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Abstract The following conjecture due to Y. Edel is affirmatively solved: two
quadratic APN (almost perfect nonlinear) functions are CCZ-equivalent if and only
if they are extended affine equivalent.
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1 Introduction

In this paper, we will show the following statement, which was first conjectured by
Edel (see Definition 2 and Definition 1 for the exact definitions of notions such as
quadratic APN functions and CCZ- and EA-equivalences):

Theorem 1 Let f and g be quadratic APN functions on a finite field F ∼= F2n with
n ≥ 2. Then f is CCZ-equivalent to g if and only if f is EA-equivalent to g.

In the recent paper [1], this statement is shown to be true under the assumption
that the group of translations is the unique regular elementary abelian 2-subgroup of
the automorphism group of a certain code [1, Corollary 4].

In this paper, Theorem 1 is established without any additional assumption. The
only use of group theory here is the Sylow theorem and a typical argument on
the centralizer of a regular permutation group. Some information, prepared in
Sect. 2, about the actions of translations and the description of some graphs is
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used. The proof is given in Sect. 3. This paper is self-contained except quotations
from [2].

Let us mention one possible contribution of Theorem 1 to the current activities
in constructing new APN functions. One may use Theorem 1 to simplify the task
of showing that an APN function he or she found is new, namely, that it is CCZ-
equivalent neither to any power mapping nor to any member of currently known
infinite families, because so far the latter families consist of quadratic functions
only.

Now we give an outline of the proof of Theorem 1 with some details. Assume
that f and g are quadratic APN functions on a finite field F ∼= F2n with n ≥ 2,
which are CCZ-equivalent. By [2, Proposition 3], this assumption is equivalent to
the existence of a graph isomorphism between the graphs Γf and Γg defined on
F2 ⊕ F ⊕ F constructed from these functions (see Definition 3). The existence of
certain automorphisms of Γg , called “translations” (see (12)) allows us to assume
that such an isomorphism, say ρ, fixes a point (0;0,0) and a block (1;0,0). For the
function h = f or g, we denote by Mh the stabilizer of (0;0,0) in the automorphism
group of the graph Γh, and by Th the group of translations of Γh (which is contained
in Mh). Applying the Sylow theorem and [2, Lemma 3], we may choose ρ as a linear
map on F2 ⊕ F ⊕ F so that a Sylow 2-subgroup Sf of Mf containing Tf is sent to a
Sylow 2-subgroup Sg of Mg containing Tg (see Lemma 10).

We will show that ρ with these properties (called condition (a) in Sect. 3) preserves
a subspace Y = {(0;0, y) | y ∈ F } of F2 ⊕ F ⊕ F , which is equivalent to the claim
that ρ induces an EA-equivalence of f with g (see Lemma 12). We will derive a con-
tradiction assuming that f is not EA-equivalent to g, namely, that ρ does not preserve
Y (condition (b) in Sect. 3). Based on an observation that the center Z(Sh) of the Sy-
low subgroup Sh lies in Th for both h = f and g (see Lemma 9), we can calculate the
centralizer of Z(Sh) on the set of points of Γh (see Lemma 6(3)). If |Z(Sf )| ≥ 4, they
are equal to the subspace Y , whence Y is stabilized by ρ. Therefore, we may assume
that |Z(Sh)| = 2 (h = f,g) (Lemma 13(1)) because a nontrivial 2-group has a non-
trivial center. In this case, the image of Y under ρ is one of the two possible subspaces
containing the subspace consisting of (0;0, y′), where y′ ranges over a hyperplane of
F (Lemma 7). As we assumed that ρ does not preserve Y , the image of Y under ρ is
uniquely determined (see Lemma 14). In particular, the values (x + y)π + xπ + yπ

for x, y ∈ F lie in a one-dimensional subspace spanned by a specific nonzero ele-
ment a′ of F (see Lemma 15), where π is a permutation on F such that the image
of a block (1;x,f (x) + f (0)) is mapped by ρ to (1;xπ , g(xπ ) + g(0)) for every
x ∈ F (see the paragraph after Lemma 10). Then we may introduce a form κ on F

which vanishes at (x, y) exactly when Bf (x, y) = f (x + y) + f (x) + f (y) + f (0)

lies in a certain hyperplane Ha of F (see (30)). Using (31), we investigate this form
to conclude that it is almost the zero form (see Lemma 17). This gives a final contra-
diction.

The arguments in this proof do not give much information on the structure of
automorphism groups of Γf for a quadratic APN function f . For example, it seems
that they cannot be used to establish the normality of the group of translations in the
stabilizer of a point.
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2 Preliminaries

In this section, we review some results in [3] on the graph Γf associated with an
APN function f on a finite field F2n with additional remarks in the case where f is
quadratic.

Throughout this paper, F denotes a finite field of size 2n with n ≥ 2, unless oth-
erwise stated. We regard F as a vector space of dimension n over F2. Moreover, the
following sets F ⊕ F and F2 ⊕ F ⊕ F are regarded as vector spaces of dimensions
2n and 2n + 1 over F2, respectively:

F ⊕ F := {
(x, y) | x, y ∈ F

}
,

F2 ⊕ F ⊕ F := {
(ε;x, y) | ε ∈ F2, x, y ∈ F

}
.

