Equivariant Pieri Rule for the homology of the affine Grassmannian

Thomas Lam • Mark Shimozono

Received: 25 May 2011 / Accepted: 1 February 2012
© Springer Science+Business Media, LLC 2012

Abstract

An explicit rule is given for the product of the degree two class with an arbitrary Schubert class in the torus-equivariant homology of the affine Grassmannian. In addition a Pieri rule (the Schubert expansion of the product of a special Schubert class with an arbitrary one) is established for the equivariant homology of the affine Grassmannians of $S L_{n}$ and a similar formula is conjectured for $S p_{2 n}$ and $S O_{2 n+1}$. For $S L_{n}$ the formula is explicit and positive. By a theorem of Peterson these compute certain products of Schubert classes in the torus-equivariant quantum cohomology of flag varieties. The $S L_{n}$ Pieri rule is used in our recent definition of k-double Schur functions and affine double Schur functions.

Keywords Schubert calculus • Affine Grassmannian • Pieri rule • Quantum cohomology

1 Introduction

Let G be a semisimple algebraic group over \mathbb{C} with a Borel subgroup B and maximal torus T. Let $\operatorname{Gr}_{G}=G(\mathbb{C}((t))) / G(\mathbb{C}[[t]])$ be the affine Grassmannian of G. The T equivariant homology $H_{T}\left(\mathrm{Gr}_{G}\right)$ and cohomology $H^{T}\left(\mathrm{Gr}_{G}\right)$ are dual Hopf algebras over $S=H^{T}$ (pt) with Pontryagin and cup products, respectively. Let $W_{\text {af }}^{0}$ be the minimal length cosets in $W_{\text {af }} / W$ where $W_{\text {af }}$ and W are the affine and finite Weyl groups. Let $\left\{\xi_{w} \mid w \in W_{\mathrm{af}}^{0}\right\}$ be the Schubert basis of $H_{T}\left(\operatorname{Gr}_{G}\right)$. Define the equivariant

[^0]Schubert homology structure constants $d_{u v}^{w} \in S$ by

$$
\begin{equation*}
\xi_{u} \xi_{v}=\sum_{w \in W_{\mathrm{af}}^{0}} d_{u v}^{w} \xi_{w} \tag{1}
\end{equation*}
$$

where $u, v \in W_{\mathrm{af}}^{0}$. One interest in the polynomials $d_{u v}^{w}$ is the fact that they are precisely the Schubert structure constants for the T-equivariant quantum cohomology rings $Q H^{T}(G / B)[9,13]$. Due to a result of Mihalcea [12], they have the positivity property

$$
\begin{equation*}
d_{u v}^{w} \in \mathbb{Z}_{\geq 0}\left[\alpha_{i} \mid i \in I\right] \tag{2}
\end{equation*}
$$

Our first main result (Theorem 6) is an "equivariant homology Chevalley formula", which describes $d_{r_{0}, v}^{w}$ for an arbitrary affine Grassmannian. Our second main result (Theorem 20) is an "equivariant homology Pieri formula" for $G=S L_{n}$, which is a manifestly positive formula for $d_{\sigma_{m}, v}^{w}$ where the homology classes $\left\{\xi_{\sigma_{m}} \mid 1 \leq m \leq n-\right.$ $1\}$ are the special classes that generate $H_{T}\left(\operatorname{Gr}_{S L_{n}}\right)$. In a separate work [10] we use this Pieri formula to define new symmetric functions, called k-double Schur functions and affine double Schur functions, which represent the equivariant Schubert homology and cohomology classes for $\mathrm{Gr}_{S L_{n}}$.

2 The equivariant homology of $\mathbf{G r}_{G}$

We recall Peterson's construction [13] of the equivariant Schubert basis $\left\{j_{w} \mid w \in\right.$ $\left.W_{\mathrm{af}}^{0}\right\}$ of $H_{T}\left(\mathrm{Gr}_{G}\right)$ using the level-zero variant of the Kostant and Kumar (graded) nilHecke ring [6]. We also describe the equivariant localizations of Schubert cohomology classes for the affine flag ind-scheme in terms of the nilHecke ring; these are an important ingredient in our equivariant Chevalley and Pieri rules.

2.1 Peterson's level-zero affine nilHecke ring

Let I and $I_{\mathrm{af}}=I \cup\{0\}$ be the finite and affine Dynkin node sets and $\left(a_{i j} \mid i, j \in I_{\mathrm{af}}\right)$ the affine Cartan matrix.

Let $P_{\mathrm{af}}=\mathbb{Z} \delta \oplus \bigoplus_{i \in I_{\mathrm{af}}} \mathbb{Z} \Lambda_{i}$ be the affine weight lattice, with δ the null root and Λ_{i} the affine fundamental weight. The dual lattice $P_{\mathrm{af}}^{*}=\operatorname{Hom}_{\mathbb{Z}}\left(P_{\mathrm{af}}, \mathbb{Z}\right)$ has dual basis $\{d\} \cup\left\{\alpha_{i}^{\vee} \mid i \in I_{\text {af }}\right\}$ where d is the degree generator and α_{i}^{\vee} is a simple coroot. The simple roots $\left\{\alpha_{i} \mid i \in I_{\mathrm{af}}\right\} \subset P_{\mathrm{af}}$ are defined by $\alpha_{j}=\delta_{j 0} \delta+\sum_{i \in I_{\mathrm{af}}} a_{i j} \Lambda_{i}$ for $j \in I_{\mathrm{af}}$ where $\left(a_{i j} \mid i, j \in I_{\mathrm{af}}\right)$ is the affine Cartan matrix. Then $a_{i j}=\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle$ for all $i, j \in$ I_{af}. Let $\left(a_{i} \mid i \in I_{\mathrm{af}}\right)$ (resp. $\left(a_{i}^{\vee} \mid i \in I_{\mathrm{af}}\right)$) be the tuple of relatively prime positive integers giving a relation among the columns (resp. rows) of the affine Cartan matrix. Then $\delta=\sum_{i \in I_{\mathrm{af}}} a_{i} \alpha_{i}$. Let $c=\sum_{i \in I_{\mathrm{af}}} a_{i}^{\vee} \alpha_{i}^{\vee} \in P_{\mathrm{af}}^{*}$ be the canonical central element. The level of a weight $\lambda \in P_{\mathrm{af}}$ is defined by $\langle c, \lambda\rangle$.

There is a canonical projection $P_{\mathrm{af}} \rightarrow P$ where P is the finite weight lattice, with kernel $\mathbb{Z} \delta \oplus \mathbb{Z} \Lambda_{0}$. There is a section $P \rightarrow P_{\text {af }}$ of this projection whose image lies in the sublattice of $\bigoplus_{i \in I_{\mathrm{af}}} \mathbb{Z} \Lambda_{i}$ consisting of level-zero weights. We regard $P \subset P_{\mathrm{af}}$ via this section.

Let W and $W_{\text {af }}$ denote the finite and affine Weyl groups. Denote by $\left\{r_{i} \mid i \in I_{\mathrm{af}}\right\}$ the simple generators of $W_{\mathrm{af}} . W_{\mathrm{af}}$ acts on P_{af} by $r_{i} \cdot \lambda=\lambda-\left\langle\alpha_{i}^{\vee}, \lambda\right\rangle \alpha_{i}$ for $i \in I_{\mathrm{af}}$ and $\lambda \in P_{\mathrm{af}}$. $W_{\text {af }}$ acts on $P_{\text {af }}^{*}$ by $r_{i} \cdot \mu=\mu-\left\langle\mu, \alpha_{i}\right\rangle \alpha_{i}^{\vee}$ for $i \in I_{\mathrm{af}}$ and $\mu \in P_{\text {af }}^{*}$. There is an isomorphism $W_{\text {af }} \cong W \ltimes Q^{\vee}$ where $Q^{\vee}=\bigoplus_{i \in I} \mathbb{Z} \alpha_{i}^{\vee} \subset P_{\text {af }}^{*}$ is the finite coroot lattice. The embedding $Q^{\vee} \rightarrow W_{\mathrm{af}}$ is denoted $\mu \mapsto t_{\mu}$. The set of real affine roots is $W_{\mathrm{af}} \cdot\left\{\alpha_{i} \mid i \in I_{\mathrm{af}}\right\}$. For a real affine root $\alpha=w \cdot \alpha_{i}$, the associated coroot is welldefined by $\alpha^{\vee}=w \cdot \alpha_{i}^{\vee}$.

Let $S=\operatorname{Sym}(P)$ be the symmetric algebra, and $Q=\operatorname{Frac}(S)$ the fraction field. $W_{\text {af }} \cong W \ltimes Q^{\vee}$ acts on P (and therefore on S and on Q) by the level-zero action:

$$
\begin{equation*}
w t_{\mu} \cdot \lambda=w \cdot \lambda \quad \text { for } w \in W \text { and } \mu \in Q^{\vee} \tag{3}
\end{equation*}
$$

Since $t_{-\theta \vee}=r_{\theta} r_{0}$ we have

$$
\begin{equation*}
r_{0} \cdot \lambda=r_{\theta} \cdot \lambda \quad \text { for } \lambda \in P . \tag{4}
\end{equation*}
$$

Finally, we have $\delta=\alpha_{0}+\theta$ where $\theta \in P$ is the highest root. So under the projection $P_{\mathrm{af}} \rightarrow P, \alpha_{0} \mapsto-\theta$.

Let $Q_{W_{\mathrm{af}}}=\bigoplus_{w \in W_{\mathrm{af}}} Q w$ be the skew group ring, the Q-vector space $Q \otimes_{\mathbb{Q}} \mathbb{Q}\left[W_{\mathrm{af}}\right]$ with Q-basis $W_{\text {af }}$ and product $(p \otimes v)(q \otimes w)=p(v \cdot q) \otimes v w$ for $p, q \in Q$ and $v, w \in W_{\mathrm{af}} . Q_{W_{\mathrm{af}}}$ acts on $Q: q \in Q$ acts by left multiplication and W_{af} acts as above.

For $i \in I_{\mathrm{af}}$ define the element $A_{i} \in Q_{W_{\mathrm{af}}}$ by

$$
\begin{equation*}
A_{i}=\alpha_{i}^{-1}\left(1-r_{i}\right) \tag{5}
\end{equation*}
$$

A_{i} acts on S since

$$
\begin{align*}
A_{i} \cdot \lambda & =\left\langle\alpha_{i}^{\vee}, \lambda\right\rangle \quad \text { for } \lambda \in P \tag{6}\\
A_{i} \cdot\left(s s^{\prime}\right) & =\left(A_{i} \cdot s\right) s^{\prime}+\left(r_{i} \cdot s\right)\left(A_{i} \cdot s^{\prime}\right) \quad \text { for } s, s^{\prime} \in S \tag{7}
\end{align*}
$$

The A_{i} satisfy $A_{i}^{2}=0$ and

$$
\underbrace{A_{i} A_{j} A_{i} \cdots}_{m_{i j} \text { times }}=\underbrace{A_{j} A_{i} A_{j} \cdots}_{m_{i j} \text { times }}
$$

where

$$
\underbrace{r_{i} r_{j} r_{i} \cdots}_{m_{i j} \text { times }}=\underbrace{r_{j} r_{i} r_{j} \cdots}_{m_{i j} \text { times }}
$$

For $w \in W_{\text {af }}$ we define A_{w} by

$$
\begin{align*}
A_{w} & =A_{i_{1}} A_{i_{2}} \cdots A_{i_{\ell}} \quad \text { where } \tag{8}\\
w & =r_{i_{1}} r_{i_{2}} \cdots r_{i_{\ell}} \quad \text { is reduced. } \tag{9}
\end{align*}
$$

The level-zero graded affine nilHecke ring \mathbb{A} (Peterson's [13] variant of the nilHecke ring of Kostant and Kumar [6] for an affine root system) is the subring of $Q_{W_{\text {af }}}$ generated by S and $\left\{A_{i} \mid i \in I_{\mathrm{af}}\right\}$. In \mathbb{A} we have the commutation relation

$$
\begin{equation*}
A_{i} \lambda=\left(A_{i} \cdot \lambda\right) 1+\left(r_{i} \cdot \lambda\right) A_{i} \quad \text { for } \lambda \in P . \tag{10}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\mathbb{A}=\bigoplus_{w \in W_{\mathrm{af}}} S A_{w} \tag{11}
\end{equation*}
$$

2.2 Localizations of equivariant cohomology classes

Using the relation

$$
\begin{equation*}
r_{i}=1-\alpha_{i} A_{i} \tag{12}
\end{equation*}
$$

$w \in W_{\text {af }}$ may be regarded as an element of \mathbb{A}. For $v, w \in W_{\text {af }}$ define the elements $\xi^{v}(w) \in S$ by

$$
\begin{equation*}
w=\sum_{v \in W}(-1)^{\ell(v)} \xi^{v}(w) A_{v} . \tag{13}
\end{equation*}
$$

Using a reduced decomposition (9) for w and substituting (12) for its simple reflections, one obtains the formula [1] [2]

$$
\begin{equation*}
\xi^{v}(w)=\sum_{b \in[0,1]^{\ell}}\left(\prod_{j=1}^{\ell} \alpha_{i_{j}}^{b_{j}} r_{i_{j}}\right) \cdot 1 \tag{14}
\end{equation*}
$$

where the sum runs over b such that $\prod_{b_{j}=1} r_{i_{j}}=v$ is reduced and the product over j is an ordered left-to-right product of operators. Each b encodes a way to obtain a reduced word for v as an embedded subword of the given reduced word of w : if $b_{j}=1$ then the reflection $r_{i_{j}}$ is included in the reduced word for v. Given a fixed b and an index j such that $b_{j}=1$, the root associated to the reflection $r_{i_{j}}$ is by definition $r_{i_{1}} r_{i_{2}} \cdots r_{i_{j-1}} \cdot \alpha_{i_{j}}$. The summand for b is the product of the roots associated to reflections in the given embedded subword.

