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Abstract We study minimal free resolutions of edge ideals of bipartite graphs. We
associate a directed graph to a bipartite graph whose edge ideal is unmixed, and give
expressions for the regularity and the depth of the edge ideal in terms of invariants
of the directed graph. For some classes of unmixed edge ideals, we show that the
arithmetic rank of the ideal equals projective dimension of its quotient.
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1 Introduction

Let G be a simple graph on a finite vertex set V without any isolated vertices. Let k be
a field. Set R = k[V ], treating the elements of V as indeterminates. Let I be the edge
ideal of G in R, i.e., the ideal generated by the square-free quadratic monomials
xy, where x, y ∈ V and there is an edge between x and y in G. In this paper, we
study (Castelnuovo-Mumford) regularity, depth and arithmetic rank of edge ideals
of bipartite graphs. Recall that G is said to be bipartite if there exists a partition
V = V1

⊔
V2 such that every edge in G is of the form xy with x ∈ V1 and y ∈ V2.

When I is unmixed (more generally, when G has a perfect matching — see Sec-
tion 2 for details), we have that |V1| = |V2| = ht I . To such a bipartite graph, we
associate a directed graph dG on the vertex set {1, . . . ,ht I }. This is motivated by a
paper of J. Herzog and T. Hibi [4] which studies a similar association between posets
and bipartite graphs with Cohen-Macaulay edge ideals. Using this, we show that

Theorem 1.1 Let G be an unmixed bipartite graph with edge ideal I . Then
regR/I = max{|A| : A is an antichain in dG}. In particular, regR/I is the maximum
size of a pairwise disconnected set of edges in G.
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We say that G is unmixed (respectively, Cohen-Macaulay) if R/I is unmixed (re-
spectively, Cohen-Macaulay). The notion of pairwise disconnected sets of edges in
graphs was introduced by X. Zheng [19] who showed that if I is the edge ideal of a
tree (an acyclic graph) then regR/I is the maximum size of a pairwise disconnected
set of edges [19, Theorem 2.18]. Additionally, see [5, Corollary 6.9], for the same
conclusion for the edge ideals of chordal graphs. For arbitrary graphs, the maximum
size of a pairwise disconnected set of edges is a lower bound for regR/I ; this follows
essentially from [6, Lemma 2.2].

A strong component of a directed graph is a set of vertices maximal with the
property that for every i, j in the set, there is a directed path from i to j . The following
statement about depth, which follows from Corollary 3.7, has also been observed by
C. Huneke and M. Katzman:

Theorem 1.2 Let G be an unmixed bipartite graph, with edge ideal I and associated
directed graph dG. If dG has t strong components, then depthR/I ≥ t .

The problem of determining the minimum number of equations required to gen-
erate a monomial ideal up to radical (called the arithmetic rank of the ideal) was
first studied by P. Schenzel and W. Vogel [11], T. Schmitt and Vogel [12] and
G. Lyubeznik [8]. Lyubeznik showed that for a square-free monomial ideal I ,
ara I ≥ pdR/I [8, Proposition 3]. Upper bounds for arithmetic rank have also been
considered by M. Barile [1] and [2], building on the work of Schmitt and Vogel
mentioned above. In [7], K. Kimura, N. Terai and K.-i. Yoshida raise the question
of equality of ara I and pdR/I , and answer it in some cases [7, Theorem 1.1]. It is
known, however, due to Z. Yan [17, Example 2] that, in general, pdR/I and ara I

need not be equal.
If G is an unmixed bipartite graph, then we can construct a maximal subgraph

Ğ which is Cohen-Macaulay; this corresponds to taking a maximal directed acyclic
subgraph of dG. If G is, further, Cohen-Macaulay, then Ğ = G. Let Ĭ be the edge
ideal of Ğ. We show that

Theorem 1.3 Let G be an unmixed bipartite graph with edge ideal I . Then ara I ≤
ara Ĭ + pdR/I − ht I . If further a maximal acyclic subgraph of dG can be embedded
in N

2, then ara I = pdR/I .

Thus, if G is Cohen-Macaulay and dG has an embedding in N
2, then R/I is a

set-theoretic complete intersection, i.e., it can be defined by ht I equations.
The next section contains definitions, notation and some preliminary observations.

Theorems 1.1 and 1.2 are proved in Section 3. A proof of Theorem 1.3 is presented
in Section 4.

2 Edge ideals

We fix the following notation: k is a field, V is a finite set of indeterminates over k,
G is a simple graph on V without any isolated vertices and R = k[V ] is a polynomial
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ring. We take I ⊆ R to be a square-free monomial ideal; later, we will assume that I is
the edge ideal of G. Set c := ht I . References for homological aspects of monomial
ideals, for graph theory and for results on posets, respectively, are [9, Part I], [16]
and [10, Chapter 3]. We will use “multigraded” and “multidegree” to refer to the
grading of R by N

|V | and the degrees in this grading.
The multigraded Betti numbers of R/I are βl,σ (R/I) := dimk TorRl (k,R/I)σ .

For j ∈ Z, the (N-graded) Betti numbers are βl,j := dimk TorRl (k,R/I)j . We note
that βl,j (·) = ∑

βl,σ (·), where the sum is taken over the set of σ with |σ | = j . (Here
|.| denotes the total degree of a multidegree.) To represent a multidegree, we will
often use the unique monomial in R of that multidegree; further, if that monomial is
square-free, we will use its support, i.e., the set of variables dividing it.

Let � be the Stanley-Reisner complex of I . The correspondence between non-
faces of � and monomials in I can also be expressed as follows: for any mono-
mial prime ideal p ∈ SpecR, I ⊆ p if and only if p = (F̄ )R, the ideal generated by
F̄ := V \ F , for some F ∈ � [9, Theorem 1.7]. Thus minimal prime ideals of R/I

correspond to complements of maximal faces of �. The Alexander dual of �, de-
noted ��, is the simplicial complex {F̄ : F �∈ �}. Let m ∈ N and Fi ⊆ V,1 ≤ i ≤ m

be such that
∏

x∈Fi
x,1 ≤ i ≤ m are the minimal monomial generators of I . The

Alexander dual of I , denoted I �, is the square-free monomial ideal
⋂m

i=1(Fi). If I

is the Stanley-Reisner ideal of �, then F̄i ,1 ≤ i ≤ m are precisely the facets of ��.
Hence I � is the Stanley-Reisner ideal of ��. We will need the following theorem of
Terai:

Proposition 2.1 (Terai [13]; [9, Theorem 5.59]) For any square-free monomial
ideal J , pdR/J = regJ �.

