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Abstract We give a characterization of the minimal tropical half-spaces containing a
given tropical polyhedron, from which we derive a counter-example showing that the
number of such minimal half-spaces can be infinite, contradicting some statements
which appeared in the tropical literature, and disproving a conjecture of F. Block and
J. Yu. We also establish an analogue of the Minkowski–Weyl theorem, showing that
a tropical polyhedron can be equivalently represented internally (in terms of extreme
points and rays) or externally (in terms of half-spaces containing it). A canonical ex-
ternal representation of a polyhedron turns out to be provided by the extreme elements
of its tropical polar. We characterize these extreme elements, showing in particular
that they are determined by support vectors.

Keywords Max-plus semiring · Max-plus convexity · Tropical convexity ·
Polyhedra · Polytopes · Minkowski–Weyl theorem · Supporting half-spaces

1 Introduction

Max-plus or tropical convexity has been developed by several researchers under dif-
ferent names, with various motivations. It goes back at least to the work of Zim-
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mermann [35]. It was studied by Litvinov, Maslov, and Shpiz [29], in relation to
problems of calculus of variations, and by Cohen, Gaubert, and Quadrat [12, 13],
motivated by discrete event system problems (max-plus polyhedra represent invariant
spaces of max-plus linear dynamical systems [11]). Some of this work was pursued
with Singer (see [14]), with motivations from generalized convexity [32]. The work
of Briec and Horvath [7] is also in the setting of generalized convexity. Develin and
Sturmfels [16] pointed out some remarkable relations with tropical geometry, and de-
veloped a new approach, thinking of tropical polyhedra as polyhedral complexes in
the usual sense. This was the starting point of several works of the same authors, of
Joswig [26] and of Block and Yu [6]. Some of the previously mentioned researchers,
and some other ones, including Allamigeon, Butkovič, Goubault, Katz, Nitica, Meu-
nier, Sergeev, Schneider, have recently made a number of works in the field, we refer
the reader to [3, 5, 10, 19–22, 27, 28, 30] for a representative set of contributions.

A closed convex set can be represented classically in two different ways, either
internally, in terms of extreme elements (extreme points and rays) and lineality space,
or externally, as the intersection of (closed) half-spaces.

The max-plus or tropical analogue of the external representation, esspecially in
the case of polyhedra, is the main object of this paper.

The existence of an external representation relies on separation arguments. In
the max-plus setting, several separations theorems have been obtained, with vari-
ous degrees of generality and precision, by Zimmermann [35], by Samborskiı̆ and
Shpiz [31], by Cohen, Gaubert, and Quadrat [12, 13] with a further refinement in a
work with Singer [14], and by Develin and Sturmfels [16]. In particular, the results
of [12–14] yield a simple geometric construction of the separating half-space, show-
ing the analogy with the Hilbert space case. This geometric approach was extended to
the case of the separation of several convex sets by Gaubert and Sergeev [24], using
a cyclic projection method. Briec and Horvath derived a separation theorem for two
convex sets using a different approach [8].

The existence of an internal representation relies on Krein–Milman type theorems.
Results of this kind were established by Butkovič, Schneider, and Sergeev [10] and
by the authors [20], who also studied in [21] the analogue of the polar of a convex
set, which consists of the set of inequalities satisfied by its elements.

Polyhedra are usually defined by the condition that they have a finite external
or internal representation, the equivalence of both conditions being the classical
Minkowski–Weyl theorem.

In the max-plus setting, a first result of this nature was established by Gaubert
in [18, Chap. III, Theorem 1.2.2], who showed that a finitely generated max-plus
cone can be characterized by finitely many max-plus linear inequalities. One element
of the proof is an argument showing that the set of solutions of a system of max-
plus linear equations is finitely generated, an observation which was already made by
Butkovič and Hegedus [9]. Some accounts in English of the result of [18] appeared
in [2, 19, 23].

To address the same issue, Joswig [26] introduced the very interesting notion of
minimal half-spaces (tropical half-spaces that are minimal for inclusion among the
ones containing a given tropical polytope), he stated that the apex of such a tropi-
cal half-space is a vertex of the classical polyhedral complex arising from the poly-
tope, and deduced that there are only finitely many such minimal half-spaces. This
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statement was refined by a conjecture of Block and Yu, characterizing the minimal
half-spaces, in the generic case [6, Conj. 14].

The finiteness of the number of minimal half-spaces is an appealing property,
which is geometrically quite obvious in dimension 2. It came to us as a surprise that
it does not hold in higher dimensions. We give here a counter-example (Example 2
below), contradicting the finiteness of the number of minimal half-spaces containing
a tropical polyhedron (Corollary 3.4 of [26]) and disproving Conjecture 14 of [6].
The analysis of the present counter-example is based on a general characterization of
the minimal half-spaces, Theorem 4 below, the main result of this paper, which gives
some answer to the question at the origin of the conjecture of Block and Yu.

In a preliminary section, we establish an analogue of the Minkowski–Weyl theo-
rem (Theorem 2), showing that a tropical polyhedron can be equivalently described
either as the sum of the convex hull of finitely many points and of the cone generated
by finitely many vectors, or as the intersection of finitely many half-spaces (there is
no tropical analogue of the lineality space). The proof is based on the idea of [18]
(Theorem 1 below), which is combined with the results of [20].

In the final section, we characterize the extreme elements of the polar of a tropical
polyhedral cone. The set of extreme elements of this polar has the property that any
inequality satisfied by all the elements of the cone is a max-plus linear combination of
the inequalities represented by these extreme elements, and it is the unique minimal
set with this property (up to a scaling). In particular, these extreme elements provide
a finite representation of the original polyhedron as the intersection of half-spaces.
Theorem 5 below characterizes these extreme elements, showing in particular that
each of them is determined by support vectors.

2 The tropical Minkowski–Weyl theorem

Let us first recall some basic definitions. The max-plus semiring, Rmax, is the set
R ∪ {−∞} equipped with the addition (a, b) �→ max(a, b) and the multiplication
(a, b) �→ a + b. To emphasize the semiring structure, we write a ⊕ b := max(a, b),
ab := a + b, 0 := −∞ and 1 := 0. The term “tropical” is now used essentially as
a synonym of max-plus. The semiring operations are extended in the natural way to
matrices over the max-plus semiring: (A⊕B)ij := Aij ⊕Bij , (AB)ij := ⊕

k AikBkj

and (λA)ij := λAij for all i, j , where A,B are matrices of compatible sizes and
λ ∈ Rmax. We denote by ek ∈ R

n
max the k-th unit vector, i.e. the vector defined by:

(ek)k := 1 and (ek)h := 0 if h �= k.
We consider Rmax equipped with the usual topology (resp. order), which can be

defined by the metric: d(a, b) := | exp(a) − exp(b)|. The set R
n
max is equipped with

the product topology (resp. order). Note that the semiring operations are continuous
with respect to this topology.

A subset V of R
n
max is said to be a max-plus or tropical cone if it is stable by

max-plus linear combinations, meaning that

λu ⊕ μv ∈ V (1)

for all u,v ∈ V and λ,μ ∈ Rmax. Note that, in the max-plus setting, positivity con-
straints are implicit because any scalar λ ∈ Rmax satisfies λ ≥ 0. As a consequence,
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max-plus cones turn out to share many properties with classical convex cones. This
analogy leads us to define max-plus convex subsets C of R

n
max by requiring them to

be stable by max-plus convex combinations, meaning that λu ⊕ μv ∈ C holds for all
u,v ∈ C and λ,μ ∈ Rmax such that λ ⊕ μ = 1. We denote by cone(X ) the smallest
cone containing a subset X of R

n
max, and by co(X ) the smallest convex set con-

taining it. Therefore, cone(X ) (resp. co(X )) is the set of all max-plus linear (resp.
convex) combinations of finitely many elements of X . A cone V is said to be finitely
generated if there exists a finite set X such that V = cone(X ), which equivalently
means that V = {Cw | w ∈ R

t
max} for some matrix C ∈ R

n×t
max.