Let X be one of the following sets: F , F ⊕ F , and F2 ⊕ F ⊕ F . For a map σ

on X, we usually denote the image of an element x of X under σ by xσ . Thus, the
composition στ for maps σ and τ on X is defined to be the map on X sending each
x ∈ X to (xσ )τ . If X = F and σ is an APN function (see Definition 2 (APN)), we
denote by σ(x) the image of x ∈ X = F under σ , to stress on the fact that σ is
an APN function. Since we do not consider the composition of APN functions, this
exceptional notation may not cause any confusion.

Observe that every F2-linear map λ on F ⊕F , regarded as a 2n-dimensional vector
space over F2, is expressed uniquely by the quadruple (α,β, γ, δ) of F2-linear maps
α, β , γ , and δ on F such that

(x, y)λ = (
xα + yγ , xβ + yδ

)
(1)

for every x, y ∈ F . We will denote λ = λ(α,β, γ, δ) if λ is expressed in this way.
Accordingly, every F2-affine map λ̃ on F ⊕F is uniquely expressed as a composition
λ(α,β, γ, δ)τ (c, d) for some F2-linear maps α,β, γ, δ on F and some elements c, d

of F , where τ(c, d) is defined by

(x, y)τ(c,d) := (x + c, y + d) (2)

for every x, y ∈ F .
With the above convention, we introduce two equivalence relations for functions

on F .

Definition 1 For a function f on F , its graph G(f ) is defined to be a subset

G(f ) := {(
x, xf

) | x ∈ F
}

of F ⊕ F . Let f and g be two functions on F .
(CCZ) f is called CCZ-equivalent to g if there is a bijective affine map on F ⊕F

sending G(f ) to G(g).
(EA) f is called extended affine equivalent (EA-equivalent for short) to g if

there is a bijective affine map of the shape λ(α,β,0, δ)τ (c, d) (with γ = 0) on F ⊕F

sending G(f ) to G(g).



464 J Algebr Comb (2012) 35:461–475

We note that the definition of EA-equivalence above coincides with the usual def-
inition of EA-equivalence (see, e.g., [1, Introduction]). For x, y ∈ F , we have

(x, y)λ(α,β,0,δ)τ (c,d) = (
xα + c, xβ + yδ + d

)
.

Thus, two functions f and g are EA-equivalent if and only if there are F2-linear maps
α,β, δ with α and δ bijective and elements c, d of F such that

g
(
xα + c

) = f (x)δ + xβ + d (3)

for all x, y ∈ F . (Here we denote the images of f and g by f (x) and so on, because
we usually use this notation for APN functions f and g.) This implies that

g(z) = f
(
zα−1 + cα−1)δ + (

zα−1β + cα−1β + d
)

for z ∈ F . Thus, g is the sum of an affine map α−1βτ(cα−1β + d) on F and the
composition (α−1τ(cα−1

))f δ, where τ(k) for k ∈ F denotes the affine map on F

sending each z ∈ F to z + k. This is the usual form adopted as a definition of EA-
equivalence (see, e.g., [1, Introduction]).

We now introduce some classes of functions on F .

Definition 2 Let f be a function on a finite field F ∼= F2n .
(APN) f is called almost perfect nonlinear (abbreviated as APN) if

#{x ∈ F | f (x + a) + f (x) = b
} ≤ 2

for all a ∈ F× := F \ {0} and b ∈ F .
(Quad) f is called quadratic if

∑

(xa,xb,xc)∈F3
2

f (xaa + xbb + xcc) = 0

for any elements a, b, c of F .

We associate with each function f on F a graph Γf . We first define, for each
function f on F , the function f by

f (x) := f (x) + f (0) (x ∈ F).

Definition 3 [3, Definition 4] The set of vertices of Γf is defined to be F2 ⊕ F ⊕ F .
A vertex (ε;x, y) of Γf (ε ∈ F2, x, y ∈ F ) is called a point or block according to
ε = 0 or ε = 1. We denote the set of points and blocks by P and B, respectively. We
sometimes identify P with F ⊕F via the natural identification map sending (0;x, y)

to (x, y).

P := {
(0;x, y) | x, y ∈ F

}
, B := {

(1;x, y) | x, y ∈ F
}
.

Two vertices (ε;x, y) and (ε′;x′, y′) are adjacent in Γf whenever

ε + ε′ = 1 and y + y′ = f (x + x′). (4)
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It is easy to see that the following maps ι and τ(a, b) (a, b ∈ F ) are graph auto-
morphisms of Γf for any function f on F :

ι : (ε;x, y) �→ (ε + 1;x, y), (5)

τ(a, b) : (ε;x, y) �→ (ε;x + a, y + b). (6)

Observe that τ(a, b) is a bijective affine map on F2 ⊕ F ⊕ F stabilizing the set P
of points. Thus, its restriction on P is a bijective affine map on P = F ⊕ F which
coincides with the map τ(a, b) on F ⊕ F defined in (2). Thus, we also denote this
restriction on P by τ(a, b).

For a vertex v of Γf and a nonnegative integer i, we denote by (Γf )i(v) the set
of vertices of Γf at distance i from v. When a function f on F is clear from the
context, we just denote it by Γi(v), omitting f . We also denote by Γ≤i (v) the subset
of vertices of Γf consisting of vertices at distance at most i from v.

Lemma 1 [3, Proposition 1] A function f on F is an APN function if and only if the
graph Γf is the incidence graph of a semibiplane, namely, if it is a connected graph
with the following property:

for any distinct points (resp. blocks), there are exactly 0 or 2 blocks (resp.
points) adjacent to both of them.