The relation between simplicial homology and multigraded Betti numbers is given
by Hochster’s Formula [9, Corollary 5.12 and Corollary 1.40]. For σ ⊆ V , we denote
by �|σ the simplicial complex obtained by taking all the faces of � whose vertices
belong to σ . Note that �|σ is the Stanley-Reisner complex of the ideal I ∩ k[σ ].
Similarly, define the link, lk�(σ), of σ in � to be the simplicial complex {F \σ : F ∈
�,σ ⊆ F }. Its Stanley-Reisner ideal in k[σ̄ ] is (I : σ)∩ k[σ̄ ]. First, the multidegrees
σ with βl,σ (R/I) �= 0 are square-free. Secondly, for all square-free multidegrees σ ,

βl,σ (R/I) = dimk H̃|σ |−l−1(�|σ ;k), and (1)

βl,σ (I �) = dimk H̃l−1(lk�(σ̄ );k).

Combining these two formulas we see that

βl,σ (I �) = β|σ |−l,σ

(
R

(I : σ̄ )

)

. (2)

We add, parenthetically, that links of faces in Cohen-Macaulay complexes are them-
selves Cohen-Macaulay.

We now describe how the graded Betti numbers change under restriction to a sub-
set of the variables and under taking colons.
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Lemma 2.2 Let I ⊆ R = k[V ] be a square-free monomial ideal, x ∈ V , l, j ∈ N and
σ ⊆ V with |σ | = j .

(a) Let W ⊆ V and J = (I ∩ k[W ])R. Then,

βl,σ (R/J ) =
{

0, σ � W,

βl,σ (R/I), σ ⊆ W.

In particular, βl,j (R/J ) ≤ βl,j (R/I).
(b) If βl,σ (R/(I : x)) �= 0, then βl,σ (R/I) �= 0 or βl,σ∪{x}(R/I) �= 0.

Proof (a): The second assertion follows from the first, which we now prove. Let �̃ be
the Stanley-Reisner complex of J . Since for all x ∈ V \ W , x does not belong to any
minimal prime ideal of R/J , we see that every maximal face of �̃ contains V \ W .
Hence if σ �⊆ W , then for all x ∈ σ \ W , �̃|σ is a cone with vertex x, which, being
contractible, has zero reduced homology. Applying (1), we see that βl,σ (R/J ) = 0.

Now let σ ⊆ W and F ⊆ V . Then F ∈ �|σ if and only if I ⊆ (F̄ )R and F ⊆ σ ,
which holds if and only if J ⊆ (F̄ )R and F ⊆ σ , which, in turn, holds if and only if
F ∈ �̃|σ . Apply (1) again to get

βl,σ (R/J ) = H̃|σ |−l−1(�̃|σ ;k) = H̃|σ |−l−1(�|σ ;k) = βl,σ (R/I).

(b): We take the multigraded exact sequence of R-modules:

0 R
(I :x)

(−x) R
I

R
(I,x) 0. (3)

The corresponding multigraded long exact sequence of Tor is

· · · Torl+1(k, R
(I,x)

) Torl (k, R
(I :x)

(−x))

Torl (k, R
I
) · · · .

Let W = V \ {x} and J = (I ∩ k[W ])R. Since βl,σ (R/(I : x)) �= 0 and x does not
divide any monomial minimal generator of (I : x), we have, by the same argument as
in (2.2), σ ⊆ W . Let τ = σ ∪ {x}. First observe that

Torl

(

k,
R

(I : x)

)

σ

	 Torl

(

k,
R

(I : x)
(−x)

)

τ

.

Let us assume that βl,τ (R/I) = 0, because, if βl,τ (R/I) �= 0, there is nothing
to prove. Then, the above long exact sequence of Tor, restricted to the multide-
gree τ , implies that Torl+1(k, R

(I,x)
)τ �= 0. Now, since (I, x) = (J, x), we see further

Torl+1(k, R
(J,x)

)τ �= 0.
Since x is a non-zerodivisor on R/J , we have a multigraded short exact sequence

0 R
J
(−x) R

J
R

(J,x) 0,
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which gives the following long exact sequence of Tor:

· · · Torl+1(k, R
J
) Torl+1(k, R

(J,x)
)

Torl(k, R
J
(−x)) · · · .

Since x does not divide any minimal monomial generator of J , βl+1,τ (R/J ) = 0.
Therefore Torl (k, R

J
(−x))τ �= 0, or, equivalently, Torl(k, R

J
)σ �= 0. By (2.2) above,

βl,σ (R/I) �= 0. �

If p ⊆ R is a prime ideal such that htp = c = ht I and I ⊆ p, then we say that p

is an unmixed associated prime ideal of R/I . Denote the set of unmixed associated
prime ideals of R/I by UnmR/I . Unmixed prime ideals are necessarily minimal
over I , so UnmR/I ⊆ AssR/I ; we say that I or R/I is unmixed if UnmR/I =
AssR/I .

We now restrict our attention to edge ideals of graphs. Every square-free quadratic
monomial ideal can be considered as the edge ideal of some simple graph. The theory
of edge ideals is systematically developed in [14, Chapter 6]. Hereafter I is the edge
ideal of G, which we have set to be a simple graph on V . A vertex cover of G is a
set A ⊆ V such that whenever xy is an edge of G, x ∈ A or y ∈ A. It is easy to see
that for all A ⊆ V , A is a vertex cover of G if and only if the prime ideal (x : x ∈ A)

contains I . Since I is square-free, R/I is reduced; therefore, AssR/I is the set of
minimal prime ideals containing I . These are monomial ideals, and, hence, are in
bijective correspondence with the set of minimal vertex covers of G. We will say
that G is unmixed (respectively, Cohen-Macaulay) if R/I is unmixed (respectively,
Cohen-Macaulay). Observe that if G is unmixed, then all its minimal vertex covers
have the same size.

