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Abstract The absolute order on the hyperoctahedral group Bn is investigated. Using
a poset fiber theorem, it is proved that the order ideal of this poset generated by the
Coxeter elements is homotopy Cohen–Macaulay. This method results in a new proof
of Cohen–Macaulayness of the absolute order on the symmetric group. Moreover,
it is shown that every closed interval in the absolute order on Bn is shellable and
an example of a non-Cohen–Macaulay interval in the absolute order on D4 is given.
Finally, the closed intervals in the absolute order on Bn and Dn which are lattices are
characterized and some of their important enumerative invariants are computed.
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1 Introduction and results

Coxeter groups are fundamental combinatorial structures which appear in several
areas of mathematics. Partial orders on Coxeter groups often provide an important
tool for understanding the questions of interest. Examples of such partial orders are
the Bruhat order and the weak order. We refer the reader to [8, 10, 19] for background
on Coxeter groups and their orderings.

In this work we study the absolute order. Let W be a finite Coxeter group and let T
be the set of all reflections in W . The absolute order on W is denoted by Abs(W) and
defined as the partial order on W whose Hasse diagram is obtained from the Cayley
graph of W with respect to T by directing its edges away from the identity (see
Sect. 2.2 for a precise definition). The poset Abs(W) is locally self-dual and graded.
It has a minimum element, the identity e ∈ W , but will typically not have a maximum
since, for example, every Coxeter element of W is a maximal element of Abs(W). Its
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rank function is called the absolute length and is denoted by �T . The absolute length
and order arise naturally in combinatorics [1], group theory [5, 14], statistics [16] and
invariant theory [19]. For instance, �T (w) can also be defined as the codimension of
the fixed space of w, when W acts faithfully as a group generated by orthogonal
reflections on a vector space V by its standard geometric representation. Moreover,
the rank generating polynomial of Abs(W) satisfies

∑

w∈W

t�T (w) =
�∏

i=1

(1 + ei t),

where e1, e2, . . . , e� are the exponents [19, Sect. 3.20] of W and � is its rank. We
refer to [1, Sect. 2.4] and [3, Sect. 1] for further discussion of the importance of the
absolute order and related historical remarks.

We will be interested in the combinatorics and topology of Abs(W). These have
been studied extensively for the interval [e, c] := NC(W, c) of Abs(W), known as
the poset of noncrossing partitions associated to W , where c ∈ W denotes a Coxeter
element. For instance, it was shown in [4] that NC(W, c) is shellable for every finite
Coxeter group W . In particular, NC(W, c) is Cohen–Macaulay over Z and the order
complex of NC(W, c) � {e, c} has the homotopy type of a wedge of spheres.

The problem to study the topology of the poset Abs(W) � {e} and to de-
cide whether Abs(W) is Cohen–Macaulay, or even shellable, was posed by Reiner
[2, Problem 3.1] and Athanasiadis (unpublished); see also [29, Problem 3.3.7]. Com-
puter calculations carried out by Reiner showed that the absolute order is not Cohen–
Macaulay for the group D4. This led Reiner to ask [2, Problem 3.1] whether the
order ideal of Abs(W) generated by the set of Coxeter elements is Cohen–Macaulay
(or shellable) for every finite Coxeter group W . In the case of the symmetric group
Sn this ideal coincides with Abs(Sn), since every maximal element of Sn is a Coxeter
element. Although it is not known whether Abs(Sn) is shellable, the following results
were obtained in [3].

Theorem 1 [3, Theorem 1.1] The partially ordered set Abs(Sn) is homotopy Cohen–
Macaulay for every n ≥ 1. In particular, the order complex of Abs(Sn) � {e} is ho-
motopy equivalent to a wedge of (n − 2)-dimensional spheres and Cohen–Macaulay
over Z.

Theorem 2 [3, Theorem 1.2] Let P̄n = Abs(Sn)� {e}. The reduced Euler character-
istic of the order complex Δ(P̄n) satisfies

∑

n≥1

(−1)nχ̃
(
Δ

(
P̄n

)) tn

n! = 1 − C(t) exp
{−2tC(t)

}
,

where C(t) = 1
2t

(1 − √
1 − 4t) is the ordinary generating function for the Catalan

numbers.

In the present paper we focus on the hyperoctahedral group Bn. We denote by Jn

the order ideal of Abs(Bn) generated by the Coxeter elements of Bn and by J̄n its
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proper part Jn � {e}. Contrary to the case of the symmetric group, not every maximal
element of Abs(Bn) is a Coxeter element. Our main results are as follows.

Theorem 3 The poset Jn is homotopy Cohen–Macaulay for every n ≥ 2.

Theorem 4 The reduced Euler characteristic of the order complex Δ(J̄n) satisfies

∑

n≥2

(−1)nχ̃
(
Δ(J̄n)

) tn

n! = 1 − √
C(2t) exp

{−2tC(2t)
}(

1 +
∑

n≥1

2n−1
(

2n − 1

n

)
tn

n

)
,

where C(t) = 1
2t

(1 − √
1 − 4t) is the ordinary generating function for the Catalan

numbers.

The maximal (with respect to inclusion) intervals in Abs(Bn) include the posets
NCB(n) of noncrossing partitions of type B , introduced and studied by Reiner [26],
and NCB(p,q) of annular noncrossing partitions, studied recently by Kratten-
thaler [22] and by Nica and Oancea [24]. We have the following result concerning
the intervals of Abs(Bn).

Theorem 5 Every interval of Abs(Bn) is shellable.

Furthermore, we consider the absolute order on the group Dn and give an exam-
ple of a maximal element x of Abs(D4) for which the interval [e, x] is not Cohen–
Macaulay over any field (Remark 2). This is in accordance with Reiner’s computa-
tions, showing that Abs(D4) is not Cohen–Macaulay and answers in the negative a
question raised by Athanasiadis (personal communication), asking whether all inter-
vals in the absolute order on Coxeter groups are shellable. Moreover, it shows that
Abs(Dn) is not Cohen–Macaulay over any field for every n ≥ 4. It is an open prob-
lem to decide whether Abs(Bn) is Cohen–Macaulay for every n ≥ 2 and whether the
order ideal of Abs(W) generated by the set of Coxeter elements is Cohen–Macaulay
for every Coxeter group W [2, Problem 3.1].

This paper is organized as follows. In Sect. 2 we fix notation and terminology re-
lated to partially ordered sets and simplicial complexes and discuss the absolute order
on the classical finite reflection groups. In Sect. 3 we prove Theorem 5 by showing
that every closed interval of Abs(Bn) admits an EL-labeling (see Sect. 2 for the defin-
ition of EL-labeling). Theorems 3 and 4 are proved in Sect. 4. Our method to establish
homotopy Cohen–Macaulayness is different from that of [3]. It is based on a poset
fiber theorem due to Quillen [25, Corollary 9.7]. The same method gives an alterna-
tive proof of Theorem 1, which is also included in Sect. 4. Theorems 3 and 4 require
some lemmas whose proofs are based on induction and use the notion of strong con-
structibility (see Sect. 2 for the definition of strongly constructible posets). Since
these proofs are rather technical they appear in the Appendix. In Sect. 5 we char-
acterize the closed intervals in Abs(Bn) and Abs(Dn) which are lattices. In Sect. 6
we study a special case of such an interval, namely the maximal interval [e, x] of
Abs(Bn), where x = t1t2 · · · tn and each ti is a balanced reflection. Finally, in Sect. 7
we compute the zeta polynomial, cardinality and Möbius function of the intervals
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of Abs(Bn) which are lattices. These computations are based on results of Goulden,
Nica and Oancea [18] concerning enumerative properties of the poset NCB(n−1,1).

2 Preliminaries

2.1 Partial orders and simplicial complexes

Let (P,≤) be a finite partially ordered set (poset for short) and x, y ∈ P . We say that
y covers x, and write x → y, if x < y and there is no z ∈ P such that x < z < y.
The poset P is called bounded if there exist elements 0̂ and 1̂ such that 0̂ ≤ x ≤ 1̂
for every x ∈ P . The elements of P which cover 0̂ are called atoms. A subset C of a
poset P is called a chain if any two elements of C are comparable in P . The length
of a (finite) chain C is equal to |C|−1. We say that P is graded if all maximal chains
of P have the same length. In that case, the common length of all maximal chains
of P is called the rank of P . Moreover, assuming P has a 0̂ element, there exists a
unique function ρ : P → N, called the rank function of P , such that

ρ(y) =
{

0 if y = 0̂,

ρ(x) + 1 if x → y.