It is immediate that

$$
\begin{array}{ll}
\xi^{v}(w)=0 & \text { unless } v \leq w \\
\xi^{\text {id }}(w)=1 & \text { for all } w \tag{16}
\end{array}
$$

The element $\xi^{v}(w) \in S$ has the following geometric interpretation. Let $X_{\mathrm{af}}=$ $G_{\text {af }} / B_{\text {af }}$ be the Kac-Moody flag ind-variety of affine type [7]. For every $v \in W_{\text {af }}$ there is a T-equivariant cohomology class $\left[X_{v}\right] \in H^{T}\left(X_{\text {af }}\right)$ and for each $w \in W_{\text {af }}$ there is an associated T-fixed point (denoted w) in $X_{\text {af }}$ and a localization map $i_{w}^{*}: H^{T}\left(X_{\text {af }}\right) \rightarrow H^{T}(w) \simeq H^{T}(\mathrm{pt})$ [7]. Then $\xi^{v}(w)=i_{w}^{*}\left(\left[X_{v}\right]\right)$. Moreover, the map $H^{T}\left(X_{\mathrm{af}}\right) \rightarrow H^{T}\left(W_{\mathrm{af}}\right) \cong \operatorname{Fun}\left(W_{\mathrm{af}}, S\right)$ given by restriction of a class to the T-fixed
subset $W_{\text {af }} \subset X_{\text {af }}$, is an injective S-algebra homomorphism where $\operatorname{Fun}\left(W_{\text {af }}, S\right)$ is the S-algebra of functions $W_{\text {af }} \rightarrow S$ with pointwise product. The function $\xi^{v} \in$ Fun $\left(W_{\mathrm{af}}, S\right)$ is the image of $\left[X_{v}\right]$. The image Φ of $H^{T}\left(X_{\mathrm{af}}\right)$ in Fun $\left(W_{\mathrm{af}}, S\right)$ satisfies the GKM condition [3] [6]: For $f \in \Phi$ we have ${ }^{1}$

$$
\begin{equation*}
f(w)-f\left(r_{\beta} w\right) \in \beta S \quad \text { for all } w \in W_{\mathrm{af}} \text { and affine real roots } \beta . \tag{17}
\end{equation*}
$$

Lemma 1 Suppose $u, v \in W_{\text {af }}$ with $\ell(u v)=\ell(u)+\ell(v)$. Then

$$
\begin{equation*}
\xi^{u v}(u v)=\xi^{u}(u)\left(u \cdot \xi^{v}(v)\right) . \tag{18}
\end{equation*}
$$

Lemma 2 Suppose $v, w \in W_{\mathrm{af}}$. Then

$$
\begin{equation*}
\xi^{v}(w)=(-1)^{\ell(v)} w \cdot\left(\xi^{v^{-1}}\left(w^{-1}\right)\right) \tag{19}
\end{equation*}
$$

2.3 Peterson subalgebra and Schubert homology basis

Let $K \subset G$ denote the maximal compact subgroup of G. The homotopy equivalence between Gr_{G} and the based loop space ΩK endows the equivariant homology $H_{T}\left(\mathrm{Gr}_{G}\right)$ and cohomology $H^{T}\left(\mathrm{Gr}_{G}\right)$ with the structure of dual Hopf algebras. The Pontryagin multiplication in the homology $H_{T}\left(\operatorname{Gr}_{G}\right)$ is induced by the group structure of ΩK. We let $\left\{\xi_{w}\right\}$ denote the equivariant Schubert basis of $H_{T}\left(\operatorname{Gr}_{G}\right)$, dual (via the cap product) to the basis $\left\{\xi^{w}\right\}$ of $H^{T}\left(\operatorname{Gr}_{G}\right)$.

The Peterson subalgebra of \mathbb{A} is the centralizer subalgebra $\mathbb{P}=Z_{\mathbb{A}}(S)$ of S in \mathbb{A}.
Theorem 3 [13] There is an isomorphism $H_{T}\left(\operatorname{Gr}_{G}\right) \rightarrow \mathbb{P}$ of commutative Hopf algebras over S. For $w \in W_{\text {af }}^{0}$ let j_{w} denote the image of ξ_{w} in \mathbb{P}. Then j_{w} is the unique element of \mathbb{P} with the property that $j_{w}^{w}=1$ and $j_{w}^{x}=0$ for any $x \in W_{\mathrm{af}}^{0} \backslash\{w\}$ where $j_{w}^{x} \in S$ are defined by

$$
\begin{equation*}
j_{w}=\sum_{x \in W_{\mathrm{af}}} j_{w}^{x} A_{x} . \tag{20}
\end{equation*}
$$

Moreover, if $j_{w}^{x} \neq 0$ then $\ell(x) \geq \ell(w)$ and j_{w}^{x} is a polynomial of degree $\ell(x)-\ell(w)$.
The Schubert structure constants for $H_{T}\left(\mathrm{Gr}_{G}\right)$ are obtained as coefficients of the elements j_{w}.

Proposition 4 ([13]) Let $u, v, w \in W_{\mathrm{af}}^{0}$. Then

$$
d_{u v}^{w}= \begin{cases}j_{u}^{w v^{-1}} & \text { if } \ell(w)=\ell(v)+\ell\left(w v^{-1}\right) \tag{21}\\ 0 & \text { otherwise }\end{cases}
$$

[^1]Due to the fact $[9,13]$ that the collections of Schubert structure constants for $H_{T}\left(\mathrm{Gr}_{G}\right)$ and $Q H^{T}(G / B)$ are the same and Mihalcea's positivity theorem for equivariant quantum Schubert structure constants, we have the positivity property

Proposition $5 j_{w}^{x} \in \mathbb{Z}_{\geq 0}\left[\alpha_{i} \mid i \in I\right]$ for all $w \in W_{\mathrm{af}}^{0}$ and $x \in W_{\mathrm{af}}$.
Given $u \in W_{\mathrm{af}}^{0}$ let $t^{u}=t_{\lambda}$ where $\lambda \in Q^{\vee}$ is such that $t_{\lambda} W=u W$.
Since the translation elements act trivially on S and $W_{\text {af }} \subset \mathbb{A}$ via (12), we have $t_{\lambda} \in \mathbb{P}$ for all $\lambda \in Q^{\vee}$, so that $t_{\lambda} \in \bigoplus_{v \in W_{\mathrm{af}}^{0}} S j_{v}$. For any $w \in W_{\mathrm{af}}^{0}$, we have

$$
t^{w}=\sum_{v \in W_{\mathrm{af}}^{0}}(-1)^{\ell(v)} \xi^{v}\left(t^{w}\right) j_{v}=\sum_{v \in W_{\mathrm{af}}^{0}}(-1)^{\ell(v)} \xi^{v}(w) j_{v}
$$

by the definitions and Lemma 1.
Define the $W_{\text {af }}^{0} \times W_{\text {af }}^{0}$-matrices

$$
\begin{align*}
A_{w v} & =(-1)^{\ell(v)} \xi^{v}(w) \tag{22}\\
B & =A^{-1} . \tag{23}
\end{align*}
$$

The matrix A is lower triangular by (15) and has nonzero diagonal terms, and is hence invertible over $Q=\operatorname{Frac}(S)$. We have

$$
j_{v}=\sum_{\substack{w \in W_{\mathrm{af}}^{0} \\ w \leq v}} B_{w v} t^{w}
$$

Taking the coefficient of A_{x} for $x \in W_{\text {af }}$, we have

$$
\begin{equation*}
j_{v}^{x}=(-1)^{\ell(x)} \sum_{\substack{w \in W_{\text {af }}^{0} \\ w \leq v}} B_{w v} \xi^{x}\left(t^{w}\right) \tag{24}
\end{equation*}
$$

Note that if $\Omega \subset W_{\text {af }}^{0}$ is any order ideal (downwardly closed subset) then the restriction $\left.A\right|_{\Omega \times \Omega}$ is invertible. In the sequel we choose certain such order ideals and find a formula for the inverse of this submatrix. Since the values of ξ^{x} are given by (14) we obtain an explicit formula for j_{v}^{x} for $v \in \Omega$ and all $x \in W_{\mathrm{af}}$.

3 Equivariant homology Chevalley rule

Theorem 6 For every $x \in W_{\mathrm{af}} \backslash\{\mathrm{id}\}, \xi^{x^{-1}}\left(r_{\theta}\right) \in \theta S$ and

$$
\begin{equation*}
j_{r_{0}}=\sum_{x \in W \backslash\{\mathrm{id}\}}\left(\theta^{-1} \xi^{x^{-1}}\left(r_{\theta}\right) A_{x}+\xi^{x^{-1}}\left(r_{\theta}\right) A_{r_{0} x}\right) . \tag{25}
\end{equation*}
$$

Proof For $x \neq$ id, the GKM condition (17) and (15) implies that $\xi^{x^{-1}}\left(r_{\theta}\right) \in \theta S . \Omega=$ $\left\{\mathrm{id}, r_{0}\right\} \subset W_{\mathrm{af}}^{0}$ is an order ideal. The matrix $\left.A\right|_{\Omega \times \Omega}$ and its inverse are given by

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & \theta
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
-\theta^{-1} & \theta^{-1}
\end{array}\right) .
$$

Since id $=t^{\mathrm{id}}$ and $t_{\theta} \vee=t^{r_{0}}\left(\right.$ as $\left.t_{\theta} \vee=r_{0} r_{\theta}\right)$, we have

$$
(-1)^{\ell(y)} j_{r_{0}}^{y}=-\theta^{-1} \xi^{y}(\mathrm{id})+\theta^{-1} \xi^{y}\left(t_{\theta^{\vee}}\right) .
$$

By the length condition in Theorem 3 we have

$$
(-1)^{\ell(y)} j_{r_{0}}^{y}=\theta^{-1} \xi^{y}\left(t_{\theta \vee}\right) \quad \text { for } y \neq \mathrm{id} .
$$

By (15) $j_{r_{0}}^{y}=0$ unless $y \leq t_{\theta} \vee=r_{0} r_{\theta}$. So assume this.
Suppose $r_{0} y<y$. Write $y=r_{0} x$. Then

$$
(-1)^{\ell(y)} \xi^{y}\left(t_{\theta} \vee\right)=(-1)^{\ell(y)}\left(\alpha_{0}\right)\left(r_{0} \cdot \xi^{x}\left(r_{\theta}\right)\right)=(-1)^{\ell(x)} \theta\left(r_{\theta} \cdot \xi^{x}\left(r_{\theta}\right)\right)=\theta \xi^{x^{-1}}\left(r_{\theta}\right)
$$

If $r_{0} y>y$ then we write $y=x \leq r_{\theta}$ and

$$
(-1)^{\ell(x)} \xi^{x}\left(t_{\theta} \vee\right)=(-1)^{\ell(x)} r_{0} \cdot \xi^{x}\left(r_{\theta}\right)=(-1)^{\ell(x)} r_{\theta} \cdot \xi^{x}\left(r_{\theta}\right)=\xi^{x^{-1}}\left(r_{\theta}\right)
$$

as required.
The formula (14) shows that $\xi^{x^{-1}}\left(r_{\theta}\right) \in \mathbb{Z}_{\geq 0}\left[\alpha_{i} \mid i \in I\right]$. The same holds for $\theta^{-1} \xi^{x^{-1}}\left(r_{\theta}\right)$. Indeed,

Lemma $7 \alpha^{-1} \xi^{x}\left(r_{\alpha}\right) \in \mathbb{Z}_{\geq 0}\left[\alpha_{i} \mid i \in I\right]$ for any positive root α.
Proof The reflection r_{α} has a reduced word $\mathbf{i}=i_{1} i_{2} \cdots i_{r-1} i_{r} i_{r-1} \cdots i_{1}$ which is symmetric. Consider the different embeddings \mathbf{j} of reduced words of x into \mathbf{i}, as in (14). If \mathbf{j} uses the letter i_{r}, then the corresponding term in (14) has θ as a factor. Otherwise, \mathbf{j} uses i_{s} but not i_{s+1}, \ldots, i_{r}, for some s. But then there is another embedding of \mathbf{j}^{\prime} of the same reduced word of x into \mathbf{i}, which uses the other copy of the letter i_{s} in \mathbf{i}. The two terms in (14) which correspond to \mathbf{j} and \mathbf{j}^{\prime} contribute $A\left(\beta-r_{\alpha} \cdot \beta\right)=A\left(\left\langle\alpha^{\vee}, \beta\right\rangle \alpha\right)$ where $A \in \mathbb{Z}_{\geq 0}\left[\alpha_{i} \mid i \in I\right]$, and β is an inversion of r_{α}. It follows that $\left\langle\alpha^{\vee}, \beta\right\rangle>0$. The lemma follows.