If xy is an edge of G, then we say that x and y are neighbours of each other. An
edge is incident on its vertices. We say that an edge xy is isolated if there are no other
edges incident on x or on y. Let G be a graph. A matching in G is a maximal (under
inclusion) set m of edges such that for all x ∈ V , at most one edge in m is incident
on x. Edges in a matching form a regular sequence on R. We say that G has perfect
matching, or, is perfectly matched, if there is a matching m such that for all x ∈ V ,
exactly one edge in m is incident on x.

Lemma 2.3 Let G be a bipartite graph on the vertex set V = V1
⊔

V2, with edge
ideal I . Then G has a perfect matching if and only if |V1| = |V2| = ht I . In particular,
unmixed bipartite graphs have perfect matching.

Proof If G has a perfect matching, then |V1| = |V2|. Moreover, by König’s theo-
rem [16, Theorem 3.1.16], the maximum size of any matching equals the minimum
size of any vertex cover; hence |V1| = |V2| = ht I . Conversely, if |V1| = |V2| = ht I ,
then, again by König’s theorem, G has a matching of |V1| = |V2| edges, i.e., it has a
perfect matching.

If G is unmixed, then every minimal vertex cover of G has the same size. Observe
that both V1 and V2 are minimal vertex covers of G. �
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Discussion 2.4 Let d be any directed graph on [c], and denote the underlying undi-
rected graph of d by |d|. We will write j 
 i if there is a directed path from i to j

in d. By j � i (and, equivalently, i � j ) we mean that j 
 i or j = i. For A ⊆ [c],
we say that j � A if there exists i ∈ A such that j � i. We say that a set A ⊆ [c] is
an antichain if for all i, j ∈ A, there is no directed path from i to j in d, and, by Ad,
denote the set of antichains in d. We consider ∅ as an antichain. A coclique of |d| is a
set A ⊆ [c] such that for all i �= j ∈ A, i and j are not neighbours in |d|. Antichains in
d are cocliques in |d|, but the converse is not, in general, true. We say that d is acyclic
if there are no directed cycles, and transitively closed if, for all i, j, k ∈ [c], whenever
ij and jk are (directed) edges in d, ik is an edge. Observe that d is a poset under the
order � if and only if it is acyclic and transitively closed. If d is a poset, we say that,
for i, j ∈ [c], j covers i if j 
 i and there does not exist j ′ such that j � j ′

� i. Let
G be a bipartite graph on V = V1

⊔
V2 with perfect matching. Let V1 = {x1, · · · , xc}

and V2 = {y1, · · · , yc}. After relabelling the vertices, we will assume that xiyi is an
edge for all i ∈ [c]. We associate G with a directed graph dG on [c] defined as fol-
lows: for i �= j ∈ [c], ij is an edge of dG if and only if xiyj is an edge of G. (Here, by
ij , we mean the directed edge from i to j .) Observe that dG is simple, i.e., without
loops and multiple edges. Let κ(G) denote the largest size of any coclique in |dG|.

The significance of κ(G) is that it gives a lower bound for regR/I . Following
Zheng [19], we say that two edges vw and v′w′ of a graph G are disconnected if
they are no more edges between the four vertices v, v′,w,w′. A set a of edges is
pairwise disconnected if and only if (I ∩k[Va])R is generated by the regular sequence
of edges in a, where by Va, we mean the set of vertices on which the edges in a
are incident. The latter condition holds if and only if the subgraph of G induced on
Va, denoted as G|Va , is a collection of |a| isolated edges. In particular, the edges in
any pairwise disconnected set form a regular sequence in R. Set r(I ) := max{|a| :
a is a set of pairwise disconnected edges in G}.

Lemma 2.5 Let G be bipartite graph with perfect matching. Then, with notation as
in Discussion 2.4, r(I ) ≥ κ(G) ≥ max{|A| : A ∈ AdG

}.

Proof If A ⊆ [c] is a coclique of |dG|, we easily see that the edges {xiyi : i ∈ A} are
pairwise disconnected in G. The assertion now follows from the observation, which
we made in Discussion 2.4, that any antichain in dG is a coclique of |dG|. �

The assertion of Theorem 1.1 is that when G is an unmixed bipartite graph, equal-
ity holds in the above lemma and that this quantity equals regR/I . We will prove
Theorem 1.1 in the next section; now, we relate some properties of bipartite graphs
with their associated directed graphs.

Lemma 2.6 Let G be bipartite graph with perfect matching, and adopt the notation
of Discussion 2.4. Let j � i. Then for all p ∈ UnmR/I , if yi ∈ p, then yj ∈ p.

Proof Applying induction on the length of a directed path from i to j , we may as-
sume, without loss of generality, that ij is a directed edge of dG. Let p ∈ UnmR/I
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and k ∈ [c]. Since xkyk ∈ I , xk ∈ p or yk ∈ p. Since htp = c, in fact, xk ∈ p if and
only if yk �∈ p. Now since yi ∈ p, xi �∈ p, so (I : xi) ⊆ p. Note that since xiyj is an
edge of G, yj ∈ (I : xi). �

Theorem 2.7 Let G be a bipartite graph on the vertex set V = V1
⊔

V2.

(a) [15, Theorem 1.1] G is unmixed if and only if G has a perfect matching and dG

is transitively closed.
(b) [4, Lemma 3.3 and Theorem 3.4] G is Cohen-Macaulay if and only if G is per-

fectly matched and the associated directed graph dG is acyclic and transitively
closed, i.e., it is a poset.