A half-space of R
n
max is a set of the form

H =
{

x ∈ R
n
max

∣
∣
∣

⊕

1≤i≤n

aixi ≤
⊕

1≤j≤n

bjxj

}

,

where a, b ∈ R
n
max, and an affine half-space of R

n
max is a set of the form

H =
{

x ∈ R
n
max

∣
∣
∣

( ⊕

1≤i≤n

aixi

)

⊕ c ≤
( ⊕

1≤j≤n

bj xj

)

⊕ d

}

,

where a, b ∈ R
n
max and c, d ∈ Rmax. With the classical notation, the latter set can be

written as

H =
{
x ∈ R

n
max | max

(
max

1≤i≤n
ai + xi, c

)
≤ max

(
max

1≤j≤n
bj + xj , d

)}
.

Note that half-spaces are max-plus cones.
Classical polyhedra can be defined either as a finite intersection of affine half-

spaces, or in terms of finite sets of vertices and rays, i.e. as the Minkowski sum of a
polytope and a finitely generated cone. Here we adopt the first approach and define
a max-plus or tropical polyhedron as the intersection of finitely many affine half-
spaces. We warn the reader that our notion of polyhedra is more general than the one
used in [16] (the latter reference deals with max-plus cones having a finite generating
family consisting of vectors with finite entries).

The following “conic” form of the Minkowski–Weyl theorem is equivalent to a
result established in [18], showing that a finitely generated max-plus cone is charac-
terized by finitely many max-plus linear equalities. This result was reproduced (but
without its proof) in the surveys [2, 19, 23]. For the convenience of the reader, we
include the proof here. The “if” part is equivalent to the existence of a finite set of
generators of a system of max-plus linear equations, which was first shown in [9].
There has recently been progress on these issues, leading to a faster algorithm, see
[3, 4].

Theorem 1 (Compare with [18, Chap. III, Theorem 1.2.2] and [23, Theorem 9]) A
max-plus cone is finitely generated if, and only if, it is the intersection of finitely many
half-spaces.

Proof Let V ⊂ R
n
max be an intersection of p half-spaces. We next prove that V is

finitely generated by induction on p.
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When p = 1, as V = {x ∈ R
n
max | ⊕

1≤i≤n aixi ≤ ⊕
1≤j≤n bjxj } = ⋃

1≤j≤n Vj ,
where

Vj := {
x ∈ R

n
max

∣
∣ aixi ≤ bjxj , ∀i = 1, . . . , n

}
,

to prove that V is finitely generated it suffices to show that the cones Vj are all finitely
generated. If bj �= 0 and aj ≤ bj , then it can be checked that Vj = cone(Xj ), where
Xj := {bj ei ⊕aiej | i = 1, . . . , n}. If bj = 0 or aj > bj , then Vj = cone(Xj ), where
Xj := {ei | ai = 0}.

Assume now that the intersection of p half-spaces is finitely generated and let

V := {
x ∈ R

n
max

∣
∣ Ax ≤ Bx

} ∩ {
x ∈ R

n
max

∣
∣ ax ≤ bx

}
,

where A,B ∈ R
p×n
max and a, b ∈ R

1×n
max , be an intersection of p + 1 half-spaces.

Then, we know that there exists a matrix C ∈ R
n×t
max, for some t ∈ N, such that

{x ∈ R
n
max | Ax ≤ Bx} = {Cw | w ∈ R

t
max}. As H := {w ∈ R

t
max | aCw ≤ bCw}

is a half-space, there exists another matrix D ∈ R
t×r
max, for some r ∈ N, such that

H = {Du | u ∈ R
r
max}. Therefore, V = {Cw | aCw ≤ bCw} = {CDu | u ∈ R

r
max} is

finitely generated.
Conversely, let V = {Cw | w ∈ R

t
max}, where C ∈ R

n×t
max, be a finitely gener-

ated cone. Then, as finitely generated cones are closed (see [10, Cor. 27] or [20,
Lemma 2.20]), it follows from the separation theorem for closed cones of [14, 31,
35] that V is the intersection of the half-spaces of R

n
max in which it is contained. Note

that a half-space {x ∈ R
n
max | ax ≤ bx} contains V if, and only if, the row vectors a

and b satisfy aC ≤ bC. Since {(a, b) ∈ R
1×2n
max | aC ≤ bC} is a finite intersection of

half-spaces, we know by the first part of the proof that there exist matrices A and B

such that (a, b) satisfies aC ≤ bC if, and only if, (a, b) is a max-plus linear combi-
nation of the rows of the matrix (A,B). Therefore, V = {x ∈ R

n
max | Ax ≤ Bx}, i.e.

V is an intersection of finitely many half-spaces. �

Recall that the recession cone [20] of a max-plus convex set C consists of the
vectors u for which there exists a vector x ∈ C such that x ⊕λu ∈ C for all λ ∈ Rmax.
This property is known to be independent of the choice of x ∈ C as soon as C is
closed.

Given a max-plus cone V ⊂ R
n
max, a non-zero vector v ∈ V is said to be an extreme

vector of V if the following property is satisfied

v = u ⊕ w, u,w ∈ V ⇒ v = u or v = w.

The set of scalar multiples of v is an extreme ray of V . Given a max-plus convex set
C ⊂ R

n
max, a vector v ∈ C is said to be an extreme point of C if

v = λu ⊕ μw, u,w ∈ C , λ,μ ∈ Rmax, λ ⊕ μ = 1 ⇒ v = u or v = w.

As a corollary of Theorem 1 we obtain a max-plus analogue of the Minkowski–
Weyl theorem, the first part of which was announced in [19]. A picture illustrating
the decomposition can be found in [19, 20].
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Theorem 2 (Tropical Minkowski–Weyl Theorem) The max-plus polyhedra are pre-
cisely the sets of the form

co(Z ) ⊕ cone(Y ),

where Z ,Y are finite sets. The set cone(Y ) in such a representation is unique, it
coincides with the recession cone of the polyhedron. Any minimal set Y in such a
representation can be obtained by selecting precisely one non-zero vector in each
extreme ray of the recession cone of the polyhedron. The minimal set Z in such a
representation consists of the extreme points of the polyhedron.

Here, ⊕ denotes the max-plus Minkowski sum of two subsets, which is defined as
the set of max-plus sums of a vector of the first set and a vector of the second one.

Proof Let C ⊂ R
n
max be a max-plus polyhedron. Then, there exist matrices A,B and

column vectors c, d such that C = {x ∈ R
n
max | Ax ⊕ c ≤ Bx ⊕ d}. Consider the

max-plus cone

V :=
{(

x

λ

)

∈ R
n+1
max

∣
∣ Ax ⊕ cλ ≤ Bx ⊕ dλ

}

.