Remark 8 The polynomials $\xi^{x^{-1}}\left(r_{\theta}\right)$ appearing in (25) may be computed entirely in the finite Weyl group and finite weight lattice.

Remark 9 In [8, Proposition 2.17], we gave an expression for the non-equivariant part of $j_{r_{0}}$, consisting of the terms $j_{r_{0}}^{x} A_{x}$ where $\ell(x)=1=\ell\left(r_{0}\right)$. This follows easily from Theorem 6 and the fact [6] that $\xi^{r_{i}}(w)=\omega_{i}-w \cdot \omega_{i}$, where ω_{i} is the i th fundamental weight.

3.1 Application to quantum cohomology

The equivariant homology Chevalley rule (Theorem 6) may be used to obtain a new formula for some Gromov-Witten invariants for $Q H^{T}(G / P)$ where $P \subsetneq G$ is a parabolic subgroup. ${ }^{2}$

For this subsection we adopt the notation of [9], some of which we recall presently. Our goal is Proposition 10, which is the equivariant generalization of [9, Prop. 11.2].

Consider the Levi factor of P. It has Dynkin node subset $I_{P} \subset I$, Weyl group $W_{P} \subset W$, coroot lattice $Q_{P}^{\vee} \subset Q^{\vee}$, root system $R_{P} \subset R$ and positive roots R_{P}^{+}. Denote the natural projection $Q_{\text {af }} \rightarrow Q$ by $\beta \mapsto \bar{\beta}$. Define

$$
\begin{aligned}
\left(W_{P}\right)_{\mathrm{af}} & =W_{P} \ltimes Q_{P}^{\vee} \\
\left(R_{P}^{+}\right)_{\mathrm{af}} & =\left\{\beta \in R_{\mathrm{af}}^{+} \mid \bar{\beta} \in R_{P}\right\} \\
\left(W^{P}\right)_{\mathrm{af}} & =\left\{x \in W_{\mathrm{af}} \mid x \cdot \beta>0 \text { for all } \beta \in\left(R_{P}^{+}\right)_{\mathrm{af}}\right\}
\end{aligned}
$$

Every element $w \in W_{\text {af }}$ has a unique expression $w=w_{1} w_{2}$ with $w_{1} \in\left(W^{P}\right)_{\text {af }}$ and $w_{2} \in\left(W_{P}\right)_{\mathrm{af}}$; denote by $\pi_{P}: W_{\mathrm{af}} \mapsto\left(W^{P}\right)_{\text {af }}$ the map that sends $w \mapsto w_{1}$.

Recall that the ring $H_{T}\left(\operatorname{Gr}_{G}\right)$ has an S-basis $\left\{\xi_{x} \mid x \in W_{\text {af }}^{-}\right\}$. It has an ideal

$$
J_{P}=\bigoplus_{x \in W_{\mathrm{af}}^{-} \backslash\left(W^{P}\right)_{\mathrm{af}}} S \xi_{x}
$$

The set $\mathcal{T}=\left\{\xi_{\pi_{P}\left(t_{\lambda}\right)} \mid \lambda \in \tilde{Q}\right\}$ is multiplicatively closed, where $\tilde{Q}=\left\{\lambda \in Q^{\vee} \mid\right.$ $\left\langle\lambda, \alpha_{i}\right\rangle \leq 0$ for all $\left.i \in I\right\}$ is the set of antidominant elements of Q^{\vee}. Finally let $\eta_{P}: Q^{\vee} \rightarrow Q^{\vee} / Q_{P}^{\vee}$ be the natural projection. Then by [9, Thm. 10.16] there is an isomorphism

$$
\Psi_{P}:\left(H_{T}\left(\operatorname{Gr}_{G}\right) / J_{P}\right)\left[\xi_{\pi P\left(t_{\lambda}\right)}^{-1} \mid \lambda \in \tilde{Q}\right] \cong Q H^{T}(G / P)_{(q)}
$$

where (q) denotes localization at the quantum parameters. For $x \in W_{\mathrm{af}}^{-} \cap\left(W^{P}\right)_{\mathrm{af}}$ with $x=w t_{\lambda}$ for $w \in W$ and $\lambda \in Q^{\vee}$, we have $w \in W^{P}$ and $\lambda \in \tilde{Q}$. Then $\Psi_{P}\left(\xi_{x}\right)=$ $q_{\eta_{P}(\lambda)} \sigma_{P}^{w}$ where σ_{P}^{w} is the quantum Schubert class in $Q H^{T}(G / P)$ associated with $w \in W^{P}$.

Proposition 10 Let $w \in W^{P}$. Then

$$
\begin{aligned}
\sigma_{P}^{\pi_{P}\left(r_{\theta}\right)} \sigma_{P}^{w}= & \sum_{\substack{\mathrm{id} \neq u \leq r_{\theta} \\
\ell(u w)=\ell(w)-\ell(u)}} \theta^{-1} \xi^{u^{-1}}\left(r_{\theta}\right) q_{\eta P}\left(\theta^{\vee}\right) \sigma_{P}^{u w} \\
& +\sum_{\substack{\mathrm{id} \neq u \leq r_{\theta} \\
\ell\left(u w=\ell(w)-\ell(u) \\
(u w)^{-1} \theta \in R^{+} \backslash R_{P}^{+}\right.}} \xi^{u^{-1}\left(r_{\theta}\right) q_{\eta_{P}\left(\theta^{\vee}-(u w)^{-1} \theta^{\vee}\right)} \sigma_{P}^{\pi_{P}\left(r_{\theta} u w\right)} .} .
\end{aligned}
$$

[^2]Proof Choose $\lambda \in Q^{\vee}$ such that $\left\langle\lambda, \alpha_{i}\right\rangle=0$ for $i \in I_{P}$ and $\left\langle\lambda, \alpha_{i}\right\rangle \ll 0$ for $i \in I \backslash I_{P}$. Then $\langle\lambda, \alpha\rangle=0$ for $\alpha \in R_{P}$ and $\langle\lambda, \alpha\rangle \ll 0$ for $\alpha \in R^{+} \backslash R_{P}^{+}$.

We have $x=w t_{\lambda} \in W_{\mathrm{af}}^{-} \cap\left(W^{P}\right)_{\text {af }}$ by [9, Lemmata 3.3, 10.1]. Define the set

$$
\begin{equation*}
\mathcal{A}_{x}=\left\{u \in W_{\mathrm{af}} \mid \ell(u x)=\ell(u)+\ell(x) \text { and } u x \in W_{\mathrm{af}}^{-}\right\} . \tag{26}
\end{equation*}
$$

Using the characterization of the Schubert basis in Theorem 3, for $z \in W_{\text {af }}^{-}$the coefficient of j_{z} in $j_{r_{0}} j_{x}$ is given by the coefficient of A_{z} in $j_{r_{0}} A_{x}$. We obtain

$$
\begin{equation*}
\xi_{r_{0}} \xi_{x}=\sum_{\substack{1 \neq u \leq r_{\theta} \\ u \in \mathcal{A}_{x}}}\left(\theta^{-1} \xi^{u^{-1}}\left(r_{\theta}\right) \xi_{u x}+\chi\left(r_{0} \in \mathcal{A}_{u x}\right) \xi^{u^{-1}}\left(r_{\theta}\right) \xi_{r_{0} u x}\right) \tag{27}
\end{equation*}
$$

where $\chi($ true $)=1$ and $\chi($ false $)=0$. We shall apply the map Ψ_{P} to the above expression. First it is desirable to factor out the dependence of the right hand side on λ.

Suppose $u \in W$ (which holds for $u \leq r_{\theta} \in W$). We claim that $u \in \mathcal{A}_{x}$ if and only if $\ell(u w)=\ell(w)-\ell(u)$. Suppose $u \in \mathcal{A}_{x}$. Since $u x \in W_{\text {af }}^{-}$we have $\ell(u x)=\ell\left(u w t_{\lambda}\right)=$ $\ell\left(t_{\lambda}\right)-\ell(u w)$ and $\ell(u)+\ell(x)=\ell(u)+\ell\left(t_{\lambda}\right)-\ell(w)$. Since $\ell(u x)=\ell(u)+\ell(x)$ it follows that $\ell(u w)=\ell(w)-\ell(u)$. Conversely suppose $\ell(u w)=\ell(w)-\ell(u)$. Since $w \in W^{P}$ it follows that $u w \in W^{P}$. In particular $u w t_{\lambda} \in W_{\mathrm{af}}^{-}$. Therefore $\ell(u x)=$ $\ell(u)+\ell(x)$ and $u \in \mathcal{A}_{x}$.

Let us fix the assumption that $u \in W$ and $\ell(u w)=\ell(w)-\ell(u)$. Then $u \in \mathcal{A}_{x}$ and $u x \in\left(W^{P}\right)_{\text {af }}$ since $u w \in W^{P}$. One may show that:
(1) $r_{0} u x>u x$ if and only if $(u w)^{-1} \cdot \theta \in R^{+}$and $(u x)^{-1} \cdot \alpha_{0} \in \mathbb{Z}_{>0} \delta-(u w)^{-1} \cdot \theta$.
(2) $r_{0} u x \notin\left(W^{P}\right)_{\text {af }}$ if and only if $(u w)^{-1} \cdot \theta \in R_{P}^{+}$.
(3) $r_{0} u x \notin W_{\text {af }}^{-}$if and only if $u x \alpha_{i}=\alpha_{0}$ for some $i \in I$.

It follows that under the assumption on $u,(u w)^{-1} \theta \in R^{+} \backslash R_{P}^{+}$if and only if $r_{0} u x>$ $u x, r_{0} u x \in W_{\mathrm{af}}^{-}$, and $r_{0} u x \in\left(W^{P}\right)_{\mathrm{af}}$.

We now apply the map Ψ_{P}. By [9, Remark 10.1] $r_{0} \in W_{\mathrm{af}}^{-} \cap\left(W^{P}\right)_{\mathrm{af}}$. Since $r_{0}=$ $r_{\theta} t_{-\theta^{\vee}}$ we have $\Psi_{P}\left(\xi_{r_{0}}\right)=q_{\eta_{P}\left(-\theta^{\vee}\right)} \sigma_{P}^{\pi_{P}\left(r_{\theta}\right)}$.

By [9, Prop. 10.5, 10.8] $\pi_{P}(w)=w, \pi_{P}\left(t_{\lambda}\right)=t_{\lambda}$ and $\pi_{P}(x)=x$. Therefore $\Psi_{P}\left(\xi_{x}\right)=q_{\eta_{P}(\lambda)} \sigma_{P}^{w}$.

Let $1 \neq u \leq r_{\theta}$ and $u \in \mathcal{A}_{x}$. It follows that $u w \in W^{P}$ and $u x=u w t_{\lambda} \in\left(W^{P}\right)_{\mathrm{af}}$. Then $\Psi_{P}\left(\xi_{u x}\right)=q_{\eta_{P}(\lambda)} \sigma_{P}^{u w}$.

Finally let $1 \neq u \leq r_{\theta}$ be such that $u \in \mathcal{A}_{x}, r_{0} \in \mathcal{A}_{u x}$, and $r_{0} u x \in\left(W^{P}\right)_{\text {af }}$. We have $r_{0} u x=r_{\theta} t_{-\theta^{\vee}} u w t_{\lambda}=r_{\theta} u w t_{\lambda-(u w)^{-1} \theta^{\vee}}$. Therefore $\Psi_{P}\left(r_{0} u x\right)=$ $q_{\eta_{P}\left(\lambda-(u w)^{-1} \theta^{\vee}\right)} \sigma_{P}^{\pi_{P}\left(r_{\theta} u w\right)}$. Applying Ψ_{P} to (27) yields the required equation.

4 Alternating equivariant Pieri rule in classical types

We first establish some notation for $G=S L_{n}, S p_{2 n}$, and $S O_{2 n+1}$. Our root system conventions follow [5].
4.1 Special classes

We give explicit generating classes for $H_{T}\left(\mathrm{Gr}_{G}\right)$.