Discussion 2.8 Let d be a directed graph. We say that a pair i, j of vertices d are
strongly connected if there are directed paths from i to j and from j to i; see [16,
Definition 1.4.12]. A strong component of d is an induced subgraph maximal under
the property that every pair of vertices in it is strongly connected. Strong components
of d form a partition of its vertex set. Now let G be a bipartite graph with perfect
matching. Let Z1, . . . , Zt be the vertex sets of the strong components of dG. Define
a directed graph d̂ on [t] by setting, for a �= b ∈ [t], ab to be a directed edge (from
a to b) if there exists a directed path in dG from any (equivalently, all, since dG|Za

is strongly connected) of the vertices in Za to any (equivalently, all, since dG|Zb
is

transitively closed) of the vertices in Zb . We observe that d̂ has no directed cycles.
Now assume further that G is unmixed. Then, since dG is transitively closed, d̂ is
transitively closed, i.e., it is a poset under the order induced from dG. We will use
the same notation for the induced order, i.e., say that b 
 a if there is a directed
edge from a to b. Define the acyclic reduction of G to be the bipartite graph Ĝ

on new vertices {u1, . . . , ut }⊔{v1, . . . , vt }, with edges uava , for all 1 ≤ a ≤ t and
uavb , for all directed edges ab of d̂. Let S = k[u1, . . . , ut , v1, . . . , vt ], with standard
grading. Let Î ⊆ S be the edge ideal of Ĝ. Let ζi = |Zi |,1 ≤ i ≤ t . For a multidegree
τ = ∏

i u
si
i

∏
v

ti
i , set τ ζ = ∏

i u
siζi

i

∏
v

tiζi

i .

Lemma 2.9 Let G be an unmixed bipartite graph with edge ideal I . For an antichain
A �= ∅ of d̂, let 	A = {j ∈ Zb : b � A}. Let 	∅ = ∅. Then AssR/I = {(xi : i �∈
	A) + (yi : i ∈ 	A) : A ∈ Ad̂}.

Proof Let p ∈ AssR/I . Let U := {b : yj ∈ p for some j ∈ Zb}. It follows from
Lemma 2.6 that yj ∈ p for all j ∈ ⋃

b∈U Zb and that if b′ 
 b for some b ∈ U,
then b′ ∈ U. Now, the minimal elements of U form an antichain A under 
. Hence
{j : yj ∈ p} = 	A, showing AssR/I ⊆ {(xi : i �∈ 	A) + (yi : i ∈ 	A) : A ∈ Ad̂}.

Conversely, let A ∈ Ad̂ and p := (xi : i �∈ 	A) + (yi : i ∈ 	A). Since htp = c =
ht I , it suffices to show that I ⊆ p in order to show that p ∈ AssR/I . Clearly, for all
1 ≤ i ≤ c, xiyi ∈ p. Take i �= j such that xiyj ∈ I . If i �∈ 	A, then there is nothing
to be shown. If i ∈ 	A, then there exist a, b, b′ such that a ∈ A, b 
 a, i ∈ Zb and
j ∈ Zb′ . Since ij is a directed edge of dG, b′ 
 b in d̂. Hence b′ 
 a, and j ∈ 	A,
giving yj ∈ p. This shows that I ⊆ p. �
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3 Regularity and depth

The content of Lemma 2.9 is that there are subsets W ⊆ V such that for all p ∈
AssR/I , if p ∩ W �= ∅ then W ⊆ p. Looking at I �, we see that for all minimal gen-
erators g of I �, if any element of W divides g, then all elements of W divide g.
Label the minimal monomial generators of I � as g1, . . . , gs, gs+1, . . . , gm so that
every element of W divides g1, . . . , gs and no element of W divides gs+1, . . . , gm.

Fix x ∈ W . For i = 1, . . . , s, set hi := x|W |
∏

y∈W y
gi and h̄i := x∏

y∈W y
gi . Let J =

(h1, . . . , hs, gs+1, . . . , gm) and J ′ = (h̄1, . . . , h̄s , gs+1, . . . , gm). Let φ : R → R be
the ring homomorphism that sends x → x|W | and y → y, for all y �= x ∈ V . We make
two observations: first, that I � is a polarization of J , and, secondly, that J = φ(J ′).
Hence the N-graded Betti numbers of I � and J are identical [9, Exercise 3.15]. Fur-
ther, the following lemma shows that βl,σ (R/J ) �= 0 if and only if x|W | divides σ and
βl, σ

x|W |−1
(R/J ) �= 0.

Lemma 3.1 Let B1 = k[x1, . . . , xn] and B2 = k[y1, . . . , yn]. Let ξ1, . . . , ξn be pos-
itive integers. Set degxi = 1 and degyi = ξn for all 1 ≤ i ≤ n. Define a ring homo-
morphism φ : B2 → B1 by sending yi → x

ξi

i . Then for any acyclic complex G• of
finitely generated graded B2-modules (with degree-preserving maps), G• ⊗B2 B1 is
an acyclic complex of finitely generated graded B1-modules (with degree-preserving
maps).

Proof Acyclicity of G• ⊗B2 B1 follows from the fact that B1 is a free and hence
flat B2-algebra. The maps in G• ⊗B2 B1 are degree-preserving since φ preserves
degrees. �

Proposition 3.2 Let G be an unmixed bipartite graph, with edge ideal I and acyclic
reduction Ĝ. Let Î ⊆ S be the edge ideal of Ĝ. Then regR/I = pd

(
Î
)�

and pdR/I =
max{|τ ζ | − l : βl,τ

((
Î
)�

)
�= 0}.

Proof By Proposition 2.1, regR/I = pd I � and pdR/I = reg I �. Hence it suffices

to show that pd I � = pd
(
Î
)�

and reg I � = max{|σ ζ | − l : βl,σ

((
Î
)�

)
�= 0}. From

Lemma 2.9, with the notation used there, it follows that

I � =
⎛

⎝
∏

i �∈	A

xi ·
∏

i∈	A

yi : A ∈ Ad̂

⎞

⎠ =

⎛

⎜
⎜
⎝

∏

b ��A
i∈Zb

xi ·
∏

b�A
i∈Zb

yi : ∅ �= A ∈ Ad̂

⎞

⎟
⎟
⎠ +

(
c∏

i=1

xi

)

.