Since V is an intersection of finitely many half-spaces, by Theorem 1 it follows that
V = cone(X ), for some finite subset X of R

n+1
max . Note that we can assume, without

loss of generality, that

X =
{(

z

1

)

∈ R
n+1
max

∣
∣ z ∈ Z

}

∪
{(

y

0

)

∈ R
n+1
max

∣
∣ y ∈ Y

}

(2)

for some finite subsets Z ,Y of R
n
max. Therefore, we have

x ∈ C ⇐⇒
(

x

1

)

∈ V ⇐⇒
(

x

1

)

=
⎛

⎝
⊕

z∈Z

λz

(
z

1

)
⎞

⎠ ⊕
⎛

⎝
⊕

y∈Y

λy

(
y

0

)
⎞

⎠

⇐⇒ x =
( ⊕

z∈Z

λzz

)

⊕
( ⊕

y∈Y

λyy

)

,
⊕

z∈Z

λz = 1

⇐⇒ x ∈ co(Z ) ⊕ cone(Y ),

which shows that C = co(Z ) ⊕ cone(Y ).
Conversely, let C = co(Z ) ⊕ cone(Y ), where Z ,Y are finite subsets of R

n
max.

Note that x belongs to C if, and only if,
(
x
1

)
belongs to V := cone(X ), where X is

the finite subset of R
n+1
max defined in (2). Since V is a finitely generated cone, we know

by Theorem 1 that there exist matrices A,B and column vectors c, d such that V =
{(x

λ

) ∈ R
n+1
max | Ax ⊕ cλ ≤ Bx ⊕ dλ}. Therefore, C = {x ∈ R

n
max | Ax ⊕ c ≤ Bx ⊕ d},

i.e. C is a max-plus polyhedron.
Now let C = co(Z ) ⊕ cone(Y ) be a max-plus polyhedron. From the definition

of recession cones, it readily follows that cone(Y ) is contained in the recession cone
of C . Assume that u is a vector in the recession cone of C . By the first part of the
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proof, if we define V := cone(X ), where X is the finite subset of R
n+1
max defined

in (2), then there exist matrices A,B and column vectors c, d such that V = {(x
λ

) ∈
R

n+1
max | Ax ⊕ cλ ≤ Bx ⊕ dλ} and C = {x ∈ R

n
max | Ax ⊕ c ≤ Bx ⊕ d}. Since u is in

the recession cone of C , there exists x ∈ C such that x ⊕ λu ∈ C for all λ ∈ Rmax.
This means that A(x ⊕ λu) ⊕ c ≤ B(x ⊕ λu) ⊕ d for all λ ∈ Rmax, so we conclude
that Au ≤ Bu. Therefore,

(
u
0

) ∈ V = cone(X ), which implies that u ∈ cone(Y ) by
the definition of X . In consequence, cone(Y ) is equal to the recession cone of C .

Assume that z is an extreme point of C . We next show that necessarily z ∈ Z . To
this end, by the definition of extreme points, it suffices to show that z ∈ co(Z ). To
the contrary, assume that z = x ⊕ u, where x ∈ co(Z ), u ∈ cone(Y ) and xi < ui for
some i ∈ {1, . . . , n}. Then, given any non-zero scalar λ < 1, we have z = (x ⊕ λu) ⊕
λ(x ⊕ (−λ)u), which contradicts the fact that z is an extreme point of C because
x⊕λu and x⊕(−λ)u are two elements of C different from z. Therefore, any extreme
point of C must belong to Z .

Now let y be an extreme vector of the recession cone of C . Since the recession
cone of C is equal to cone(Y ), by the definition of extreme vectors, it follows that a
non-zero scalar multiple of y must belong to Y .

Finally, since C is closed because it is a finite intersection of closed sets, from
Theorem 3.3 of [20] it follows that any minimal set Y in the representation C =
co(Z )⊕cone(Y ) can be obtained by selecting precisely one non-zero vector in each
extreme ray of the recession cone of C , and a minimal set Z in this representation is
given by the extreme points of C . �

3 The partially ordered set of half-spaces

In this section we prove the existence of minimal half-spaces with respect to a max-
plus cone V . With this aim, it is convenient to start with the following lemma which
shows that any half-space H of R

n
max can be written as

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

aj xj

}

,

where I and J are disjoint subsets of {1, . . . , n} and ak ∈ R for all k ∈ I ∪ J . Hence-
forth, all the half-spaces we consider will be written in this way.

Lemma 1 Let a, b, c, d ∈ Rmax. Then,

{x ∈ Rmax | ax ⊕ c ≤ bx ⊕ d} = {x ∈ Rmax | ax ⊕ c ≤ d}

if a > b, and

{x ∈ Rmax | ax ⊕ c ≤ bx ⊕ d} = {x ∈ Rmax | c ≤ bx ⊕ d}

if a ≤ b.
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Proof We only prove the case a > b because the other one is straightforward.
Assume that ax ⊕c ≤ bx ⊕d . If x = 0, necessarily c ≤ d and thus ax ⊕c = c ≤ d .

If x �= 0, then, as ax ⊕ c ≥ ax > bx and ax ⊕ c ≤ bx ⊕ d , it follows that ax ⊕ c ≤ d .
Conversely, assume that ax ⊕ c ≤ d . Then, we have ax ⊕ c ≤ d ≤ bx ⊕ d . �

Given v ∈ R
n
max and V ⊂ R

n
max, the supports of v and V are respectively defined

by

suppv := {k | vk �= 0} and suppV :=
⋃

v∈V

suppv.

We shall say that a max-plus cone V ⊂ R
n
max has full support if suppV = {1, . . . , n}.

For any non-zero scalar λ ∈ Rmax, we define λ− := −λ, and we extend this notation to
vectors of R

n
max with only finite entries, so that x− represents the vector with entries

−xi for i ∈ {1, . . . , n}.
Lemma 2 Let

H :=
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

ajxj

}

and

H ′ :=
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I ′
bixi ≤

⊕

j∈J ′
bjxj

}

be two half-spaces. Then, when I �= ∅, H ′ ⊂ H if, and only if, I ⊂ I ′, J ′ ⊂ J and
bj (bi)

− ≤ aj (ai)
− for all i ∈ I and j ∈ J ′.

Proof (⇒) Assume that I �⊂ I ′. Pick any i ∈ I \ I ′. Then, ei ∈ H ′ and ei /∈ H ,
which contradicts the fact that H ′ ⊂ H . Therefore, I ⊂ I ′.

Now assume that J ′ �⊂ J . Pick any j ∈ J ′ \ J and i ∈ I ⊂ I ′, and define the vector
x ∈ R

n
max by

xk :=
{

bk
− if k ∈ {i, j},

0 otherwise.
(3)

Then, x ∈ H ′ and x /∈ H , which is a contradiction. Therefore, J ′ ⊂ J .
Finally, since the vector x defined in (3) belongs to H ′ for any i ∈ I ⊂ I ′ and

j ∈ J ′, it follows that it also belongs to H and thus ai(bi)
− ≤ aj (bj )

−. Therefore,
bj (bi)

− ≤ aj (ai)
− for all i ∈ I and j ∈ J ′.

(⇐) Since

x ∈ H ′ ⇒ bixi ≤
⊕

j∈J ′
bjxj , ∀i ∈ I ′ ⇒ bixi ≤

⊕

j∈J ′
bjxj , ∀i ∈ I

⇒ xi ≤
⊕

j∈J ′
bj (bi)

−xj , ∀i ∈ I ⇒ xi ≤
⊕

j∈J ′
aj (ai)

−xj , ∀i ∈ I

⇒ aixi ≤
⊕

j∈J ′
ajxj , ∀i ∈ I ⇒ aixi ≤

⊕

j∈J

ajxj , ∀i ∈ I ⇒ x ∈ H ,

it follows that H ′ ⊂ H . �
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Lemma 3 Let V ⊂ R
n
max be a max-plus cone with full support and {Hr}r∈N be a

decreasing sequence of half-spaces such that V ⊂ Hr for all r ∈ N. Then, there
exists a half-space H such that H = ⋂

r∈N
Hr .