By the definition of adjacency in Γf , the set Γ1(0) of blocks of Γf adjacent to
0 = (0;0,0) consists of the following 2n = |F | blocks:

Γ1(0) = {
(1;x,f (x)) | x ∈ F

}
. (7)

Furthermore, for an APN function f on F , the set of points at distance two from 0
consists of the following 2n−1(2n − 1) points:

Γ2(0) = {
(0;x + y,f (x) + f (y)) | x, y ∈ F,x 
= y

}
. (8)

Lemma 2 [3, Proposition 2] Two APN functions f and g on F are CCZ-equivalent
if and only if the corresponding graphs Γf and Γg are isomorphic as graphs.

This result corresponds to [1, Theorem 6], but in terms of the graphs Γf and Γg .
To establish this claim, the following result is important, where a vector (ε;x, y) of
F2 ⊕ F ⊕ F is denoted by (ε;x, y)h when it is regarded as a vertex of the graph Γh

for a function h = f or g on F .

Lemma 3 [3, Lemma 3] Assume that λ is a graph isomorphism from Γf to Γg send-
ing (0;0,0)f to (0;0,0)g . Then λ is an F2-linear map on F2 ⊕ F ⊕ F .

Observe that the map λ in Lemma 3 sends a point (0;0,0)f of Γf to a point (0;0,0)g
of Γg , whence λ sends the set Pf of points of Γf to the set Pg of points of Γg . Since
Pf and Pg are identical to P , the map λ preserves both P and B = (F2 ⊕F ⊕F)\ P .
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The semidirect product N 〈ι〉 of N := {τ(a, b) | a, b ∈ F } with 〈ι〉 (see (5) and
(6)) is a subgroup of the automorphism group Aut(Γf ) of graph Γf which acts regu-
larly on the set F2 ⊕ F ⊕ F = P ∪ B of vertices. In fact, Aut(Γf ) has the following
structure:

Lemma 4 [3, Proposition 3] The automorphism group Aut(Γf ) of the graph Γf for
an APN function f on F has the subgroup Aut(Γf )+ of automorphisms preserving
both P and B as a normal subgroup of index 2. The subgroup Aut(Γf )+ is a semidi-
rect product of a normal subgroup N = {τ(a, b) | a, b ∈ F } with the stabilizer M of
a point (0;0,0). The subgroup M consists of F2-linear bijections on F2 ⊕ F ⊕ F

preserving P and B together with the adjacency of Γf .

Observe that the stabilizer M in Lemma 4 acts on Γi(0) for each nonnegative
integer i, as M fixes the point 0 and preserves the distance on Γf .

Now we assume that f is a quadratic APN function on F . Then the map Bf on
F × F defined by

Bf (x, y) := f (x + y) + f (x) + f (y) (9)

for x, y ∈ F is an F2-bilinear form on F . Moreover, as f is an APN function, the
kernel of the linear map sending x ∈ F to Bf (a, x) coincides with {0, a} for each
a ∈ F×. Thus, for each a ∈ F×,

Ha := {
Bf (a, x) | x ∈ F

}
(10)

is a hyperplane of F .
Recall that for every hyperplane H of F , there is a unique element α of F× such

that H is the kernel of the linear form sending x ∈ F to Tr (αx), where Tr denotes
the trace function for extension F/F2: Tr (x) = ∑n−1

i=0 x2i
(x ∈ F ). Thus, we may

introduce a map α on F× by

Ha = {
y ∈ F | Tr (α(a)y) = 0

}
. (11)

Next we state a result on hyperplanes Ha (a ∈ F ∗) above, which is used in the
last part of the proof of Theorem 1. This result is shown, e.g., in [2, Proposition 2.2].
There, the ambient space of the dual hyperoval S n[f ] associated with a quadratic
APN function f is shown to be F ⊕F . By definition, this subspace consists of vectors
(x, y) where x ranges over F and y ranges over the subspace of F spanned by all
hyperplanes Hb for b ∈ F×. Thus, this implies that:

Lemma 5 For a quadratic APN function f on F , the hyperplanes Hb = {Bf (b, x) |
x ∈ F } of F for all b ∈ F× span F .

For a quadratic APN function f on F , we can verify that the following F2-linear
map ta for every a ∈ F is an automorphism of Γf belonging to the stabilizer M of
(0;0,0) (and so preserving both P and B):

(ε;x, y)ta := ε
(
1;a,f (a)

) + (
0;x, y + Bf (a, x)

)
(12)
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for ε ∈ F2 and x, y ∈ F . We call ta the translation with respect to a ∈ F . We define
T to be the subgroup of M consisting of all translations,

T := {
ta | a ∈ F

}
. (13)

Since tatb = ta+b for a, b ∈ F , T is an elementary abelian group of order 2n = |F |.
We collect information on the actions of translations on the vertices of Γf .

Lemma 6 If f is a quadratic APN function on F , the following statements hold for
every nonidentity translation ta (a ∈ F×):

(1) The translation ta does not fix any block of Γf . In particular, the group T of
translations acts regularly on the set Γ1(0) of blocks adjacent to 0.