For each a ∈ [t], fix ia ∈ Za . Now, as the Za form a partition of [c], we see that I � is
a polarization of the ideal

J =
⎛

⎝
∏

b ��A

x
ζb

ib
·
∏

b�A

y
ζb

ib
: ∅ �= A ∈ Ad̂

⎞

⎠ +
(

t∏

b=1

x
ζb

ib

)
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⊆ S := k[xi1, . . . , xit , yi1, . . . , yit ].
Notice that S′ 	 S (which, we recall, is the polynomial ring on the vertex set of
the acyclic reduction Ĝ) under the map φ : xia → ua and φ : yia → va , and that

φ(
√

J ) = (
Î
)�

. Therefore βl,σ (
√

J ) = βl,φ(σ )

((
Î
)�

)
. It now suffices to show that

pdJ = pd
√

J and that regJ = max{|τ ζ | − l : βl,τ (
√

J ) �= 0}. This, being the same
argument as in the opening paragraph of this section, follows from the preceding
lemma. �

Remark 3.3 Let G be an unmixed graph with acyclic reduction Ĝ. If I ⊆ R and Î ⊆ S

are the respective edge ideals, then it follows from Proposition 3.2 that regR/I =
pd

(
Î
)� = regS/Î .

Lemma 3.4 Let G be an unmixed bipartite graph with acyclic reduction Ĝ. Then
max{|A| : A ∈ AdG

} = max{|A| : A ∈ AdĜ
}.

Proof Let A = {i1, . . . , ir } ⊆ [c] be an antichain in dG. Choose a1, . . . , ar ∈ [t] such
that ij ∈ Zaj

. Since dG is transitively closed, it follows that {a1, . . . , ar} is an an-
tichain in dĜ. Conversely, if {a1, . . . , ar} is an antichain in dĜ, then for any choice of
ij ∈ Zaj

, {i1, . . . , ir} is an antichain in dG. �

We now prove Theorem 1.1. If G is a tree — trees are bipartite — then regR/I is
the maximum size of a pairwise disconnected set of edges in G, without the assump-
tion that G is unmixed [19, Theorem 2.18]. However, for bipartite graphs G that are
not trees, we need to assume that G is unmixed. For example, if G is the cycle on
eight vertices, we can choose at most two edges that are pairwise disconnected, while
regR/I = 3.

Theorem 1.1 Let G be an unmixed bipartite graph with edge ideal I . Then
regR/I = max{|A| : A is an antichain in dG}. In particular, regR/I is the maximum
size of a pairwise disconnected set of edges in G.

Proof Since regR/I ≥ r(I ) (see the paragraph on page 429 following the statement
of Theorem 1.1), the latter statement follows from the first statement along with
Lemma 2.5. In order to prove the first statement, let Ĝ be the acyclic reduction of
G on the vertex set {u1, . . . , ut }⊔{v1, . . . , vt }. Recall that Ĝ is a Cohen-Macaulay
bipartite graph. As in Discussion 2.8, let S = k[u1, . . . , ut , v1, . . . , vt ]. Let Î ⊆ S

be the edge ideal of Ĝ. Remark 3.3 and Lemma 3.4 give that it suffices to prove
the theorem for Cohen-Macaulay bipartite graphs. If G is Cohen-Macaulay, then dG

is a poset. From [4, Corollary 2.2], taken along with Proposition 2.1, we see that
pdR/I = max{|A| : A ∈ AdG

}. (Note that I � is the ideal HdG
, in the notation of [4],

with the xi and the yj interchanged.) �

Remark 3.5 Let G be a Cohen-Macaulay bipartite graph with edge ideal I , with
ht I = c. Then regR/I ≤ c. If regR/I = c, then R/I is a complete intersection, or,
equivalently, G consists of c isolated edges. We see this as below: Let dG be the
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associated directed graph on [c]. Since regR/I is the maximum size of an antichain
in dG, regR/I ≤ c. If regR/I = c, we see that dG has an antichain of c elements,
which implies that for all i �= j ∈ [c], i �� j or j �� i, i.e., xiyj is not an edge of G.

We would now like to give a description of depthR/I for an unmixed bipar-
tite edge ideal I in terms of the associated directed graph. First, we determine
the multidegrees with non-zero Betti numbers for its Alexander dual. Let G be a
Cohen-Macaulay bipartite graph. For antichains B ⊆ A of dG, A �= ∅, set σA,B :=∏

i ��A xi

∏
i�A yi

∏
i∈B xi . Set σ∅,∅ = ∏c

i=1 xi . With this notation, we restate [4,
Theorem 2.1] as follows:

Theorem 3.6 Let G be a Cohen-Macaulay bipartite graph with edge ideal I . For all
l ≥ 0, and multidegrees σ , if βl,σ (I �) �= 0, then βl,σ (I �) = 1 and σ = σA,B for some
antichains B ⊆ A of dG with |B| = l.

(Although the multidegrees in which the Betti numbers are non-zero are not ex-
plicitly given in the statement of [4, Theorem 2.1], we can determine them easily
from the description of the differentials given there, prior to stating the theorem.
Note, again, that the roles of the xi and the yj are the opposite of what we follow.)

Corollary 3.7 Let G be an unmixed bipartite graph with edge ideal I . Let c = ht I .
Let t, ζ1, . . . , ζt , d̂ be as in Discussion 2.8. Then

depthR/I = c − max

{
∑

i∈B

ζi − |B| : B is an antichain of d̂

}

.

Proof Let Ĝ, S, Î be as in Discussion 2.8. From Theorem 3.6, we know that if
βl,σ ((Î )�) �= 0 for some multidegree σ ⊆ {u1, . . . , ut , v1, . . . , vt }, then σ = σA,B

for some antichains B ⊆ A of d̂, with |B| = l. Now, in S, degσA,B = ∑
i�A ζi +∑

i ��A ζi + ∑
i∈B ζi = c + ∑

i∈B ζi . Hence

reg(Î )� = c + max

{
∑

i∈B

ζi − |B| : B is an antichain of d̂

}

.

Note that depthR = dimR = 2c. Now apply Proposition 3.2, followed by the
Auslander-Buchsbaum formula, to obtain the conclusion. �

The above proof also shows that if G is a bipartite graph such that R/I satisfies
Serre’s condition (S2) (defined, e.g., in [3, Section 2.1]) then G is Cohen-Macaulay.
For, if R/I satisfies (S2), then it is unmixed and I � is linearly presented, i.e., the non-
zero entries in any matrix giving a presentation of I � are linear. This is a special case
of [18, Corollary 3.7]. It follows, with the notation of the proof, that for all antichains
A �= ∅ of d̂, and for all a ∈ A, degσA,{a} = c + ζa = c + 1, giving that every strong
component of dG has exactly one element. In other words, G is Cohen-Macaulay. We
can now prove Theorem 1.2.
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Theorem 1.2 Let G be an unmixed bipartite graph, with edge ideal I and associated
directed graph dG. If dG has t strong components, then depthR/I ≥ t .