4.1.1 $H_{T}\left(\operatorname{Gr}_{S L_{n}}\right)$

Define the elements

$$
\begin{align*}
\hat{\sigma}_{p} & =r_{p-1} \cdots r_{1} \tag{28}\\
\sigma_{p} & =r_{p-1} \cdots r_{1} r_{0}=\hat{\sigma}_{p} r_{0} \tag{29}
\end{align*}
$$

So $\ell\left(\hat{\sigma}_{p}\right)=p-1$ and $\ell\left(\sigma_{p}\right)=p$. These elements have associated translations

$$
\begin{equation*}
t_{p}:=t^{\sigma_{p+1}}=t_{r_{p} \cdots r_{2} r_{1} \cdot \theta^{\vee}} \quad \text { for } 0 \leq p \leq n-2 \tag{30}
\end{equation*}
$$

4.1.2 $H_{T}\left(\mathrm{Gr}_{S p_{2 n}}\right)$

For $1 \leq p \leq 2 n-1$ we define the elements $\hat{\sigma}_{p} \in W$ by

$$
\begin{aligned}
& \hat{\sigma}_{p}=r_{p-1} \cdots r_{2} r_{1} \quad \text { for } 1 \leq p \leq n \\
& \hat{\sigma}_{p}=r_{2 n-p-1} \cdots r_{n-2} r_{n-1} \cdots r_{2} r_{1} \quad \text { for } n+1 \leq p \leq 2 n-1
\end{aligned}
$$

For $1 \leq p \leq 2 n-1$ define $\sigma_{p} \in W_{\mathrm{af}}^{0}$ and $t_{p-1} \in W_{\mathrm{af}}$ by

$$
\begin{align*}
\sigma_{p} & =\hat{\sigma}_{p} r_{0} \tag{31}\\
t_{p-1} & =t^{\sigma_{p}}=t_{\hat{\sigma}_{p} \cdot \theta^{\vee}} \tag{32}
\end{align*}
$$

4.1.3 $H_{T}\left(\operatorname{Gr}_{S O_{2 n+1}}\right)$

For $1 \leq p \leq 2 n-1$ we define the elements $\hat{\sigma}_{p} \in W_{\text {af }}^{0}$ by

$$
\hat{\sigma}_{p}= \begin{cases}\text { id } & \text { if } p=1 \\ r_{p} r_{p-1} \cdots r_{3} r_{2} & \text { if } 2 \leq p \leq n \\ r_{2 n-p} r_{2 n-p+1} \cdots r_{n-1} r_{n} r_{n-1} \cdots r_{3} r_{2} & \text { if } n+1 \leq p \leq 2 n-2 \\ r_{0} r_{2} r_{3} \cdots r_{n-1} r_{n} r_{n-1} \cdots r_{3} r_{2} & \text { if } p=2 n-1\end{cases}
$$

For $1 \leq p \leq 2 n-1$ define $\sigma_{p} \in W_{\mathrm{af}}^{0}$ by

$$
\begin{equation*}
\sigma_{p}=\hat{\sigma}_{p} r_{0} \tag{33}
\end{equation*}
$$

For $1 \leq p \leq 2 n-2$ define $t_{p-1} \in W_{\text {af }}$ by

$$
\begin{equation*}
t_{p-1}=t^{\sigma_{p}}=t_{\hat{\sigma}_{p} \cdot \theta^{\vee}} \tag{34}
\end{equation*}
$$

For $1 \leq p \leq 2 n-1$ let σ_{p}^{\prime} be σ_{p} but with every r_{0} replaced by r_{1}. Then define

$$
t_{2 n-2}=t_{2 \omega_{1}^{\vee}}=\sigma_{2 n-1} \sigma_{2 n-1}^{\prime}
$$

Then we conjecture that

$$
\begin{equation*}
B_{\sigma_{2 n-1}, \sigma_{q}}= \pm \frac{1}{\xi^{\sigma_{2 n-1}}\left(\sigma_{q}^{\prime} \sigma_{2 n-1}\right)} \quad \text { for } 1 \leq q \leq 2 n-1 \tag{35}
\end{equation*}
$$

where B is defined in (23). The sign is - for $q \leq 2 n-2$ and + for $q=2 n-1$.

4.1.4 Special classes generate

Let $k^{\prime}=n-1$ for $G=S L_{n}$ and $k^{\prime}=2 n-1$ for $G=S p_{2 n}$ or $G=S O_{2 n+1}$. Let $\hat{\mathbb{P}}:=S\left[\left[j_{\sigma_{m}} \mid 1 \leq m \leq k^{\prime}\right]\right]$ be the completion of $\mathbb{P} \cong H_{T}\left(\operatorname{Gr}_{G}\right)$ generated over S by series in the special classes. It inherits the Hopf structure from \mathbb{P}. The Hopf structure on \mathbb{P} is determined by the coproduct on the special classes.

Proposition 11 For $G=S L_{n}, S p_{2 n}, S O_{2 n+1}, \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{P} \subset \mathbb{Q} \otimes_{\mathbb{Z}} \hat{\mathbb{P}}$.
Proof It is known that the special classes generate the homology $H_{*}\left(\operatorname{Gr}_{G}\right)$ nonequivariantly for $G=S L_{n}, S p_{2 n}, S O_{2 n+1}$ see [11, 14]. Furthermore, the equivariant homology Schubert structure constant $d_{u v}^{w}$ is a polynomial in the simple roots of degree $\ell(w)-\ell(u)-\ell(v)$, and when $\ell(w)=\ell(u)+\ell(v)$, it is equal to the nonequivariant homology Schubert structure constant. It follows easily from this that each equivariant Schubert class can be expressed as a formal power series in the equivariant special classes.

Remark 12 For $G=S L_{n}$ and $G=S p_{2 n}$ the special classes generate $H_{*}\left(\operatorname{Gr}_{G}\right)$ over \mathbb{Z}.
4.2 The alternating equivariant affine Pieri rule

Let $k=n-1$ for $G=S L_{n}, k=2 n-1$ for $G=S p_{2 n}$, and $k=2 n-2$ for $G=$ $S O_{2 n+1}$. Our goal is to compute $j_{\sigma_{m}}^{x}$ for $1 \leq m \leq k$; note that for $G=S O_{2 n+1}$, the element $\sigma_{2 n-1}$ has been treated in (35). For this purpose consider the Bruhat order ideal $\Omega=\left\{\mathrm{id}=\sigma_{0}, \sigma_{1}, \ldots, \sigma_{k}\right\}$ in W_{af}^{0}. Since $j_{0}=\mathrm{id}$, to compute $j_{\sigma_{p}}^{x}$ for $p \geq 1$ we may assume $x \neq$ id by length considerations. It suffices to invert the matrix A given in (22) over $\Omega \backslash\{\mathrm{id}\} \times \Omega \backslash\{\mathrm{id}\}$.

Define the matrices $M_{p m}=(-1)^{m} \xi^{\sigma_{m}}\left(\sigma_{p}\right)$ for $1 \leq p, m \leq k, N_{m q}=\xi^{\hat{\sigma}_{m} r_{\theta}}\left(\hat{\sigma}_{q} r_{\theta}\right)$ for $1 \leq m, q \leq k$, and the diagonal matrix $D_{p q}=\delta_{p q} \xi^{t_{p-1}}\left(t_{p-1}\right)$ for $1 \leq p, q \leq k$.

Conjecture 13

$$
\begin{equation*}
M N=D \tag{36}
\end{equation*}
$$

Conjecture 14 For $1 \leq m \leq k$ and $x \neq$ id we have

$$
\begin{equation*}
j_{\sigma_{m}}^{x}=(-1)^{\ell(x)} \sum_{q=0}^{m-1} \frac{\xi^{\hat{\sigma}_{m} r_{\theta}}\left(\hat{\sigma}_{q+1} r_{\theta}\right)}{\xi^{t_{q}}\left(t_{q}\right)} \xi^{x}\left(t_{q}\right) \tag{37}
\end{equation*}
$$

In particular $j_{\sigma_{m}}^{x}=0$ unless $\ell(x) \geq m$ and $x \leq t_{q}$ for some $0 \leq q \leq m-1$.

Conjecture 14 follows immediately from Conjecture 13: we have $M^{-1}=N D^{-1}$, and (37) follows from (24).

Theorem 15 Conjecture 14 holds for $G=S L_{n}$.

The proof appears in Appendix A. Examples of (36) appear in Appendix B.

5 Effective Pieri rule for $H_{T}\left(\mathbf{G r}_{S L_{n}}\right)$

The goal of this section is to prove a formula for $j_{\sigma_{m}}^{x}$ that is manifestly positive. In this section we work with $G=S L_{n}, W=S_{n}$, and $W_{\text {af }}=\tilde{S}_{n}$. We first establish some notation. For $a \leq b$ write

$$
\begin{align*}
u_{a}^{b} & =r_{a} r_{a+1} \cdots r_{b} \tag{38}\\
d_{a}^{b} & =r_{b} r_{b-1} \cdots r_{a} \tag{39}\\
\alpha_{a}^{b} & =\alpha_{a}+\alpha_{a+1}+\cdots+\alpha_{b} \tag{40}
\end{align*}
$$

for upward and downward sequences of reflections and for sums of consecutive roots. In particular we have $\theta=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n-1}=\alpha_{1}^{n-1}$.
5.1 V's and Λ 's

The support $\operatorname{Supp}(b)$ of a word b is the set of letters appearing in the word. For a permutation $w, \operatorname{Supp}(w)$ is the support of any reduced word of w. A V is a reduced word (for some permutation) that decreases to a minimum and increases thereafter. Special cases of V 's include the empty word, any increasing word and any decreasing word. A Λ is a reduced word that increases to a maximum and decreases thereafter. A (reverse) N is a reduced word consisting of a V followed by a Λ, such that the support of the V is contained in the support of the Λ. For example, the words 32012, 23521 , and 32012453 are a V, Λ, and N, respectively.

By abuse of language, we say a permutation is a V if it admits a reduced word that is a V. We use similar terminology for Λ 's and N 's.

A permutation is connected if its support is connected (that is, is a subinterval of the integers). The following basic facts are left as an exercise.

Lemma 16 A permutation that is a V, admits a unique reduced word that is a V. Similarly for a connected Λ or a connected N.

Lemma 17 A connected permutation is a V if and only if it is a, if and only if it is an N.
$5.2 t_{q}$-factorizations
For $0 \leq q \leq n-2$, we call

$$
\begin{equation*}
q(q-1) \cdots 101 \cdots(n-1)(n-2) \cdots(q+1) \tag{41}
\end{equation*}
$$

the standard reduced word for t_{q}. Since this word is an N it follows that any $x \leq t_{q}$ is an N. We call the subwords $q(q-1) \cdots 1,12 \cdots(n-2)$ and $(n-2) \cdots(q+1)$ the left, middle, and right branches.

Lemma 18 If $x \in \tilde{S}_{n}$ admits a reduced word in which $i+1$ precedes i for some $i \in \mathbb{Z} / n \mathbb{Z}$ then $x \not \leq t_{i}$.

Proof Suppose $x \leq t_{i}$. Since the standard reduced word of t_{i} has all occurrences of i preceding all occurrences of $i+1$, it follows that x has a reduced word with that property. But this property is invariant under the braid relation and the commuting relation, which connect all reduced words of x.

Let $c(x)$ denote the number of connected components of $\operatorname{Supp}(x)$. If J and J^{\prime} are subsets of integers then we write $J<J^{\prime}-1$ if $\max (J)<\min \left(J^{\prime}\right)-1$. The following result follows easily from the definitions.

Lemma 19 Suppose $x \leq t_{q}$. Then x has a unique factorization $x=v_{1} \cdots v_{r} y_{1} \times$ $y_{2} \cdots y_{s}$, called the q-factorization, where each v_{i}, y_{i} has connected support such that
(1) $\operatorname{Supp}\left(v_{i}\right)<\operatorname{Supp}\left(v_{i+1}\right)-1$ and $\operatorname{Supp}\left(y_{i}\right)<\operatorname{Supp}\left(y_{i+1}\right)-1$
(2) $\operatorname{Supp}\left(v_{1} \cdots v_{r}\right) \subset[0, q]$
(3) $\operatorname{Supp}\left(y_{1} \cdots y_{s}\right) \subset[q+1, n-1]$
(4) Each v_{i} is a V
(5) Each y_{i} is a Λ.

We say that v_{r} and y_{1} touch if $q \in \operatorname{Supp}\left(v_{r}\right)$ and $q+1 \in \operatorname{Supp}\left(y_{1}\right)$. We denote

$$
\epsilon(x, q)= \begin{cases}1 & \text { if } v_{r} \text { and } y_{1} \text { touch } \tag{42}\\ 0 & \text { otherwise }\end{cases}
$$

Note that $\epsilon(x, q)$ depends only on $\operatorname{Supp}(x)$ and q.
Each k in the q-factorization of $x \leq t_{q}$, is (S1) in the left branch of some v_{i}, or (S2) in the right branch of some v_{i}, or (S3) at the bottom of a v_{i}, or ($\mathrm{S} 1^{\prime}$) in the left branch of some y_{i}, or ($\mathrm{S} 2^{\prime}$) in the right branch of some y_{i}, or $\left(\mathrm{S}^{\prime}\right)$ at the top of a y_{i}. We call these sets $S 1, S 2, S 3, S 1^{\prime}, S 2^{\prime}$, and $S 3^{\prime}$. Note that k can belong to both $S 1$ and $S 2$, or both $S 1^{\prime}$ and $S 2^{\prime}$.

