairs, see [26, 27]. The represen-
tation theory is mainly focused on the classification of extreme characters and the
decomposition of the generic character in a convex sum of the extremes, the latter
being as a counterpart of the decomposition of a representation into the irreducible
ones. However, the extreme characters may be complicated functions and the set of
the extremes may be too large, so it is of interest to study smaller tractable families
of reducible characters, for instance, those which have some kind of symmetry or
depend on some simple statistic on the group.

In this paper, we study symmetric groups Sn and their block characters which de-
pend on a permutation g ∈ Sn only through the number of cycles �n(g). Our interest
to block characters is motivated by the analogous concept of derangement characters
of the general linear group GLn(q) of invertible matrices over a Galois field, as stud-
ied in [13]. A derangement character depends on the matrix h ∈ GLn(q) only through
the dimension of the space ker(h − Id) of fixed vectors of h. See [29, 35] for a con-
nection of the derangement characters to representation theory of GL∞(q) and [10]
for a connection of these characters to some random walks. The natural embedding
Sn in GLn(q), which maps a permutation g to a permutation matrix h, yields a link
between two families of characters. Indeed, it is easily seen that �n(g) is equal to
the dimension of the space of fixed vectors of h, so the restriction of a derangement
character from GLn(q) to Sn is a block character.

The convex set of normalized block characters of Sn is a simplex whose extreme
points are normalized versions of the characters τn

1 , . . . , τ n
n introduced by Foulkes

[9]. It should be stressed that, a priori, there is no general reason for the set of nor-
malized block characters to be a simplex. To compare, the set of normalized derange-
ment characters of GLn(q) is a simplex for some n, and not a simplex for other [13].
Characters τn

k are related to the descent statistics of permutations. In particular, τn
k (e)

coincides with the Eulerian number, which counts permutations with k − 1 descents.
Using a decomposition of the coinvariant algebra, we will find representations of
Sn whose traces are the τn

k ’s. Versions of decompositions of the coinvariant algebra
is a classical topic (see [32, Proposition 4.11], [23], [28, Sect. 8.3]) which has been
studied recently in [1] in connection with descent representations [30].

Foulkes [9] defined the τn
k ’s by summing ‘rim hook’ characters which are not

block functions at all. In this paper, we take a more straightforward approach, starting
with a collection of block characters associated with a natural action of Sn on words.
On this way, we derive ‘from scratch’ a number of known results on decomposition
and branching of the Foulkes characters, as found in [6, 19].
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Extending the finite-n case, we shall consider the infinite symmetric group S∞
of bijections g : N → N satisfying g(j) = j for all sufficiently large j . The counter-
parts of the block characters of S∞ are the characters depending on the permutation
through its decrement defined by c(g) := n−�n(g), with any large enough n. We will
show that the set of normalized block characters of S∞ is a Choquet simplex with ex-
treme points σ∞

z (g) := zc(g) where z ∈ V = {0,±1,±1/2,±1/3, . . . } (the instance,
z = 0 is understood as the delta function at e). Recall that the characteristic property
of a Choquet simplex is the uniqueness of decomposition of the generic point in a
convex mixture of extremes [15].

The extreme normalized characters of S∞ were parameterized in a seminal paper
by Thoma [36] (see also [21, 25, 37]) via two infinite sequences

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∑

i

(αi + βi) ≤ 1. (1)

It turns out that the extreme normalized block characters of S∞ are extreme among
all normalized characters, with σ∞

1/k corresponding to the parameters α1 = α2 = · · · =
αk = 1/k and σ∞−1/k to the parameters β1 = β2 = · · · = βk = 1/k (where k > 0). The
character σ∞

0 has αj ≡ βj ≡ 0 and corresponds to the regular representation of S∞.
The block characters also possess an additional extremal property. Observe that

the set (1) of parameters of extreme normalized characters of S∞ is a simplex by
itself. The block characters σ∞

z (g) correspond precisely to all extreme points of this
simplex.

Every normalized character χn of the symmetric group Sn defines a probability
measure on the set Yn of Young diagrams with n boxes. Indeed, recall that irreducible
representations of Sn are parameterized by the elements of Yn and decompose χn

into the linear combination of their (conventional) characters χλ:

χn(·) =
∑

λ∈Yn

pn(λ)
χλ(·)
χλ(e)

.

The numbers pn(λ) are non-negative and sum up to 1, thus, they define a probability
distribution on Yn or random Young diagram Yχn

. As n → ∞, these random Young
diagrams may possess intriguing properties depending on the sequence of charac-
ters χn.

Kerov, Vershik [38] and, independently, Logan, Shepp [24] proved in the 1970s
that if we choose χn to be the character of the regular representation of Sn then
after a proper rescaling the boundary of the Young diagram Yχn

converges to a de-
terministic smooth curve called the limit shape. We will prove a similar result for
the extreme block characters τn

k . More precisely, if n → ∞ and k ∼ c
√

n then the
(rescaled) boundary of the Young diagram Y τn

k converges to the deterministic limit
shape depending on c; similar result holds if n − k ∼ c

√
n. Our limit shapes are the

same as those obtained by Biane [4] in the context of tensor representations of Sn.
This fact could have been predicted since the characters considered by Biane coincide
with restrictions of σ∞

z on finite symmetric groups Sn and extreme block characters
τn
k approximate σ∞

z as n tends to infinity.
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From another probabilistic viewpoint, the characters σ∞
1/k (k > 0) have been stud-

ied in [18] and [20, Sect. III.3]; it was shown that the probability measures on the set
of Young diagrams which they define are related to the distributions of eigenvalues
of random matrices.