Proof To show that depthR/I ≥ t , it suffices to show that, for all antichains B of d̂,
t +∑

i∈B ζi −|B| ≤ c. Since c = ∑t
i=1 ζi , it suffices to show that t −|B| ≤ ∑

i �∈B ζi ,
which is true since ζi ≥ 1 for all i. �

Remark 3.8 The above bound is sharp. Given positive integers t ≤ c, and a poset d̂ on
t vertices, we can find an unmixed bipartite graph G on the vertex set V = V1

⊔
V2

with edge ideal I such that |V1| = |V2| = c and depthk[V ]/I = t . Choose any an-
tichain B in d̂ and set ζi = 1 for all i �∈ B . Choose ζi ≥ 1, i ∈ B such that

∑
i∈B ζi =

c − t + |B|. Now construct a directed graph d on c vertices by replacing the vertex i

of d̂ by directed cycle of ζi vertices and then taking its transitive closure. Label the
vertices of d with [c]. Let G be a bipartite graph on V = {x1, . . . , xc}⊔{y1, . . . , yc}
such that xiyi is an edge for all i ∈ [c] and xiyj is an edge whenever ij is a di-
rected edge of d. Then G is an unmixed graph. We know from the corollary that
t ≤ depthR/I ≤ c − ∑

i∈B ζi − |B| = t .

4 Arithmetic rank

The two statements of Theorem 1.3 will be proved separately in Proposition 4.2 and
in Proposition 4.11.

Discussion 4.1 Let G be an unmixed bipartite graph on {x1, . . . , xc}⊔{y1, . . . , yc}.
Adopt the notation of Discussion 2.8. Choose an acyclic transitively closed subgraph
of dG which is maximal under inclusion of edge sets; call it d̆. It is a poset, with the
order induced from dG. We will denote this order by � to avoid confusion with 
.
(Recall that 
 does not define a partial order if G is not Cohen-Macaulay.) Let Ğ be
the Cohen-Macaulay bipartite graph on {x1, . . . , xc}⊔{y1, . . . , yc} corresponding to
d̆; denote its edge ideal by Ĭ .

Proposition 4.2 With notation as above, ara I ≤ ara Ĭ + pdR/I − ht I .

Proof On the set {xjyi : j � i, j �= i and xjyi is an edge of G}, define a partial order:
xjyi > xj ′yi′ whenever j � j ′, j �= j ′, i � i′, i �= i′. Call this poset P . (These are the
edges of G that do not belong to Ğ. If xjyi is such an edge, then i and j belong
to the same strong component of dG.) We now claim that every antichain in P has
at most max

{∑
a∈B ζa − |B| : B is an antichain of d̂

}
elements; this quantity, as we

note from Corollary 3.7, equals ξ := pdR/I − ht I . Let {xjk
yik : 1 ≤ k ≤ l} with

jk � ik,1 ≤ k ≤ l be an antichain in P . First, there exist a1, . . . , al such that ik, jk ∈
Zak

; this arises from the fact that jk � ik . If ak2 � ak1 , then for, i, j ∈ Zak1
and

i′, j ′ ∈ Zak2
, xj ′yi′ > xjyi , so if ak2 �= ak1 , then they are incomparable. Therefore,

to prove the claim, it suffices to show that if a1 = . . . = al = a, say, then l ≤ ζa − 1.
This follows easily, for, in this case, any antichain in P can contain at most one edge
for each value of j − i, and 1 ≤ j − i ≤ ζa − 1. Moreover, let B be an antichain of d̂
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for which the maximum is attained. For all a ∈ B , set ja to be the maximal element
of Za under �. Then {xjayi : i ∈ Za, a ∈ B} is an antichain of P with ξ elements.
Using Dilworth’s theorem [16, p. 413], we cover P with ξ chains, C1, . . . , Cξ . For
1 ≤ k ≤ ξ , set hk := ∑

xj yi∈Ck
xj yi .

Our final claim is that
√

Ĭ + (h1, . . . , hξ ) = I . The hl belong to I and Ĭ ⊆ I , so

it suffices to show that I ⊆ p for every p ∈ SpecR such that Ĭ + (h1, . . . , hξ ) ⊆ p.
Let p be such, and, by way of contradiction, assume that xjyi ∈ I \ p; since Ĭ ⊆ p,
j � i. First, we may also assume that for all i′ �= i, i � i′, if xjyi′ ∈ I , then yi′ ∈ p,
and similarly, that for all j ′ �= j, j � j ′, if xj ′yi ∈ I , then xj ′ ∈ p. Secondly, i and j

belong to the same strong component of dG; let a be such that i, j ∈ Za . Let Cl be
chain of P containing xjyi . For all b � a and j ′ ∈ Zb , xjyj ′ ∈ Ĭ ⊆ p, so yj ′ ⊆ p. Sim-
ilarly, for all b � a and i′ ∈ Zb , xi′yi ∈ Ĭ ⊆ p, so xi′ ⊆ p. We can thus conclude that if
xj ′yi′ ∈ Cl and (i, j) �= (i′, j ′), then xj ′yi′ ∈ p. Therefore xjyi ∈ p, contradicting the
choice of xjyi . �

On N
2, we define a poset by setting (a, b) ≥ (c, d) if a ≥ c and b ≥ d . Let (P,≥),

be a finite poset on a vertex set W1. We say that P can be embedded in N
2 if there

exists a map φ : W −→ N
2 such that all i, j ∈ W , j ≥ i if and only if φ(j) ≥ φ(i);

such a map φ will be called an embedding of P in N
2. We will denote the projection

of N
2 along the first co-ordinate by π .

