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Abstract We discuss the linearity of the minimal free resolution of a power of a
monomial edge ideal.
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Throughout this note, S = k[x1, . . . , xn] is a polynomial ring over a field k, and G

is a finite simple graph (that is, without loops and multiple edges) on vertex set
{x1, . . . , xn}. The monomial edge ideal associated to G is

IG = ( xixj |xixj ∈ G) ,

where the edge {xi, xj } is denoted xixj for short. The homological properties of IG

depend on the combinatorial properties of G and on the complement graph Gc with
edges {xixj |xixj /∈ G}. By polarization, studying the minimal free resolutions of
quadratic monomial ideals is equivalent to studying the minimal free resolutions of
edge ideals. Describing all such resolutions is beyond reach since they can have very
complicated structures. In fact, very little is known about the graded Betti numbers
βi,j (IG) and regularity reg(IG) = max{j − i |βi,j (IG) �= 0}. The following problem
is wide open: find upper and lower bounds on reg(IG) in terms of the combinatorial
properties of the graphs G and Gc.

The simplest case is when the regularity is as minimal as possible, that is, when
reg(I ) = p for a graded ideal I generated in degree p; in this case, we say that the
minimal free resolution is linear. Such edge ideals are characterized combinatorially
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by Fröberg’s Theorem 1.1. The following definitions are helpful: we say that a sim-
ple graph T contains a q-cycle if there exist distinct vertices xi1, . . . , xiq such that
xiq xi1 ∈ T and xij xij+1 ∈ T for all 1 ≤ j ≤ q − 1; a chord in the cycle is an edge in T

between two non-consecutive vertices; a cycle is called induced if it has no chords.
The following is known:

Theorem 1.1 [7] The minimal free resolution of IG is linear if and only if the com-
plement graph Gc is chordal (that is, every induced cycle in Gc is a triangle).

Suppose that the complement graph Gc is chordal. The minimal free resolution of
IG is constructed in [5] and [12] in special cases, and is constructed by Chen in [2]
in the general case.

We are interested in when the higher powers of the ideal have linear minimal free
resolutions; see [4]. Conca [3, Example 3.4] constructed an example of an ideal J

generated by six quadratic monomials and one quadratic binomial such that J has a
linear minimal free resolution and its second power J 2 has a non-linear minimal free
resolution. Such flops do not happen in the monomial world by the following result
of Herzog, Hibi, and Zheng.

Theorem 1.2 [10] If Gc is chordal, then for every s ≥ 2 the minimal free resolution
of I s

G is linear.

This note focuses on a wider class of edge ideals: the C4-free edge ideals. As we
will see, such ideals arise naturally when we study edge ideals whose powers have
linear minimal free resolutions. We say that IG is C4-free if the complement graph
Gc has no induced 4-cycles. The algebraic meaning of this condition is the following.

Proposition 1.3 (Francisco-Hà-Van Tuyl; personal communication) Gc has no in-
duced 4-cycles if and only if the Betti numbers β1,j (IG) vanish for j > 3 (that is, IG

has only linear minimal first syzygies).

Proof By Taylor’s resolution, it follows that for any graph G we have β1,j (IG) = 0
for j �= 3,4. By [9, Theorem 3.2.4], β1,4(IG) = 0 if and only if Gc has no induced
4-cycles. �

We will show that the condition that Gc has no induced 4-cycles has strong im-
plications for the lcm-lattice. Let M be a monomial ideal in the polynomial ring S.
Let L(M) be the lcm-lattice of M introduced in [8]. The atoms of the lattice are
the minimal monomial generators of M . The elements in L(M) are the least com-
mon multiples of the atoms ordered by divisibility; in particular the bottom ele-
ment is 1, considered as the lcm of the empty set. For an open interval (1,m)L(M)

in L(M), we denote by Δ(1,m)L(M) the order complex of the interval, and we set
H̃i−1((1,m)L(M); k) = H̃i−1(Δ(1,m)L(M); k) denoting reduced homology with co-
efficients in k. By [8, 14], the multigraded Betti numbers of M can be computed
by the homology of the open intervals in L(M) as follows: if m /∈ L(M) then
βi,m(M) = 0 for every i, and if m ∈ L(M) and i ≥ 1 we have

βi,m(M) = dimk H̃i−1
(
(1,m)L(M); k

)
. (1.4)
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Phan proved in [15] that if a monomial ideal has a linear minimal free resolution, then
its lcm-lattice is graded. Our first main result is the next theorem, which shows that
the tools for studying a graded poset topology are applicable if Gc has no induced
4-cycle.