Like ‘supercharacters’ of Diaconis and Isaacs [7], the block characters are constant
on big blocks of conjugacy classes (‘superclasses’). The latter feature motivated our
choice of the name for this family of functions. However, the block characters do not
fit in the theory of ‘supercharacters’ since the extremes τn

k (hence their mixtures) are
not disjoint in their decomposition over the irreducible traces. The same distinction
applies to the derangement characters of finite linear groups as well.

The rest of the paper is organized as follows. In Sect. 2, we introduce families of
block characters of Sn and derive their properties. In Sect. 3, we prove that the set of
normalized block characters of Sn is a simplex and identify its extreme points (the
normalized Foulkes characters). In Sect. 4, we study block characters τn

k and their
relation with the coinvariant algebra of Sn. In Sect. 5, we prove the limit shape theo-
rem for extreme block characters of Sn. In Sect. 6, we derive the branching rule for
the characters τn

k ’s as n varies. In Sect. 7, we prove that the set of normalized block
characters of S∞ is a simplex and identify its extreme points. Finally, in Sect. 8, we
comment on the relation between the block characters and the derangement charac-
ters of GLn(q) for n ≤ ∞.

2 The block characters

Let Sn denote the group of permutations of {1, . . . , n} and let �n(g) be the number of
cycles of permutation g ∈ Sn. A block function on Sn is a function which depends
on g only through �n(g).

In general, a character of a group G is a complex-valued function χ on G which
is

1. Central, i.e., a class function: χ(a−1ba) = χ(b).
2. Positive definite, i.e., for any finite collection (gi) of elements of G the matrix

with entries χ(gig
−1
j ) is a Hermitian non-negative definite matrix.

If g �→ Rg is a finite-dimensional matrix representation of a group G, then its trace
χ(g) = Trace(Rg) is a character.

A block character of Sn is a positive-definite block function. A conjugacy class
of g ∈ Sn is determined by the partition of n into parts equal to the cycle-sizes of g,
hence every block function is central, and every block character is indeed a character.

Our starting point is an elementary construction of a family of block characters.
Fix an integer k > 0 and let An

k be the set of all words of length n in the alphabet
{1,2, . . . , k}. The group Sn naturally acts in An

k by permuting positions of letters, and
this action defines a unitary representation of the group in L2(A

n
k) by the formula:

(gF )(x) = F
(
g−1x

)
, F ∈ L2

(
An

k

)
, g ∈ Sn.

Let Rn
k denote this representation and let σn

k be its character. Furthermore, let Ŝn

be the one-dimensional sign representation of Sn, which has the block character
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g �→ (−1)n−�n(g), and let R̂n
k be the tensor product of the representations Ŝn and Rn

k :

R̂n
k = Ŝn

1 ⊗ Rn
k .

Let σ̂ n
k be the matrix trace of R̂n

k .

Proposition 2.1 The functions σn
k and σ̂ n

k are block characters of Sn. Explicitly,

σn
k (g) = k�n(g),

σ̂ n
k (g) = (−1)n(−k)�n(g).

Proof The trace of Rn
k (g) is equal to the number of words in Ak

n fixed by g. A word
is fixed if within each set of positions comprising a cycle the letters occupying these
positions are the same, whence the first formula. The second formula follows from
the multiplication rule for traces of tensor products. �

The possible values of the function �n on Sn are integers 1, . . . , n. On the other
hand, the determinant of the matrix (k�)k,�∈{1,...,n} is a nonzero Vandermonde deter-
minant; therefore, the n characters σn

1 , . . . , σ n
n comprise a basis of the linear space of

block functions.
We are mostly interested in the extreme rays of the cone of block characters. Now

we define another family of block characters which (as we will see later) generate
these rays.

Definition 2.2 For k = 1, . . . , n define

τn
k :=

k−1∑

j=0

(−1)j
(

n + 1

j

)
σn

k−j . (2)

Clearly, τn
k is a block function, although it is not obvious whether it is a character.

The formula (2.2) can be inverted as follows:

Proposition 2.3 We have

σn
k =

k−1∑

j=0

(
n + j

j

)
τn
k−j . (3)

Proof The inversion formula is equivalent to the identity (for α > 0)

m∑

j=0

(−1)m−j

(
α + j − 1

j

)(
α

m − j

)
= 1 (m = 0)
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(where and henceforth 1(· · · ) is 1 when · · · is true and 0 otherwise). The identity is
derived by substituting the generating function

(1 + x)−α =
∞∑

j=0

(−1)j
(

α + j − 1

j

)
xj

in (1 − x)−α(1 − x)α − 1 = 0 and equating the coefficients to 0. �

Our next aim is to decompose σn
k and τn

k into linear combinations of irreducible
characters of Sn. Let us introduce some notations first.

A partition of n is a finite nondecreasing sequence λ = (λ1, λ2, . . . , λ�) of positive
integers such that |λ| := ∑

λi = n. We identify partition λ with its Young diagram
defined as the set {(i, j) ∈ Z

2+ : 1 ≤ j ≤ λi}. We call an element x = (i, j) ∈ λ a box,
and draw it as a unit square at location (i, j) (with the English convention that (1,1)

is at the top left and the first coordinate is vertical). Let Yn denote the set of all
partitions of n and let Y

k
n denote the set of all partitions of n with at most k non-zero

parts (i.e., such that � ≤ k).
It is well-known that irreducible representations of Sn are enumerated by the ele-

ments of Yn. For λ ∈ Yn we denote V λ and χλ the irreducible representation corre-
sponding to λ and the character (matrix trace) of this representation, respectively.

A Young tableau T of shape λ is a map assigning to boxes of the Young diagram
λ positive integer entries which are non-decreasing along rows and columns. We
denote T (x) the entry assigned to box x. A Young tableau is semistandard if the
entries strictly increase along the columns. A Young tableau T of shape λ is standard
if the set of entries of T is {1,2, . . . , |λ|}. For a standard Young tableau T of shape λ,
a descent is an integer 0 < i < |λ| such that the entry i +1 appears in T below entry i,
that is to say, the vertical coordinate of T −1(i + 1) is greater than that of T −1(i). The
number of descents is denoted d(T ). Figure 1 gives an example.