We say that x has rank i if ρ(x) = i. For x ≤ y in P we denote by [x, y] the closed
interval {z ∈ P : x ≤ z ≤ y} of P , endowed with the partial order induced from P .
If S is a subset of P , then the order ideal of P generated by S is the subposet 〈S〉
of P consisting of all x ∈ P for which x 	 y holds for some y ∈ S. We will write
〈y1, y2, . . . , ym〉 for the order ideal of P generated by the set {y1, y2, . . . , ym}. In
particular, 〈x〉 denotes the subposet of P consisting of all elements of P which are
less than (or equal to) x. Given two posets (P,≤P ) and (Q,≤Q), a map f : P → Q

is called a poset map if it is order preserving, i.e. x ≤P y implies f (x) ≤Q f (y) for
all x, y ∈ P . If, in addition, f is a bijection with order preserving inverse, then f is
said to be a poset isomorphism. If there exists a poset isomorphism f : P → Q, then
the posets P and Q are said to be isomorphic, and we write P ∼= Q. Assuming that P

and Q are graded, the map f : P → Q is called rank-preserving if for every x ∈ P ,
the rank of f (x) in Q is equal to the rank of x in P . The direct product of P and
Q is the poset P × Q on the set {(x, y) : x ∈ P, y ∈ Q} for which (x, y) ≤ (x′, y′)
holds in P × Q if x ≤P x′ and y ≤Q y′. The dual of P is the poset P ∗ defined on
the same ground set as P by letting x ≤ y in P ∗ if and only if y ≤ x in P . The poset
P is called self-dual if P and P ∗ are isomorphic and locally self-dual if every closed
interval of P is self-dual. For more information on partially ordered sets we refer the
reader to [27, Chap. 3].

Let V be a nonempty finite set. An abstract simplicial complex Δ on the vertex
set V is a collection of subsets of V such that {v} ∈ Δ for every v ∈ V and such that
G ∈ Δ and F ⊆ G imply F ∈ Δ. The elements of V and Δ are called vertices and
faces of Δ, respectively. The maximal faces are called facets. The dimension of a face
F ∈ Δ is equal to |F | − 1 and is denoted by dimF . The dimension of Δ is defined
as the maximum dimension of a face of Δ and is denoted by dimΔ. If all facets of Δ
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have the same dimension, then Δ is said to be pure. The link of a face F of a simpli-
cial complex Δ is defined as linkΔ(F) = {G � F : G ∈ Δ,F ⊆ G}. All topological
properties of an abstract simplicial complex Δ we mention will refer to those of its
geometric realization ‖Δ‖. The complex Δ is said to be homotopy Cohen–Macaulay
if for all F ∈ Δ the link of F is topologically (dim linkΔ(F) − 1)-connected. For
a facet G of a simplicial complex Δ, we denote by Ḡ the Boolean interval [∅,G].
A pure d-dimensional simplicial complex Δ is shellable if there exists a total ordering
G1,G2, . . . ,Gm of the set of facets of Δ such that for all 1 < i ≤ m, the intersection
of Ḡ1 ∪ Ḡ2 ∪ · · · ∪ Ḡi−1 with Ḡi is pure of dimension d − 1. For a d-dimensional
simplicial complex we have the following implications: pure shellable ⇒ homotopy
Cohen–Macaulay ⇒ homotopy equivalent to a wedge of d-dimensional spheres. For
background concerning the topology of simplicial complexes we refer to [9] and [29].

To every poset P we associate an abstract simplicial complex Δ(P ), called the
order complex of P . The vertices of Δ(P ) are the elements of P and its faces are
the chains of P . If P is graded of rank n, then Δ(P ) is pure of dimension n. All
topological properties of a poset P we mention will refer to those of the geometric
realization of Δ(P ). We say that a poset P is shellable if its order complex Δ(P ) is
shellable.

We recall the notion of EL-shellability, defined by Björner [7]. Assume that P

is bounded and graded and let C(P ) = {(a, b) ∈ P × P : a → b} be the set of
covering relations of P . An edge labeling of P is a map λ : C(P ) → Λ, where
Λ is some poset. Let [x, y] be a closed interval of P of rank n. To each max-
imal chain c : x → x1 → ·· · → xn−1 → y of [x, y] we associate the sequence
λ(c) = (λ(x, x1), λ(x1, x2), . . . , λ(xn−1, y)). We say that c is strictly increasing if
the sequence λ(c) is strictly increasing in the order of Λ. The maximal chains of
[x, y] can be totally ordered by using the lexicographic order on the corresponding se-
quences. An edge-lexicographic labeling (EL-labeling) of P is an edge labeling such
that in each closed interval [x, y] of P there is a unique strictly increasing maximal
chain and this chain lexicographically precedes all other maximal chains of [x, y].
The poset P is called EL-shellable if it admits an EL-labeling. A finite poset P of
rank d with a minimum element is called strongly constructible [3] if it is bounded
and pure shellable, or it can be written as a union P = I1 ∪ I2 of two strongly con-
structible proper ideals I1, I2 of rank n, such that I1 ∩ I2 is strongly constructible of
rank at least n − 1.

Finally, we remark that every EL-shellable poset is shellable [7, Theorem 2.3]. We
also recall the following lemmas.

Lemma 1 Let P and Q be finite posets, each with a minimum element.

(i) [3, Lemma 3.7] If P and Q are strongly constructible, then so is the direct prod-
uct P × Q.

(ii) [3, Lemma 3.8] If P is the union of strongly constructible ideals I1, I2, . . . , Ik of
P of rank n and the intersection of any two or more of these ideals is strongly
constructible of rank n or n − 1, then P is also strongly constructible.

Lemma 2 Every strongly constructible poset is homotopy Cohen–Macaulay.
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Proof It follows from [3, Proposition 3.6] and [3, Corollary 3.3]. �

Lemma 3 Let P and Q be finite posets, each with a minimum element.

(i) If P and Q are homotopy Cohen–Macaulay, then so is the direct product P ×Q.
(ii) If P is the union of homotopy Cohen–Macaulay ideals I1, I2, . . . , Ik of P of rank

n and the intersection of any two or more of these ideals is homotopy Cohen–
Macaulay of rank n or n − 1, then P is also homotopy Cohen–Macaulay.

Proof The first part follows from [12, Corollary 3.8]. The proof of the second part is
similar to that of [3, Lemma 3.4]. �

2.2 The absolute length and absolute order

Let W be a finite Coxeter group and let T denote the set of all reflections in W . Given
w ∈ W , the absolute length of w is defined as the smallest integer k such that w can
be written as a product of k elements of T ; it is denoted by �T (w). The absolute
order Abs(W) is the partial order 	 on W defined by

u 	 v if and only if �T (u) + �T
(
u−1v

) = �T (v)

for u,v ∈ W . Equivalently, 	 is the partial order on W with covering relations w →
wt , where w ∈ W and t ∈ T are such that �T (w) < �T (wt). In that case we write

w
t→ wt . The poset Abs(W) is graded with rank function �T .
Every closed interval in W is isomorphic to one which contains the identity.

Specifically, we have the following lemma (see also [4, Lemma 3.7]).

Lemma 4 Let u,v ∈ W with u 	 v. The map φ : [u,v] → [e,u−1v] defined by
φ(w) = u−1w is a poset isomorphism.

Proof It follows from [1, Lemma 2.5.4] by an argument similar to that in the proof
of [1, Proposition 2.6.11]. �

For more information on the absolute order on W we refer the reader to
[1, Sect. 2.4].

The absolute order on Sn

We view the group Sn as the group of permutations of the set {1,2, . . . , n}. The set
T of reflections of Sn is equal to the set of all transpositions (i j), where 1 ≤ i <

j ≤ n. The length �T (w) of w ∈ Sn is equal to n − γ (w), where γ (w) denotes the
number of cycles in the cycle decomposition of w. Given a cycle c = (i1 i2 · · · ir )

in Sn and indices 1 ≤ j1 < j2 < · · · < js ≤ r , we say that the cycle (ij1 ij2 · · · ijs )

can be obtained from c by deleting elements. Given two disjoint cycles a, b in Sn

each of which can be obtained from c by deleting elements, we say that a and b are
noncrossing with respect to c if there does not exist a cycle (i j k l) of length four
which can be obtained from c by deleting elements, such that i, k are elements of a
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Fig. 1 The poset Abs(S3)

and j , l are elements of b. For instance, if n = 9 and c = (3 5 1 9 2 6 4) then the cycles
(3 6 4) and (5 9 2) are noncrossing with respect to c but (3 2 4) and (5 9 6) are not. It
can be verified [13, Sect. 2] that for u,v ∈ Sn we have u 	 v if and only if

– Every cycle in the cycle decomposition for u can be obtained from some cycle in
the cycle decomposition for v by deleting elements, and

– Any two cycles of u which can be obtained from the same cycle c of v by deleting
elements are noncrossing with respect to c

Clearly, the maximal elements of Abs(Sn) are precisely the n-cycles, which are the
Coxeter elements of Sn. Figure 1 illustrates the Hasse diagram of the poset Abs(S3).

The absolute order on Bn

We view the hyperoctahedral group Bn as the group of permutations w of the set
{±1,±2, . . . ,±n} satisfying w(−i) = −w(i) for 1 ≤ i ≤ n. Following [14], the
permutation which has cycle form (a1 a2 · · · ak)(−a1 − a2 · · · − ak) is denoted by
((a1, a2, . . . , ak)) and is called a paired k-cycle, while the cycle (a1 a2 · · · ak − a1 −
a2 · · · − ak) is denoted by [a1, a2, . . . , ak] and is called a balanced k-cycle. Every
element w ∈ Bn can be written as a product of disjoint paired or balanced cycles,
called cycles of w. With this notation, the set T of reflections of Bn is equal to the
union

{[i] : 1 ≤ i ≤ n
} ∪ {

((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n
}
. (1)

The length �T (w) of w ∈ Bn is equal to n − γ (w), where γ (w) denotes the number
of paired cycles in the cycle decomposition of w. An element w ∈ Bn is maximal in
Abs(Bn) if and only if it can be written as a product of disjoint balanced cycles whose
lengths sum to n. The Coxeter elements of Bn are precisely the balanced n-cycles.