(2) The commutator space [P , ta] := {x + xta | x ∈ P } of ta on P is given as

[P , ta] = {(
0;0,Bf (a, x)

) | x ∈ F
} = {

(0;0, y) | y ∈ Ha

}
. (14)

(3) The centralizer CP (ta) := {x ∈ P | xta = x} of ta on P is given as

CP (ta) = {
(0;a, y), (0;0, y) | y ∈ F

}
, (15)

which intersects Γ2(0) at

CP (ta) ∩ Γ2(0) = {
(0;a,f (a) + y) | y ∈ Ha

}
. (16)

Proof (1) From (12) we have

(1;x, y)ta = (
1;x + a, y + f (a) + Bf (a, x)

)

= (
1;x + a,f (x + a) + f (x) + y

)
(17)

for x, y ∈ F , as Bf (a, x) = f (a + x) + f (a) + f (x). Thus, ta (a ∈ F×) does not fix
any block of Γf , and T acts regularly on Γ1(0) = {(1;x,f (x)) | x ∈ F } (see (7)).

(2), (3) Fix a ∈ F×. From (12) we have

(0;x, y)ta = (
0;x, y + Bf (a, x)

)
(18)

for x, y ∈ F . Claim (2) follows. We also have (0;x, y)ta = (0;x, y) if and only if
Bf (a, x) = 0, which is equivalent to the condition that x = 0 or x = a. This im-
plies (15). Then Claim (3) follows from the description of Γ2(0) (see (8)). �

Lemma 7 For a nonidentity translation ta (a ∈ F×), there are exactly two subspaces
X of P of dimension n with the following properties:

(i) [P , ta] ⊂ X ⊂ CP (ta), and
(ii) X ∩ Γ2(0) = ∅.

In fact, X is one of the following subspaces Y and Y(a), where c is a fixed element of
F not contained in the hyperplane Ha (see (10)) of F and ε = Tr(α(a)f (a)), which
is equal to 0 or 1 according as f (a) ∈ Ha or not (see (11) for the definition of α(a)):

Y := {
(0;0, y) | y ∈ F

}
,
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and

Y(a) := {
(0;a, (ε + 1)c + y), (0;0, y) | y ∈ Ha

}
.

Proof From Lemma 6(2)(3) we have CP (ta) = {(0;a, y), (0;0, y) | y ∈ F } and
[P , ta] = {(0;0, y) | y ∈ Ha}. Fix an element c in F \ Ha . Then the factor group
CP (ta)/[P , ta] consists of (0;0, c) + [P , ta], (0;a,0) + [P , ta], (0;a, c) + [P , ta]
together with the trivial coset. Since X/[P , ta] is a one-dimensional subspace
of CP (ta)/[P , ta], the subspace X coincides with Y := 〈(0;0, c), [P , ta]〉, Y1 :=
〈(0;a,0), [P , ta]〉, or Y2 := 〈(0;a, c), [P , ta]〉.

Observe that Y = 〈(0;0, c), [P , ta]〉 = {(0;0, y) | y ∈ F } does not contain any
point of Γ2(0) by (8). Thus, Y is one of the candidates for X.

Since Y1 \ [P , ta] = {(0;a, y) | y ∈ Ha} and Y2 \ [P , ta] = {(0;a, y′) | y′ ∈ F \
Ha}, any point of (Y1 ∪ Y2) \ [P , ta] is of the shape (0;a, y) for some y ∈ F . It is
contained in Γ2(0) if and only if y = f (x + a) + f (x) = f (a) + Bf (x, a) for some
x ∈ F from (8). Thus, Y1 ∩ Γ2(0) 
= ∅ (resp. Y2 ∩ Γ2(0) 
= ∅) if and only if Y1 (resp.
Y2) contains a point (0;a,f (a)), which is equivalent to f (a) ∈ Ha (resp. f (a) /∈ Ha).
Furthermore, in this case, Y2 ∩ Γ2(0) = ∅ (resp. Y1 ∩ Γ2(0) = ∅). Thus, the second
candidate for X is either Y2 or Y1 according as f (a) ∈ Ha or not. Summarizing, the
second candidate for X is given as Y(a) := {(0;a, (1 + ε)c + y), (0;0, y) | y ∈ Ha},
where ε = Tr(α(a)f (a)). �

We give a remark on the action of M , the stabilizer of a point 0 = (0;0,0) in
Aut(Γf ) (see Lemma 4), on the set Γ1(0) of blocks adjacent to 0.

Lemma 8 M acts faithfully on the set Γ1(0) of blocks adjacent to 0 = (0;0,0).

Proof Let K be a subgroup of M acting trivially on Γ1(0). Take any positive integer
i with i ≥ 2, and let v be any vertex of Γi(0). Since Γf is connected, there is a
vertex w of Γi−2(0) at distance 2 from v. Then there are exactly two vertices B

and B ′ of Γi−1(0) adjacent to both v and w, because Γf is the incidence graph of
a semibiplane. Observe that v is the unique vertex in Γi(0) adjacent to both B and
B ′ (which are both in Γi−1(0) ∩ Γ1(w)). Thus, if K fixes all vertices in Γ≤i−1(0),
then K fixes v as well. Namely, K fixes all vertices in Γ≤i (0). Thus, starting with the
assumption that K fixes all vertices in Γ≤1(0), we conclude that K fixes all vertices
in Γf , whence K = 1. �

The previous lemma poses some restriction on the center of a Sylow 2-subgroup
of M containing T , the group of translations (see Lemma 4).

Lemma 9 Let S be a Sylow 2-subgroup of M containing T . Then the centralizer
CS(T ) of T in S coincides with T . In particular, the center Z(S) of S is a subgroup
of T .