1 2 3 5

4 6 8

7

Fig. 1 Standard Young tableau of shape (4,3,1) with the set of descents {3,5,6}

Now we proceed to the decomposition of the characters σn
k and τn

k .

Proposition 2.4 We have

σn
k =

∑

λ∈Yn

sk(λ)χλ,

where sk(λ) is the number of semistandard Young tableaux of shape λ with entries
belonging to the set {1, . . . , k}.
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Proof Let Wk be a k-dimensional vector space with basis w1, . . . ,wk . The symmetric
group Sn acts on the tensor power W⊗n

k by permuting the factors. Note that the basis
of W⊗n

k is enumerated by the elements of An
k , thus the representation in W⊗n

k is
equivalent to Rn

k . The decomposition of the representation in W⊗n
k into irreducibles

is a well-known fact related to the Schur–Weyl duality (see, e.g., [39]):

W⊗n
k =

⊕

λ∈Y
�
�

Dimk(λ) · V λ, (4)

where Dimk(λ) is equal to the number of semistandard Young tableaux with entries
from {1, . . . , k} (which, in turn, equals to the dimension of the irreducible representa-
tion, corresponding to λ, of the group of unitary matrices of size k). The proposition
easily follows. �

Proposition 2.5 We have

τn
k =

∑

λ∈Yn

mk(λ)χλ,

where mk(λ) is the number of standard Young tableaux of shape λ with k−1 descents.

Proof Proposition 2.4 and Definition 2.2 imply that

τn
k =

∑

λ∈Yn

hk(λ)χλ,

where

hk(λ) =
k−1∑

j=0

(−1)j
(

n + 1

j

)
sk−j (λ).

Thus, it remains to prove that hk(λ) = mk(λ), which amounts to showing that for
every λ ∈ Yn and every k = 1,2, . . . , n we have

mk(λ) =
k−1∑

j=0

(−1)j
(

n + 1

j

)
sk−j (λ). (5)

Similarly to the proof of Proposition 2.3, Eq. (5) is equivalent to the inversion formula

sk(λ) =
k−1∑

j=0

(
n + j

j

)
mk−j (λ), (6)

which will be shown combinatorially (see also [31, Eq. (7.96)] for the proof of a more
general fact).

Fix a standard Young tableau T of shape λ. We call a non-decreasing integer
sequence X = (X1, . . . ,Xn) T -admissible if 1 ≤ X1, Xn ≤ k, and Xi < Xi+1 for



86 J Algebr Comb (2013) 38:79–101

every descent i of T . Given a pair (T ,X), where X is T -admissible, we define a
semistandard tableau YT,X of the same shape λ by setting YT,X(T −1(j)) = Xj for
j = 1, . . . , n. An example of such procedure is shown in Fig. 2.

1 2 3 5

4 6 8

7

1 2 3̂ 4 5̂ 6̂ 7 8

1 1 1 2

2 3 4

4

1 1 1 2 2 3 4 4

Fig. 2 Standard Young tableau T of shape λ = (4,3,1) with 3 descents (top-left), numbers {1, . . . ,8}
with descents of T marked by hats (top-right), lexicographically minimal T -admissible sequence X (bot-
tom-right) and corresponding semistandard Young tableau YT,X (bottom-left)

Observe that for a given standard Young tableau T with k − j − 1 descents there
are

(
n+j
j

)
ways to choose a T -admissible sequence X. One easily proves that the

map (T ,X) → YT,X is a bijection between the set of pairs (T ,X) and the set of
semistandard Young tableaux of shape λ with entries in {1, . . . , k}. The number of
pairs (T ,X), where T is a standard Young tableau of shape λ and X is a T -admissible
sequence, is equal to the right-hand side of (6), while the number of semistandard
Young tableaux of shape λ with entries in {1, . . . , k} is sk(λ), so we are done. �

Corollary 2.6 Block functions τn
k are traces of some representations of Sn, in par-

ticular, they are characters.

Proof By Proposition 2.5, τn
k is the matrix trace of the representation

πn
k

∼=
⊕

λ∈Yn

mk(λ)V λ. (7)
�

There is a certain duality among the characters τn
k , as described in the following

proposition.

Proposition 2.7 Let πn
k be the representation with character τn

k . As above, let Ŝn be
the one-dimensional sign representation of Sn. Then the representation πn

k ⊗ Ŝn is
equivalent to πn

n+1−k , in particular, its character coincides with τn
n+1−k .

Proof We multiply (7) by Ŝn and use the fact that V λ ⊗ Ŝn is equivalent to V λ′
, where

λ′ is the transposed diagram obtained by reflecting λ about the main diagonal, so that
the row lengths of λ′ become the column lengths of λ. We obtain:

πn
k ⊗ Ŝn ∼=

⊕

λ∈Yn

mk

(
λ′)V λ.
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We claim that mk(λ
′) = mn+1−k(λ). Indeed, if T is a standard Young tableau of

shape λ, then every i = 1, . . . , n− 1 is either a descent in T or a descent in T ′, where
T ′ is the tableau of shape λ′ defined by T ′(i, j) = T (j, i). In particular, d(T ) +
d(T ′) = n − 1. �

Corollary 2.8 We have

σ̂ n
k =

k−1∑

j=0

(
n + j

j

)
τn
n+1−k+j . (8)

We shall give now two further examples of block characters. Formula (3) general-
izes as

θ�n(g) =
n∑

j=1

(
θ + n − j

n

)
τn
j (g), (9)

where the generalized binomial coefficient involves parameter θ > 0. This is a poly-
nomial identity which may be shown by extrapolating from the integer values θ ∈
{1, . . . , n}. For θ ≥ 0 the function g �→ pθ�n(g), where p−1 = θ(θ +1) · · · (θ +n−1),
is a probability on Sn, known as Ewens’ distribution; see, e.g., [3, 33]. Ewens’ dis-
tribution was first discovered in the context of population genetics and has become
central in many contexts of pure and applied probability. It is also intensively used in
the harmonic analysis on S∞, see [22].