The covering relations w
t→ wt of Abs(Bn), when w and t are non-disjoint cycles,

can be described as follows: For 1 ≤ i < j ≤ m ≤ n, we have

(a) ((a1, . . . , ai−1, ai+1, . . . , am))
((ai−1,ai ))−→ ((a1, . . . , am))

(b) ((a1, . . . , am))
[ai ]−→ [a1, . . . , ai−1, ai,−ai+1, . . . ,−am]

(c) ((a1, . . . , am))
((ai ,−aj ))−→ [a1, . . . , ai,−aj+1, . . . ,−am][ai+1, . . . , aj ]
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Fig. 2 The poset Abs(B2)

(d) [a1, . . . , ai−1, ai+1, . . . , am] ((ai−1,ai ))−→ [a1, . . . , am]
(e) [a1, . . . , aj ]((aj+1, . . . , am))

((aj ,am))−→ [a1, . . . , am]
(f) ((a1, . . . , aj ))((aj+1, . . . , am))

((aj ,am))−→ ((a1, . . . , am))

where a1, . . . , am are elements of {±1, . . . ,±n} with pairwise distinct absolute val-
ues. Figure 2 illustrates the Hasse diagram of the poset Abs(B2).

The absolute order on Dn

The Coxeter group Dn is the subgroup of index two of the group Bn, generated by
the set of reflections

{
((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n

}
(2)

(these are all reflections in Dn). An element w ∈ Bn belongs to Dn if and only
if w has an even number of balanced cycles in its cycle decomposition. The ab-
solute length on Dn is the restriction of the absolute length of Bn on the set Dn and
hence Abs(Dn) is a subposet of Abs(Bn). Every Coxeter element of Dn has the form
[a1, a2, . . . , an−1][an], where a1, . . . , an are elements of {±1, . . . ,±n} with pairwise
distinct absolute values.

Remark 1 Let w = bp be an element in Bn or Dn, where b (respectively, p) is the
product of all balanced (respectively, paired) cycles of w. The covering relations
of Abs(Bn) imply the poset isomorphism [e,w] ∼= [e, b] × [e,p]. Moreover, if p =
p1 · · ·pk is written as a product of disjoint paired cycles, then

[e,w] ∼= [e, b] × [e,p1] × · · · × [e,pk].

2.3 Projections

We recall that Jn denotes the order ideal of Abs(Bn) generated by the Coxeter el-
ements of Bn. Let Pn be Abs(Sn) or Jn for some n ≥ 2. For i ∈ {1,2, . . . , n} we
define a map πi : Pn → Pn by letting πi(w) be the permutation obtained when
±i is deleted from the cycle decomposition of w. For example, if n = i = 5 and
w = [1,−5,2]((3,−4)) ∈ J5, then π5(w) = [1,2]((3,−4)).
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Lemma 5 The following hold for the map πi : Pn → Pn.

(i) πi(w) 	 w for every w ∈ Pn.
(ii) πi is a poset map.

Proof Let w ∈ Pn. If w(i) = i, then clearly πi(w) = w. Suppose that w(i) �= i. Then
it follows from our description of Abs(Sn) and from the covering relations of types (a)
and (d) of Abs(Bn) that πi(w) is covered by w. Hence πi(w) 	 w. This proves (i).
To prove (ii), it suffices to show that for every covering relation u → v in Pn we have
either πi(u) = πi(v) or πi(u) → πi(v). Again, this follows from our discussion of
Abs(Sn) and from our list of covering relations of Abs(Bn). �

Lemma 6 Let Pn stand for either Abs(Sn) for every n ≥ 1, or Jn for every n ≥ 2.
Let also w ∈ Pn and u ∈ Pn−1 be such that πn(w) 	 u. Then there exists an element
v ∈ Pn which covers u and satisfies πn(v) = u and w 	 v.

Proof We may assume that w does not fix n, since otherwise the result is trivial.
Suppose that πn(w) = w1 · · ·wl and u = u1 · · ·ur are written as products of disjoint
cycles in Pn−1.

Case 1: Pn = Abs(Sn) for n ≥ 1. Then there is an index i ∈ {1,2, . . . , l} such that
w is obtained from πn(w) by inserting n in the cycle wi . Let y be the cycle of w

containing n, so that πn(y) = wi . From the description of the absolute order on Sn

given in this section, it follows that wi 	 uj for some j ∈ {1,2, . . . , r}. We may insert
n in the cycle uj so that the resulting cycle vj satisfies y 	 vj . Let v be the element of
Sn obtained by replacing uj in the cycle decomposition of u by vj . Then u is covered
by v, πn(v) = u and w 	 v.

Case 2: Pn = Jn for n ≥ 2. The result follows by a simple modification of the ar-
gument in the previous case, if [n] is not a cycle of w. Assume the contrary, so
that w = πn(w)[n] and all cycles of πn(w) are paired. If u has no balanced cycle,
then w 	 u[n] ∈ Jn and hence v = u[n] has the desired properties. Suppose that
u has a balanced cycle in its cycle decomposition, say b = [a1, . . . , ak]. We denote
by p the product of all paired cycles of u, so that u = bp. If πn(w) 	 p, then the
choice v = [a1, . . . , ak, n]p works. Otherwise, we may assume that there is an in-
dex m ∈ {1,2, . . . , l} such that w1 · · ·wm 	 b and wi and b are disjoint for every
i > m. From the covering relations of Abs(Bn) of types (a), (b) and (f) it follows
that there is a paired cycle c which is covered by b and satisfies w1 · · ·wm 	 c. Thus
πn(w) 	 cp 	 u. More specifically, c has the form ((a1, . . . , ai,−ai+1, . . . ,−ak)) for
some i ∈ {2, . . . , k}. We set v = [a1, . . . , ai, n, ai+1, . . . , al]p. Then v covers u and
w 	 cp[n] 	 v. This concludes the proof of the lemma. �

3 Shellability

In this section we prove Theorem 5 by showing that every closed interval of Abs(Bn)

admits an EL-labeling. Let C(Bn) be the set of covering relations of Abs(Bn) and
(a, b) ∈ C(Bn). Then a−1b is a reflection of Bn, thus either a−1b = [i] for some i ∈



192 J Algebr Comb (2011) 34:183–211

Fig. 3 The interval [e, [e, [3,−4]((1,2))]] in Abs(S4)

{1,2, . . . , n}, or there exist i, j ∈ {1,2, . . . , n}, with i < j , such that a−1b = ((i, j))

or a−1b = ((i,−j)). We define a map λ : C(Bn) → {1,2, . . . , n} as follows:

λ(a, b) =
{

i, if a−1b = [i],
j, if a−1b = ((i, j)) or ((i,−j)).

A similar labeling was used by Biane [6] in order to study the maximal chains of
the poset NCB(n) of noncrossing Bn-partitions. Figure 3 illustrates the Hasse diagram
of the interval [e, [3,−4]((1,2))], together with the corresponding labels.

Proposition 1 Let u,v ∈ Bn with u 	 v. Then, the restriction of the map λ to the
interval [u,v] is an EL-labeling.

Proof Let u,v ∈ Bn with u 	 v. We consider the poset isomorphism φ : [u,v] →
[e,u−1v] from Lemma 4. Let (a, b) ∈ C([u,v]). Then we have

φ(a)−1φ(b) = (u−1a)−1u−1b = a−1uu−1b = a−1b,

which implies that λ(a, b) = λ(φ(a),φ(b)). Thus, it suffices to show that λ|[e,w] is
an EL-labeling for the interval [e,w], where w = u−1v.

Let b1 · · ·bk p1 · · ·pl be the cycle decomposition of w, where bi = [b1
i , . . . , b

ki

i ]
for i ≤ k and pj = ((p1

j , . . . , p
lj
j )), with p1

j = min{|pm
j | : 1 ≤ m ≤ lj } for j ≤ l. We

consider the sequence of positive integers obtained by placing the numbers |bh
i | and

|pm
j |, for i, j, h ≥ 1 and m > 1, in increasing order. There are r = �T (w) such in-

tegers. To simplify the notation, we denote by c(w) = (c1, c2, . . . , cr ) this sequence
and say that cμ (μ = 1,2, . . . , r) belongs to a balanced (respectively, paired) cycle if
it is equal to some |bh

i | (respectively, |pm
j |). Clearly, we have

c1 < c2 < · · · < cr (3)
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and λ(a, b) ∈ {c1, c2, . . . , cr} for all (a, b) ∈ C([e,w]). To the sequence (3) corre-
sponds a unique maximal chain

Cw : w0 = e
c1→ w1

c2→ w2
c3→ ·· · cr→ wr = w,

which can be constructed inductively as follows (here, the integer κ in a
κ→ b denotes

the label λ(a, b)). If c1 belongs to a balanced cycle, then w1 = [c1]. Otherwise, c1
belongs to some pi , say p1, and we set w1 to be either ((p1

1, c1)) or ((p1
1,−c1)), so that

w1 	 p1 holds. Note that in both cases we have λ(e,w1) = c1 and λ(e,w1) < λ(e,w)

for any other atom t ∈ [e,w]. Indeed, suppose that there is an atom t �= w1 such
that λ(e, t) = c1. We assume first that c1 belongs to a balanced cycle, so w1 = [c1].
Then t is a reflection of the form ((c0,±c1)), where c0 < c1 and, therefore, c0 be-
longs to some paired cycle of w (if not then c1 would not be minimum). However
from the covering relations of Abs(Bn) written at the end of Sect. 2.2 it follows that
((c0,±c1)) �	 w, thus ((c0,±c1)) �∈ [e,w], a contradiction. Therefore c1 belongs to a
paired cycle of w, say p1, and w1, t are both paired reflections. Without loss of gen-
erality, let w1 = ((p1

1, c1)) and t = ((c0, c1)), for some c0 < c1. By the first covering
relation written at the end of Sect. 2.2 and the definition of λ, it follows that c0 = p1

1,
thus w1 = t , again a contradiction.