Proof Since S fixes the point 0 = (0;0,0), it acts on the set Γ1(0) of blocks adja-
cent to 0. By Lemma 6(1), the group T of translations acts regularly on Γ1(0) =
{(1;x,f (x)) | x ∈ F } (see (7)). Thus, we have S = T SB , where SB denotes the
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stabilizer of a block B = (1;0,0) in Γ1(0). Since T is an abelian group, we have
CS(T ) = T CSB

(T ), where CSB
(T ) is the centralizer of T in SB . Take any element σ

of CSB
(T ). Since σ ta = taσ for any a ∈ F , we have

(
1;a,f (a)

) = Bta = Bσta = Btaσ = (
1;a,f (a)

)σ

for all a ∈ F , by (17). Thus, σ fixes all the blocks in Γ1(0). Hence, σ is the identity
on Γf by Lemma 8. Then CSB

(T ) = 1 and CS(T ) = T . �

3 Proof of Theorem 1

Let f and g be quadratic APN functions on a field F ∼= F2n . Assume that f is CCZ-
equivalent to g. Then there is a graph isomorphism ρ from Γf to Γg , that is, ρ is
a bijective map from the set F2 ⊕ F ⊕ F of vertices of Γf to the set F2 ⊕ F ⊕ F

of vertices of Γg such that vertices (ε;x, y) and (ε′;x′, y′) (ε ∈ F2, x, y ∈ F ) of Γf

are adjacent in Γf if and only if (ε;x, y)ρ and (ε′;x′, y′)ρ are adjacent in Γg . To
distinguish the points and blocks of Γf from those of Γg , we put suffixes h (h = f

or g) to the corresponding vectors or subsets of F2 ⊕ F ⊕ F , when we regard them
as vertices or subsets of vertices of Γh; for example,

(ε;x, y) = (ε;x, y)f = (ε;x, y)g (ε ∈ F2, x, y ∈ F),

Pf = Pg = {
(0;x, y) | x, y ∈ F

}
and Bf = Bg = {

(1;x, y) | x, y ∈ F
}
.

Observe that ρ is a map on F2 ⊕ F ⊕ F = Pf ∪ Bf = Pg ∪ Bg .
We may assume that ρ sends a point (0;0,0)f of Γf to a point (0;0,0)g of Γg

because Aut(Γg) contains a group {τ(a, b) | a, b ∈ F }〈ι〉 acting regularly on Pg ∪ Bg

(see Lemma 4). Then ρ is a map on F2 ⊕F ⊕F which sends the set Pf = {(0;x, y)f |
x, y ∈ F } (resp. Bf = {(1; t, z)f | t, z ∈ F }) of points (resp. blocks) of Γf to the set
Pg = {(0;x, y)g | x, y ∈ F } (resp. Bg = {(1; t, z)g | t, z ∈ F }) of points (resp. blocks)
of Γg . By Lemma 3, ρ is F2-linear as a map on F2 ⊕ F ⊕ F , regarded as a vector
space over F2.

We use the letter Mf (resp. Mg) to denote the stabilizer in Aut(Γf ) (resp.
Aut(Γg)) of a point (0;0,0)f (resp. (0;0,0)g) (see Lemma 4). Since ρ sends
(0;0,0)f to (0;0,0)g , we have Mg = ρ−1Mf ρ. For a subgroup G of Mf , we use
the symbol Gρ to denote a subgroup ρ−1Gρ of Mg ; namely, Gρ is the conjugate of
G under ρ.

The letters Tf are Tg are used to denote the groups of translations for Γf and Γg ,
respectively (see (12) and (13)); namely, Tf = {ta | a ∈ F }, where

(0;x, y)
ta
f = (

0;x, y + Bf (x, a)
)
f
, (19)

and

(1; t, z)taf = (
1; t + a, z + Bf (t, a) + f (a)

)
f
, (20)
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for all x, y ∈ F . To distinguish the translations for Γg from those for Γf , we use the
letter t ′

a′ to denote the translation for Γg with respect to a′ ∈ F :

(0;x, y)
t ′
a′
g = (

0;x, y + Bg(x, a′)
)
g
, (21)

and

(1; t, z)t
′
a′
g = (

1; t + a′, z + Bg(t, a
′) + g(a′)

)
g
, (22)

for all x, y ∈ F . Remark that, in general, T
ρ
f may not coincide with Tg .

Let Sf be a Sylow 2-subgroup of the stabilizer Mf containing the group Tf of
translations for Γf . Then ρ−1Sf ρ = S

ρ
f is a Sylow 2-subgroup of Mg . By the Sylow

theorem, there is an element σ of Mg such that (S
ρ
f )σ contains Tg , the group of

translations for Γg . Replacing ρ by ρσ , we may assume that S
ρ
f contains Tg .

The image (1;0,0)
ρ
f of a block (1;0,0)f of Γf under ρ is a block of Γg adja-

cent to (0;0,0)
ρ
f = (0;0,0)g . Since Tg acts regularly on {(1;x,g(x))g | x ∈ F } (see

(22)), which is the set of blocks of Γg adjacent to (0;0,0)g , we may assume that
(1;0,0)ρ = (1;0,0)g , replacing ρ by ρt ′

a′ for some a′ ∈ F .
Summarizing, we verified the following statement.

Lemma 10 Assume that f and g are quadratic APN functions on a field F ∼= F2n

with n ≥ 2 which are CCZ-equivalent. Then there is a graph isomorphism ρ from Γf

to Γg which satisfies the following properties:

(i) ρ is an F2-linear map on F2 ⊕ F ⊕ F preserving the hyperplane {(0;x, y) |
x, y ∈ F } = Pf = Pg . In particular, (0;0,0)

ρ
f = (0;0,0)g .