As a simple corollary of the results in the next section, the function θ�n(g) is a
character for θ ≥ n − 1, but it is not positive definite for non-integer 0 < θ < n − 1.

Another natural series of characters is obtained by splitting the set An
k of words

on k letters in subsets invariant under Sn. Taking the set of words with exactly k

letters, the character of the corresponding representation is equal to the number of
such words fixed by g, which by the inclusion–exclusion principle is equal to

ψn
k :=

k−1∑

j=0

(−1)j
(

k

j

)
σn

k−j =
k∑

j=1

(−1)k−j

(
k

j

)
σn

j . (10)

From Proposition 2.4 and an inversion formula, one finds

ψn
k =

k∑

j=1

(
n − j

k − j

)
τn
j .

Both ψ - and τ -characters can be obtained by the iterated differencing of the se-
quence σn· (with σn

k = 0 for k ≤ 0). Specifically, introducing the forward and back-
ward difference operators acting as ∇(x·)k = xk − xk−1 and �(x·)k = xk+1 − xk ,
respectively, we have τn

k = ∇n(σn· )k and ψn
k = �k(σn· )0.
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3 The simplex of normalized block characters of Sn

The set of all block characters is a convex cone of non-negative linear combinations of
the extreme normalized block characters. In this section, we prove that the normalized
block characters form a simplex whose extreme points are the normalized versions of
characters τn

k . A closely related result can be found in Sect. 2 of [19].
Because the functions {σn

k }k=1,...,n form a basis of the linear space of block func-
tions, and because the systems of functions {τn

k } and {σn
k } are related by a triangular

linear transform, it follows that every block function ϕ on Sn can be uniquely written
in the basis of characters τn

1 , . . . , τ n
n as a linear combination

ϕ =
n∑

k=1

akτ
n
k .

On the other hand, the traces of irreducible representations χλ, λ ∈ Yn, comprise an
orthonormal basis in the space of central functions on Sn endowed with the scalar
product

〈ϕ,ψ〉 = 1

n!
∑

g∈Sn

ϕ(g)ψ(g).

Now, immediately from Proposition 2.5, we have

ak = 〈ϕ,χρn
k 〉

(
n−1
k−1

) ,

for ρn
k the hook diagram with k rows: ρn

k = (n − k + 1,1k−1). Indeed, there are(
n−1
k−1

)
standard Young tableaux of shape ρn

k , and every such tableau has exactly k − 1
descents.

Corollary 3.1 A block function ϕ is a character if and only if ak ≥ 0 for k = 1, . . . , n.

Proof If ak ≥ 0 for k = 1, . . . , n, then

ϕ =
∑

λ∈Yn

b(λ)χλ, (11)

with non-negative coefficients b(λ). Since the traces of irreducible representation χλ

are positive-definite, so is ϕ.
If ϕ is positive-definite, then in the decomposition (11) all coefficients b(λ) are

non-negative, in particular, b(ρn
k ) ≥ 0 for k = 1, . . . , n. It follows that ak ≥ 0 for

k = 1, . . . , n. �

Corollary 3.2 The set of normalized block characters is a simplex whose extreme
points are the normalized characters τn

k (·)/τn
k (e), k = 1, . . . , n.
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Corollary 3.3 Suppose θ is not an integer. Then θ�n(g) is a character if and only if
θ > n − 1.

Proof Indeed, all the coefficients in (9) are non-negative if and only if θ > n − 1. �

4 Characters τn
k and the coinvariant algebra

In this section, we construct representations πn
k with traces τn

k . We start with com-
putation of the dimension τn

k (e). We give first a purely combinatorial proof, an alter-
native representation-theoretic proof will be given at the end of this section, and yet
another proof based on the branching rule will be retained for the next section.

Let g = (g(1), . . . , g(n)) ∈ Sn be a permutation written in the one-row notation.
The descent number d(g) counts descents, that is, positions j such that g(j + 1) <

g(j). In particular, the descent number of the identity permutation e = (1,2, . . . , n)

is 0, while the descent number of the reverse permutation (n, . . . ,2,1) is n − 1. The
Eulerian number

〈 n
k

〉
counts permutations from Sn whose descent number is k − 1.

Proposition 4.1 The dimension of the representation of Sn with character τn
k is the

Eulerian number

τn
k (e) =

〈
n

k

〉
.

Proof We refer to [11] for the Robinson–Schensted–Knuth (RSK) correspondence
between permutations and pairs of standard Young tableaux. The RSK has the fol-
lowing property: g(j + 1) < g(j) in permutation g if and only if entry j is a descent
in the recording tableau (see [11]).

It follows that the RSK sends permutations with k descents to pairs of Young
tableaux such that the recording tableau has k descents. Thus

〈
n

k

〉
=

∑

λ∈Yn

mk(λ)dim(λ), (12)

where dim(λ) = χλ(e) is the dimension of the corresponding irreducible represen-
tation, equal to the number of standard Young tableaux of shape λ. From the latter
classical fact and comparing (12) with Proposition 2.5, the proof of the proposition is
concluded. �

Now we proceed to the construction of representations πn
k .