Suppose now that we have uniquely defined the elements w1,w2, . . . ,wj , so
that for every i = 1,2, . . . , j we have wi−1 → wi with λ(wi−1,wi) = ci and
λ(wi−1,wi) < λ(wi−1, z) for every z ∈ [e,w] such that z �= wi and wi−1 → z. We
consider the number cj+1 and distinguish two cases.

Case 1: cj+1 belongs to a cycle whose elements have not been used. In this case,
if cj+1 belongs to a balanced cycle, then we set wj+1 = wj [cj+1], while if cj+1
belongs to ps for some s ∈ {1,2, . . . , l}, then we set wj+1 to be either wj((p

1
s , cj+1))

or wj((p
1
s ,−cj+1)), so that w−1

j wj+1 	 ps holds.

Case 2: cj+1 belongs to a cycle some element of which has been used. Then there
exists an index i < j + 1 such that ci belongs to the same cycle as cj+1. If ci, cj+1
belong to some bs , then there is a balanced cycle of wj , say a, that contains ci . In this
case we set wj+1 to be the permutation that we obtain from wj if we add the number
cj+1 in the cycle a in the same order and with the same sign that it appears in bs . We
proceed similarly if ci, cj+1 belong to the same paired cycle.

In both cases we have λ(wj ,wj+1) = cj+1. This follows from the covering rela-
tions of Abs(Bn) given in the end of Sect. 2.2. Furthermore, we claim that if z ∈ [e,w]
with z �= wj+1 is such that wj → z, then λ(wj ,wj+1) < λ(wj , z). Indeed, in view
of the poset isomorphism φ : [u,v] → [e,u−1v] for u = wj and v = w, this follows
from the special case j = 0 treated earlier. By definition of λ and the construction of
Cu, the sequence

(
λ(e,w1), λ(w1,w2), . . . , λ(wr−1,w)

)

coincides with c(w). Moreover, Cw is the unique maximal chain having this sequence
of labels. This and the fact that the labels of any chain in [e,w] are elements of the
set {c1, c2, . . . , cr} imply that Cw is the unique strictly increasing maximal chain.
By what we have already shown, Cw lexicographically precedes all other maximal
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chains of [e,w]. Thus Cw is lexicographically first and the unique strictly increasing
chain in [e,w]. Hence λ is an EL-labeling for the interval [e,w] and Proposition 1 is
proved. �

Proof of Theorem 5 Let [u,v] be an interval in Abs(Bn). It follows from Proposi-
tion 1 that [u,v] is EL-shellable. However, [7, Theorem 2.3] implies that any EL-
shellable poset is shellable. This concludes the proof of the theorem. �

Examples 1

(i) Let n = 7 and w = [1,−7][3]((2, −6, −5))((4)) ∈ B7. Then c(w) = (1,3,5,6,7)

and

Cw : e 1→ [1] 3→ [1][3] 5→ [1][3]((2,−5))
6→ [1][3]((2,−6,−5))

7→ w.

(ii) Let n = 4 and w = [3,−4]((1,2)). Then c(w) = (2,3,4) and

Cw : e 2→ ((1,2))
3→ ((1,2))[3] 4→ w.

Remark 2 Figure 4 illustrates the Hasse diagram of the interval I = [e,u] of
Abs(D4), where u = [1][2][3][4] (in Fig. 4 some of the elements are written on two
lines for reasons of space). Note that the Hasse diagram of the open interval (e, u) is
disconnected and, therefore, I is not Cohen–Macaulay over any field. Since Abs(Dn)

contains an interval which is isomorphic to I for any n ≥ 4, it follows that Abs(Dn)

is not Cohen–Macaulay over any field for n ≥ 4 either (see [29, Corollary 3.1.9]).

4 Cohen–Macaulayness

In this section we prove Theorems 3 and 4. Our method to show that Jn is
homotopy Cohen–Macaulay is based on the following theorem, due to Quillen
[25, Corollary 9.7]; see also [11, Theorem 5.1]. The same method yields a new proof
of Theorem 1, which we also include in this section.

Theorem 6 Let P and Q be graded posets and let f : P → Q be a surjective rank-
preserving poset map. Assume that for all q ∈ Q the fiber f −1(〈q〉) is homotopy
Cohen–Macaulay. If Q is homotopy Cohen–Macaulay, then so is P .

We recall (see Sect. 2.1) that by 〈q〉 we denote the order ideal of Q generated by
the singleton {q}. For other poset fiber theorems of this type, see [11].

To prove Theorems 1 and 3, we need the following. Let {0̂, 1̂} be a two ele-
ment chain, with 0̂ < 1̂ and i ∈ {1,2, . . . , n}. We consider the map πi : Pn → Pn

of Sect. 2.3, where Pn is either Abs(Sn) or Jn. We define the map

fi : Pn → πi(Pn) × {
0̂, 1̂

}
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by letting

fi(w) =
{

(πi(w), 0̂), if w(i) = i,

(πi(w), 1̂), if w(i) �= i

for w ∈ Pn. We first check that fi is a surjective rank-preserving poset map. Indeed,
by definition fi is rank-preserving. Let u,v ∈ Pn with u 	 v. Lemma 5(ii) implies
that πi(u) 	 πi(v). If u(i) �= i, then v(i) �= i as well and hence fi(u) = (πi(u), 1̂) ≤
(πi(v), 1̂) = fi(v). If u(i) = i, then fi(u) = (πi(u), 0̂) and hence fi(u) ≤ fi(v).
Thus fi is a poset map. Moreover, if w ∈ πi(Pn), then f −1

i ({(w, 0̂)}) = {w} and
any permutation obtained from w by inserting the element i in a cycle of w lies in
f −1

i ({(w, 1̂)}). Thus f −1
i ({q}) �= ∅ for every q ∈ πi(Pn) × {0̂, 1̂}, which means that

fi is surjective.
Given a map f : P → Q, we abbreviate by f −1(q) the inverse image f −1({q})

of a singleton subset {q} of Q. For subsets U and V of Sn (respectively, of Bn), we
write U · V = {uv : u ∈ U,v ∈ V }.

The following lemmas will be used in the proof of Theorem 1.

Lemma 7 For every q ∈ Sn−1 × {0̂, 1̂} we have f −1
n (〈q〉) = 〈f −1

n (q)〉.

Proof The result is trivial for q = (u, 0̂) ∈ Sn−1 × {0̂, 1̂}, so suppose that q = (u, 1̂).
Since fn is a poset map, we have 〈f −1

n (q)〉 ⊆ f −1
n (〈q〉). For the reverse inclu-

sion consider any element w ∈ f −1
n (〈q〉). Then fn(w) ≤ q and hence πn(w) 	 u.

Lemma 6 implies that there exists an element v ∈ Sn which covers u and satisfies
πn(v) = u and w 	 v. We then have v ∈ f −1

n (q) and hence w ∈ 〈f −1
n (q)〉. This

proves that f −1
n (〈q〉) ⊆ 〈f −1

n (q)〉. �

Lemma 8 For every u ∈ Sn−1, the order ideal

M(u) = 〈
v ∈ Sn : πn(v) = u

〉

of Abs(Sn) is homotopy Cohen–Macaulay of rank �T (u) + 1.

Proof Let u = u1u2 · · ·ul be written as a product of disjoint cycles in Sn−1. Then

M(u) =
l⋃

i=1

C(ui) · 〈u1 · · · ûi · · ·ul〉,

where u1 · · · ûi · · ·ul denotes the permutation obtained from u by deleting the cycle
ui and C(ui) denotes the order ideal of Abs(Sn) generated by the cycles v of Sn

which cover ui and satisfy πn(v) = ui . Lemma 11, proved in the Appendix, implies
that C(ui) is homotopy Cohen–Macaulay of rank �T (ui)+ 1 for every i. Each of the
ideals C(ui) · 〈u1 · · · ûi · · ·ul〉 is isomorphic to a direct product of homotopy Cohen–
Macaulay posets and hence it is homotopy Cohen–Macaulay, by Lemma 3(i); their
rank is equal to �T (u)+1. Moreover, the intersection of any two or more of the ideals
C(ui) · 〈u1 · · · ûi · · ·ul〉 is equal to 〈u〉, which is homotopy Cohen–Macaulay of rank
�T (u). Thus the result follows from Lemma 3(ii). �
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Proof of Theorem 1 We proceed by induction on n. The result is trivial for n ≤ 2.
Suppose that the poset Abs(Sn−1) is homotopy Cohen–Macaulay. Then so is the di-
rect product Abs(Sn−1) × {0̂, 1̂} by Lemma 3(i). We consider the map

fn : Abs(Sn) → Abs(Sn−1) × {
0̂, 1̂

}
.