Theorem 1.5 If Gc has no induced 4-cycle, then for any s ≥ 1 the lcm-lattice L(I s
G)

is graded, and except for the minimum, the rank function is given by rank(m) =
deg(m) − 2s + 1 (here, m is a monomial in L(I s

G)).

Proof Let 1 �= m,m′ ∈ L(I s
G) be monomials such that m divides m′ and deg(m′) −

deg(m) > 1. We need to show the existence of a monomial h ∈ L(I s
G) \ {m,m′} such

that the divisibility conditions m |h |m′ hold.
There exist a variable x and a non-negative integer r such that xr divides m, xr+1

does not divide m, and xr+1 divides m′ (take r = 0 in case s = 1). Let N be the set of
neighbors of x in the subgraph induced by G on the set supp(m′). Let a ∈ (1,m] be
an atom, such that xr divides a. Let a = �1≤i≤sviui , where viui ∈ G. We consider
the following two cases.

Case 1: Suppose that there exists an i such that vi ∈ N and ui �= x. In this case,

b = a

viui

· (vix) is an atom in (1,m′], and h = b ∨ m = mx is a monomial of the

desired type.
Case 2: Suppose that there exists no i such that vi ∈ N and ui �= x. Since xr+1

divides m′, it follows that xr+1 divides some atom, hence s ≥ r + 1. Therefore, there
exists a j such that x does not divide vjuj . By the assumption in Case 2, it follows
that vjuj is disjoint from the set N ∪ {x}.

We have
∑

w∈N

degm′(w) ≥ degm′(x) ≥ r + 1 > r =
∑

w∈N

dega(w),

where degg(z) denotes the exponent of a variable z in a monomial g. Therefore, there
exists a q such that vq ∈ N and dega(vq) < degm′(vq).

Since Gc has no induced 4-cycle, there exists an edge e connecting the edges vjuj

and vqx. This edge must be either e = yx or e = yvq , with y ∈ vjuj . If e = yx, then
c = a

vj uj
yx is an atom in (1,m′] and h = c ∨ m = mx is a monomial of the desired

type. Now, suppose that e = yvq . Consider b = a
vj uj

· (yvq), which is an atom in

(1,m′]. If b is also an atom in (1,m], then apply Case 1 to the atom b. Otherwise,
h = b ∨ m = mvq is a monomial of the desired type. �

For a simplicial complex Γ , let α(Γ ) denote the largest codimension of a non-
vanishing reduced homology, and set α(Γ ) = 0 if Γ is acyclic. For an open interval
(1,m)L(M), we set α(1,m)L(M) = α(Δ(1,m)L(M) ).

Proposition 1.6 If Gc has no induced 4-cycle, then for any s ≥ 1 we have

reg
(
I s
G

) = 2s + max
m∈L(I s

G),m �=1

{
α(1,m)L(I s

G)

}
.
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Proof Denote M = I s
G. Applying (1.4) and Theorem 1.5, we get

reg(M) = max
{
j − i |βi,j (M) �= 0

}

= max
{
deg(m) − i

∣∣ H̃i−1
(
(1,m)L(M); k

) �= 0
}

= 2s − 1 + max
{
deg(m) − 2s + 1 − i

∣∣ H̃i−1
(
(1,m)L(M); k

) �= 0
}

= 2s − 1 + max
{
rank(m) − i

∣∣ H̃i−1
(
(1,m)L(M); k

) �= 0
}

= 2s + max
{
rank(m) − 2 − p

∣∣ H̃p

(
(1,m)L(M); k

) �= 0
}

= 2s + max
{
dimΔ(1,m)L(M) − p

∣∣ H̃p

(
(1,m)L(M); k

) �= 0
}

= 2s + max
{
q

∣∣ H̃dimΔ(1,m)L(M)−q

(
(1,m)L(M); k

) �= 0
}

= 2s + max
m∈L(M),m �=1

{
α(1,m)L(M)

}
.