Proof Assume that

Hr =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈Ir

ar
i xi ≤

⊕

j∈Jr

ar
j xj

}

,

where for all r ∈ N, Ir and Jr are disjoint subsets of {1, . . . , n} and ar
k ∈ R for all

k ∈ Ir ∪ Jr . By Lemma 2 we may assume, without loss of generality, that there exist
I, J ⊂ {1, . . . , n} such that Ir = I and Jr = J for all r ∈ N. If I = ∅, we have Hr =
R

n
max for all r ∈ N, so in this case the result is obvious. We next consider the case

I �= ∅. Note that in this case we also have J �= ∅, because V ⊂ Hr for all r ∈ N and
suppV = {1, . . . , n}.

We may also assume, without loss of generality, that
⊕

j∈J ar
j = 1 for all r ∈ N.

Then, since suppV = {1, . . . , n} and
⊕

i∈I ar
i xi ≤ ⊕

j∈J ar
j xj for r ∈ N and x ∈ V ,

it follows that the sequence {ar
i }r∈N is bounded from above for all i ∈ I . Therefore,

we may assume, taking sub-sequences if necessary, that there exists ai ∈ Rmax such
that limr→∞ ar

i = ai for i ∈ I .
We claim that ai �= 0 for all i ∈ I . To the contrary, assume that ah = 0 for some

h ∈ I . Since by Lemma 2 we have ar
j (a

r
h)

− ≤ a1
j (a

1
h)

−
for all j ∈ J and r ∈ N, this

implies that limr→∞ ar
j = 0 for all j ∈ J , which contradicts the fact that J �= ∅ and

⊕
j∈J ar

j = 1 for all r ∈ N. This proves our claim.
Since

⊕
j∈J ar

j = 1 for all r ∈ N, the sequence {ar
j }r∈N is also bounded from

above for all j ∈ J . Then, taking sub-sequences if necessary, we may assume that
there exists aj ∈ Rmax such that limr→∞ ar

j = aj for all j ∈ J . If we define J ′ :=
{j ∈ J | aj �= 0} and

H :=
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J ′
ajxj

}

,

then it follows that H = ⋂
r∈N

Hr . Indeed, if x ∈ ⋂
r∈N

Hr , we have

⊕

i∈I

aixi = lim
r→∞

(⊕

i∈I

ar
i xi

)

≤ lim
r→∞

(⊕

j∈J

ar
j xj

)

=
⊕

j∈J ′
ajxj ,

and thus x ∈ H . Therefore,
⋂

r∈N
Hr ⊂ H . Conversely, since J ′ ⊂ J and

aj (ai)
− ≤ ar

j (a
r
i )

− for all i ∈ I , j ∈ J ′ and r ∈ N, by Lemma 2 it follows that
H ⊂ Hr for all r ∈ N. Therefore, we also have H ⊂ ⋂

r∈N
Hr . �

Remark 1 Lemma 3 does not hold if V does not have full support. For instance,
consider

V = {
x ∈ R

3
max

∣
∣ x2 = 0, x1 ≤ x3

}
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and the decreasing sequence of half-spaces

Hr = {
x ∈ R

3
max

∣
∣ x1 ⊕ rx2 ≤ x3

}
,

where r ∈ N. Then,
⋂

r∈N
Hr = V , but V is not a half-space of R

3
max.

Theorem 3 Let V ⊂ R
n
max be a max-plus cone with full support. If V is contained

in the half-space H , then there exists a half-space H ′ such that V ⊂ H ′ ⊂ H and
H ′ is minimal for inclusion with respect to this property.

Proof By Zorn’s Lemma it suffices to show that for any chain {Hα}α∈Δ of half-
spaces which satisfies V ⊂ Hα ⊂ H for all α ∈ Δ, there exists a half-space H ′
such that H ′ = ⋂

α∈Δ Hα .
According to Lemma 2, we may assume that

Hα =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aα
i xi ≤

⊕

j∈J

aα
j xj

}

for all α ∈ Δ, where I and J are disjoint subsets of {1, . . . , n} and aα
k ∈ R for all

k ∈ I ∪J . Again, if I = ∅ the previous assertion is trivial, so assume I �= ∅. Consider
any sequence {αr}r∈N ⊂ Δ such that the sequence {aαr

j (a
αr

i )
−}r∈N is decreasing and

lim
r→∞a

αr

j

(
a

αr

i

)− = inf
α∈Δ

aα
j

(
aα
i

)−
, (4)

for all i ∈ I and j ∈ J . Then, by Lemma 3 there exists a half-space H ′ such that
H ′ = ⋂

r∈N
Hαr . Since (4) is satisfied, by Lemma 2, for any α ∈ Δ there exists

r ∈ N such that Hαr ⊂ Hα . Therefore, we have H ′ = ⋂
α∈Δ Hα . �

As a consequence of Theorem 3 and the separation theorem for closed cones
of [14, 31, 35], it follows that any closed cone V with full support can be expressed
as the intersection of a family of minimal half-spaces with respect to V . When V
is finitely generated, by Theorem 1 we conclude that it is possible to select a finite
number of minimal half-spaces with respect to V such that their intersection is equal
to V . However, like in the classical case, even in the finitely generated case, the num-
ber of minimal half-spaces with respect to V need not be finite, as it is shown in the
next section.

4 Characterization of minimal half-spaces

Throughout this section, V ⊂ R
n
max will represent a fixed max-plus cone generated

by the vectors vr ∈ R
n
max, where r = 1, . . . , p. For the sake of simplicity, in this

section we shall assume that all the vectors we consider have only finite entries. We
next recall basic definitions and properties related to the natural cell decomposition
of R

n
max induced by the generators of V . We refer the reader to [16] for a complete

presentation, but we warn that the results of [16] are in the setting of the min-plus
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semiring Rmin := (R ∪ {+∞},min,+), which is however equivalent to the setting
considered here.

We define the type of a vector x ∈ R
n
max relative to the generators vr as the n-tuple

type(x) = (S1(x), . . . , Sn(x)) of subsets Sj (x) ⊂ {1, . . . , p} defined as follows:

Sj (x) :=
{

r | vr
j (xj )

− =
⊕

1≤k≤n

vr
k(xk)

−
}

. (5)

Note that vr
j (xj )

− <
⊕

1≤k≤n vr
k(xk)

− if r /∈ Sj (x) and that any r ∈ {1, . . . , p} be-
longs to some Sj (x).

Given an n-tuple S = (S1, . . . , Sn) of subsets of {1, . . . , p}, consider like in [16]
the set XS of all the vectors whose type contains S, i.e.

XS := {
x ∈ R

n
max

∣
∣ Sj ⊂ Sj (x), ∀j = 1, . . . , n

}
. (6)

Lemma 10 of [16] shows that the sets XS are closed convex polyhedra (both in the
max-plus and usual sense) which are given by

XS = {
x ∈ R

n
max

∣
∣ xjv

r
i ≤ xiv

r
j , ∀i, j ∈ {1, . . . , n} with r ∈ Sj

}
.

The natural cell decomposition of R
n
max induced by the generators of V is the col-

lection of convex polyhedra XS , where S ranges over all the possible types. This cell
decomposition has in particular the property that V is the union of its bounded cells,
where a cell is said to be bounded if it is bounded in the (n−1)-dimensional max-plus
or tropical projective space R

n/(1, . . . ,1)R (see [16] for details).
Given a cell XS , if we define the undirected graph GS with set of nodes {1, . . . , n}

and an edge connecting the nodes i and j if and only if Si ∩ Sj �= ∅, then by Proposi-
tion 17 of [16] the dimension of XS is given by the number of connected components
of GS (in [16] the dimension of XS is one less the one considered here because it
refers to the projective space). Any non-zero vector in a cell of dimension one, which
is therefore of the form {λx | λ ∈ Rmax} for some x ∈ R

n, is called a vertex of the
natural cell decomposition.