Proposition 4.2 The regular representation Rn
reg of Sn can be decomposed as

Rn
reg = πn

1 ⊕ πn
2 ⊕ · · · ⊕ πn

n , (13)

where representation πn
k has trace τn

k .
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Proof Indeed, we have
n∑

k=1

τn
k =

n∑

k=1

∑

λ∈Yn

mk(λ)χλ =
∑

λ∈Yn

dim(λ)χλ = χ reg,

where dim(λ) = ∑
k mk(λ) is the dimension of πλ, that is, the number of standard

Young tableaux of shape λ. Here χ reg(g) is the character of the regular representation
of Sn. �

In the remaining part of this section, we focus on an explicit construction of the
decomposition (13).

Let us denote Rn the algebra of polynomials in variables x1, . . . , xn. The symmet-
ric group Sn acts naturally on Rn by permuting the variables. Let RSn

n denote the
subalgebra of invariants of this action, which is the algebra of symmetric polynomi-
als. The coinvariant algebra R∗

n is the quotient-algebra

R∗
n = Rn/In,

where In is the ideal in Rn spanned by the symmetric polynomials without constant
term. The elementary symmetric polynomials

ek :=
∑

i1<i2<···<ik

xi1 · · ·xik

is the set of algebraic generators of RSn
n , thus In is an ideal spanned by the polyno-

mials e1, . . . , en. We denote by Pn the canonical projection:

Pn : Rn → R∗
n.

Observe that R∗
n inherits from Rn the structure of a Sn-module, and that the projec-

tion Pn is an intertwining operator. It is known that the representation of Sn in R∗
n is

equivalent to the left regular representation; see, e.g., [5] or [17, Sect. 3.6].
Given a multidegree p = (p1, . . . , pn), let λ(p) be a partition obtained by rear-

ranging the coordinates of p in a non-increasing order. In what follows, we write
λ < μ for two partitions λ and μ if (λ1, λ2, . . . ) precedes (μ1,μ2, . . . ) in the lexico-
graphic order. For a polynomial

f =
∑

bpxp ∈ Rn,

its partition degree pdeg(f ) is a minimal partition μ such that bp = 0 each time
λ(p) > μ.

We need the following filtration Fn(k), k = 0,1, . . . of the algebra Rn:

Fn(k) = {
f ∈ Rn : pdeg(f )1 ≤ k

}
,

where index 1 refers to the largest part of the partition. Note that Fn(k) is a Sn

submodule of Rn. Also, denote

F ∗
n (k) = Pn

(
Fn(k)

)

and observe that F ∗
n (k) is a Sn submodule of R∗

n.
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Next, we want to introduce the so-called Garsia–Stanton descent basis in R∗
n,

which agrees with filtration F ∗
n (k).

For a permutation g ∈ Sn, let D(g) be the set of its descents and let di(g) =
|D(g) ∩ {i, i + 1, . . . , n}|. For a standard Young tableau T of shape λ with |λ| = n,
let D(T ) be the set of its descents and let di(T ) = |D(T ) ∩ {i, i + 1, . . . , n}|.

The descent monomial ug of permutation g is defined as

ug = x
d1(g)

g(1) x
d2(g)

g(2) · · ·xdn(g)

g(n) .

In our notation, pdeg(ug) = (d1(g), . . . , dn(g)).

Theorem 4.3 [1, 2, 12] Classes ug + In, g ∈ Sn, form a linear basis of R∗
n. If a

polynomial f belongs to ug + In, then pdeg(f ) ≥ pdeg(ug).

Theorem 4.3 implies the following description of F ∗
n (k). For a class f ∗ ∈ R∗

n, we
denote by pdeg(f ∗) the minimum value of pdeg on all polynomials of the class f ∗.
Then

F ∗
n (k) = {

f ∗ ∈ R∗
n : pdeg

(
f ∗)

1 ≤ k
}
,

and also

F ∗
n (k) = span

{
ug : d1(g) ≤ k

}
.

The following theorem explains the relevance of the filtration F ∗
n (k) to the study

of block characters.

Theorem 4.4 Let πn
k be the representation of Sn with character τn

k . We have the
following isomorphism of Sn-modules:

F ∗
n (k) ∼=

k⊕

i=1

πn
i

and

πn
k

∼= F ∗
n (k)/F ∗

n (k − 1).

Remark This theorem gives another way to prove that the dimension of πn
k is

〈 n
k

〉
.

Proof of Theorem 4.4 Let q̄ = (q1, q2, q3, . . . ) be a sequence of formal variables. For
a permutation s ∈ Sn, let Trq̄R∗

n
(s) denote its graded trace in the representation in R∗

n:

Trq̄R∗
n
(s) =

∑

g∈Sn

〈
s(ug), ug

〉
q

d1(g)

1 · · ·qdn(g)
n ,

where 〈·, ·〉 is the inner product on R∗
n, such that the elements ug form an or-

thonormal basis. The following formula for the above graded trace was obtained in
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Sect. 4.2 of [1]:

Trq̄R∗
n
(s) =

∑

λ∈Yn

χλ(s)
∑

T ∈SYT(λ)

n∏

i=1

q
di(T )
i ,

where SYT(λ) is the set of all standard Young tableau of shape λ. Now setting q1 = q ,
q2 = · · · = qn = 1, we obtain the identity

∑

g∈Sn

〈
s(ug), ug

〉
qd1(g) =

∑

λ∈Yn

χλ(s)
∑

T ∈SYT(λ)

qd1(T ). (14)

Note that

∑

λ∈Yn

χλ(s)
∑

T ∈SYT(λ)

qd1(T ) =
n∑

k=1

qk−1
∑

λ

χλ(s)mk(λ) (15)

and

∑

g∈Sn

〈
s(ug), ug

〉
qd1(g) =

n∑

k=1

qk−1τ̃ n
k (s), (16)

where τ̃ n
k is the matrix trace of the representation of Sn in F ∗

n (k)/F ∗
n (k − 1). Com-

bining (14), (15), and (16), we get

n∑

k=1

qk−1
∑

λ

χλ(s)mk(λ) =
n∑

k=1

qk−1τ̃ n
k (s).