Definition 4.3 Let (P,�) be a finite poset on a finite vertex set W , with an em-
bedding φ in N

2. Then there is a unique i0 ∈ W such that i0 is minimal in P and
(π ◦ φ)(i0) is minimum. Similarly, let j0 be the unique maximal element such that
(π ◦φ)(j0) is minimum. Let P1 and P2 be the restrictions of P respectively to W \{i0}
and W \{j0}. The column linearization of P induced by φ is the map γ : W −→ [|W |]
defined recursively as follows:

γ (i) =
{

1, i = i0

1 + γ1(i), i �= i0

where γ1 is a column linearization of P1 induced by φ. A row linearization of P

induced by φ is the map ρ : W −→ [|W |] defined recursively as follows:

ρ(j) =
{

1, j = j0

1 + ρ1(j), j �= j0

where ρ1 is a row linearization of P2 induced by φ. We will say that (γ,ρ) is the pair
of linearizations induced by φ.

Proposition 4.4 Let P , φ, γ and ρ be as in Definition 4.3. For i, j ∈ P , if j � i,
j �= i, then γ (j) > γ (i) and ρ(j) < ρ(i). If i and j are incomparable, then γ (j) >

γ (i) if and only if ρ(j) > ρ(i).

Proof If j � i, then φ(j) ≥ φ(i). In the recursive definition of γ , i would appear
as the unique minimal vertex with the smallest value of (π ◦ φ) before j would, so
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γ (i) < γ (j). On the other hand, while computing ρ recursively, j would appear as
the unique maximal vertex with the smallest value of (π ◦ φ) before i would, so
ρ(j) < ρ(i). On the other hand, if i and j are incomparable, then we may assume
without loss of generality that (π ◦ φ)(i) < (π ◦ φ)(j). Hence, while computing γ

and ρ recursively, i will be chosen before j , giving γ (i) < γ (j) and ρ(i) < ρ(j). �

Discussion 4.5 Let P be a poset on a finite set W , with an embedding φ in N
2. Let

(γ,ρ) be the pair of linearizations of P induced by φ. Let E = {(γ (i), ρ(j)) : j �
i ∈ W } ⊆ R

2. We think of E as a subset of [|W |] × [|W |] in the first quadrant of
the Cartesian plane. Let i, j be such that (γ (i), ρ(j)) ∈ E is not the lowest vertex
in its column, i.e., there exists l such that (γ (i), ρ(l)) lies below (γ (i), ρ(j)). Then
j � i, l � i and, from Proposition 4.4, l �= i. Therefore, again from Proposition 4.4,
γ (l) > γ (i) and (γ (i), ρ(l)) is not the right-most vertex in its row. Let k be such
that (γ (k), ρ(l)) lies immediately to the right of (γ (i), ρ(l)) in its row. Draw an
edge between (γ (i), ρ(j)) and (γ (k), ρ(l)). Repeating this for all j � i such that
(γ (i), ρ(j)) is not the lowest vertex in its column, we obtain a graph � on E. Rows
and columns of � will be indexed starting from the bottom left corner.

Lemma 4.6 With notation as in Discussion 4.5, � has exactly |W | connected com-
ponents.

Proof Suppose that C is a connected component of � and that (γ (i), ρ(j)) is the top
left vertex of C. We claim that it is the left-most vertex in its row. For, if not, then
there exists k such that (γ (k), ρ(j)) lies immediately to the left of (γ (i), ρ(j)). From
Proposition 4.4, k �= j . We note, again from Proposition 4.4, that (γ (k), ρ(j)) is not
the top-most vertex in its column, contradicting the hypothesis that (γ (i), ρ(j)) is
the top left vertex of C. Now, there are exactly |W | rows in �. �

Lemma 4.7 Let G be a Cohen-Macaulay bipartite graph such that φ is an embed-
ding of dG in N

2. Let (γ,ρ) be the pair of linearizations induced by φ. Then the
vertices in the first column of � belong to a contiguous set of rows, starting with
row 1.

Proof We may assume that the labelling of dG is such that γ −1(1) = 1 and
γ −1(2) = 2. We need to show that ρ(i) > ρ(1) if i �� 1. Proposition 4.4 gives that 1
is minimal in dG. Let i �� 1. Then i and 1 are incomparable. Since γ (1) = 1 ≤ γ (i),
we see, again from Proposition 4.4, that ρ(i) > ρ(1). �

Remark 4.8 Let P be a poset on a finite vertex set W with an embedding φ in N
2.

Let (γ,ρ) be the pair of linearizations of P induced by φ. Let W ′ = W \ {γ −1(1)}
and let P ′ be the restriction of P to W ′. Then φ|W ′ is an embedding of P ′ in N

2. For
i ∈ W ′, set γ ′(i) = γ (i) − 1, and

ρ′(i) =
{

ρ(i), i � γ −1(1)

ρ(i) − 1, otherwise.
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Then (γ ′, ρ′) is the pair of linearizations induced by φ|W ′ . Let �′ be the graph con-
structed from P ′ as described in Discussion 4.5 using γ ′ and ρ′. Then �′ is ob-
tained by deleting the vertices in the first column of �. We see this as follows. For all
i, j ∈ W ′, ρ(i) < ρ(j) if and only if ρ′(i) < ρ′(j); similarly, γ (i) < γ (j) if and only
if γ ′(i) < γ ′(j). Further, there is only one vertex in row ρ(γ −1(1)) in �, and this is
in the first column.

Remark 4.9 Let P be a poset on a finite vertex set W with an embedding φ in N
2.

Let (γ,ρ) be the pair of linearizations induced by φ. Let W ′ = W \ γ −1(1) and let
P ′ be the restriction of P to W ′. Then φ|W ′ is an embedding of P in N

2. Let γ̃ be
the order-preserving map from Imγ |W ′ to [|W ′|]. Let γ ′ := γ̃ ◦ γ |W ′ . For j ∈ W ′,
set ρ′(j) = ρ(j) − ρ(1). Then (γ ′, ρ′) is the pair of linearizations of P ′ induced by
φ|W ′ . Let �′ be the graph constructed from P ′ as described in Discussion 4.5 using
γ̃ ◦ γ |W ′ and ρ̃ ◦ ρ|W ′ . We claim that �′ is the graph obtained from � by deleting
the vertices that lie in rows ρ(j) for some j � γ −1(1). For, first observe that for
all i, j ∈ W ′, ρ(i) < ρ(j) if and only if ρ′(i) < ρ′(j); similarly, γ (i) < γ (j) if and
only if γ ′(i) < γ ′(j). Moreover, for all j � γ −1(1), the vertices in the column γ (j)

belong to rows between 1 and ρ(j) (possibly, not all of them). Therefore, after the
vertices in the rows between 1 and ρ(1) have been deleted, the remaining vertices
belong to columns γ (j) for j �� 1. Hence (γ ′(i), ρ′(j)) and (γ ′(k), ρ′(l)) belong
to the same connected component of �′ if and only if (γ (i), ρ(j)) and (γ (k), ρ(l))

belong to the same connected component of �.