Example 1 Consider the max-plus cone V ⊂ R
3
max generated by the vectors: v1 =

(1,2,3)T , v2 = (2,4,6)T and v3 = (3,6,9)T . This cone is represented on the left-
hand side of Fig. 1 by the bounded dark gray region together with the two line
segments joining the points v1 and v3 to it. On the same figure we show the type
of a vector, for each cell XS contained in V . For instance, the type of the vec-
tor a = (0,1,3)T is S = type(a) = ({1}, {1,2}, {2,3}). Then, since the graph GS

has only one connected component, a is a vertex. If we take b = (0,1,2.5)T , then
S = type(b) = ({1}, {1}, {2,3}) so that in this case the cell XS is two-dimensional. In
Fig. 1 this cell is represented by the line segment which connects the points v1 and a.
The natural cell decomposition of R

3
max induced by the generators of V has six ver-

tices, fifteen two-dimensional cells (six of them bounded) and ten three-dimensional
cells (only one of them bounded, which is represented by the bounded dark gray
region labeled by the type S = ({1}, {2}, {3}) on the left-hand side of Fig. 1).
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Fig. 1 Illustration of the combinatorial types (left) and of the natural cell decomposition of R
3
max induced

by the generators of a max-plus cone (right), as defined by Develin and Sturmfels [16]

A simple geometric construction of the natural cell decomposition of R
n
max in-

duced by the generators of V can be obtained if we consider the min-plus hyperplanes
whose apices are the generators of V . Given a ∈ R

n
max, the min-plus hyperplane with

apex a− is the set of vectors x ∈ R
n
max such that the minimum min1≤i≤n ai + xi is

attained at least twice (we refer the reader to [26] for details on hyperplanes and their
relation with half-spaces). By Proposition 16 of [16], the cell decomposition induced
by the generators of V is the common refinement of the fans defined by the p min-
plus hyperplanes whose apices are the vectors vr , for r = 1, . . . , p. In the case of our
example, these min-plus hyperplanes are represented on the right-hand side of Fig. 1,
where it can be seen that V is the union of the bounded cells.

Assume that

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

ajxj

}

is a minimal half-space with respect to V . Then, we necessarily have I ∪ J =
{1, . . . , n}. Indeed, if h /∈ I ∪ J , defining ah = min1≤r≤p{⊕j∈J aj v

r
j (v

r
h)

−}, it fol-
lows that the half-space

H ′ =
{

x ∈ R
n
max

∣
∣
∣ ahxh ⊕

(⊕

i∈I

aixi

)

≤
⊕

j∈J

aj xj

}

contains V because it contains its generators, which by Lemma 2 contradicts the min-
imality of H . For this reason, in this section we shall assume that I ∪ J = {1, . . . , n}
since we are interested in studying minimal half-spaces, and like in [26] we shall call
the vector a− ∈ H ⊂ R

n
max the apex of H .
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The following lemma gives a necessary and sufficient condition for V to be con-
tained in a half-space in terms of the type of its apex.

Lemma 4 The max-plus cone V is contained in the half-space

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

ajxj

}

with apex a− if, and only if,
⋃

j∈J Sj (a
−) = {1, . . . , p}.

Proof Assume that
⋃

j∈J Sj (a
−) �= {1, . . . , p}. Then, there exists r ∈ {1, . . . , p} such

that r /∈ Sj (a
−) for all j ∈ J , and so ajv

r
j <

⊕
1≤k≤n akv

r
k for all j ∈ J . Therefore,

we have
⊕

j∈J

aj v
r
j <

⊕

1≤k≤n

akv
r
k =

⊕

i∈I

aiv
r
i ,

which means that vr does not belong to H and so V is not contained in H . This
shows the “only if” part of the lemma.

Now assume that
⋃

j∈J Sj (a
−) = {1, . . . , p}. Then, for each r ∈ {1, . . . , p} there

exists j ∈ J such that r ∈ Sj (a
−), which means that ajv

r
j = ⊕

1≤k≤n akv
r
k . There-

fore, we have
⊕

i∈I

aiv
r
i ≤

⊕

1≤k≤n

akv
r
k =

⊕

j∈J

aj v
r
j .

Since this holds for all r ∈ {1, . . . , p}, it follows that H contains the generators of
V , and thus V is contained in H . This proves the “if” part of the lemma. �

Now we can characterize the minimality of a half-space with respect to V in terms
of the type of its apex.

Theorem 4 The half-space

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

ajxj

}

with apex a− is minimal with respect to the max-plus cone V if, and only if, the
following conditions are satisfied:

(i) For each i ∈ I there exists j ∈ J such that Si(a
−) ∩ Sj (a

−) �= ∅,
(ii) For each j ∈ J there exists i ∈ I such that Si(a

−)∩Sj (a
−) �⊂ ⋃

k∈J\{j} Sk(a
−),

(iii)
⋃

j∈J Sj (a
−) = {1, . . . , p}.

Proof If H is minimal with respect to V , for each i ∈ I there exists r ∈ {1, . . . , p}
such that aiv

r
i = ⊕

j∈J aj v
r
j because otherwise there would exist δ > 0 such

that δaiv
r
i ⊕ (

⊕
h∈I\{i} ahv

r
h) ≤ ⊕

j∈J aj v
r
j for all r ∈ {1, . . . , p}, contradicting by

Lemma 2 the minimality of H . Therefore, for each i ∈ I there exist r ∈ {1, . . . , p}
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and j ∈ J such that aiv
r
i = ajv

r
j ≥ akv

r
k for all k, which implies that r ∈ Si(a

−) ∩
Sj (a

−) and so Si(a
−) ∩ Sj (a

−) �= ∅.
Analogously, if H is minimal with respect to V , for each j ∈ J there exists

r ∈ {1, . . . , p} such that
⊕

i∈I aiv
r
i = ajv

r
j >

⊕
k∈J\{j} akv

r
k . Otherwise, there would

exist δ < 0 such that
⊕

i∈I aiv
r
i ≤ δajv

r
j ⊕ (

⊕
k∈J\{j} akv

r
k) for all r ∈ {1, . . . , p},

which by Lemma 2 contradicts the minimality of H . Therefore, for each j ∈ J

there exist r ∈ {1, . . . , n} and i ∈ I such that aiv
r
i = ajv

r
j ≥ akv

r
k for all k, where

the inequality is strict for k ∈ J \ {j}, which implies that r ∈ Si(a
−) ∩ Sj (a

−) but
r /∈ ⋃

k∈J\{j} Sk(a
−).

Finally, since any minimal half-space with respect to V contains in particular V ,
it follows that

⋃
j∈J Sj (a

−) = {1, . . . , p} by Lemma 4. This completes the proof of
the “only if” part of the theorem.

Now assume that the three conditions of the theorem are satisfied. By Lemma 4,
Condition (iii) implies that V is contained in H . Let

H ′ =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I ′
bixi ≤

⊕

j∈J ′
bjxj

}

be a minimal half-space with respect to V contained in H , which we know exists
by Theorem 3. Then, since H ′ ⊂ H , by Lemma 2 we have I ⊂ I ′, J ′ ⊂ J and
bj (bi)

− ≤ aj (ai)
− for all i ∈ I and j ∈ J ′.