In view of Theorem 6 and Lemma 7, it suffices to show that for every q ∈ Sn−1 ×
{0̂, 1̂} the order ideal 〈f −1

n (q)〉 of Abs(Sn) is homotopy Cohen–Macaulay. This is true
in case q = (u, 0̂) for some u ∈ Sn−1, since then 〈f −1

n (q)〉 = 〈u〉 and every interval
in Abs(Sn) is shellable. Suppose that q = (u, 1̂). Then 〈f −1

n (q)〉 = M(u), which is
homotopy Cohen–Macaulay by Lemma 8. This completes the induction and the proof
of the theorem. �

We now focus on the hyperoctahedral group. The proof of Theorem 3 is based on
the following lemmas.

Lemma 9 For every q ∈ Jn−1 × {0̂, 1̂} we have f −1
n (〈q〉) = 〈f −1

n (q)〉.

Proof The proof of Lemma 7 applies word by word, if one replaces Sn−1 by the ideal
Jn−1. We thus omit the details. �

Lemma 10 For every u ∈ Jn−1 the order ideal

M(u) = 〈
v ∈ Jn : πn(v) = u

〉

of Abs(Bn) is homotopy Cohen–Macaulay of rank �T (u) + 1.

Proof Let u = u1u2 · · ·ul ∈ Jn−1 be written as a product of disjoint cycles. For
i ∈ {1, . . . , l}, we denote by C(ui) the order ideal of Jn generated by all cycles
v ∈ Jn which can be obtained by inserting either n or −n at any place in the cycle ui .
The ideal C(ui) is graded of rank �T (ui) + 1 and homotopy Cohen–Macaulay, by
Lemma 12 proved in the Appendix. Let u1 · · · ûi · · ·ul denote the permutation ob-
tained from u by removing the cycle ui . Suppose first that u has a balanced cycle in
its cycle decomposition. Using Remark 1, we find that

M(u) =
l⋃

i=1

C(ui) · 〈u1 · · · ûi · · ·ul〉.

Clearly, M(u) is graded of rank �T (u) + 1. Each of the order ideals C(ui) ·
〈u1 · · · ûi · · ·ul〉 is isomorphic to a direct product of homotopy Cohen–Macaulay
posets and hence it is homotopy Cohen–Macaulay, by Lemma 3(i). Moreover, the
intersection of any two or more of these ideals is equal to 〈u〉, which is homotopy
Cohen–Macaulay of rank �T (u), by Theorem 5. Suppose now that u has no balanced
cycle in its cycle decomposition. Then

M(u) =
l⋃

i=1

C(ui) · 〈u1 · · · ûi · · ·ul〉 ∪ 〈
u[n]〉.
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Again, M(u) is graded of rank �T (u) + 1, each of the ideals C(ui)〈u1 · · · ûi · · ·ul〉
and 〈u[n]〉 is homotopy Cohen–Macaulay and the intersection of any two or more of
these ideals is equal to 〈u〉. In either case, the result follows from Lemma 3(ii). �

Proof of Theorem 3 We proceed by induction on n. The result is trivial for n ≤ 2.
Suppose that the poset Jn−1 is homotopy Cohen–Macaulay. Then so is the direct
product Jn−1 × {0̂, 1̂} by Lemma 3(i). We consider the map

fn : Jn → Jn−1 × {
0̂, 1̂

}
.

In view of Theorem 6 and Lemma 9, it suffices to show that for every q ∈ Jn−1 ×
{0̂, 1̂} the order ideal 〈f −1

n (q)〉 of Abs(Bn) is homotopy Cohen–Macaulay. This is
true in case q = (u, 0̂) for some u ∈ Jn−1, since then 〈f −1

n (q)〉 = 〈u〉 and every
interval in Abs(Bn) is shellable by Theorem 5. Suppose that q = (u, 1̂). Then
〈f −1

n (q)〉 = M(u), which is homotopy Cohen–Macaulay by Lemma 8. This com-
pletes the induction and the proof of the theorem. �

Proof of Theorem 4 Let us denote by 0̂ the minimum element of Abs(Bn). Let Ĵn be
the poset obtained from Jn by adding a maximum element 1̂ and let μn be the Möbius
function of Ĵn. From Proposition 3.8.6 of [27] we have χ̃(Δ(J̄n)) = μn(0̂, 1̂). Since
μn(0̂, 1̂) = −∑

x∈Jn
μn(0̂, x), we have

χ̃
(
Δ

(
J̄n

)) = −
∑

x∈Jn

μn

(
0̂, x

)
. (4)

Suppose that x ∈ Bn is a cycle. It is known [26] that

μ
(
0̂, x

) =
{

(−1)m
(2m−1

k

)
, if x is a balanced m-cycle,

(−1)m−1Cm−1, if x is a paired m-cycle,

where Cm = 1
m+1

(2m
m

)
is the mth Catalan number. We recall (Remark 1) that if x ∈ Jn

has exactly k +1 paired cycles, say p1, . . . , pk+1, and one balanced cycle, say b, then
[0̂, x] ∼= [0̂, b] × [0̂,p1] × · · · × [0̂,pk] and hence

μn

(
0̂, x

) = μn

(
0̂, b

) k∏

i=1

μn

(
0̂,pi

)
.

It follows that

μn

(
0̂, x

) = (−1)�T (b)

(
2�T (b) − 1

�T (b)

) k∏

i=1

(−1)�T (pi )C�T (pi ). (5)

From (4), (5), [28, Proposition 5.1.1] and the exponential formula [28, Corol-
lary 5.1.9], we conclude that

1 −
∑

n≥2

χ̃
(
Δ

(
J̄n

)) tn

n! =
(

1 +
∑

n≥1

2n−1αn

tn

n

)
exp

(∑

n≥1

2n−1βn

tn

n

)
, (6)
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where αn = (−1)n
(2n−1

n

)
is the Möbius function of a balanced n-cycle and βn =

(−1)n−1Cn−1 is the Möbius function of a paired n-cycle. Thus it suffices to compute
exp(

∑
n≥1 2n−1βn

tn

n
). From [3, Sect. 5] we have

exp
∑

n≥1

βn

tn

n
=

√
1 + 4t − 1

2t
exp

(√
1 + 4t − 1

)

and hence, replacing t by 2t ,

exp

(∑

n≥1

2n−1βn

tn

n

)
=

(√
1 + 8t − 1

4t

)1/2

exp

(√
1 + 8t − 1

2

)
.

The right-hand side of (6) can now be written as

1 −
(√

1 + 8t − 1

4t

)1/2

exp

(√
1 + 8t − 1

2

)(
1 +

∑

n≥1

2n−1αn

tn

n

)
.

The result follows by switching t to −t . �

5 Intervals with the lattice property

Let W be a finite Coxeter group and c ∈ W be a Coxeter element. It is known
[5, 14, 15] that the interval [e, c] in Abs(W) is a lattice. In this section we charac-
terize the intervals in Abs(Bn) and Abs(Dn) which are lattices (Theorems 7 and 8,
respectively). As we explain in the sequel, some partial results in this direction were
obtained in [5, 14, 15, 18, 26].

To each w ∈ Bn we associate the integer partition μ(w) whose parts are the ab-
solute lengths of all balanced cycles of w, arranged in decreasing order. For example,
if n = 8 and w = [1,−5][2,7][6]((3,4)), then μ(w) = (2,2,1). It follows from the re-
sults of [18, Sect. 6] that the interval [e,w] in Abs(Bn) is a lattice if μ(w) = (n−1,1)

and that [e,w] is not a lattice if μ(w) = (2,2). Recall that a hook partition is an in-
teger partition of the form μ = (k,1, . . . ,1), also written as μ = (k,1r ), where r is
one less than the total number of parts of μ.

In the sequel we denote by L(k, r) the lattice [e,w] ⊂ Abs(Bn), where w =
[1,2, . . . , k][k + 1] · · · [k + r] ∈ Bn. Clearly, L(k, r) is isomorphic to any interval
of the form [e,u], where u ∈ Bn has no paired cycles and satisfies μ(u) = (k,1r ).

Our main results in this section are the following.

Theorem 7 For w ∈ Bn, the interval [e,w] in Abs(Bn) is a lattice if and only if μ(w)

is a hook partition.

Theorem 8 For w ∈ Dn, the interval [e,w] in Abs(Dn) is a lattice if and only if
μ(w) = (k,1) for some k ≤ n − 1, or μ(w) = (1,1,1,1).
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We note that in view of Lemma 4, Theorems 7 and 8 characterize all closed inter-
vals in Abs(Bn) and Abs(Dn) which are lattices. The following proposition provides
one half of the first characterization.

Proposition 2 Let w ∈ Bn. If μ(w) is a hook partition, then the interval [e,w] in
Abs(Bn) is a lattice.