Therefore,

τ̃ n
k (s) =

∑

λ

χλ(s)mk(λ). (17)

Comparing (17) with Proposition 2.5, we conclude that τn
k = τ̃ n

k . �

5 Limit shapes

In this section, we prove that the decomposition of the characters τ k
n into the linear

combination of the characters of irreducible representations of Sn leads to certain
limit shape theorems.

Following [38] and [4], given a Young diagram λ, we construct a piecewise-linear
function fλ(x), x ∈ R with slopes ±1 as shown in Fig. 3.

Now let χ be a character of Sn. Recall that irreducible representations of Sn are
parameterized by the Young diagrams with n boxes and write

χ(·) =
∑

λ∈Yn

c(λ)χλ(·).
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Fig. 3 Young diagram
λ = (3,3,1) and the graph
y = fλ(x) of the corresponding
piecewise-linear function

Define

P(λ) := c(λ)χλ(e)

χ(e)

and note that P(λ) are non-negative numbers summing up to 1. Therefore, P(λ)

defines a probability distribution on the set Yn or, equivalently, on piecewise-linear
functions. Let us denote by f χ(·) the resulting random piecewise-linear function.

Biane [4] proved the following concentration theorem about the behavior of ran-
dom piecewise-linear functions corresponding to characters σn

k .

Theorem 5.1 Let n, k → ∞ in such a way that k/
√

n → w > 0, then for any ε > 0

Prob
{

sup
x

∣∣f σn
k (x

√
n)/

√
n − gw(x)

∣∣ > ε
}

→ 0.

Here gw(x) is a deterministic function (depending on w).

The explicit formulas for the functions gw(x) are quite involved, they can be found
in [4, Sect. 3]. As w → ∞, the curves gw(x) approach the celebrated Vershik–Kerov–
Logan–Shepp curve, which is a limit shape for the Plancherel random Young dia-
grams, see [24, 38].

It turns out that the limit behavior of the random functions corresponding to the
extreme block characters τn

k is described by the very same curves gw(x).

Theorem 5.2 If n, k → ∞ in such a way that k/
√

n → w > 0, then for any ε > 0

Prob
{

sup
x

∣∣f τn
k (x

√
n)/

√
n − gw(x)

∣∣ > ε
}

→ 0.

If n, k → ∞ in such a way that (n − k)/
√

n → w > 0, then for any ε > 0

Prob
{

sup
x

∣∣f τn
k (x

√
n)/

√
n − gw(−x)

∣∣ > ε
}

→ 0.

The proof of Theorem 5.2 is based on the following observation.
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Proposition 5.3 The following estimate holds:
∑

λ∈Yn

∣∣Prob
{
f τn

k = fλ

} − Prob
{
f σn

k = fλ

}∣∣ < c(k,n),

where c(k,n) → 0 as n, k → ∞ in such a way that k/
√

n → w > 0.

Proof Propositions 2.5 and 4.1 imply that

Prob
{
f τn

k = fλ

} = mk(λ)dim(λ)〈 n
k

〉 ,

while Proposition 2.4 yields

Prob
{
f σn

k = fλ

} = sk(λ)dim(λ)

kn
.

Then Eq. (5) implies that

Prob
{
f τn

k = fλ

} =
k−1∑

j=0

cj,k,n Prob
{
f

σn
k−j = fλ

}
,

cj,k,n = (−1)j
(
n+1
j

)
(k − j)n

〈 n
k

〉 . (18)

Let us analyze the coefficients cj,k,n. We have

|cj,k,n| = c0,k,n

(
n + 1

j

)
(1 − j/k)n < c0,k,n(n + 1)j (1 − 1/k)jn.

Now if n, k → ∞ in such a way that k/
√

n → w > 0 and j < k, then for large
enough n,

(n + 1)j (1 − 1/k)jn = (
(n + 1)(1 − 1/k)n

)j
< exp

(
− 1

2w

√
nj

)
.

On the other hand, summing (18) over all λ ∈ Yn, we conclude that

k−1∑

j=0

cj,k,n = 1.

Therefore, for large enough n, we have

|c0,k,n − 1| < exp

(
− 1

3w

√
n

)
,

and for 0 < j < k we have

|cj,k,n| < exp

(
− 1

3w

√
n

)
.
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Hence,
∑

λ∈Yn

∣∣Prob
{
f τn

k = fλ

} − Prob
{
f σn

k = fλ

}∣∣

< exp

(
− 1

3w

√
n

) k−1∑

j=0

∑

λ∈Yn

Prob
{
f

σn
j = fλ

} = k exp

(
− 1

3w

√
n

)
,

which vanishes as n → ∞. �

Now Theorem 5.2 becomes a simple corollary of Theorem 5.1.

Proof of Theorem 5.2 First, suppose that n, k → ∞ in such a way that k/
√

n →
w > 0, then for any ε > 0

Prob
{

sup
x

∣∣f τn
k (x

√
n)/

√
n − gw(x)

∣∣ > ε
}

≤ Prob
{

sup
x

∣∣f σn
k (x

√
n)/

√
n − gw(x)

∣∣ > ε
}

+
∑

λ∈Yn

∣∣Prob
{
f τn

k = fλ

} − Prob
{
f σn

k = fλ

}∣∣ → 0.

Next, suppose that n, k → ∞ in such a way that (n − k)/
√

n → w > 0. Proposi-
tion 2.7 yields that the distributions of f τn

k (x) and f τn
n−k (−x) coincide. Hence we

get the second claim of Theorem 5.2. �

6 Branching rules

Let us embed Sn−1 into Sn as the subgroup of permutations fixing n. For a central
function χ on Sn the restriction Resn−1(χ) on Sn−1 is a central function on Sn−1.
If χ is a block function, then so is the restriction Resn−1 χ . The following two propo-
sitions describe what happens with the characters σn

k , τn
k by restricting them to the

subgroup; we call these formulas the branching rules.