(ii) S
ρ
f is a Sylow 2-subgroup of Mg containing Tg for a Slyow 2-subgroup Sf of

Mf containing Tf .
(iii) (1;0,0)

ρ
f = (1;0,0)g .

In the following, we denote by ρ a graph isomorphism from Γf to Γg which satisfies
properties (i), (ii), and (iii) in Lemma 10.

A permutation π on F . Now we introduce a permutation π on F . Recall that the
set (Γf )1((0;0,0)f ) (resp. (Γg)1((0;0,0)g)) of blocks of Γf (resp. Γg) adjacent to
(0;0,0)f (resp. (0;0,0)g) is given as {(1;x,f (x))f | x ∈ F } (resp. {(1;x,g(x))g |
x ∈ F }) by (7). Since ρ maps the set (Γf )1((0;0,0)f ) onto (Γg)1((0;0,0)g), there
is a permutation π on F such that

(
1;x,f (x)

)ρ

f
= (

1;xπ , g
(
xπ

))
g

for all x ∈ F. (23)

Since (1;0,0)
ρ
f = (1;0,0)g , we have

0π = 0. (24)

Since (0;x,f (x))f = (1;0,0)f + (1;x,f (x))f , the linearity of ρ and (23) imply

(
0;x,f (x)

)ρ

f
= (

0;xπ , g
(
xπ

))
g

for all x ∈ F. (25)
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Lemma 11 For all x, y ∈ F , we have
(
0;0,Bf (x, y)

)ρ

f
= (

0; (x + y)π + xπ + yπ , g
(
(x + y)π

)+g(xπ )+g(yπ )
)
g
. (26)

Proof Since
(
0;0,Bf (x, y)

)
f

= (
0;x,f (x)

)
f

+ (
0;y,f (y)

)
f

+ (
0;x + y,f (x + y)

)
f
,

the linearity of ρ and (25) imply
(
0;0,Bf (x, y)

)ρ

f

= (
0;x,f (x)

)ρ

f
+ (

0;y,f (y)
)ρ

f
+ (

0;x + y,f (x + y)
)ρ

f

= (
0;xπ , g

(
xπ

))
g

+ (
0;yπ , g

(
yπ

))
g

+ (
0; (x + y)π , g

(
(x + y)π

))
g

= (
0; (x + y)π + xπ + yπ , g((x + y)π ) + g

(
xπ

) + g
(
yπ

))
g
.

Thus, (26) is verified. �

Conditions (a) and (b) In what follows, we consider the following conditions:

(a) ρ is a graph isomorphism from Γf to Γg satisfying properties (i), (ii), and (iii)
in Lemma 10.

(b) ρ does not send {(0;0, y)f | y ∈ F } to {(0;0, y)g | y ∈ F }.
(b′) f is not EA-equivalent to g.

As we will see below, to assume (a) and (b) is equivalent to assume (a) and (b′).

Lemma 12 Under condition (a), the map ρ sends {(0;0, y)f | y ∈ F } to {(0;0, y)g |
y ∈ F } if and only if it induces an EA-equivalence of f with g.

Proof If ρ sends {(0;0, y)f | y ∈ F } = Y to {(0;0, y)g | y ∈ F } = Y , ρ is repre-
sented by F2-linear bijective maps α and δ on F and an F2-linear map β on F such
that (0;x, y)

ρ
f = (0;xα, xβ +yδ)g . Then we have (0;xπ , g(xπ ))g = (0;x,f (x))

ρ
f =

(0;xα, xβ + f (x)δ)g from (23). Thus, π = α is an F2-linear bijection on F , and
g(xα) = xβ + f (x)δ . This shows that g(xα) = f (x)δ + (xβ + g(0) + f (0)δ) for all
x ∈ F , whence f is EA-equivalent to g. The converse immediately follows from
Definition 1 (EA). �

In the remainder of this paper, we will derive a contradiction, assuming that ρ

satisfies conditions (a) and (b) above. This implies that ρ with condition (a) should not
satisfy (b′) by Lemma 12; namely, it should induce an EA-equivalence of f with g.
This establishes Theorem 1.

Lemma 13 Under assumptions (a) and (b) above, the following hold.

(1) The center Z(Sf ) of a Sylow 2-subgroup Sf is of order 2 generated by a non-
identity translation ta (a ∈ F×) for Γf .
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(2) The center Z(Sf )ρ of a Sylow 2-subgroup S
ρ
f is a group of order 2 generated by

a nonidentity translation t ′
a′ (a′ ∈ F×) for Γg .

(3) We have t ′
a′ = (ta)

ρ and a′ = aπ .

Proof Suppose that the center Z(Sf ) has order greater than 2. By Lemma 9 ap-
plied to Sf , the center Z(Sf ) contains at least two distinct nonidentity transla-
tions ta and tb for some distinct a, b ∈ F×. Then from Lemma 6(3) it follows that
the centralizer CPf

(Z(Sf )) of Z(Sf ) on Pf coincides with {(0;0, y)f | y ∈ F } =
CPf

(ta)∩CPf
(tb). (Observe that (0;0, y)f for any y ∈ F is fixed by any other trans-

lation tc in Z(Sf ).)
The conjugate Z(Sf )ρ of Z(Sf ) by ρ is the center Z(S

ρ
f ) of a Sylow 2-subgroup

S
ρ
f , which contains the group Tg of translations for Γg by condition (ii) of Lemma 10.