�

Based on many Macaulay2 examples, computed by Francisco, the following pos-
sibility seemed reasonable:

Question 1.7 (Francisco-Hà-Van Tuyl; personal communication) Is it true that I s
G

has a linear resolution for all s ≥ 2 if and only if Gc has no induced 4-cycles?

Francisco, Hà, and Van Tuyl proved the following result, which provides one di-
rection of Question 1.7. We present our own short proof.

Proposition 1.8 (Francisco-Hà-Van Tuyl; non-published) If I s
G has a linear resolu-

tion for some s ≥ 1, then Gc has no induced 4-cycles.

Proof Suppose that there exist two strongly disjoint edges xixj and xpxq in G, that
is, xixpxjxq is a 4-cycle in Gc . By [8], the Betti numbers of I s

G can be computed
using the lcm-lattice L(I s

G) of I s
G. The monomials (xixj )

s and (xpxq)s are atoms in
the lattice. The monomial (xixj )

s(xpxq)s covers these two atoms since the edges are
strongly disjoint. Therefore, the open interval (1, (xixj )

s(xpxq)s) consists of the two
atoms. Hence,

β1,(xixj )s (xpxq)s = H̃0
((

1, (xixj )
s(xpxq)s

); k) = 1.

Since deg((xixj )
s(xpxq)s) = 4s, we find that the graded Betti number β1,4s �= 0, so

the minimal free resolution of I s
G is not linear. �

Thus, Question 1.7 is reduced to the following:

Question 1.9 Is it true that if Gc has no induced 4-cycles then I s
G has a linear reso-

lution for all s ≥ 2?

Nevo [13] proves that if G is claw-free (in particular, in the case when Gc is
a q-cycle and q ≥ 5), then I 2

G has a linear resolution. Our second main result is a
counterexample to Question 1.9 (and thus, to Question 1.7).
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Counterexample 1.10 We felt that candidates for counterexamples are the graphs
such that Gc has no induced 4-cycles and the clique complex of Gc is a triangulation
of a sphere. If the sphere has a high dimension, then the known graphs of this type
have many edges and vertices, so the examples cannot be checked with Macaulay2.
However, we can construct small such graphs if the sphere is 2-dimensional.

We will define a graph Q. Let Q have vertices a1, a2, a3, a4, a5, a6, and b1, b2, b3,
b4, b5, b6. Let the edges of Qc be the edges of an icosahedron on these vertices. For
those who would like to verify our computer computations, we list the edges of Qc:

a1a2, a2a3, a3a4, a4a5, a5a1 (from the bottom pentagon)

b1b2, b2b3, b3b4, b4b5, b5b1 (from the top pentagon)

a1b1, a2b2, a3b3, a4b4, a5b5, a1b2, a2b3, a3b4, a4b5, a5b1 (from the walls)

a6a1, a6a2, a6a3, a6a4, a6a5 (from the bottom cone)

b6b1, b6b2, b6b3, b6b4, b6b5 (from the top cone).

In particular, Qc has 12 vertices and 30 edges. The graph Qc contains no induced
4-cycles and its clique complex is a triangulation of a 2-sphere. Thus, the graph Q is
of the desired type. We consider the edge ideal

IQ = (a6b6, a6b1, a6b2, a6b3, a6b4, a6b5, b6a1, b6a2, b6a3, b6a4, b6a5, b1b4,

b4b2, b2b5, b5b3, b3b1, a1a4, a4a2, a2a5, a5a3, a3a1, a1b3, a1b4, a1b5,

a2b4, a2b5, a2b1, a3b5, a3b1, a3b2, a4b1, a4b2, a4b3, a5b2, a5b3, a5b4 ).

Computation with Macaulay2 shows that

reg(IQ) = 4 and reg
(
I 2
Q

) = 5.

Thus, I 2
Q does not have a linear minimal free resolution.

M. Stillman computed with Macaulay2 that reg(I 3
Q) = 6 and reg(I 4

Q) = 8, so I 3
Q

and I 4
Q have linear minimal free resolutions.