We first show that I = I ′, and thus J = J ′. To the contrary, assume that I �= I ′
and let h ∈ I ′ \ I ⊂ J . Then, by Condition (ii), there exist l ∈ I and r ∈ {1, . . . , p}
such that alv

r
l = ahv

r
h > akv

r
k for all k ∈ J \ {h}. Therefore, since bj (bi)

− ≤ aj (ai)
−

for all i ∈ I and j ∈ J ′, we have

vr
l >

⊕

k∈J\{h}
ak(al)

−vr
k ≥

⊕

k∈J ′
ak(al)

−vr
k ≥

⊕

k∈J ′
bk(bl)

−vr
k

and so
⊕

i∈I ′
biv

r
i ≥

⊕

i∈I

biv
r
i ≥ blv

r
l >

⊕

k∈J ′
bkv

r
k ,

contradicting the fact that vr ∈ V ⊂ H ′. Therefore, we conclude that I = I ′ and
J = J ′.

Note that by Conditions (i) and (ii), it follows that Sk(a
−) �= ∅ for all k. This im-

plies, by the covering theorem of Vorobyev [33, Theorem 2.6] and Zimmermann [34,
Chap. 3] (see [1] for a complete recent discussion, including generalizations; see
also Corollary 12 and Theorem 15 of [16]), that the apex a− of H belongs to V .
Therefore, since V ⊂ H ′, we have

⊕
i∈I bi(ai)

− ≤ ⊕
j∈J bj (aj )

−. Without loss
of generality, we may assume that

⊕
i∈I bi(ai)

− ≤ ⊕
j∈J bj (aj )

− = 1. Then, since
bj (aj )

− ≤ bi(ai)
− for all i ∈ I and j ∈ J , we must have bi(ai)

− = 1, i.e. ai = bi ,
for all i ∈ I .

Now assume that a �= b. Then, there exists j ∈ J such that bj < aj (note that
bk ≤ ak for all k ∈ J because

⊕
k∈J bk(ak)

− = 1), and by Condition (ii) there exist
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i ∈ I and r ∈ {1, . . . , p} such that

aiv
r
i = ajv

r
j > akv

r
k

for all k ∈ J \ {j}. Therefore, it follows that

biv
r
i = aiv

r
i = ajv

r
j > bjv

r
j

and

biv
r
i = aiv

r
i > akv

r
k ≥ bkv

r
k

for all k ∈ J \ {j}, implying that
⊕

h∈I

bhv
r
h ≥ biv

r
i >

⊕

k∈J

bkv
r
k ,

which contradicts the fact that vr ∈ V ⊂ H ′. In consequence, we conclude that a =
b, and so H = H ′, showing that H is a minimal half-space with respect to V . �

Note that the theorem above tells us that the property of being minimal with re-
spect to V depends on the type of the apex of a half-space. More precisely, if a− ∈ R

n

is the apex of a minimal half-space with respect to V and b− is in the relative interior
of XS , where S = type(a−), then b− is also the apex of a minimal half-space with
respect to V . Observe also that, as it was shown in the proof of Theorem 4, the con-
ditions in this theorem imply that the apex of a minimal half-space with respect to V
must belong to V . However, these conditions do not imply that the apex of a minimal
half-space with respect to V should be a vertex of the natural cell decomposition of
R

n
max induced by the generators of V . In other words, if a− is the apex of a mini-

mal half-space with respect to V and S = type(a−), then GS need not have only one
connected component. Indeed, this is not the case, except when n = 3.

Example 2 Consider the max-plus cone V ⊂ R
4
max generated by the following vec-

tors: vr = (1r,2r,3r,4r)T for r = 1, . . . ,4, where the product is in the usual algebra.
Note that these vectors are in general position, as defined in [16]. Indeed, this kind of
cones were already studied in [5, 6] and can be seen as the max-plus analogues of the
cyclic polytopes.

If we take a = (8,6,3.5, (−0.5))T , then S = type(a−) = ({1,2}, {2}, {3,4}, {4}),
so a− is not a vertex. However, since the conditions of Theorem 4 are satisfied for
I = {2,4} and J = {1,3}, it follows that

H = {
x ∈ R

4
max

∣
∣ 6x2 ⊕ (−0.5)x4 ≤ 8x1 ⊕ 3.5x3

}
, (7)

or

H = {
x ∈ (

R ∪ {−∞})4 ∣
∣ max(6 + x2,−0.5 + x4) ≤ max(8 + x1,3.5 + x3)

}

with the usual notation, is a minimal half-space with respect to V . Indeed, since

XS = {
x ∈ R

4
max

∣
∣ x2 = 2x1, x4 = 4x3, 4x1 ≤ x3 ≤ 5x1

}
,
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Fig. 2 The counter-example: a max-plus polyhedral cone (right) and its intersections with two members
of an infinite family of minimal half-spaces containing it (left and middle). Note that the apex of each
of these minimal half-spaces is not a vertex of the natural cell decomposition of R

4
max induced by the

generators of the cone

any half-space of the form
{
x ∈ R

4
max

∣
∣ 6x2 ⊕ δx4 ≤ 8x1 ⊕ δ4x3

}
, (8)

where −1 < δ < 0, is minimal with respect to V because its apex belongs to the
relative interior of XS . Moreover, this also shows that, even if we assume that the
generators of a max-plus cone are in general position, the number of minimal half-
spaces need not be finite.

This is illustrated in Fig. 2, which shows the max-plus cone V (rightmost pic-
ture, in blue) together with two minimal half-spaces containing it corresponding to
the choice of δ = −0.33 (leftmost picture) and δ = −0.67 (middle picture). The apex
of each of these half-spaces belongs to the max-plus segment joining the vectors v2

and v4. The existence of an infinite family of minimal half-spaces can be seen on the
picture: when the apex of the half-space slides along the middle part of this max-plus
segment, the intersection of the boundary of the half-space (in yellow) with the max-
plus cone yields an infinite family of sets, two instances of which are represented.
The pictures of the max-plus polytopes were generated with POLYMAKE [25], the
latest version of which contains an extension dealing with tropical polytopes [27].
We plotted them with JAVAVIEW. The bounded parts of the half-spaces and their
intersections with the max-plus cone were computed in SCICOSLAB using the MAX-
PLUS TOOLBOX [15]. A vector x = (x1, . . . , x4)

T in R
4 is represented by the vector

y = (y1, y2, y3)
T ∈ R

3 with yi = xi+1 − x1. The axes y1, y2, y3 starting from the
origin v1 are represented at the right of the picture.

Remark 2 Like in the classical theory of convex cones, we could define a face of a
max-plus cone V ⊂ R

n
max as its intersection with the closure of the complement of

a minimal half-space with respect to V , which is also a half-space. However, unlike
the classical case, the extreme vectors of a face of a max-plus cone defined in this
way need not be extreme vectors of the cone, even in the finitely generated case. To
see this, consider the cone V ⊂ R

4
max defined in Example 2 above and the minimal

half-space with respect to V given by (7). Then it can be checked that the face defined
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by this minimal half-space has extreme vectors which are not extreme vectors of V .
Two similar faces are visible in Fig. 2.

When n = 3, the conditions in Theorem 4 imply that the apex of a minimal half-
space with respect to V must be a vertex of the natural cell decomposition of R

3
max

induced by the generators of V . This means that V can be expressed as a finite inter-
section of half-spaces whose apices are vertices. We next show that this property is
also valid in higher dimensions. With this aim, we shall need the following immediate
consequence of Proposition 19 of [16].

Lemma 5 Let XS be a bounded cell of the natural cell decomposition of R
n
max in-

duced by the generators of V . Then, x ∈ XS if and only if it can be expressed as
x = min1≤s≤m λsa

s for some scalars λs ∈ R, where as for s ∈ {1, . . . ,m} are ver-
tices of the natural cell decomposition which belong to XS (in other words, XS is the
min-plus cone generated by its vertices).