Since Z(S
ρ
f ) has the same order as Z(Sf ), it follows from Lemma 9 applied to S

ρ
f

(a Sylow subgroup of Mg with notation in Lemma 4) that Z(S
ρ
f ) contains at least

two distinct nonidentity translations t ′
a′ and t ′

b′ . Thus, the centralizer CPg
(Z(S

ρ
f ))

of Z(S
ρ
f ) on Pg coincides with {(0;0, y)g | y ∈ F } = CPg

(t ′
a′) ∩ CPg

(t ′
b′) by

Lemma 6(3) applied to Γg .
Since ρ sends CPf

(Z(Sf )) to CPg
(Z(S

ρ
f )), this contradicts our assumption that

Y is not stabilized by ρ (condition (b)). Hence, we conclude that Z(Sf ) has order
2. Since Z(Sf ) ⊂ Tf by Lemma 9, there is a nonzero element a of F such that the
translation ta generates Z(Sf ). This proves Claim (1).

Since Z(S
ρ
f ) is the conjugate of Z(Sf ), it also has order 2. By Lemma 9 applied to

S
ρ
f , Z(S

ρ
f ) is generated by a nonidentity translation t ′

a′ in Tg . This shows Claim (2).
From Claims (1) and (2) we have (ta)

ρ = t ′
a′ , Then the action of t ′

a′ to the block
(1;0,0)g is calculated as follows, using (20), (22), and (23):

(
1;a′, g(a′)

)
g

= (1;0,0)
t ′
a′
g = (1;0,0)ρ

−1taρ
g =

= (1;0,0)
taρ
f = (

1;a,f (a)
)ρ

f
= (

1;aπ , g(aπ )
)
.

Thus, we have a′ = aπ . This verifies Claim (3). �

Notation In the following, we use the letters a and a′ to denote nonzero elements a

and a′ of F such that Z(Sf ) = 〈ta〉 and Z(S
ρ
f ) = 〈t ′

a′ 〉 (see Lemma 13).
We also use the letter α to denote α(a) defined in (11); namely, α denotes the

specific nonzero element of F for which

Ha = {
Bf (a, x) | x ∈ F

} = {
y ∈ F | Tr(αy) = 0

}
.

We also set

H ′
a′ := {

Bg(a
′, x) | x ∈ F

}
,

the hyperplane of F determined by a′ and a quadratic APN function g.
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Lemma 14 Assuming conditions (a) and (b) above, we have:

{
(0;0, y)f | y ∈ Ha

}ρ = {
(0;0, y′)g | y′ ∈ H ′

a′
}
, (27)

{
(0;0, y)f | y ∈ F

}ρ = {(
0;a′, (ε′ + 1)c′ + y′), (0;0, y′) | y′ ∈ H ′

a′
}
, (28)

where c′ is a fixed element in F \ H ′
a′ , and ε′ is 0 or 1, according to g(a′) ∈ H ′

a′ or
not.

Proof The commutator subspace [Pf ,Z(Sf )] = [Pf , ta] = {(0;0, y)f | y ∈ Ha} of
Z(Sf ) on Pf (see Lemma 6(2) for ta) is sent by ρ to the commutator subspace
[Pg,Z(S)ρ] = [Pg, t

′
a′ ] = {(0;0, y′)g | y′ ∈ H ′

a′ } of Z(Sf )ρ on Pg (see Lemma 6(2)
for t ′

a′ ). This shows the first claim, (27), of the lemma.
Next consider the subspace Yf := {(0;0, y)f | y ∈ F } of F2 ⊕ F ⊕ F . Observe

that this is one of the two n-dimensional subspaces of CPf
(ta) satisfying condi-

tions in Lemma 7; namely, it contains [Pf , ta] = {(0;0, y)f | y ∈ Ha} but does
not contain any point at distance two from (0;0,0)f . Remark that the image Y

ρ
f

of Yf under ρ is an n-dimensional subspace of CPg
(t ′

a′) = CPf
(ta)

ρ containing
[Pf , ta]ρ = {(0;0, y′)g | y′ ∈ H ′

a′ } (see the first claim of the lemma) but having
no point at distance two from (0;0,0)g = (0;0,0)

ρ
f . Hence, applying Lemma 7

to t ′
a′ and Y

ρ
f , we have either Y

ρ
f = Yg = {(0;0, y)g | y ∈ F } or Y

ρ
f = Yg(a

′) =
{(0;a′, (ε′ + 1)c′ + y′), (0;0, y′) | y′ ∈ H ′

a′ }, where c′ is a fixed element of F \ H ′
a′ ,

and ε′ = 0 or 1 according to g(a′) ∈ H ′
a′ or not. If the former case holds, the map ρ

preserves {(0;0, y) | y ∈ F } = Yf = Y ′
g , which contradicts condition (b). Hence, the

latter holds, which verifies the second claim, (28), of the lemma. �

In view of Lemma 14, a point (0;0, z)f of Γf is mapped by ρ to a point of the
form (0;0, z′)g or (0;a′, z′′)g according to z ∈ Ha or z /∈ Ha . Namely, the second
component of (0;0, z)

ρ
f is 0 or a′ according to z ∈ Ha or not.