Open Problems 1.11 Based on the examples computed by Francisco using
Macaulay2 and also on our own experience, we raise the following questions:

(1) The main question is if it is true that IG is C4-free if and only if I s
G has a linear

minimal free resolution for every s 	 0?
(2) Our second question is meant to be a tool for the study of the first question.

Suppose that Gc has no induced 4-cycles. Is it true that for s ≥ 1, we have

reg
(
I s+1
G

) ≤ max
{
2s + 2, reg

(
I s
G

) + 1
}
?

Note that the inequality 2s + 2 ≤ reg(I s+1
G ) holds since I s+1

G is generated in degree
2s + 2.

A positive answer to Question 1.11(2) will imply that the following conditions are
equivalent:

(a) I s
G has a linear resolution for some s ≥ 2.

(b) I s
G has a linear resolution for every s ≥ reg(IG) − 1.
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(c) IG has only linear minimal first syzygies, that is, β1,j (IG) = 0 for j > 3.
(d) Gc has no induced 4-cycles.

Indeed: (c) and (d) are equivalent by Proposition 1.3; (a) implies (d) by Proposi-
tion 1.8. Obviously, (b) implies (a). Finally, (d) implies (b) if we have a positive
answer to question (2).

Question 1.11(2) is open even in the case reg(IG) = 3: is it true that I s
G has a linear

resolution for all s ≥ 2 if Gc has no induced 4-cycles and reg(IG) = 3?

Remarks 1.12 The related question about the existence of linear quotients was stud-
ied in [11]. The structure of the minimal free resolution of a C4-free graph is only
known in the special case when the complement graph Gc is a cycle of length ≥5.
In that case, the Betti numbers are computed in [6, Proposition 3.1], and the minimal
free resolution is constructed in [1].

Acknowledgements We are very grateful for helpful conversations to A. Van Tuyl and C. Francisco.
Both authors are partially supported by NSF. E. Nevo is also partially supported by an IRG grant of the
European Union.

References

1. Biermann, J.: Cellular structure on the minimal resolution of the complement of the n-cycle. Submit-
ted

2. Chen, R.-X.: Minimal free resolutions of linear edge ideals. J. Algebra 324, 3591–3613 (2010)
3. Conca, A.: Regularity jumps for powers of ideals. In: Commutative Algebra. Lect. Notes Pure Appl.

Math., vol. 244, pp. 21–32. Chapman & Hall/CRC Press, London/Boca Raton (2006)
4. Conca, A., Herzog, J.: Castelnuovo–Mumford regularity of products of ideals. Collect. Math. 54,

137–152 (2003)
5. Corso, A., Nagel, U.: Monomial and toric ideals associated to Ferrers graphs. Trans. Am. Math. Soc.

361, 1371–1395 (2009)
6. Fernandez-Ramos, O., Gimenez, P.: First nonlinear syzygies of ideals associated to graphs. Commun.

Algebra 37, 2009 (1921–1933)
7. Fröberg, R.: On Stanley–Reisner rings. In: Topics in Algebra, Banach Center Publications, vol. 26(2),

pp. 57–70 (1990)
8. Gasharov, V., Peeva, I., Welker, V.: The lcm lattice in monomial resolutions. Math. Res. Lett. 6, 521–

532 (1999)
9. Hà, H.T., Van Tuyl, A.: Resolutions of square-free monomial ideals via facet ideals: a survey. Con-

temp. Math. 448, 91–117 (2007)
10. Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution. Math. Scand.

95, 23–32 (2004)
11. Hoefel, A., Whieldon, G.: Linear quotients of square of the edge ideal of the anticycle. Preprint
12. Horwitz, N.: Linear resolutions of quadratic monomial ideals. J. Algebra 318, 981–1001 (2007)
13. Nevo, E.: Regularity of edge ideals of C4-free graphs via the topology of the lcm-lattice. J. Comb.

Theory, Ser. A 118, 491–501 (2011)
14. Peeva, I.: Graded Syzygies. Springer, Berlin (2010)
15. Phan, J.: Monomial ideals and free resolutions, Ph.D. Thesis, Columbia University (2006)


	C4-free edge ideals
	Abstract
	Acknowledgements
	References