Proof Let us write w = bp, where b (respectively, p) is the product of all balanced
(respectively, paired) cycles of w. We recall then that [e,w] ∼= [e, b] × [e,p] (see
Remark 1). Since [e,p] is isomorphic to a direct product of noncrossing partition
lattices, the interval [e,w] is a lattice if and only if [e, b] is a lattice. Thus we may
assume that w is a product of disjoint balanced cycles. Since μ(w) is a hook partition,
we may further assume that w = [1,2, . . . , k][k + 1] · · · [k + r] with k + r ≤ n. We
will show that L(k, r) = [e,w] is a lattice by induction on k + r . The result is trivial
for k + r = 2. Suppose that k + r ≥ 3 and that the poset L(k, r) is a lattice whenever
k + r < κ + ρ ≤ n. We will show that L(κ,ρ) is a lattice as well. For ρ ≤ 1, this
follows from [26, Proposition 2] and the result of [18] mentioned earlier. Thus we
may assume that ρ ≥ 2. Let u,v ∈ L(κ,ρ). By [27, Proposition 3.3.1], it suffices to
show that [e,u] ∩ [e, v] = [e, z] for some z ∈ L(κ,ρ).

Suppose first that u(i) = i for some i ∈ {1,2, . . . , κ + ρ} and let v′ be the signed
permutation obtained by deleting the element i from the cycle decomposition of v.
We may assume that u,v′ ∈ L(κ1, ρ1), where either κ1 = κ −1 and ρ1 = ρ, or κ1 = κ

and ρ1 = ρ − 1. We observe that [e,u] ∩ [e, v] = [e,u] ∩ [e, v′]. Since L(κ1, ρ1) is a
lattice by induction, there exists an element z ∈ L(κ1, ρ1) such that [e,u] ∩ [e, v′] =
[e, z]. We argue in a similar way if v(i) = i for some i ∈ {1,2, . . . , κ + ρ}.

Suppose that u(i) �= i and v(i) �= i for every i ∈ {1,2, . . . , κ + ρ}. Since ρ ≥ 2,
each of u,v has at least one reflection in its cycle decomposition. Without loss of
generality, we may assume that no cycle of u is comparable to a cycle of v in Abs(Bn)

(otherwise the result follows by induction). Then at least one of the following holds:

– The reflection [i] is a cycle of u or v for some i ∈ {κ + 1, κ + 2, . . . , κ + ρ}.
– There exist i, j ∈ {κ + 1, κ + 2, . . . , κ + ρ} with i < j , such that either ((i, j)) or

((i,−j)) is a cycle of u and i and j belong to distinct cycles of v, or conversely.
– There exist i, j ∈ {κ + 1, κ + 2, . . . , κ + ρ} with i < j , such that ((i, j)) is a cycle

of u and ((i,−j)) is a cycle of v, or conversely.

In any of the previous cases, let u′ and v′ be the permutations obtained from u and
v, respectively, by deleting the element i from their cycle decomposition. We may
assume once again that u′, v′ ∈ L(κ1, ρ1), where either κ1 = κ − 1 and ρ1 = ρ, or
κ1 = κ and ρ1 = ρ − 1. As before, [e,u] ∩ [e, v] = [e,u′] ∩ [e, v′]. By the induc-
tion hypothesis, L(κ1, ρ1) is a lattice and hence [e,u′] ∩ [e, v′] = [e, z] for some
z ∈ L(κ1, ρ1). This implies that L(κ,ρ) is a lattice and completes the induction. �

Proof of Theorem 7 If μ(w) is a hook partition, then the result follows from Propo-
sition 2. To prove the converse, assume that w has at least two balanced cycles, say
w1 and w2, with �T (w1), �T (w2) ≥ 2. Then there exist i, j, l,m ∈ {±1,±2, . . . ,±n}
with |i|, |j |, |l|, |m| pairwise distinct, such that [i, j ] 	 w1 and [l,m] 	 w2. However,
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in [24, Sect. 5] it was shown that the poset [e, [i, j ][l,m]] is not a lattice. It follows
that neither [e,w] is a lattice. This completes the proof. �

Proof of Theorem 8 The argument in the proof of Theorem 7 shows that the interval
[e,w] is not a lattice unless μ(w) is a hook partition. Moreover, it is known [5, 14]
that [e,w] is a lattice if μ(w) = (k,1) for some k ≥ 1. Suppose that μ(w) = (k,1r ),
where r > 1 and r + k ≤ n. If k ≥ 2, then there exist distinct elements of [e,w] of the
form u = [a1, a2][a3] and v = [a1, a2][a4]. The intersection [e,u]∩[e, v] ⊂ Abs(Dn)

has two maximal elements, namely the paired reflections ((a1, a2)) and ((a1,−a2)).
This implies that u and v do not have a meet and therefore the interval [e,w]
is not a lattice. Suppose that k = 1. Without loss of generality, we may assume
that [1][2] · · · [r + 1] 	 w. Suppose that r + 1 ≥ 5. We consider the elements u =
[1][2][3][4] and v = [1][2][3][5] of [e,w] and note that the intersection [e,u]∩ [e, v]
has three maximal elements, namely [1][2], [1][3] and [2][3]. This implies that the
interval [e,w] is not a lattice. Finally, if r + 1 = 4, then μ(w) = (1,1,1,1) and
[e,w] = [e, [1][2][3][4]]×[e,p], where p is a product of disjoint paired cycles which
fixes each i ∈ {1,2,3,4}. Figure 4 shows that the interval [e, [1][2][3][4]] is a lattice
and hence, so is [e,w]. This completes the proof. �

6 The lattice Ln

The poset L(n,0) is the interval [e, c] of Abs(Bn), where c is the Coxeter element
[1,2, . . . , n] of Bn. This poset is isomorphic to the lattice NCB(n) of noncrossing
partitions of type B . Reiner [26] computed its basic enumerative invariants listed
below:

– The cardinality of NCB(n) is equal to
(2n

n

)
.

– The number of elements of rank k is equal to
(
n
k

)2.
– The zeta polynomial satisfies Z(NCB(n),m) = (

mn
n

)
.

– The number of maximal chains is equal to nn.
– The Möbius function satisfies μn(0̂, 1̂) = (−1)n

(2n−1
n

)
.

In this section we focus on the enumerative properties of another interesting spe-
cial case of L(k, r), namely the lattice Ln := L(0, n). It is the interval [e, v] of
Abs(Bn), where v is the element [1][2] · · · [n] of Bn. First we describe this poset
explicitly. Each element of Ln can be obtained from [1][2] · · · [n] by applying repeat-
edly the following steps:

– Delete some [i].
– Replace a product [i][j ] with ((i, j)) or ((i,−j)).

Thus w ∈ Ln if and only if every nontrivial cycle of w is a reflection. In that case
there is a poset isomorphism [e,w] ∼= Lk × Bl , where k and l are the numbers of
balanced and paired cycles of w, respectively and Bl denotes the lattice of subsets of
the set {1,2, . . . , l}, ordered by inclusion. It is worth pointing out that Ln coincides
with the subposet of Abs(Bn) induced on the set of involutions. Figure 5 illustrates
the Hasse diagram of L3.
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Fig. 5 The interval [e, [1][2][3]] in Abs(B3)

In Proposition 3 we give the analogue of the previous list for the lattice Ln. We
recall that the zeta polynomial Z(P,m) of a finite poset P counts the number of mul-
tichains x1 ≤ x2 ≤ · · · ≤ xm−1 of P . It is known (see [17], [27, Proposition 3.11.1])
that Z(P,m) is a polynomial function of m of degree n, where n is the length of
P and that Z(P,2) = #P . Moreover, the leading coefficient of Z(P,m) is equal to
the number of maximal chains divided by n! and if P is bounded, then Z(P,−1) =
μ(0̂, 1̂). Finally, we recall that n!! = 1 · 3 · . . . · (n − 2) · n, where n is a positive odd
integer.

Proposition 3 For the lattice Ln the following hold:

(i) The number of elements of Ln is equal to

� n
2 �∑

k=0

(
n

2k

)
2n−k(2k − 1)!!.

(ii) The number of elements of Ln of rank r is equal to

min{r,n−r}∑

k=0

n!
k!(r − k)!(n − r − k)! .
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(iii) The zeta polynomial Zn of Ln is given by the formula

Zn(m) =
� n

2 �∑

k=0

(
n

2k

)
mn−k(m − 1)k(2k − 1)!!.

(iv) The number of maximal chains of Ln is equal to

n!
� n

2 �∑

k=0

(
n

2k

)
(2k − 1)!!.

(v) For the Möbius function μn of Ln we have

μn

(
0̂, 1̂

) = (−1)n
� n

2 �∑

k=0

(
n

2k

)
2k(2k − 1)!!,

where 0̂ and 1̂ denotes the minimum and the maximum element of Ln, respec-
tively.

Proof Suppose that x has k paired reflections. These can be chosen in

2k

(
n

2k

)
(2k − 1)!!

ways. On the other hand, the balanced reflections of w can be chosen in 2n−2k ways.
Therefore the cardinality of Ln is equal to

� n
2 �∑

k=0

(
n

2k

)
2n−k(2k − 1)!!.

The same argument shows that the number of elements of Ln of rank r , where
r ≤ �n

2 � is equal to

r∑

k=0

2k

(
n

2k

)
(2k − 1)!!