For each x and each q such that $x \leq t_{q}$, we define the polynomials

$$
M(x, q)=\left(\alpha_{0}^{q}\right)^{\epsilon(x, q)} \prod_{k \in S 2} \alpha_{0}^{k-1} \prod_{k \in S 1^{\prime}} \alpha_{0}^{k}
$$

$$
\begin{aligned}
& L(x, q)=\prod_{k \in S 1} \alpha_{k}^{q} \\
& R(x, q)=\prod_{k \in S 2^{\prime}}\left(-\alpha_{q+1}^{k}\right) .
\end{aligned}
$$

We also define $R(x, q, m)=\prod_{k \in S 2^{\prime} \cap[m, n-1]}\left(-\alpha_{q+1}^{k}\right)$.
5.3 The equivariant Pieri rule

Let

$$
\begin{equation*}
\left\{q \in[0, m-1] \mid x \leq t_{q}\right\}=\left\{q_{1}<q_{2}<\cdots<q_{p}\right\} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i}=\alpha_{1+q_{i}}^{q_{i+1}} \tag{44}
\end{equation*}
$$

be the root associated with the reflection $r_{\beta_{i}}$ that exchanges the numbers $1+q_{i}$ and $1+q_{i+1}$. For a root β and $f \in S$ define

$$
\partial_{\beta} f=\beta^{-1}\left(f-r_{\beta} f\right)
$$

Theorem 20 We have

$$
j_{\sigma_{m}}^{x}=(-1)^{\ell(x)-m+p-1} M\left(x, q_{1}\right) \partial_{\beta_{p-1}} \cdots \partial_{\beta_{2}} \partial_{\beta_{1}} Y(x, m)
$$

where $Y(x, m)=\left(\alpha_{0}^{q_{1}}\right)^{c(x)-1} R\left(x, q_{1}, m\right)$.
The proof of Theorem 20 is given in Sect. 6.

5.4 Positive formula

Define $\tilde{S 2} 2^{\prime}=S 2^{\prime} \cap[m, n-1]$, and let $K=\tilde{S 2}{ }^{\prime} \cup\{n-1, \ldots, n-1\}=\left\{k_{1} \geq k_{2} \geq\right.$ $\left.\cdots \geq k_{d}\right\}$ be the multiset where the element $(n-1)$ is added to $\tilde{S}^{\prime}(c(x)-1)$ times.

Theorem 21

$$
\begin{equation*}
j_{\sigma_{m}}^{x}=\left(\alpha_{q_{1}+1}^{n-1}\right)^{\epsilon(x, q)} \prod_{k \in S 2} \alpha_{k}^{n-1} \prod_{k \in S 1^{\prime}} \alpha_{k+1}^{n-1} \sum_{\substack{R \subset[1,|K|] i \in[1,|K|] \backslash R \\|R|=p-1}} \prod_{q_{s}(i, R)+1}^{k_{k}} \tag{45}
\end{equation*}
$$

where $s(i, R)=\#\{r \in R \mid i<r\}+1$.
The proof of Theorem 21 is given in Sect. 6.
Example 22 Let $n=8, m=4$, and $x=r_{0} r_{4} r_{5} r_{7} r_{4} r_{2} r_{1}$. The components of $\operatorname{Supp}(x)$ are [0, 2], [4, 5], and [7] so that $c(x)=3$. We have $p=3$ with $\left(q_{1}, q_{2}, q_{3}\right)=(0,2,3)$, $v_{1}=r_{0}, y_{1}=r_{2} r_{1}, y_{2}=r_{4} r_{5} r_{4}, y_{3}=r_{7}, \epsilon\left(x, q_{1}\right)=1, S 1=S 2=\emptyset, S 3=\{0\}, S 1^{\prime}=$ $\{4\}, S 2^{\prime}=\{1,4\}, S 3^{\prime}=\{2,5,7\}, S 2^{\prime} \cap[m, n-1]=\{4\}$. Thus $K=\{7,7,4\}$. Then writing $\alpha_{a}^{b}=x_{a}-x_{b+1}$, and noting that $\alpha_{0}^{n-1}=0$, Theorem 20 yields

$$
\begin{aligned}
j_{\sigma_{m}}^{x}= & \left(\alpha_{1}^{7}\right)^{1} \alpha_{5}^{7} \partial_{\alpha_{3}} \partial_{\alpha_{1}+\alpha_{2}}\left(\alpha_{1}^{7}\right)^{2} \alpha_{1}^{4} \\
= & \left(x_{1}-x_{8}\right)\left(x_{5}-x_{8}\right) \partial_{x_{3}-x_{4}} \partial_{x_{1}-x_{3}}\left(x_{1}-x_{8}\right)^{2}\left(x_{1}-x_{5}\right) \\
= & \left(x_{1}-x_{8}\right)\left(x_{5}-x_{8}\right) \partial_{x_{3}-x_{4}}\left(\left(x_{1}-x_{8}\right)\left(x_{1}-x_{5}\right)+\left(x_{3}-x_{8}\right)\left(x_{1}-x_{5}\right)\right. \\
& \left.+\left(x_{3}-x_{8}\right)^{2}\right) \\
= & \left(x_{1}-x_{8}\right)\left(x_{5}-x_{8}\right)\left(\left(x_{1}-x_{5}\right)+\left(x_{3}-x_{8}\right)+\left(x_{4}-x_{8}\right)\right) \\
= & \left(\alpha_{1}^{7}\right)\left(\alpha_{5}^{7}\right)\left(\alpha_{1}^{4}+\alpha_{3}^{7}+\alpha_{4}^{7}\right)
\end{aligned}
$$

agreeing with Theorem 21.

6 Proof of Theorems 20 and 21

6.1 Simplifying (37)

Let $0 \leq q \leq m-1$. By (14) and Lemma 2 we have

$$
\begin{aligned}
\xi^{\hat{\sigma}_{m} r_{\theta}}\left(\hat{\sigma}_{q+1} r_{\theta}\right) & =u_{q+1}^{m-1} \cdot \xi^{\hat{\sigma}_{m} r_{\theta}}\left(\hat{\sigma}_{m} r_{\theta}\right) \\
& =(-1)^{m} u_{q+1}^{m-1} \hat{\sigma}_{m} r_{\theta} \cdot \xi^{r_{\theta}} \hat{\sigma}_{m}^{-1}\left(r_{\theta} \hat{\sigma}_{m}^{-1}\right) \\
& =(-1)^{m} \hat{\sigma}_{q+1} r_{\theta} \cdot \xi^{r} \hat{\sigma}_{m}^{-1}\left(r_{\theta} \hat{\sigma}_{m}^{-1}\right)
\end{aligned}
$$

We also have

$$
\begin{aligned}
\xi^{t_{q}}\left(t_{q}\right) & =\xi^{\sigma_{q+1}}\left(\sigma_{q+1}\right)\left(\sigma_{q+1} \cdot \xi^{r_{\theta}} \hat{\sigma}_{m}^{-1}\left(r_{\theta} \hat{\sigma}_{m}^{-1}\right)\right)\left(\sigma_{q+1} r_{\theta} \hat{\sigma}_{m}^{-1} \cdot \xi^{d_{q+1}^{m-1}}\left(d_{q+1}^{m-1}\right)\right) \\
& =\xi^{\sigma_{q+1}}\left(\sigma_{q+1}\right)\left(\hat{\sigma}_{q+1} r_{\theta} \cdot \xi^{r_{\theta} \hat{\sigma}_{m}^{-1}}\left(r_{\theta} \hat{\sigma}_{m}^{-1}\right)\right)\left(u_{q+1}^{m-1} \cdot \xi^{d_{q+1}^{m-1}}\left(d_{q+1}^{m-1}\right)\right) \\
& =(-1)^{m-q-1} \xi^{\sigma_{q+1}}\left(\sigma_{q+1}\right)\left(\hat{\sigma}_{q+1} r_{\theta} \cdot \xi^{r_{\theta}} \hat{\sigma}_{m}^{-1}\left(r_{\theta} \hat{\sigma}_{m}^{-1}\right)\right) \xi_{q+1}^{u_{q+1}^{m-1}}\left(u_{q+1}^{m-1}\right)
\end{aligned}
$$

Define

$$
\begin{equation*}
D(q, m)=\xi^{\sigma_{q+1}}\left(\sigma_{q+1}\right) \xi^{\xi_{q+1}^{m-1}}\left(u_{q+1}^{m-1}\right) . \tag{46}
\end{equation*}
$$

so that by Theorem 15,

$$
\begin{equation*}
j_{\sigma_{m}}^{x}=(-1)^{\ell(x)} \sum_{q=0}^{m-1} \frac{(-1)^{q+1}}{D(q, m)} \xi^{x}\left(t_{q}\right) . \tag{47}
\end{equation*}
$$

Explicitly we have

$$
\begin{gather*}
\xi^{\sigma_{q+1}}\left(\sigma_{q+1}\right)=\alpha_{q} \alpha_{q-1}^{q} \cdots \alpha_{1}^{q} \alpha_{0}^{q} \tag{48}\\
\xi^{u_{q+1}^{m-1}}\left(u_{q+1}^{m-1}\right)=\alpha_{q+1} \alpha_{q+1}^{q+2} \cdots \alpha_{q+1}^{m-1} . \tag{49}
\end{gather*}
$$

6.2 Evaluation at t_{q}

Proposition 23 If $x \leq t_{q}$, then

$$
\begin{equation*}
\xi^{x}\left(t_{q}\right)=\left(\alpha_{0}^{q}\right)^{c(x)} M(x, q) L(x, q) R(x, q) . \tag{50}
\end{equation*}
$$

Proof We compute $\xi^{x}\left(t_{q}\right)$ using (14) by computing all embeddings of reduced words of x into the standard reduced word (41) of t_{q}. We refer to the q-factorization of x. Each $k \in S 1$ must embed into the left branch of the N, and has associated root α_{k}^{q}. Each $k \in S 2$ embeds into the middle branch of the N and has associated root α_{0}^{k-1}. Each $k \in S 1^{\prime}$ embeds into the middle branch of the N and has associated root α_{0}^{k}. Each $k \in S 2^{\prime}$ embeds into the right branch of the N and has associated root $-\alpha_{q+1}^{k}$. Each $k \in S 3$ is either 0 and has associated root α_{0}^{q}, or can be embedded into the left or middle branch of the N, and the sum of the two associated roots for these positions is $\alpha_{k}^{q}+\alpha_{0}^{k-1}=\alpha_{0}^{q}$. Each $k \in S 3^{\prime}$ is either $n-1$, which has associated root $-\alpha_{q+1}^{n-1}=\alpha_{0}^{q}$, or can be embedded into the middle or right branch of the N, and the sum of associated roots is $\alpha_{0}^{k}-\alpha_{q+1}^{k}=\alpha_{0}^{q}$. Since all the various choices for embeddings of elements of $S 3$ and $S 3^{\prime}$ can be varied independently, the value of $\xi^{x}\left(t_{q}\right)$ is the product of the above contributions. Each minimum of a v_{i} and maximum of a y_{j} contributes α_{0}^{q}. If there is a component of x which contains both q and $q+1$ (that is, if v_{r} and y_{1} touch) then it is unique and contributes two copies of α_{0}^{q}. All this yields (50).

6.3 Rotations

We now relate $\xi^{x}\left(t_{q}\right)$ with $\xi^{x}\left(t_{q^{\prime}}\right)$. Let $r_{p, q}$ denote the transposition that exchanges the integers p and q.

Proposition 24 Let $x \leq t_{q}$ and consider the q-factorization of x. Let a be such that this reduced word of x contains the decreasing subword $(q+a)(q+a-1) \cdots(q+1)$ but not $(q+a+1)(q+a) \cdots(q+1)$. If $q+1 \notin \operatorname{Supp}(x)$, then set $a=1$. Then

$$
\begin{equation*}
\xi^{x}\left(t_{q+1}\right)=\xi^{x}\left(t_{q+2}\right)=\cdots=\xi^{x}\left(t_{q+a-1}\right)=0 \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{x}\left(t_{q+a}\right)=M(x, q) r_{1+q, 1+q+a}\left(\alpha_{0}^{q}\right)^{c(x)} L(x, q) R(x, q) \tag{52}
\end{equation*}
$$

Let y^{\uparrow} denote y with every r_{i} changed to r_{i+1}. The following lemma follows easily by induction.

Lemma 25 Let y be increasing with support in $[b, a-1]$. Then

$$
y d_{b}^{a}=d_{b}^{a} y^{\uparrow}
$$

Proof of Proposition 24 We assume that $q+1 \in \operatorname{Supp}(x)$, for otherwise the claim is easy.