Example 4.10 We wish to illustrate these constructions with an example of a Cohen-
Macaulay bipartite graph. Let G be the Cohen-Macaulay bipartite graph on the vertex
set {x1, y1, . . . , x7, y7} such that the poset dG has the cover relations (i.e., chains that
cannot be further refined) 3 
 1, 3 
 2, 4 
 1, 4 
 2, 5 
 2, 6 
 3, 6 
 4, 7 
 4 and
7 
 5. Table 1 gives the embedding φ, the functions γ and ρ and the graph �. We take
the sum of the monomials corresponding to the vertices in a connected component
of �:

g1 = x1y6, g2 = x2y6 + x1y3, g3 = x3y6 + x2y3 + x1y7,

g4 = x4y6 + x3y3 + x2y7 + x1y4, g5 = x6y6 + x4y7 + x2y4 + x1y1,

g6 = x5y7 + x4y4 + x2y5, g7 = x7y7 + x5y5 + x2y2.

Let J = (g1, . . . , g7). In the proof of Proposition 4.11 we will see that I = √
J .

Before we prove the second assertion of Theorem 1.3, we observe that the directed
graph associated to Ğ (which we denoted by d̆ in Discussion 4.1) has an embedding
in N

2 if and only if the acyclic reduction d̂ of dG has an embedding in N
2. The proof

of this is easy, and is omitted.

Proposition 4.11 Let G be an unmixed bipartite graph. If a maximal transitively
closed and acyclic subgraph of dG can be embedded in N

2, then ara I = pdR/I .
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Table 1 Example 4.10

i φ(i) γ (i) ρ(i)

1 (0,2) 1 5

2 (1,0) 2 7

3 (2,5) 3 2

4 (3,3) 4 4

5 (5,1) 6 6

6 (4,6) 5 1

7 (6,4) 7 3
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Proof Let d̆ be a maximal acyclic subgraph of dG with the property that d̆ can be
embedded in N

2. Construct Ğ as in Discussion 4.1. Let Ĭ be its edge ideal. Observe
that Ğ is Cohen-Macaulay and ht Ĭ = ht I = c. Suppose that the conclusion of the
proposition holds for Cohen-Macaulay graphs. Then ara Ĭ = pdR/Ĭ = ht I . Using
Proposition 4.2 and the fact that ara I ≥ pdR/I ([8, Proposition 3]), we conclude
that ara I = pdR/I . Hence it suffices to prove the assertion in the Cohen-Macaulay
case. Assume, therefore, that G is Cohen-Macaulay.

Denote the embedding of dG by φ, and let (γ,ρ) be pair of linearizations induced
by φ. Let � be the graph constructed as in Discussion 4.5. We prove the theorem by
induction on c. Since the conclusion is evident when c = 1, we assume that c > 1 and
that it holds for all Cohen-Macaulay bipartite graphs on fewer than 2c vertices. For
t = 1, . . . , c, let Ct be the connected component of � containing the left most vertex
in row t . We saw in the proof of Lemma 4.6 that these are exactly the connected
components of �. Set

gt =
∑

(γ (i),ρ(j))∈Ct

xiyj 1 ≤ t ≤ c.

Set J = (g1, . . . , gc). We will show that I = √
J , or, equivalently, that for all p ∈

SpecR, I ⊆ p if and only if J ⊆ p. (This gives that ara I ≤ c = pdR/I = ht I , but we
have already noted that ara I ≥= pdR/I .) Further, without loss of generality, we may
assume that γ −1(1) = 1. Then 1 is a minimal element of dG. Let W1 := {2, . . . , c}
and W2 := {i �� 1} ⊆ [c]. Let d1 and d2 respectively be the restrictions of dG to W1
and W2.

Let G1 be the deletion of x1 and y1 in G, whose edge ideal (in R = k[V ]) is
((I, x1)∩k[x2, y2, . . . , xc, yc])R. Note that d1 is the associated directed graph of G1.
Let �1 denote the deletion of the vertices that lie in the first column of �. Write J1 =
((J, x1)∩k[x2, y2, . . . , xc, yc])R. We see from Remark 4.8 that J1 is defined from �1
precisely the same way that J is defined from �. Along with the induction hypothesis,
this gives that ((I, x1) ∩ k[x2, y2, . . . , xc, yc])R = √

J1. Note that (J1, x1) = (J, x1),
so we obtain that (I, x1) = √

(J, x1). We thus see that for all p ∈ SpecR such that
x1 ∈ p, I ⊆ p if and only if J ⊆ p.
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Let G2 be the deletion of x1 and all its neighbours in G; its edge ideal is ((I :
x1) ∩ k[xi, yi : i ∈ W2])R. The associated directed graph of G2 is d2. Let �2 denote
the deletion of the vertices that lie in columns γ (i) or in rows ρ(i) of � whenever
i � 1. Let

J2 = ((J + (yi : i � 1)) ∩ k[xi, yi : i �� 1])R.

From Remark 4.8, we note that J2 is defined from �2 precisely the same way that
J is defined from �. This, along with the induction hypothesis, implies that ((I :
x1)∩k[xi, yi : i ∈ W2])R = √

J2. Now, J2 + (yi : i � 1) = J + (yi : i � 1) = (J : x1),
so (I : x1) = √

(J : x1). We thus see that for all p ∈ SpecR such that x1 �∈ p, I ⊆ p if
and only if J ⊆ p. Together with the previous paragraph, we conclude that

√
J = I . �
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