As a consequence, we have the following separation theorem in the special case
of finitely generated max-plus cones whose generators have only finite entries.

Proposition 1 Assume that y ∈ R
n
max does not belong to the max-plus cone V . Then,

there exists a half-space containing V but not y whose apex is a vertex of the natural
cell decomposition of R

n
max induced by the generators of V .

Proof By the separation theorem for closed cones of [14], there exists a half-space

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

bixi ≤
⊕

j∈J

bjxj

}

containing V but not y whose apex b− belongs to V . To be more precise, in [14]
it is shown that we can take b− = max{x ∈ V | x ≤ y}. Let S = type(b−) be the
type of b−. According to Lemma 4, we have

⋃
j∈J Sj (b

−) = {1, . . . , p}, and so the
half-space

{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

cixi ≤
⊕

j∈J

cj xj

}

contains V if c− belongs to the (bounded) cell XS .
Let (as)− ∈ R

n
max, where s ∈ {1, . . . ,m} for some m ∈ N, be the vertices which

belong to XS . Then, by Lemma 5 we know that there exist scalars λs such that b− =
min1≤s≤m λs(a

s)−, and thus

b =
⊕

1≤s≤m

(λs)
−as.

Since y does not belong to H we have

⊕

i∈I

( ⊕

1≤s≤m

(λs)
−as

i

)

yi =
⊕

i∈I

biyi >
⊕

j∈J

bj yj =
⊕

j∈J

( ⊕

1≤s≤m

(λs)
−as

j

)

yj ,
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and so there exists r ∈ {1, . . . ,m} such that

⊕

i∈I

(λr)
−ar

i yi >
⊕

j∈J

(λr)
−ar

j yj .

This means that the half-space
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

ar
i xi ≤

⊕

j∈J

ar
j xj

}

,

whose apex is the vertex (ar )−, separates V from y. �

The previous proposition leads us to study minimal half-spaces with a fixed apex.

Lemma 6 The maximal number of incomparable half-spaces of R
n
max with a given

apex is
(

n
� n

2 �
)
.

Proof By Lemma 2 two half-spaces with the same apex a− ∈ R
n
max

H ′ =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I ′
aixi ≤

⊕

j∈J ′
ajxj

}

and

H =
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

aixi ≤
⊕

j∈J

ajxj

}

satisfy H ′ ⊂ H if, and only if, I ⊂ I ′. Therefore, the maximal number of incom-
parable half-spaces with a given apex is equal to the maximal number of incompa-
rable subsets of {1, . . . , n}, which is equal to

(
n

� n
2 �

)
according to Sperner’s Theorem

(see [17]). �

Remark 3 There exist cones V ⊂ R
n
max which have

(
n

� n
2 �

)
minimal half-spaces with a

given apex. For example, consider n odd and define V as the cone generated by the
following vectors:

vI
i :=

{
0 if i ∈ I ,

1 otherwise,

where I is any subset of {1, . . . , n} with exactly �n
2 � elements. Then, applying Theo-

rem 4, it can be checked that any half-space of the form
{

x ∈ R
n
max

∣
∣
∣
⊕

i∈I

xi ≤
⊕

j /∈I

xj

}

,

where again I is any subset of {1, . . . , n} with exactly �n
2 � elements, is minimal with

respect to V .
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When the generators of a cone V ⊂ R
n
max are in general position, it is possible

to have (at least) P(n) minimal half-spaces with respect to V with the same apex,
where {P(n)}n∈N is the Padovan sequence, which is defined by the recurrence

P(n) = P(n − 2) + P(n − 3) (9)

with P(1) = P(2) = P(3) = 1. More precisely, the max-plus cone V ⊂ R
n
max gen-

erated by the vectors vr = (1r,2r, . . . , nr)T for r = 1, . . . , n, where the product is in
the usual algebra, has P(n) minimal half-spaces with apex a, where ai := ∑i

k=1 k

for i = 1, . . . , n.
To see this, in the first place note that due to the definition of a, the type of a

is given by Sn(a) = {n} and Sk(a) = {k, k + 1} for 1 ≤ k < n. Since by Lemmas 2
and 4 minimal half-spaces with a fixed apex a correspond to subsets J ⊂ {1, . . . , n}
such that {Sj (a)}j∈J is a minimal covering of {1, . . . , n}, it follows that each time
Sr−1(a) and Sr(a) belong to such a covering, then Sr+1(a) cannot belong to it be-
cause Sr(a) ⊂ Sr−1(a) ∪ Sr+1(a). Observe also that if Sr−1(a) belongs to a min-
imal covering but Sr(a) does not, then Sr+1(a) must belong to it. Finally, since
Sn(a) ⊂ Sn−1(a), precisely one of these two sets must belong to a minimal cover-
ing.

Let {Sj (a)}j∈J be a minimal covering of {1, . . . , n}, and assume that Sn(a) be-
longs to it. Then, Sn−2(a) must also belong to the covering. If we define the sets S′

j (a)

for j = 1, . . . , n−3 by S′
n−3(a) := {n−3} and S′

k(a) := Sk(a) for 1 ≤ k < n−3, then
it can be checked that there is a bijection between minimal coverings of {1, . . . , n−3}
by the sets S′

j (a) and minimal coverings of {1, . . . , n} by the sets Sj (a) which contain
Sn(a).

Analogously, if we now assume that Sn−1(a) belongs to a minimal covering of
{1, . . . , n}, and if we define the sets S′′

j (a) for j = 1, . . . , n− 2 by S′′
n−2(a) := {n− 2}

and S′′
k (a) := Sk(a) for 1 ≤ k < n − 2, it can be checked that there is a bijective

correspondence between minimal coverings of {1, . . . , n − 2} by the sets S′′
j (a) and

minimal coverings of {1, . . . , n} by the sets Sj (a) which now contain Sn−1(a).
In consequence, the number of minimal coverings of {1, . . . , n} by the sets Sj (a) is

given by the Padovan sequence because these numbers satisfy the recurrence relation
that defines this sequence.

Example 3 Taking n = 4, the argument used to establish the recurrence (9) defining
the Padovan sequence shows that at a = (1,3,6,10)T , there are two minimal cover-
ings of {1, . . . ,4} by the sets Sj (a). One consists of S1(a) = {1,2} and S3(a) = {3,4},
and corresponds to the half-space

(−3)x2 ⊕ (−10)x4 ≤ (−1)x1 ⊕ (−6)x3

which coincides with the one in (8) when δ = −1 and has the same shape as the ones
in Fig. 2. The second minimal covering consists of S1(a) = {1,2}, S2(a) = {2,3},
S4(a) = {4}, it corresponds to the half-space

(−6)x3 ≤ (−1)x1 ⊕ (−3)x2 ⊕ (−10)x4

which is represented in Fig. 3.
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Fig. 3 One of the two minimal
half-spaces with apex
(1,3,6,10)T

5 Relation between the extreme rays of the polar and minimal half-spaces

In the classical theory of convex cones, it is known that the extreme rays of the polar
of a convex cone correspond to its supporting half-spaces. Since the notion of extreme
ray carries over to the max-plus setting [10, 20] as well as the notion of polar [21], it
is natural to investigate the relation between the minimal half-spaces with respect to
a max-plus cone and the extreme rays of its polar.