By Lemma 18 we have $x \not \leq t_{q+i}$ for $1 \leq i \leq a-1$. Equation (51) follows from (15). We now prove (52). The first goal is to compute the $q+a$-factorization of x. Since $x \leq t_{q}$ we may consider the q-factorization of x. The decreasing word $(q+$ $a-1) \cdots(q+2)(q+1)$ must embed into the right hand branch, that is, $[q+1, q+$ $a-1] \subset S 2^{\prime}$. The hypotheses imply that $q+a \notin S 2^{\prime}$. There are two cases: either $q+a \in S 1^{\prime}$ or $q+a \in S 3^{\prime}$ (so that $q+a+1 \notin \operatorname{Supp}(x)$). We treat the former case, as the latter is similar: the two cases correspond to the touching and nontouching cases for the $q+a$-factorization of x, whose existence we now demonstrate.

Suppose $q+a \in S 1^{\prime}$. Then there is a y_{1}^{\prime} with $\operatorname{Supp}\left(y_{1}^{\prime}\right) \subset[q+a+1, n-1]$ and a y with an increasing reduced word such that $\operatorname{Supp}(y) \subset[q+1, q+a-1]$ and $y_{1}=y r_{q+a} y_{1}^{\prime} d_{q+1}^{q+a-1}=y d_{q+1}^{q+a} y_{1}^{\prime}$. Suppose v_{r} and y_{1} touch. Then $v_{r}^{\prime}:=v_{r} y d_{q+1}^{q+a}$ is an N and therefore a V. Moreover $x \leq t_{q+a}$ since x has a $q+a$-factorization given by the q-factorization of x but with v_{r} and y_{1} replaced by v_{r}^{\prime} and y_{1}^{\prime}, respectively. To verify that v_{r}^{\prime} is a V, by the touching assumption, $q \in \operatorname{Supp}\left(v_{r}\right)$ and we have $v_{r}^{\prime}=v_{r} y d_{q+1}^{q+a}=v_{r} d_{q+1}^{q+a} y^{\uparrow}=d_{q+2}^{q+a} v_{r} r_{q+1} y^{\uparrow}$ which expresses v_{r}^{\prime} in a V.

Suppose v_{r} and y_{1} do not touch, that is, $q \notin \operatorname{Supp}\left(v_{r}\right)$. We have the V given by $v_{r+1}^{\prime}=y d_{q+1}^{q+a}=d_{q+1}^{q+a} y^{\uparrow}$. Then $x \leq t_{q+a}$, as x has the $q+a$ factorization given by the q-factorization of x except that there is a new V, namely, v_{r+1}^{\prime} and the first y is y_{1}^{\prime} instead of y_{1}.

In every case we calculate that

$$
\begin{aligned}
M(x, q+a) & =M(x, q) \\
L(x, q+a) & =\left(\prod_{k=q+2}^{q+a} \alpha_{k}^{q+a}\right) d_{q+1}^{q+a} L(x, q) \\
R(x, q+a) & =d_{q+1}^{q+a}\left(\prod_{k=q+1}^{q+a-1}\left(-\alpha_{q+1}^{k}\right)^{-1}\right) R(x, q) \\
& =\left(\prod_{k=q+1}^{q+a-1}\left(\alpha_{k}^{q+a}\right)^{-1}\right) d_{q+1}^{q+a} R(x, q)
\end{aligned}
$$

The calculation for L and R follows from the fact that $[q+2, q+a] \subset S 1_{q+a}$, but $[q+1, q+a-1] \subset S 2_{q}^{\prime}$. The calculation for M follows from the fact that $\operatorname{Supp}(y) \subset$ $S 2_{q}$ and $\operatorname{Supp}\left(y^{\uparrow}\right) \subset S 2_{q+a}$, together with the following boundary cases:

If $q+a+1 \in \operatorname{Supp}(x)$ then $q+a \in S 1_{q+a} \cap S 1_{q}^{\prime}$. Thus $q+a$ contributes a factor of α_{0}^{q+a} to $M(x, q)$. This factor appears in $M(x, q+a)$ as the factor $\left(\alpha_{0}^{q+a}\right)^{\epsilon(x, q+a)}$, since $\epsilon(x, q+a)=1$.

If $q \in \operatorname{Supp}(x)$ one has $\epsilon(x, q)=1$ and $q+1 \in S 2_{q+a}$ contributes a factor of α_{0}^{q} to $M(x, q+a)$. This factor appears in $M(x, q)$ as the factor $\left(\alpha_{0}^{q}\right)^{\epsilon(x, q)}=\alpha_{0}^{q}$.

Using that $d_{q+1}^{q+a} \alpha_{0}^{q}=\alpha_{0}^{q+a}, d_{q+1}^{q+a}\left(-\alpha_{q+1}^{q+a}\right)=\alpha_{q+a}$, and $r_{1+q, 1+q+a} \alpha_{q+1}^{q+a}=$ $-\alpha_{q+1}^{q+a}$, the above relations between $M(x, q), L(x, q), R(x, q)$ and their counter-
parts for $q+a$, together with Proposition 23, yield

$$
\xi^{x}\left(t_{q+a}\right)=\left(\alpha_{q+1}^{q+a}\right)^{-1} M(x, q) d_{q+1}^{q+a}\left(-\alpha_{q+1}^{q+a}\right)\left(\alpha_{0}^{q}\right)^{c(x)} L(x, q) R(x, q)
$$

To obtain (52), since $r_{1+q, 1+q+a}=d_{q+1}^{q+a} u_{q+2}^{q+a}$, it suffices to show that

$$
\left(-\alpha_{q+1}^{q+a}\right)\left(\alpha_{0}^{q}\right)^{c(x)} L(x, q) R(x, q) \text { is invariant under } u_{q+2}^{q+a}
$$

However, it is clear that α_{0}^{q} and $L(x, q)$ are invariant, and the only part of $R(x, q)$ that must be checked is the product $\prod_{k \in S 2^{\prime} \cap[q+1, q+a]}\left(-\alpha_{q+1, k}\right)$. However, we have $S 2^{\prime} \cap[q+1, q+a]=[q+1, q+a-1]$, and indeed the product $\prod_{k=q+1}^{q+a}\left(-\alpha_{q+1}^{k}\right)$ is invariant under u_{q+2}^{q+a}, as required.

Recall the definition of q_{j} from (43). In light of the proof of Proposition 24, we write

$$
\begin{equation*}
M(x)=M\left(x, q_{j}\right) \quad \text { for any } 1 \leq j \leq p \tag{53}
\end{equation*}
$$

Recall the definition of β_{i} from (44). For $i \leq j$ we also define

$$
\beta_{i}^{j}=\beta_{i}+\beta_{i+1}+\cdots+\beta_{j}=\alpha_{q_{i}+1}^{q_{j+1}}
$$

Let

$$
\begin{equation*}
Y_{i}(x, m)=\left(\alpha_{0}^{q_{i}}\right)^{c(x)-1} R\left(x, q_{i}, m\right) \quad \text { for } 1 \leq i \leq p \tag{54}
\end{equation*}
$$

so that $Y_{i}(x, m)=r_{\beta_{i-1}} Y_{i-1}(x, m)$.
Recall the definitions of $D(q, m)$ and $Y_{i}(x, m)$ from (46).

Lemma 26

$$
(-1)^{m-1-q_{j}-p+j} \frac{\xi^{x}\left(t_{q_{j}}\right)}{D\left(q_{j}, m\right)}=\frac{M(x) Y_{j}(x, m)}{\left(\beta_{1}^{j-1} \beta_{2}^{j-1} \cdots \beta_{j-1}^{j-1}\right)\left(\beta_{j}^{j} \beta_{j}^{j+1} \cdots \beta_{j}^{p-1}\right)}
$$

Proof The proof proceeds by induction on j. Let D_{j} be the denominator of the right hand side. Suppose first that $j=1$. Consider the embedding of x into $t_{q_{1}}$. By the definition of q_{1}, it follows that $L\left(x, q_{1}\right) \alpha_{0}^{q_{1}}=\xi^{\sigma_{q_{1}+1}}\left(\sigma_{q_{1}+1}\right)$. By the definition of the q_{j}, we also have $S 2^{\prime} \cap\left[q_{1}+1, m-1\right]=\left[q_{1}+1, m-1\right] \backslash\left\{q_{2}, q_{3}, \ldots, q_{p}\right\}$. These considerations and Proposition 23 imply that

$$
\begin{aligned}
\xi^{x}\left(t_{q_{1}}\right) & =\left(\alpha_{0}^{q_{1}}\right)^{c(x)} M(x) L\left(x, q_{1}\right) R\left(x, q_{1}\right) \\
& =(-1)^{m-1-q_{1}}\left(\alpha_{0}^{q_{1}}\right)^{c(x)} M(x) D\left(q_{1}, m\right) R\left(x, q_{1}, m\right) \prod_{j=2}^{p}\left(-\alpha_{q_{1}+1}^{q_{j}}\right)^{-1} \\
& =(-1)^{m-1-q_{1}-p+1} D\left(q_{1}, m\right) M(x) Y_{1}(x, m) D_{1}^{-1} .
\end{aligned}
$$

This proves the result for $j=1$. Suppose the result holds for $1 \leq j \leq p-1$. We show it holds for $j+1$. By induction we have

$$
\left(\alpha_{0}^{q_{j}}\right)^{c(x)} L\left(x, q_{j}\right) R\left(x, q_{j}\right)=\frac{D\left(q_{j}, m\right) Y_{j}(x, m)}{D_{j}}
$$

Proposition 24 yields

$$
\begin{aligned}
\frac{\xi^{x}\left(t_{q_{j+1}}\right)}{D\left(q_{j+1}, m\right)} & =\frac{M(x) r_{\beta_{j}}\left(\alpha_{0}^{q_{j}}\right)^{c(x)} L\left(x, q_{j}\right) R\left(x, q_{j}\right)}{D\left(q_{j+1}, m\right)} \\
& =\frac{M(x)}{D\left(q_{j+1}, m\right)} r_{\beta_{j}} \frac{D\left(q_{j}, m\right) Y_{j}(x, m)}{D_{j}} \\
& =\frac{M(x) Y_{j+1}(x, m)}{D\left(q_{j+1}, m\right)} r_{\beta_{j}} \frac{D\left(q_{j}, m\right)}{D_{j}} .
\end{aligned}
$$

It remains to show

$$
(-1)^{q_{j+1}-q_{j}-1} \frac{D\left(q_{j+1}, m\right)}{D_{j+1}}=r_{\beta_{j}} \frac{D\left(q_{j}, m\right)}{D_{j}} .
$$

We have $D\left(q_{j}, m\right)=\prod_{k=0}^{q_{j}} \alpha_{k}^{q_{j}} \prod_{k=q_{j}+1}^{m-1} \alpha_{q_{j}+1}^{k}$. For $k \in\left[0, q_{j}\right]$ we have $r_{\beta_{j}} \alpha_{k}^{q_{j}}=$ $\alpha_{k}^{q_{j+1}}$. For $k \in\left[q_{j}+1, q_{j+1}-1\right]$ we have $r_{\beta_{j}} \alpha_{q_{j}+1}^{k}=-\alpha_{k+1}^{q_{j+1}}, r_{\beta_{j}} \alpha_{q_{j}+1}^{q_{j+1}}=-\alpha_{q_{j}+1}^{q_{j+1}}$, and for $k \in\left[q_{j+1}+1, m-1\right]$ we have $r_{\beta_{j}} \alpha_{q_{j}+1}^{k}=\alpha_{q_{j+1}+1}^{k}$. Therefore

$$
\begin{aligned}
r_{\beta_{j}} D\left(q_{j}, m\right) & =(-1)^{q_{j+1}-q_{j}} \prod_{k=0}^{q_{j}} \alpha_{k}^{q_{j+1}} \prod_{k=q_{j}}^{q_{j+1}-1} \alpha_{k+1}^{q_{j+1}} \prod_{k=q_{j+1}+1}^{m-1} \alpha_{q_{j+1}+1}^{k} \\
& =(-1)^{q_{j+1}-q_{j}} D\left(q_{j+1}, m\right) .
\end{aligned}
$$

We also have $r_{\beta_{j}} \beta_{j-1}^{i}=\beta_{j}^{i}$ for $1 \leq i \leq j-1$ and $r_{\beta_{j}} \beta_{j}^{i}=\beta_{j+1}^{i}$ for $j+1 \leq i \leq p-1$. Therefore

$$
r_{\beta_{j}} D_{j}=\left(\prod_{i=1}^{j-1} \beta_{i}^{j}\right)\left(-\beta_{j}\right)\left(\prod_{i=j+1}^{p-1} \beta_{j+1}^{i}\right)=-D_{j+1}
$$

The following result is immediate from the definitions.
Lemma $27 r_{\beta_{j}} Y_{i}(x, m)=Y_{i}(x, m)$ for $j \geq i+2$.