Proposition 6.1 For 1 ≤ k ≤ n we have

Resn−1 σn
k = kσn−1

k ,

Resn−1 σ̂ n
k = kσ̂ n−1

k .

In terms of the normalized characters, the relations can be rewritten as:

Resn−1

(
σn

k

σn
k (e)

)
= σn−1

k

σ n−1
k (e)

,

Resn−1

(
σ̂ n

k

σ̂ n
k (e)

)
= σ̂ n−1

k

σ̂ n−1
k (e)

.
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Proof This immediately follows from �n+1(g) = �n(g) + 1. �

Proposition 6.2 For 1 < k < n we have

Resn−1 τn
k = kτn−1

k + (n − k + 1)τn−1
k−1 ;

Resn−1 τn
1 = τn−1

1 , Resn−1 τn
n = τn−1

n−1 .

Proof Observe the binomial coefficients identity
(

n + 1

k − j

)
j = k

(
n

k − j

)
− (n − k + 1)

(
n

k − j − 1

)
.

Indeed, this is equivalent to

n!
(k − j)!(n + 1 − k + j)! (n + 1)j

= n!
(k − j)!(n + 1 − k + j)!

(
k(n + 1 − k + j) − (n − k + 1)(k − j)

)
,

which is easy to check.
Then using the definition of τn

k and the branching rule for σn
k , we obtain

Resn−1 τn
k =

k∑

j=1

(−1)k−j

(
n + 1

k − j

)
Resn−1

(
σn

j

) =
k∑

j=1

(−1)k−j

(
n + 1

k − j

)
jσn−1

j

=
k∑

j=1

(−1)k−j

(
k

(
n

k − j

)
− (n − k + 1)

(
n

k − j − 1

))
σn−1

j

= kτn−1
k + (n − k + 1)τn−1

k−1 ,

as wanted. �

Remark Proposition 6.2 suggests another way to prove Proposition 4.1. Indeed, eval-
uating at e, we obtain the relation

τn
k (e) = kτn−1

k (e) + (n − k + 1)τn−1
k−1 (e),

which coincides with the well-known recursion for Eulerian numbers.

7 The Choquet simplex of block characters of S∞

We proceed with a classification of block characters of the infinite symmetric
group S∞. Let us recall the definition of the group. Let Z+ denote the set of positive
integers. Realize the group Sn as the group of bijections g : Z+ → Z+ which may
only move the first n integers, that is, satisfy g(j) = j for j > n. This yields a natural
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embedding Sn ⊂ Sn+1 and allows one to introduce the infinite symmetric group as
an inductive limit

S∞ :=
⋃

n≥1

Sn,

whose elements are the bijections g : Z+ → Z+ satisfying g(j) = j for all suffi-
ciently large j .

The notion of a block character for the group S∞ needs to be adapted. We call
the statistic c(g) := n − �n(g) the decrement of permutation g ∈ Sn. Note that the
concept is consistent with embeddings, that is, considering g as an element of Sn+1,
the decrement remains the same: n − �n(g) = n + 1 − �n+1(g). Thus, c(g) is a well
defined function on S∞.

A block function on S∞ is defined as a function which depends on a permutation
through its decrement. A positive definite normalized block function will be called
normalized block character of S∞. Two trivial examples are the unit character and
the delta function at e.

We introduce next the analogues of characters σn
k and σ̂ n

k . Denote

V = {0,±1,±1/2,±1/3,±1/4, . . . }
and set

σ∞
z (g) := zc(g), for z ∈ V, (19)

where σ∞
0 is understood as the delta-function at e

σ∞
0 (g) =

{
1 g = e,

0 otherwise.

Keep in mind that in our parametrization σ∞
1/k is a counterpart of σn

k and σ∞−1/k is
an analogue of σ̂ n

k , for k = 1,2, . . . .

Proposition 7.1 The functions σ∞
z , z ∈ V, are normalized block characters of S∞.

Proof For σ∞
0 the statement is trivial. As for σ∞±1/k they are, clearly, central normal-

ized functions on S∞. Note that

σ∞
1/k(g) = σn

k (g)

σn
k (e)

(20)

for g ∈ Sn, and similarly for σ∞−1/k . Therefore, the positive-definiteness of σn
k and

σ̂ n
k implies the positive-definiteness of σ∞±1/k . �

The characters σ∞
z can be associated with certain infinite-dimensional represen-

tations of S∞. One way to establish the connection is to realize σ∞
z as the trace

of a finite von Neumann factor representation, which may be seen as a substitute of
irreducible representation, see [34, 36]. Another approach is to consider spherical
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representations of the Gelfand pair (Ḡ, K̄), where Ḡ and K̄ are certain extensions of
the groups S∞ × S∞ and S∞, respectively, see [26, 27] and also [22] for details
and references. By both approaches, the character σ∞

0 corresponds to the regular
representation of S∞.

It follows readily from a multiplicative property of the extremes [36] that the char-
acters σ∞

z , z ∈ V, are in fact extreme points in the set of all normalized characters of
S∞. In Thoma’s parametrization (see [36] and [21, 25, 37]) of the extremes by two
nonincreasing sequences (α,β), σ∞

1/k corresponds to α1 = · · · = αk = 1/k,β = 0,
while σ̂∞

1/k corresponds to the pair α = 0, β1 = · · · = βk = 1/k.
Note that for a finite n the situation is different: as we saw, the representations with

traces σn
k and σ̂ n

k are reducible, so their normalized traces are not extreme characters.
A priori, there is no reason for the list {σ∞

z , z ∈ V} to exhaust all extreme normalized
block characters of S∞. The following theorem asserts that this is indeed the case.