Using the element α defined in Notation, this observation is rephrased as follows:
for any z ∈ F , the second component of (0;0, z)

ρ
f coincides with Tr (αz)a′. Applying

this observation to a point (0;0, z)f with z in the form Bf (x, y) for some x, y ∈ F ,
we have the following lemma from (26).

Lemma 15 Assume conditions (a) and (b) above. For any x, y ∈ F , we have

(x + y)π + xπ + yπ = κ(x, y)a′, (29)

where κ is the map from F × F to F2 defined by

κ(x, y) := Tr
(
αBf (x, y)

)
. (30)

We give some remarks on the map κ defined in Lemma 15. Since f is quadratic,
Bf is bilinear on F . Hence, κ is a bilinear form on F . Since Bf (x, x) = 0, κ is
alternating; κ(x, x) = 0 for all x ∈ F and hence symmetric: κ(x, y) = κ(y, x) for all
x, y ∈ F . From Definition (30) and Definition (11) we have that κ(x, y) = 0 if and
only if Bf (x, y) lies in the hyperplane Ha of F .



474 J Algebr Comb (2012) 35:461–475

Lemma 16 Assume conditions (a) and (b) above. If κ(x, y) = 0 for x, y ∈ F , we
have

(
0;0,Bf (x, y)

)ρ

f
= (

0;0,Bg

(
xπ , yπ

))
g
. (31)

Proof If κ(x, y) = 0, then we have (x + y)π = xπ + yπ from (29). Then the third
component of (0;0,Bf (x, y))

ρ
f , which is given as g((x + y)π ) + g(xπ ) + g(yπ ) by

(26), coincides with g(xπ + yπ) + g(xπ ) + g(yπ ) = Bg(x
π , yπ ). This verifies the

lemma. �

The above lemma imposes a strong restriction on the alternating form κ .

Lemma 17 Assume conditions (a) and (b) above. Let y be any element in F \ {0, a}.
Then the subspace y⊥ := {x ∈ F | κ(y, x) = 0} of F orthogonal to y with respect to
κ is totally isotropic; namely, κ(x1, x2) = 0 for any x1, x2 ∈ y⊥.

Proof Let y be any element in F \ {0, a}. Take any element xi in y⊥ (i = 1,2). Since
κ(xi, y) = 0 for i = 1,2 and κ is bilinear, we have κ(x1 + x2, y) = 0. Then it follows
from (31) that

(
0;0,Bf (x1 + x2, y)

)ρ

f
= (

0;0,Bg((x1 + x2)
π , yπ )

)
g
.

Since ρ is linear and Bf and Bg are bilinear, the left-hand side of this equation can
be written as follows, using (31) and the assumption that κ(xi, y) = 0, i = 1,2:

(
0;0,Bf (x1, y)

)ρ

f
+ (

0;0,Bf (x2, y)
)ρ

f

= (
0;0,Bg

(
xπ

1 , yπ
))

g
+ (

0;0,Bg

(
xπ

2 , yπ
))

g

= (
0;0,Bg

(
xπ

1 + xπ
2 , yπ

))
g
.

Thus, comparing the third components, we have Bg((x1 + x2)
π , yπ ) = Bg(x

π
1 +

xπ
2 , yπ ). From the bilinearity of Bg we then have

Bg

(
(x1 + x2)

π + xπ
1 + xπ

2 , yπ
) = 0.

Applying (29), this implies that

Bg

(
κ(x1, x2)a

′, yπ
) = 0.

Since κ(x1, x2) is an element of F2, we then have

κ(x1, x2)Bg

(
a′, yπ

) = 0.

Now Bg(a
′, yπ ) = 0 if and only if yπ = 0 or yπ = a′. By (24) and Lemma 13(3),

this is equivalent to y = 0 or y = a. Thus, by our choice of y, we should have
κ(x1, x2) = 0. Since this holds for every x1, x2 in y⊥, the subspace y⊥ is totally
isotropic. �
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Proof of Theorem 1 Now we obtain a final contradiction. We assume conditions (a)
and (b) above.

Since κ is an alternating form on F , F is decomposed as follows from the standard
theory on alternating bilinear forms:

F = R ⊕ 〈e1, . . . , er 〉 ⊕ 〈f1, . . . , fr 〉,
where R = {x ∈ F | κ(x, y) = 0(∀y ∈ F)} is the radical, and {ei, fi} (i = 1, . . . , r)

are parabolic pairs; namely, κ(ei, ej ) = 0 = κ(fi, fj ) and κ(ei, fj ) = δi,j for all
i, j ∈ {1, . . . , r}.

Assume that r ≥ 2. Then the subspaces e⊥
1 and f ⊥

1 contain 〈e2, f2〉, and therefore
none of them is totally isotropic. This contradicts Lemma 17, because it states that
a is a unique possible nonzero element y in F such that y⊥ is not totally isotropic.
Thus, we have r ≤ 1.

Assume that r = 1. Then the radical R has codimension 2 in F . As we assume
that f and g are CCZ-equivalent but EA-inequivalent APN functions on F ∼= F2n , we
must have n ≥ 4. Then R has dimension at least 2, and hence R contains a nonzero
element b distinct from a. However, b⊥ = F is not totally isotropic, which contradicts
Lemma 17.

Hence, we have r = 0, namely, F itself is totally isotropic with respect to κ . How-
ever, this implies that Bf (x, y) lies in a hyperplane Ha of F for every x, y ∈ F . This
contradicts Lemma 5.

Thus, we have a final contradiction, and Theorem 1 is established. �
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