6.4 Proof of Theorem 20

Note that if $r_{\beta_{j+1}} Y=Y$ and $i \leq j$ then

$$
\frac{1}{\beta_{j+1}}\left(1-r_{\beta_{j+1}}\right) \frac{Y}{\beta_{i}^{j}}=\frac{Y}{\beta_{i}^{j} \beta_{i}^{j+1}}
$$

So using Lemma 27 we have

$$
\begin{aligned}
& \partial_{\beta_{p-1}} \cdots \partial_{\beta_{2}} \partial_{\beta_{1}} Y(x, m) \\
&= \frac{1}{\beta_{p-1}}\left(1-r_{\beta_{p-1}}\right) \cdots \frac{1}{\beta_{1}}\left(1-r_{\beta_{1}}\right) Y_{1}(x, m) \\
&= \frac{1}{\beta_{p-1}}\left(1-r_{\beta_{p-1}}\right) \cdots \frac{1}{\beta_{2}}\left(1-r_{\beta_{2}}\right)\left(\frac{Y_{1}(x, m)}{\beta_{1}}-\frac{Y_{2}(x, m)}{\beta_{1}}\right) \\
&= \frac{1}{\beta_{p-1}}\left(1-r_{\beta_{p-1}}\right) \cdots \frac{1}{\beta_{3}}\left(1-r_{\beta_{3}}\right)\left(\frac{Y_{1}(x, m)}{\beta_{1} \beta_{1}^{2}}-\frac{Y_{2}(x, m)}{\beta_{1} \beta_{2}}+\frac{Y_{3}(x, m)}{\beta_{1}^{2} \beta_{2}}\right) \\
&= \cdots \\
&= \frac{Y_{1}(x, m)}{\beta_{1} \beta_{1}^{2} \cdots \beta_{1}^{p-1}}-\frac{Y_{2}(x, m)}{\beta_{1} \beta_{2} \beta_{2}^{3} \cdots \beta_{2}^{p-1}}+\cdots \\
&+(-1)^{j} \frac{Y_{j+1}(x, m)}{\beta_{1}^{j} \cdots \beta_{j-1}^{j} \beta_{j} \beta_{j+1} \beta_{j+1}^{j+2} \cdots \beta_{j+1}^{p-1}} \\
&+\cdots+(-1)^{p-1} \frac{Y_{p}(x, m)}{\beta_{1}^{p-1} \cdots \beta_{p-2}^{p-1} \beta_{p-1}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
M(x) \partial_{\beta_{p-1}} \cdots \partial_{\beta_{2}} \partial_{\beta_{1}} Y(x, m) & =\sum_{j=1}^{p}(-1)^{j-1} \frac{M(x) Y_{j}(x, m)}{D_{j}} \\
& =(-1)^{m-p} \sum_{j=1}^{p}(-1)^{q_{j}} \frac{\xi^{x}\left(t_{q_{j}}\right)}{D\left(q_{j}, m\right)} \\
& =(-1)^{m-p} \sum_{i=0}^{m-2}(-1)^{i} \frac{\xi^{x}\left(t_{i}\right)}{D(i, m)} \\
& =(-1)^{m-p+1}(-1)^{\ell(x)} j_{\sigma_{m}}^{x}
\end{aligned}
$$

by (47), as required.

6.5 Proof of Theorem 21

We first count the gratuitous negative signs in $M(x)=M\left(x, q_{1}\right)$ and $Y(x, m)$. Letting $q=q_{1}$, using the q_{1}-factorization of x, and recalling that $\tilde{S 2^{\prime}}=S 2^{\prime} \cap[m, n-1]$, this number is

$$
\begin{aligned}
& \epsilon(x, q)+|S 2|+\left|S 1^{\prime}\right|+c(x)-1+\left|\tilde{S 2}^{\prime}\right| \\
& \quad=|S 2|+\left|S 1^{\prime}\right|+|S 3|+\left|S 3^{\prime}\right|-1+\left|\tilde{S 2^{\prime}}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\ell(x)-1-|S 1|-\left|S 2^{\prime} \backslash \tilde{S 2^{\prime}}\right| \\
& =\ell(x)-1-q_{1}-\left|\left[q_{1}+1, m-1\right] \backslash\left\{q_{2}, q_{3}, \ldots, q_{p}\right\}\right| \\
& =\ell(x)-1-q_{1}-\left(m-1-q_{1}-(p-1)\right) \\
& =\ell(x)-m+p-1 .
\end{aligned}
$$

Therefore all signs cancel and we have

$$
\begin{equation*}
j_{\sigma_{m}}^{x}=\left(\alpha_{q+1}^{n-1}\right)^{\epsilon(x, q)} \prod_{k \in S 2} \alpha_{k}^{n-1} \prod_{k \in S 1^{\prime}} \alpha_{k+1}^{n-1} \partial_{\beta_{p-1}} \cdots \partial_{\beta_{1}}\left(\alpha_{q+1}^{n-1}\right)^{c(x)-1} \prod_{k \in \tilde{S 2^{\prime}}} \alpha_{q+1}^{k} \tag{55}
\end{equation*}
$$

Let x_{i} be the standard basis of the finite weight lattice \mathbb{Z}^{n} with $\alpha_{i}=x_{i}-x_{i+1}$. Then $r_{\beta_{j}}$ acts by exchanging $x_{q_{j}+1}$ and $x_{q_{j+1}+1}$. Let us write

$$
Z=\left(\alpha_{q+1}^{n-1}\right)^{c(x)-1} \prod_{k \in \tilde{S} 2^{\prime}} \alpha_{q+1}^{k}=\alpha_{q+1}^{k_{1}} \alpha_{q+1}^{k_{2}} \cdots \alpha_{q+1}^{k_{d}}=\prod_{i=1}^{d}\left(x_{q_{1}+1}-x_{k_{i}+1}\right)
$$

where $n-1 \geq k_{1} \geq k_{2} \geq \cdots \geq k_{d} \geq m$. Note that $q_{j}+1 \leq q_{p}+1 \leq m$. Since

$$
\partial_{i} \cdot(f g)=\left(\partial_{i} \cdot f\right) g+\left(r_{i} \cdot f\right)\left(\partial_{i} \cdot g\right),
$$

and since $\partial_{i} 1=0$, we have

$$
\begin{aligned}
\partial_{\beta_{1}} Z= & \left(\partial_{\beta_{1}} \cdot\left(x_{q_{1}+1}-x_{k_{1}+1}\right)\right)\left(x_{q_{1}+1}-x_{k_{2}+1}\right) \cdots\left(x_{q_{1}+1}-x_{k_{d}+1}\right) \\
& +\left(x_{q_{2}+1}-x_{k_{1}+1}\right)\left(\partial_{\beta_{1}} \cdot\left(x_{q_{1}+1}-x_{k_{2}+1}\right)\right)\left(x_{q_{1}+1}-x_{k_{3}+1}\right) \cdots\left(x_{q_{1}+1}-x_{k_{d}+1}\right) \\
& +\cdots \\
& +\left(x_{q_{2}+1}-x_{k_{1}+1}\right) \cdots\left(x_{q_{2}+1}-x_{k_{d-1}}\right) \partial_{\beta_{1}}\left(x_{q_{1}+1}-x_{k_{d}+1}\right) \\
= & \sum_{i=1}^{d}\left(x_{q_{2}+1}-x_{k_{1}+1}\right) \cdots\left(x_{q_{2}+1}-x_{k_{i-1}+1}\right) \\
& \times\left(x_{q_{1}+1}-x_{k_{i+1}+1}\right) \cdots\left(x_{q_{1}+1}-x_{k_{d}+1}\right) .
\end{aligned}
$$

So $\partial_{\beta_{1}}$ can act on any factor (giving the answer 1 and thus effectively removing the factor), and to the left each variable $x_{q_{1}+1}$ is reflected to $x_{q_{2}+1}$. Next we apply $\partial_{\beta_{2}}$. It kills any factor $x_{q_{1}+1}-x_{k_{i}+1}$. Therefore we may assume it acts on a factor of the form $x_{q_{2}+1}-x_{k_{i}+1}$ which is to the left of the factor removed by $\partial_{\beta_{1}}$. Continuing in this manner we see that $\partial_{\beta_{p-1}} \cdots \partial_{\beta_{1}} Z$ is the sum of products of positive roots, where a given summand corresponds to the selection of $p-1$ of the factors, which are removed, and between the r th and $r+1$ th removed factor from the right, an original factor $x_{q_{1}+1}-x_{k_{i}+1}$ is changed to $x_{q_{r+1}+1}-x_{k_{i}+1}$.

It follows that Theorem 20 yields Theorem 21.

Acknowledgements T.L. was supported by NSF grant DMS-0901111, and by a Sloan Fellowship. M.S. was supported by NSF DMS-0652641 and DMS-0652648.

Appendix A: Proof of Theorem 15

In this section we assume that $G=S L_{n}$ and prove (36).
The matrices M and N are easily seen to be lower triangular. We first check the diagonal:

$$
\begin{aligned}
M_{p p} N_{p p} & =(-1)^{p^{\prime}} \xi^{\sigma_{p}}\left(\sigma_{p}\right) \xi^{\hat{\sigma}_{p} r_{\theta}}\left(\hat{\sigma}_{p} r_{\theta}\right) \\
& =\xi^{\sigma_{p}}\left(\sigma_{p}\right)\left(\hat{\sigma}_{p} r_{\theta} \cdot \xi^{r_{\theta} \hat{\sigma}_{p}^{-1}}\left(r_{\theta} \hat{\sigma}_{p}^{-1}\right)\right) \\
& =\xi^{\sigma_{p}}\left(\sigma_{p}\right)\left(\sigma_{p} \cdot \xi^{r_{\theta} \hat{\sigma}_{p}^{-1}}\left(r_{\theta} \hat{\sigma}_{p}^{-1}\right)\right) \\
& =\xi^{t_{p-1}}\left(t_{p-1}\right)
\end{aligned}
$$

by (2), (4), and Lemma 1.
It remains to check below the diagonal. Let $p>q$ and $p \geq k \geq q$. We have

$$
\begin{aligned}
M_{p k} & =(-1)^{k} \xi^{\sigma_{k}}\left(\sigma_{p}\right) \\
& =(-1)^{k} d_{k}^{p-1} \cdot \xi^{\sigma_{k}}\left(\sigma_{k}\right) \\
& =(-1)^{k} d_{k}^{p-1} \cdot\left(\xi^{d_{q}^{k-1}}\left(d_{q}^{k-1}\right) d_{q}^{k-1} \cdot \xi^{\sigma_{q}}\left(\sigma_{q}\right)\right) \\
& =(-1)^{k}\left(d_{k}^{p-1} \cdot \xi^{d^{k-1}}\left(d_{q}^{k-1}\right)\right)\left(d_{q}^{p-1} \cdot \xi^{\sigma_{q}}\left(\sigma_{q}\right)\right)
\end{aligned}
$$

Note that the second factor is independent of k. We also have

$$
\begin{aligned}
N_{k q} & =\xi^{\hat{\sigma}_{k} r_{\theta}}\left(\hat{\sigma}_{q} r_{\theta}\right) \\
& =u_{q}^{k-1} \cdot\left(\xi^{\hat{\sigma}_{k} r_{\theta}}\left(\hat{\sigma}_{k} r_{\theta}\right)\right) \\
& =u_{q}^{k-1} \cdot\left(\xi^{u_{k}^{p-1}}\left(u_{k}^{p-1}\right)\left(u_{k}^{p-1} \cdot \xi^{\hat{\sigma}_{p} r_{\theta}}\left(\hat{\sigma}_{p} r_{\theta}\right)\right)\right) \\
& =\left(u_{q}^{k-1} \cdot \xi^{u_{k}^{p-1}}\left(u_{k}^{p-1}\right)\right)\left(u_{q}^{p-1} \cdot \xi^{\hat{\sigma}_{p} r_{\theta}}\left(\hat{\sigma}_{p} r_{\theta}\right)\right)
\end{aligned}
$$

with the second factor independent of k. Therefore, to prove that

$$
\sum_{q \leq k \leq p} M_{p k} N_{k q}=0
$$

it is equivalent to show that

$$
\begin{equation*}
0=\sum_{q \leq k \leq p}(-1)^{k}\left(d_{k}^{p-1} \cdot \xi_{q}^{d_{q}^{k-1}}\left(d_{q}^{k-1}\right)\right)\left(u_{q}^{k-1} \cdot \xi^{u_{k}^{p-1}}\left(u_{k}^{p-1}\right)\right) \tag{56}
\end{equation*}
$$

The above identity can be rewritten as

$$
\begin{equation*}
0=\sum_{q \leq k \leq p}(-1)^{k} \prod_{i=q}^{k-1} \alpha_{i}^{p-1} \prod_{m=k}^{p-1} \alpha_{q}^{m} \tag{57}
\end{equation*}
$$

To prove this last identity, let q^{\prime} be such that $q<q^{\prime} \leq p$. It is easy to show by descending induction on q^{\prime} that

$$
\begin{equation*}
\sum_{q^{\prime} \leq k \leq p}(-1)^{k} \prod_{i=q}^{k-1} \alpha_{i}^{p-1} \prod_{m=k}^{p-1} \alpha_{q}^{m}=(-1)^{q^{\prime}} \prod_{i=q+1}^{q^{\prime}-1} \alpha_{i}^{p-1} \prod_{m=q^{\prime}-1}^{p-1} \alpha_{q}^{m} \tag{58}
\end{equation*}
$$

Then for $q^{\prime}=q+1$ the sum is the negative of the $k=q$ summand of (57) as required.