(
n − 2k

r − k

)
=

r∑

k=0

2k

(
n

2k

)
(2k)!
2kk!

(
n − 2k

r − k

)

=
r∑

k=0

n!
k!(r − k)!(n − r − k)! .

Since Ln is self-dual, the number of elements in Ln of rank r is equal to the number
of those that have rank n − r . The number of multichains in Ln in which k distinct
paired reflections appear, is equal to

(
n
2k

)
(2k − 1)!!(m(m− 1))kmn−2k . Therefore, the

zeta polynomial of Ln is given by

Zn(m) =
� n

2 �∑

k=0

(
n

2k

)
(2k − 1)!!mn−k(m − 1)k.
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Finally, computing the coefficient of mn in this expression for Zn(m) and multiplying
by n! we conclude that the number of maximal chains of Ln is equal to

n!
� n

2 �∑

k=0

(
n

2k

)
(2k − 1)!!

and setting m = −1 we get

μn

(
0̂, 1̂

) = Zn(−1) = (−1)n
� n

2 �∑

k=0

(
n

2k

)
(2k − 1)!!2k.

�

Remark 3 By Proposition 1, the lattice Ln is EL-shellable. We describe two more
EL-labelings for Ln.

(i) Let Λ = {[i] : i = 1,2, . . . , n} ∪ {((i, j)) : i, j = 1,2, . . . , n, i < j}. We linearly
order the elements of Λ in the following way. We first order the balanced reflec-
tions so that [i] <Λ [j ] if and only if i < j . Then we order the paired reflections
lexicographically. Finally, we define [n] <Λ ((1,2)). The map λ1 : C(Bn) → Λ

defined as

λ1(a, b) =
{ [i] if a−1b = [i],

((i, j)) if a−1b = ((i, j)) or ((i,−j))

is an EL-labeling for Ln.
(ii) Let T be the set of reflections of Bn. We define a total order <T on T , which

extends the order <Λ, by ordering the reflections ((i,−j)), for 1 ≤ i < j ≤ n,
lexicographically and letting ((n − 1, n)) <T ((1,−2)). For example, if n = 3
we have the order [1]T <T [2] <T [3] <T ((1,2)) <T ((1,3)) <T ((2,3)) <T
((1,−2)) <T ((1,−3)) <T ((2,−3)). Let ti be the ith reflection in the order
above. We define a map λ2 : C(Bn) → {1,2, . . . , n2} as

λ2(a, b) = min
1≤i≤n2

{i : ti ∨ a = b}.

The map λ2 is an EL-labeling for Ln.

See Fig. 6 for an example of these two EL-labelings when n = 2.

7 Enumerative combinatorics of L(k, r)

In this section we compute the cardinality, zeta polynomial and Möbius function of
the lattice L(k, r), where k, r are nonnegative integers with k + r = n. The case
k = n − 1 was treated by Goulden, Nica and Oancea in their work [18] on the posets
of annular noncrossing partitions; see also [23, 24] for related work. We will use their
results, as well as the formulas for cardinality and zeta polynomial for NCB(n) and
Proposition 3, to find the corresponding formulas for L(k, r).
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Fig. 6 EL-labelings for the interval [e, [1][2]] in Abs(B2)

Proposition 4 Let αr = |Lr |, βr(m) = Z(Lr ,m) and μr = μr(Lr ), where αr =
βr(m) = μr = 1 for r = 0,1. For fixed nonnegative integers k, r such that k + r = n,
the cardinality, zeta polynomial and Möbius function of L(k, r) are given by

– #L(k, r) = (2k
k

)
( 2rk
k+1αr−1 + ar).

– Z(L(k, r),m) = (
mk
k

)
( 2rk
k+1 (m − 1)βr−1(m) + βr(m)).

– μ(L(k, r)) = (−1)n
(2k−1

k

)
( 4rk
k+1 |μr−1| + |μr |).

Proof We denote by A the subset of L(k, r) which consists of the elements x with
the following property: every cycle of x that contains at least one of ±1,±2, . . . ,±k

is less than or equal to the element [1,2, . . . , k] in Abs(Bn). Equivalently, x ∈ A if
and only if for every cycle xi of x we have either xi 	 [1,2, . . . , k] or xi 	 [k + 1] · · ·
[k + r]. Let x = x1x2 · · ·xν ∈ A, written as a product of disjoint cycles. Without loss
of generality, we may assume that there is a t ∈ {0,1, . . . , ν} such that x1x2 · · ·xt 	
[1,2, . . . , k] and xt+1xt+2 · · ·xν 	 [k + 1][k + 2] · · · [k + r]. Observe that if t = 0
then x 	 [k + 1][k + 2] · · · [k + r] in Abs(Bn), while if t = ν then x 	 [1,2, . . . , k].
Clearly, there exists a poset isomorphism

f : A → NCB(k) × 〈[k + 1] · · · [k + r]〉
x �→ (x1 · · ·xt , xt+1 · · ·xν),

so that

A ∼= NCB(k) × Lr . (7)

Let C = L(k, r) � A and x = x1x2 · · ·xν ∈ C, written as a product of disjoint
cycles. Then there is exactly one paired cycle x1 of x and one reflection ((i, l)) with
i ∈ {±1,±2, . . . ,±k}, l ∈ {k + 1, k + 2, . . . , k + r}, such that ((i, l)) 	 x1. For every
l ∈ {k + 1, k + 2, . . . , k + r} denote by Cl the set of permutations x ∈ L(k, r) which
have a cycle, say x1, such that ((i, l)) 	 x1 for some i ∈ {±1,±2, . . . ,±k}. It follows
that Cl ∩ Cl′ = ∅ for l �= l′. Clearly, Cl

∼= Cl′ for l �= l′ and C = ⋃k+r
l=k+1 Cl .

Summarizing, for every x ∈ C there exists an ordering x1, x2, . . . , xν of the cycles
of x and a unique index t ∈ {1,2, . . . , ν} such that x1x2 · · ·xt 	 [1,2, . . . , k][l] and
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xt+1xt+2 · · ·xν 	 [k + 1][k + 2] · · · [l − 1][l + 1] · · · [k + r]. Let

El = {
x ∈ C : x 	 [1,2, . . . , k][l]}.

We remark that no permutation of El has a balanced cycle in its cycle decomposition.
Clearly, there exists a poset isomorphism

gl : Cl → El × 〈[k + 1] · · · [l − 1][l + 1] · · · [k + r]〉

x �→ (x1 · · ·xt , xt+1 · · ·xν)

so that

Cl
∼= El × Lr−1 (8)

for every l ∈ {k + 1, k + 2, . . . , k + r}. Using (7) and (8), we proceed to the proof
of Proposition 4 as follows. From our previous discussion we have L(k, r) = #A +
r(#Ck+1). From (7) we have

#A =
(

2k

k

)
αr

and (8) implies that #Ck+1 = (#Ek+1)(#Lr−1) = (#Ek+1)αr−1. Since Ek+1 consists
of the permutations in 〈[1,2, . . . , k][k + 1]〉 ∩ C, it follows from [18, Sect. 5] that
#Ek+1 = 2

( 2k
k−1

)
. Therefore,

#L(k, r) = 2r

(
2k

k − 1

)
αr−1 +

(
2k

k

)
αr =

(
2k

k

)(
2rk

k + 1
αr−1 + ar

)
.

Recall that the zeta polynomial Z(L(k, r),m) counts the number of multichains
π1 	 π2 	 · · · 	 πm−1 in L(k, r). We distinguish two cases. If πm−1 ∈ C, then
πm−1 ∈ Cl for some l ∈ {k + 1, . . . , k + r}. Isomorphism (8) then implies that there
are Z(El,m)Z(Lr−1,m) such multichains. From [18, Sect. 5] we have Z(El,m) =
2
(

mk
k+1

)
, therefore Z(El,m)Z(Lr−1,m) = 2

(
mk
k+1

)
βr−1. Since there are r choices for

the set Cl , we conclude that the number of multichains π1 	 π2 	 · · · 	 πm−1 in
L(k, r) for which πm−1 ∈ C is equal to

2r

(
mk

k + 1

)
βr−1(m). (9)

If πm−1 ∈ A, then πm−1 ∈ NCB(k)× Lr and therefore number of such multichains is
equal to

(
mk

k

)
βr(m). (10)

The proposed expression for the zeta polynomial of L(k, r) follows by summing the
expressions (9) and (10) and straightforward calculation.

The expression for the Möbius function follows once again from that of the zeta
polynomial by setting m = −1. �
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Appendix

In this section we prove the following lemmas.

Lemma 11 The order ideal of Abs(Sn) generated by all cycles u ∈ Sn for which
πn(u) = (1 2 · · · n − 1) is homotopy Cohen–Macaulay of rank n − 1.

Lemma 12

(i) The order ideal of Abs(Bn) generated by all cycles u ∈ Bn for which πn(u) =
((1,2, . . . , n − 1)) is homotopy Cohen–Macaulay of rank n − 1.

(ii) The order ideal of Abs(Bn) generated by all cycles u of Bn for which πn(u) =
[1,2, . . . , n − 1] is homotopy Cohen–Macaulay of rank n.

A.1 Proof of Lemma 11

We will show that the order ideal considered in Lemma 11 is in fact strongly con-
structible. The following remark will be used in the proof.