Following [21], we define the polar of a max-plus cone V ⊂ R
n
max as

V ◦ :=
{

(a, b) ∈ (
R

n
max

)2
∣
∣
∣

⊕

1≤i≤n

aixi ≤
⊕

1≤j≤n

bj xj , ∀x ∈ V

}

,

i.e. V ◦ represents the set of all the half-spaces which contain V . Conversely, we may
consider the max-plus cone defined by the intersection of a set of half-spaces. This
leads to define (see [21]), for all W ⊂ (Rn

max)
2, a “dual” polar cone

W � :=
{

x ∈ R
n
max

∣
∣
∣

⊕

1≤i≤n

aixi ≤
⊕

1≤j≤n

bj xj , ∀(a, b) ∈ W

}

.

Then, by the separation theorem for closed cones ([14, 31, 35]), it follows that a
closed cone V is characterized by its polar cone:

V = (
V ◦)�

.

In particular, when V is finitely generated, this means that V = W �, where W ⊂
(Rn

max)
2 is the (finite) set of extreme vectors of V ◦. Thus, the extreme vectors of the

polar of V determine a finite family of max-plus linear inequalities defining V .
The following theorem characterizes the extreme vectors of V ◦ in terms of the

generators of V .

Theorem 5 Assume that V ⊂ R
n
max is a max-plus cone with full support generated

by the vectors vr ∈ R
n
max, where r = 1, . . . , p. Then, up to a non-zero scalar multiple,

the extreme vectors of V ◦ are either (0, ei ) or (ei , ei ), for i = 1, . . . , n, or have the
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form (ei ,
⊕

j∈J bj ej ) for some i ∈ {1, . . . , n}, where J ⊂ {1, . . . , n} \ {i}. Moreover,
a vector of V ◦ of the latter form is extreme if, and only if, the following condition is
satisfied:

For each j ∈ J there exists r ∈ {1, . . . , p} such that vr
i = bjv

r
j >

⊕

k∈J\{j}
bkv

r
k. (10)

Proof In the first place, note that by the definition of V ◦, the vectors (0, ei ), for
i = 1, . . . , n, belong to V ◦, so these vectors are clearly extreme vectors of V ◦ and
the only ones of the form (0, b). Moreover, since V has full support, V ◦ does not
contain vectors of the form (ei , biei ) with bi < 1. This implies that (ei , ei ) is also an
extreme vector of V ◦ for any i = 1, . . . , n.

Since V ◦ satisfies

(a′ ⊕ a′′, b) ∈ V ◦ ⇒ (a′, b) ∈ V ◦ and (a′′, b) ∈ V ◦,

it follows that (a, b) is an extreme vector of V ◦ with a �= 0 only if there exists i ∈
{1, . . . , n} such that either supp(a) = {i} �⊂ supp(b) or (a, b) is a non-zero scalar
multiple of (ei , ei ). Therefore, in the former case we may assume that a = ei for
some i ∈ {1, . . . , n} \ supp(b).

Let (ei ,
⊕

j∈J bj ej ), with i /∈ J ⊂ {1, . . . , n}, be a vector of V ◦ which satis-

fies Condition (10). Assume that (ei ,
⊕

j∈J bj ej ) = ⊕
1≤s≤m(as, bs), where m ∈ N

and (as, bs) ∈ V ◦ for all s ∈ {1, . . . ,m}. Then, there exists l ∈ {1, . . . ,m} such that
al = ei . We claim that bl = ⊕

j∈J bj ej , which implies that (ei ,
⊕

j∈J bj ej ) is an

extreme vector of V ◦. To the contrary, assume that bl �= ⊕
j∈J bj ej . Then, since

bl ≤ ⊕
j∈J bj ej , we must have bl

j < bj for some j ∈ J . By Condition (10) for this
j ∈ J there exists r ∈ {1, . . . , p} such that vr

i = bjv
r
j > (

⊕
k∈J\{j} bkv

r
k), and thus

⊕

1≤h≤n

al
hv

r
h = vr

i = bjv
r
j >

( ⊕

k∈J\{j}
bkv

r
k

)

⊕ bl
j v

r
j ≥

⊕

1≤k≤n

bl
kv

r
k,

which contradicts the fact that (al, bl) ∈ V ◦. This proves the “if” part of the second
statement of the theorem.

Now assume that (ei ,
⊕

j∈J bj ej ) is an extreme vector of V ◦. If Condition (10)
was not satisfied, there would exist j ∈ J and δ < 0 such that

vr
i ≤

( ⊕

k∈J\{j}
bkv

r
k

)

⊕ δbj v
r
j

for all r ∈ {1, . . . , p}, implying that (ei , (
⊕

k∈J\{j} bkek) ⊕ δbj ej ) ∈ V ◦. Then, we
would have

(

ei ,
⊕

j∈J

bj ej

)

=
(

ei ,

( ⊕

k∈J\{j}
bkek

)

⊕ δbj ej

)

⊕ (
0, bj ej

)
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which contradicts the fact that (ei ,
⊕

j∈J bj ej ) is extreme because (0, bj ej ) ∈ V ◦.
This completes the proof of the theorem. �

More generally, there is a hypergraph characterization of the extreme points of a
max-plus cone defined by finitely many linear inequalities [5]. In the special case of
the polar, Theorem 5 shows that this hypergraph reduces to a star-like graph.

The following proposition shows that the extreme vectors of the polar V ◦ are
special minimal half-spaces, up to a projection of V . Here, R

J∪{i}
max denotes the vectors

obtained by keeping only the entries of vectors of R
n
max whose indices belong to the

set J ∪ {i}.

Proposition 2 A vector (ei ,
⊕

j∈J bj ej ) of the polar V ◦ is extreme if, and only if,

{

x ∈ R
J∪{i}
max

∣
∣
∣ xi ≤

⊕

j∈J

bjxj

}

is a minimal half-space with respect to the projection of V on R
J∪{i}
max .

Proof This follows readily from Theorem 5 and Lemma 2. �

Remark 4 When the entries of the generators of V are all finite, if (ei ,
⊕

j∈J bj ej )

is an extreme generator of V ◦, Proposition 17 of [16] and Condition (10) imply that
the projection of (

⊕
j∈J (bj )

−ej ) ⊕ ei on R
J∪{i}
max is a vertex of the natural cell de-

composition of R
J∪{i}
max induced by the projection of the generators of V on R

J∪{i}
max .

Example 4 Consider again the max-plus cone V ⊂ R
4
max of Example 2. Applying

Theorem 5, it can be checked that (e2,2e1 ⊕ (−3)e3) is an extreme vector of V ◦.
The projection of V on R

{1,2,3}
max is represented in Fig. 4 by the bounded dark gray

region together with the two line segments joining the points (0,1,2)T and (0,4,8)T

to it. The unbounded light gray region represents the projection of the half-space
{x ∈ R

4
max | x2 ≤ 2x1 ⊕ (−3)x3}. The fact that this projection is minimal with respect

to the projection of V is geometrically clear from the figure.

Remark 5 Condition (10) of Theorem 5 shows that when (ei ,
⊕

j∈J bj ej ) is an ex-
treme vector of the polar V ◦, the hyperplane

H = =
{

x ∈ R
n
max

∣
∣
∣ xi =

⊕

j∈J

bjxj

}

contains at least |J | generators vr of V . The latter may be thought of as support
vectors. It also follows from this theorem that the coefficients bj of this hyperplane
are uniquely determined by these support vectors.

Remark 6 We noted above that the set W of extreme vectors of the polar V ◦ satisfies
W � = V , in other words, it yields a finite family of max-plus linear inequalities
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Fig. 4 Illustration of the
relation between extreme
vectors of the polar and minimal
half-spaces. The minimal
half-space is in light gray. The
two support vectors are
represented by bold points

defining V , the size of which can be bounded by using the results of [5]. However, the
bipolar theorem of [21] shows that W is not always a minimal set with this property.
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