Appendix B: Examples of (36)

Example $28 G=S L_{3}$ has affine Cartan matrix

$$
\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

The column dependencies give the coefficients of the null root $\delta=\alpha_{0}+\theta=\alpha_{0}+$ $\alpha_{1}+\alpha_{2}$ which is set to zero due to the finite torus equivariance.

p	$\hat{\sigma}_{p}$	σ_{p}	t_{p-1}	$\hat{\sigma}_{p} r_{\theta}$
1	id	r_{0}	$r_{0} r_{1} r_{2} r_{1}$	$r_{1} r_{2} r_{1}$
2	r_{1}	$r_{1} r_{0}$	$r_{1} r_{0} r_{1} r_{2}$	$r_{2} r_{1}$

We compute the matrices

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
\alpha_{1}+\alpha_{2} & 0 \\
\alpha_{2} & -\alpha_{1} \alpha_{2}
\end{array}\right) \quad N=\left(\begin{array}{cc}
\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) & 0 \\
\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) & \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)
\end{array}\right) \\
D & =\left(\begin{array}{cc}
\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)^{2} & 0 \\
0 & -\alpha_{1} \alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right)
\end{array}\right) \\
N D^{-1} & =\left(\begin{array}{cc}
\left(\alpha_{1}+\alpha_{2}\right)^{-1} & 0 \\
\left(\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)\right)^{-1} & -\left(\alpha_{1} \alpha_{2}\right)^{-1}
\end{array}\right) .
\end{aligned}
$$

For $x=r_{1} r_{2}$ we compute the column vector with values $(-1)^{\ell(x)} \xi^{x}\left(t_{j}\right)$ for $j=1,2$. Acting on this column vector by $N D^{-1}$, we obtain the coefficients of A_{x} in j_{1} and j_{2}.

$$
(-1)^{\ell(x)}\binom{\xi^{x}\left(t_{1}\right)}{\xi^{x}\left(t_{2}\right)}=\binom{\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)}{\alpha_{2}^{2}} \quad\binom{j_{\sigma_{1}}^{x}}{j_{\sigma_{2}}^{x}}=\binom{\alpha_{2}}{0} .
$$

Doing the same thing for $x=r_{1} r_{0} r_{2}$ we have

$$
(-1)^{\ell(x)}\binom{\xi^{x}\left(t_{1}\right)}{\xi^{x}\left(t_{2}\right)}=\binom{0}{-\alpha_{1} \alpha_{2}^{2}} \quad\binom{j_{\sigma_{1}}^{x}}{j_{\sigma_{2}}^{x}}=\binom{0}{\alpha_{2}} .
$$

Example $29 S p_{2 n}$ for $n=2$ has affine Cartan matrix

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 2 & -2 \\
0 & -1 & 2
\end{array}\right)
$$

We have $\delta=\alpha_{0}+\theta=\alpha_{0}+2 \alpha_{1}+\alpha_{2}$.

p	$\hat{\sigma}_{p}$	σ_{p}	t_{p-1}	$\hat{\sigma}_{p} r_{\theta}$
1	id	r_{0}	$r_{0} r_{1} r_{2} r_{1}$	$r_{1} r_{2} r_{1}$
2	r_{1}	$r_{1} r_{0}$	$r_{1} r_{0} r_{1} r_{2}$	$r_{2} r_{1}$
3	$r_{2} r_{1}$	$r_{2} r_{1} r_{0}$	$r_{2} r_{1} r_{0} r_{1}$	r_{1}

We have

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
2 \alpha_{1}+\alpha_{2} & 0 & 0 \\
\alpha_{2} & -\alpha_{1} \alpha_{2} & 0 \\
-\alpha_{2} & \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) & -\alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right)
\end{array}\right) \\
N & =\left(\begin{array}{ccc}
\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right) & 0 & 0 \\
\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right) & \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) & 0 \\
2 \alpha_{1}+\alpha_{2} & \alpha_{1}+\alpha_{2} & \alpha_{1}
\end{array}\right) \\
D & =\left(\begin{array}{ccc}
\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)^{2} & 0 & 0 \\
0 & -\alpha_{1} \alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right) & 0 \\
0 & 0 & -\alpha_{1} \alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right)
\end{array}\right) \\
N D^{-1} & =\left(\begin{array}{ccc}
\left(2 \alpha_{1}+\alpha_{2}\right)^{-1} & 0 & 0 \\
\left(\alpha_{1}\left(2 \alpha_{1}+\alpha_{2}\right)\right)^{-1} & -\left(\alpha_{1} \alpha_{2}\right)^{-1} & 0 \\
\left(\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)\right)^{-1} & -\left(\alpha_{1} \alpha_{2}^{2}\right)^{-1} & -\left(\alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right)\right)^{-1}
\end{array}\right) .
\end{aligned}
$$

Now let $x=r_{0} r_{1} r_{2}$. We have

$$
(-1)^{\ell(x)}\left(\begin{array}{c}
\xi^{x}\left(t_{1}\right) \\
\xi^{x}\left(t_{2}\right) \\
\xi^{x}\left(t_{3}\right)
\end{array}\right)=\left(\begin{array}{c}
\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right)^{2} \\
\alpha_{2}^{2}\left(\alpha_{1}+\alpha_{2}\right) \\
0
\end{array}\right)
$$

The matrix $N D^{-1}$ acting on the above column vector, gives the vector

$$
\left(\begin{array}{c}
j_{\sigma_{1}}^{x} \\
j_{\sigma_{2}}^{x} \\
j_{\sigma_{3}}^{x}
\end{array}\right)=\left(\begin{array}{c}
\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right) \\
2\left(\alpha_{1}+\alpha_{2}\right) \\
1
\end{array}\right) .
$$

Now let $x=r_{1} r_{2} r_{1}$. We have

$$
(-1)^{\ell(x)}\left(\begin{array}{l}
\xi^{x}\left(t_{1}\right) \\
\xi^{x}\left(t_{2}\right) \\
\xi^{x}\left(t_{3}\right)
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1}+\alpha_{2}\right) \\
0 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{c}
j_{\sigma_{1}}^{x} \\
j_{\sigma_{2}}^{x} \\
j_{\sigma_{3}}^{x}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right) \\
\left(\alpha_{1}+\alpha_{2}\right) \\
1
\end{array}\right)
$$

Example $30 \mathrm{SO}_{2 n+1}$ for $n=3$ has affine Cartan matrix

$$
\left(\begin{array}{cccc}
2 & 0 & -1 & 0 \\
0 & 2 & -1 & 0 \\
-1 & -1 & 2 & -1 \\
0 & 0 & -2 & 2
\end{array}\right)
$$

We have $\delta=\alpha_{0}+\theta=\alpha_{0}+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}$.

p	$\hat{\sigma}_{p}$	σ_{p}	t_{p-1}	$\hat{\sigma}_{p} r_{\theta}$
1	id	r_{0}	$r_{0} r_{2} r_{3} r_{2} r_{1} r_{2} r_{3} r_{2}$	$r_{2} r_{3} r_{2} r_{1} r_{2} r_{3} r_{2}$
2	r_{2}	$r_{2} r_{0}$	$r_{2} r_{0} r_{2} r_{3} r_{2} r_{1} r_{2} r_{3}$	$r_{3} r_{2} r_{1} r_{2} r_{3} r_{2}$
3	$r_{3} r_{2}$	$r_{3} r_{2} r_{0}$	$r_{3} r_{2} r_{0} r_{2} r_{3} r_{2} r_{1} r_{2}$	$r_{2} r_{1} r_{2} r_{3} r_{2}$
4	$r_{2} r_{3} r_{2}$	$r_{2} r_{3} r_{2} r_{0}$	$r_{2} r_{3} r_{2} r_{0} r_{2} r_{3} r_{2} r_{1}$	$r_{1} r_{2} r_{3} r_{2}$
5	$r_{0} r_{2} r_{3} r_{2}$	$r_{0} r_{2} r_{3} r_{2} r_{0}$	$r_{0} r_{2} r_{3} r_{2} r_{0} r_{1} r_{2} r_{3} r_{2} r_{1}$	$r_{2} r_{3} r_{2}$

To save space let us write $\alpha_{i j k}:=i \alpha_{1}+j \alpha_{2}+k \alpha_{3}$. We have

$$
\left.\left.\begin{array}{rl}
M= & \left(\begin{array}{lll}
\alpha_{122} & & \\
\alpha_{112} & -\alpha_{010} \alpha_{112} & \alpha_{110} \alpha_{012} \alpha_{001} \\
\alpha_{110} & -\alpha_{110} \alpha_{012} & \\
\alpha_{100} & -2 \alpha_{100} \alpha_{011} & \alpha_{100} \alpha_{011} \alpha_{012}
\end{array}-\alpha_{100} \alpha_{010} \alpha_{011} \alpha_{012}\right.
\end{array}\right), \begin{array}{ccc}
\alpha_{110} \alpha_{111} \alpha_{112} \alpha_{122} \alpha_{010} \alpha_{011} \alpha_{012} & \\
\alpha_{110} \alpha_{111} \alpha_{112} \alpha_{122} \alpha_{011} \alpha_{012} & \alpha_{100} \alpha_{111} \alpha_{112} \alpha_{122} \alpha_{012} \alpha_{001} \\
2 \alpha_{110} \alpha_{111} \alpha_{112} \alpha_{122} \alpha_{011} & \alpha_{100} \alpha_{111} \alpha_{112} \alpha_{122} \alpha_{012} \\
\alpha_{110} \alpha_{111} \alpha_{112} \alpha_{122} & \alpha_{100} \alpha_{111} \alpha_{112} \alpha_{122} \\
N & \\
& \alpha_{100} \alpha_{110} \alpha_{111} \alpha_{122} \alpha_{010} & \\
\alpha_{100} \alpha_{110} \alpha_{111} \alpha_{122} & \alpha_{100} \alpha_{110} \alpha_{111} \alpha_{112}
\end{array}\right) .
$$

D has diagonal entries

$$
\begin{array}{r}
\alpha_{110} \alpha_{111} \alpha_{112} \alpha_{122}^{2} \alpha_{010} \alpha_{011} \alpha_{012} \\
-\alpha_{100} \alpha_{111} \alpha_{112}^{2} \alpha_{122} \alpha_{010} \alpha_{012} \alpha_{001} \\
\alpha_{100} \alpha_{110}^{2} \alpha_{111} \alpha_{122} \alpha_{010} \alpha_{012} \alpha_{001} \\
-\alpha_{100}^{2} \alpha_{110} \alpha_{111} \alpha_{112} \alpha_{010} \alpha_{011} \alpha_{012}
\end{array}
$$

One may verify that $M N=D$.

References

1. Andersen, H.H., Jantzen, J.C., Soergel, W.: Representations of quantum groups at a p th root of unity and of semisimple groups in characteristic p : independence of p. Astérisque 220, 321 (1994)
2. Billey, S.: Kostant polynomials and the cohomology ring for G / B. Duke Math. J. 96, 205-224 (1999)
3. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25-83 (1998)
4. Goresky, M., Kottwitz, R., MacPherson, R.: Homology of affine Springer fibers in the unramified case. Duke Math. J. 121, 509-561 (2004)
5. Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
6. Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of G / P for a Kac-Moody group G. Adv. Math. 62(3), 187-237 (1986)
7. Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser, Boston (2002), pp. xvi+606
8. Lam, T., Shimozono, M.: Dual graded graphs for Kac-Moody algebras. Algebra Number Theory 1(4), 451-488 (2007)
9. Lam, T., Shimozono, M.: Quantum cohomology of G/P and homology of affine Grassmannian. Acta Math. 204, 49-90 (2010)
10. Lam, T., Shimozono, M.: k-Double Schur functions and equivariant (co)homology of the affine Grassmannian. preprint, arXiv:1105.2170
11. Lam, T., Schilling, A., Shimozono, M.: Schubert polynomials for the affine Grassmannian of the symplectic group. Math. Z. 264(4), 765-811 (2010)
12. Mihalcea, L.: Positivity in equivariant quantum Schubert calculus. Am. J. Math. 128(3), 787-803 (2006)
13. Peterson, D.: Lecture Notes at MIT (1997)
14. Pon, S.: Affine Stanley symmetric functions for classical groups. Ph.D. thesis, University of California, Davis (2010)

[^0]: T. Lam

 Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA
 e-mail: tfylam@umich.edu
 M. Shimozono (\boxtimes)

 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
 e-mail: mshimo@vt.edu

[^1]: ${ }^{1}$ Using equivariance for the maximal torus $T_{\text {af }} \subset G_{\text {af }}$, the GKM condition characterizes the image of localization to torus fixed points. However, after forgetting equivariance down to the smaller torus T, elements of Φ are characterized by additional conditions, which were determined in [4].

[^2]: ${ }^{2}$ This notation for P will be used only in this subsection and should not cause confusion for the reader with its previous use as the weight lattice of G.