Remark 4 Let u1, u2, . . . , um ∈ Sn be elements of absolute length k and let v ∈ Sn

be a cycle of absolute length r which is disjoint from ui for each i ∈ {1,2, . . . ,m}.
Suppose that the union

⋃m
i=1[e,ui] is strongly constructible of rank k. Then

m⋃

i=1

[e, vui] ∼=
m⋃

i=1

([e, v] × [e,ui]
) = [e, v] ×

m⋃

i=1

[e,ui],

is strongly constructible of rank k + r , by Lemma 1(i).

Lemma 13 For i ∈ {1,2, . . . , n − 1}, consider the element

ui = (1 i + 1 · · · n − 1)(2 3 · · · i n) ∈ Sn.

The union
⋃m

i=1[e,ui] is strongly constructible of rank n − 2 for all 1 ≤ m ≤ n − 1.

Proof We denote by I (n,m) the union in the statement of the lemma and proceed by
induction on n and m, in this order. We may assume that n ≥ 3 and m ≥ 2, since oth-
erwise the result is trivial. Suppose that the result holds for positive integers smaller
than n. We will show that it holds for n as well. By induction on m, it suffices to show
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that [e,um] ∩ I (n,m − 1) is strongly constructible of rank n − 3. Indeed, we have
[e,um] ∩ I (n,m − 1) = ⋃m−1

i=1 [e,um] ∩ [e,ui] and

[e,um] ∩ [e,ui] = [
e, (1m + 1m + 2 · · · n − 1)(2 3 · · · i n)(i + 1 i + 2 · · · m)

]
.

Since the cycle (1m+1m+2 · · · n−1) is present in the disjoint cycle decomposition
of each maximal element of [e,um]∩I (n,m−1), the desired statement follows easily
from Remark 4 by induction on n. �

Example 1 If n = 6 and m = 3, then I (n,m) is the order ideal of Abs(Sn) generated
by the elements u1 = (1 2 3 4 5)(6), u2 = (1 3 4 5)(2 6) and u3 = (1 4 5)(2 3 6). The
intersection

[e,u3] ∩ ([e,u1] ∪ [e,u2]) = [
e, (1 4 5)(2 3)(6)

] ∪ [e, (1 4 5)(3)(2 6)]
is strongly constructible of rank 3 and I (n,m) is strongly constructible of rank 4.

Lemma 14 For i ∈ {1,2, . . . , n − 2}, consider the element

vi = (1n i + 2 · · · n − 1)(2 3 · · · i + 1) ∈ Sn.

The union
⋃m

i=1[e, vi] is strongly constructible of rank n − 2 for all 1 ≤ m ≤ n − 2.

Proof The proof is similar to that of Lemma 13 and is omitted. �

Lemma 15 Let u1, u2, . . . , un−1 ∈ Sn and v1, v2, . . . , vn−2 ∈ Sn be defined as in
Lemmas 13 and 14, respectively. If In = ⋃n−1

i=1 [e,ui] and I ′
n = ⋃n−2

i=1 [e, vi], then
In ∩ I ′

n is strongly constructible of rank n − 3.

Proof We proceed by induction on n. For n = 3 the result is trivial, so assume that
n ≥ 4. For i, j ∈ {2,3, . . . , n − 1} we set

zij = (1 j + 1 · · · n − 1)(2 3 · · · i)(n)(i + 1 · · · j)

and

wij = (1 i + 1 · · · n − 1)(2 3 · · · j)(j + 1 · · · i n).

We observe that

[e,ui] ∩ [e, vj ] =
{

zij , if i < j,

wij , if i ≥ j .

Let Mi be the order ideal of Abs(Sn) generated by the elements wij for 2 ≤ j ≤
i − 1. Since zij 	 wij for all i, j ∈ {2,3, . . . , n − 1} with i �= j , we have In ∩ I ′

n =⋃n−1
i=2 Mi . Each of the ideals Mi is strongly constructible of rank n − 3, by Remark 4

and Lemma 14. We prove by induction on k that
⋃k

i=2 Mi is strongly constructible of
rank n − 3 for every k ≤ n − 1. Suppose that this holds for positive integers smaller
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than k. We need to show that Mk ∩ (
⋃k−1

i=2 Mi) is strongly constructible of rank n−4.
For i ≤ k − 1 we have

Mk ∩ Mi = 〈
v (2 3 · · · j)(j + 1 · · · i n)(i + 1 · · · k) : j = 2,3, . . . , i − 1

〉
,

where v = (1 k + 1 · · · n − 1). Remark 4 and Lemma 14 imply that Mk ∩ Mi is a
strongly constructible poset of rank n − 3. Since v is present in the disjoint cycle
decomposition of each maximal element of Mk ∩ (

⋃k−1
i=2 Mi), it follows by Remark 4

and induction on n that Mk ∩ (
⋃k−1

i=2 Mi) is strongly constructible of rank n − 3 as
well. This concludes the proof of the lemma. �

Proof of Lemma 11 We denote by Cn the order ideal in the statement of the lemma.
We will show that Cn is strongly constructible of rank n − 1 by induction on n. The
result is easy to check for n ≤ 3, so suppose that n ≥ 4. We have Cn = ⋃n−1

i=1 [e,wi],
where w1 = (1 2 · · · n − 1n), w2 = (1 2 · · · nn − 1), . . . ,wn−1 = (1n2 · · · n − 1).
By induction and Remark 4, it suffices to show that [e,wn−1] ∩ (

⋃n−2
i=1 [e,wi]) is

strongly constructible of rank n−2. We observe that for 1 ≤ i ≤ n−2 the intersection
[e,wn−1] ∩ [e,wi] is equal to the ideal generated by (1 2 · · · n − 1) and the elements

un−i = (1n − i + 1 · · · n − 1)(2 · · · n − i n),

vn−i−1 = (1nn − i + 1 · · · n − 1)(2 · · · n − i),

considered in Lemmas 13 and 14, respectively. Hence

[e,wn−1] ∩
(

n−2⋃

i=1

[e,wi]
)

= In ∪ I ′
n

and the result follows from Lemmas 13, 14 and 15. �

A.2 Proof of Lemma 12

Part (i) of Lemma 12 is equivalent to Lemma 11. The proof of part (ii) is analogous
to that of Lemma 11, with the following minor modifications in the statements of the
various lemmas involved and the proofs.

Remark 5 Let u1, u2, . . . , um ∈ Bn be elements of absolute length k which are prod-
ucts of disjoint paired cycles and let v ∈ Bn be a cycle of absolute length r which
is disjoint from ui for each i ∈ {1,2, . . . ,m}. Suppose that the union

⋃m
i=1[e,ui] is

strongly constructible of rank k. Then

m⋃

i=1

[e, vui] ∼=
m⋃

i=1

([e, v] × [e,ui]
) = [e, v] ×

m⋃

i=1

[e,ui]

is strongly constructible of rank k + r , by Lemma 3(i).
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Lemma 16 For i ∈ {1,2, . . . , n − 1} consider the element

ui = [1, i + 1, . . . , n − 1]((2,3, . . . , i, n)) ∈ Bn.

The union
⋃m

i=1[e,ui] is strongly constructible of rank n − 1 for all 1 ≤ m ≤ n − 1.

Proof The proof is similar to that of Lemma 13. �

Example 2 Let I (n,m) be the union in the statement of the Lemma 16. If n = 6
and m = 3, then I (n,m) is the order ideal of Abs(Bn) generated by the elements
u1 = [1,2,3,4,5]((6)), u2 = [1,3,4,5]((2,6)) and u3 = [1,4,5]((2,3,6)). We have

[e,u3] ∩ ([e,u1] ∪ [e,u2]
) = [

e, [1,4,5]((2,3))((6))
] ∪ [

e, [1,4,5]((3))((2,6))
]
.

This intersection is strongly constructible of rank 4 and I (n,m) is strongly con-
structible of rank 5.

Lemma 17 For i ∈ {1,2, . . . , n − 2} consider the element

vi = [1, n, i + 2, . . . , n − 1]((2,3, . . . , i + 1)) ∈ Bn.

The union
⋃m

i=1[e, vi] is strongly constructible of rank n − 1 for all 1 ≤ m ≤ n − 2.

Proof The proof is similar to that of Lemma 14. �

Lemma 18 Let u1, u2, . . . , un−1 ∈ Bn and v1, v2, . . . , vn−1 ∈ Bn be defined as in
Lemmas 16 and 17, respectively. If In = ⋃n−1

i=1 [e,ui] and I ′
n = ⋃n−2

i=1 [e, vi], then
In ∩ I ′

n is strongly constructible of rank n − 2.

Proof We proceed by induction on n. For n = 3 the result is trivial, so assume that
n ≥ 4. Let Mi be the order ideal of Abs(Bn) generated by the elements wij for j ∈
{2,3, . . . , i − 1}, where

wij = [1, i + 1, . . . , n − 1]((2,3, . . . , j))((j + 1, . . . , i, n)).

We observe that In ∩ I ′
n = ⋃n−1

i=2 Mi . Each of the ideals Mi is strongly constructible
of rank n − 2, by Remark 5 and Lemma 17. As in the proof of Lemma 15, it can be
shown by induction on k that

⋃k
i=2 Mi is strongly constructible for every k ≤ n−1. �
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