Theorem 7.2 Let Ω be the infinite-dimensional simplex of non-negative sequences
(γz, z ∈ V) with

∑
1/z∈Z∪{∞} γz = 1. Endowed with the topology of point-wise con-

vergence, the set of normalized block characters of S∞ is a Choquet simplex. The
correspondence

(γz) →
∑

z∈V

γzσ
∞
z

is an affine homeomorphism between Ω and the Choquet simplex of normalized block
characters of S∞. In particular, the set of extreme normalized block characters of
S∞ is {σ∞

z , z ∈ V}.

Proof Let χ be a block character of S∞ and let χn denote the restriction of χ on
the subgroup Sn. Then χn is a normalized block character of Sn, hence, by Propo-
sition 3.2, it can be uniquely decomposed as a convex combination as follows:

χn(·) =
n∑

k=1

an
k

τn
k (·)

τn
k (e)

,

where the array of coefficients satisfies

an
k ≥ 0,

n∑

k=1

an
k = 1. (21)

By Proposition 6.2, the coefficients an
k satisfy the following backward recursion: for

1 ≤ k ≤ n, n = 1,2, . . . :

an
k = k

〈 n
k

〉
〈
n+1
k

〉an+1
k + (n − k + 1)

〈 n
k

〉
〈
n+1
k+1

〉an+1
k+1 . (22)

Moreover, the correspondence χ ↔ (an
k ) is an affine homeomorphism between nor-

malized block characters and arrays (an
k ) satisfying (21) and (22) (Condition (22)

implies that in (21) it is enough to require a1
1 = 1).
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The fact that the set of arrays (an
k ) satisfying (21) and (22) is a Choquet simplex is

just a particular case of a very general result; see, e.g., [15, Proposition 11.6]. As for
the extreme points of this simplex, it was shown in [14] that all extreme solutions to
the recursion(22) subject to the constraints (21) are of one of the types

an
k =

(
n+K−k

n

)

Kn

〈
n

k

〉
, K = 1,2, . . . , (23)

an
k =

(
K+k−1

n

)

Kn

〈
n

k

〉
, K = 1,2, . . . , (24)

an
k = 1

n!
〈
n

k

〉
. (25)

It is possible to write all three types as a single factorial formula (see [14], Eq. (2)).
Calculating with (23), we arrive, in view of Proposition 2.3, at

n∑

k=1

an
k

τn
k (·)

τn
k (e)

= K−n

n∑

k=1

(
n + K − k

K − k

)
τn
k (·) =

K−1∑

j=0

(
n + j

j

)
τn
K−j (·) = σn

K(·)
σ n

K(e)
,

which means that the array (23) corresponds to σ∞
z with 1/z = K ∈ {1,2, . . . }. Sim-

ilarly, with (24) and (8) the convex combination is σ̂ n
K , so we arrive at σ∞

z with
1/z = −K ∈ {−1,−2, . . . }. Finally, with the array (25) the convex combination ob-
tained is the normalized character of the regular representation of Sn, as it follows
from (13), and this corresponds to σ∞

0 . Thus all extreme block characters of S∞
have been identified with (19). �

8 Connection to the characters of the linear groups over the Galois fields

The group GL∞(q) is the group of infinite matrices of the kind

g =
(

h 0
0 1∞

)

where h is a finite square matrix with coefficients from the Galois field Fq with q

elements, 1∞ denotes the infinite unit matrix, and 0’s are zero matrices of suitable
dimensions. From this definition it is clear that the group has the structure of inductive
limit GL∞(q) = ⋃

n≥1 GLn(q). Thoma [35] conjectured that all extreme normalized
characters of GL∞(q) are of the form

χ(g) = ε(detg)q−mc(g), m ∈ Z≥0 ∪ {∞}, (26)

where ε is a one-dimensional character of the cyclic group F
∗
q , and c(g) is the rank of

the matrix g − Id. The conjecture was proved by Skudlarek [29]. Thoma’s characters
g �→ q−mc(g) belong to the class of derangement characters introduced in [13] as the
characters of GLn(q) (respectively, GL∞(q)) which only depend on c(g).
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As mentioned in the Introduction, a connection between block characters and de-
rangement characters is established via the natural embedding S∞ ↪→ GL∞(q) ob-
tained by writing a permutation as a permutation matrix. The decrement of permu-
tation is equal to the rank of the matrix g − Id. Furthermore, the determinant of the
permutation matrix is ±1 depending on the parity of the permutation.

Each extreme character (26) restricts from GL∞(q) to S∞ as one of the characters
σ∞

z with z = ±q−m,m ∈ Z≥� ∪ {+∞}, unless q is a power of 2. It q is a power of 2,
then −1 = 1 in Fq , hence the negative values are excluded. For other values of z, the
function g �→ zc(g) is not positive definite on GL∞(q).

For Sn we constructed n extreme characters τn
k from the basic characters in

just one step, by differencing the series σn
1 , . . . , σ n

n . For GLn(q) the situation is
more involved: one first needs to construct q-analogues of characters (10), then
proceed with further differencing and search for the extremes. Moreover, the set
of normalized derangement characters of GLn(q) is known to be a simplex for
n ∈ {1,2,3,4,5,6,8,9,11,12} and it is not a simplex (has more than n extremes)
for n ∈ {7,10,13,14,15,16,17,18,19,20,21,22} (see [13]). Another, more sub-
stantial, distinction occurs on the level of infinite groups. For GL∞(q) the extreme
normalized derangement characters exhaust all extreme normalized characters of the
group (up to tensoring with a linear character, and literally all for the special linear
group SL∞(q)). For S∞ the extreme normalized block characters comprise only a
countable subset of the infinite-dimensional Thoma simplex of all extreme normal-
ized characters.
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