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Abstract We construct frieze patterns of type DN with entries which are numbers of
matchings between vertices and triangles of corresponding triangulations of a punc-
tured disc. For triangulations corresponding to orientations of the Dynkin diagram
of type DN , we show that the numbers in the pattern can be interpreted as special-
isations of cluster variables in the corresponding Fomin-Zelevinsky cluster algebra.
This is generalised to arbitrary triangulations in an appendix by Hugh Thomas.

Keywords Cluster algebra · Frieze pattern · Ptolemy rule · Exchange relation ·
Matching · Riemann surface · Disc · Triangulation

1 Introduction

Frieze patterns were introduced by Conway and Coxeter in [8, 9]. Such a pattern
consists of a finite number of rows arranged in an array so that the numbers in the kth
row sit between the numbers in the rows on either side. The first and last rows consist

of ones and for every diamond of the form
b

a d

c

the relation ad − bc = 1 must be
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Fig. 1 A Conway-Coxeter
frieze pattern of order 6

1 1 1 1 1 1 1
1 4 1 2 2 2

· · · 1 3 3 1 3 3 1 · · ·
2 2 2 1 4 1

1 1 1 1 1 1 1

satisfied. Coxeter and Conway associated a frieze pattern of order N (i.e. with N − 1
rows) to each triangulation of a regular polygon with N sides and showed that every
frieze pattern arises in this way. For an example see Figure 1.

In [5] and [16], the authors consider frieze patterns arising from Fomin-Zelevinsky
cluster algebras of type AN [11, 12]. Motivated by the description [10] of cluster
algebras of type DN in terms of (tagged) triangulations of a disc S� with a single
puncture and N marked points on the boundary we associate a (type D) frieze pattern
to every such triangulation. Note that the type DN case of [10] has been described in
detail by Schiffler [18] in his study of the corresponding cluster category.

Each number in our frieze pattern is the cardinality of a set of matchings of a
certain kind between vertices of the triangulation and triangles in it, so our result can
be regarded as a type D version of a result of [7] (see [16]) giving the numbers in a
Conway-Coxeter frieze pattern in terms of numbers of perfect matchings for graphs
associated to the corresponding triangulation of an unpunctured disc.

We show further that, in the cases where the triangulation has a particularly nice
form (corresponding to an orientation of the Dynkin diagram of type DN ), the num-
bers in our frieze pattern can be interpreted as specialisations of cluster variables of
the cluster algebra of type DN , c.f. similar results in type AN obtained by Propp [16]
(for arbitrary triangulations). We note that this implies that in these cases our frieze
patterns coincide with the frieze patterns of type DN described by P. Caldero in [4]
based on [5], which form part of the motivation for this article. We remark that such
frieze patterns were motivated by the corresponding cluster category (introduced for
type A in [6] and in general in [2]). In particular, the arrangement of the entries in the
pattern corresponds to the Auslander-Reiten quiver of the cluster category. The frieze
patterns we consider here are motivated in a similar way.

We remark that in independent work Musiker [15] has recently shown how to
use perfect matchings to obtain explicit expressions for cluster variables in cluster
algebras of type A, B , C or D, in terms of an initial bipartite seed. Our work can be
seen as complementary to this, since, while Musiker’s approach works at the level of
the cluster variables themselves, rather than their specialisations, it requires a specific
choice of initial seed (corresponding to a particular tagged triangulation in the set-up
here, up to symmetry).

We now go into more detail. Arcs in triangulations of S� can be indexed by or-
dered pairs i, j of (possibly equal) boundary vertices i, j together with unordered
pairs i,0 consisting of a vertex on the boundary together with the puncture, with the
proviso that the pairs i, i + 1 (where i + 1 is interpreted as 1 if i = N ) are not al-
lowed. We denote the arcs by Dij and Di0 respectively. Let mij and mi0 be positive
integers associated to such arcs. We define a frieze pattern of type DN to be an array
of numbers of the form in Figure 2 if N is even or of the form in Figure 3 if N is
odd. The entries in the top row are all taken to be 1. In the second row, the entries
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1 · · · 1 1
m13 · · · mN2 m13

m14 · · · mN3 m14 · · ·
· · · . . .

. . .
. . .

m1N mN,N−1 m1N

m11 · · · mN0 m11
m10 · · · mNN m10

Fig. 2 A frieze pattern of type DN , N even

1 · · · 1 1
m13 · · · mN2 m13

m14 · · · mN3 m14 · · ·
· · · . . .

. . .
. . .

m1N mN,N−1 m1N

m11 · · · mNN m10
m10 · · · mN0 m11

Fig. 3 A frieze pattern of type DN , N odd

are of the form mi,i+2, corresponding to arcs connecting the vertex i with the vertex
i + 2 (modulo N ), arranged between the 1’s of the top row. The third row gives the
integers mi,i+3 associated to arcs from i to i + 3 (modulo N ), such that mi,i+3 lies
below the entries mi,i+2 and mi+1,i+3. The lowest two rows give the mi,i and mi,0,
with the uppermost of the two rows giving the entries m1,1,m2,0,m3,3 and so on, and
the lowest row giving the entries m1,0,m2,2,m3,0, and so on. Note that in the case
where N is odd, successive occurrences of the pair mi0, mii above each other in the
lowest two rows will be flipped (see Figure 4).

The following relations must be satisfied for all boundary vertices i, j :

mij · mi+1,j+1 = mi+1,j · mi,j+1 + 1, provided j �= i or i + 1; (1.1)

mi,i−1 · mi+1,i = mi+1,i−1 · mii · mi0 + 1; (1.2)

mii · mi+1,0 = mi+1,i + 1; (1.3)

mi0 · mi+1,i+1 = mi+1,i + 1. (1.4)

We refer to these relations as the frieze relations. For an example of a frieze pattern
of type D5 see Figure 4.

In Definition 2.14 we will explain how to associate numbers of matchings mij and
mi0 to a chosen triangulation of S� (with N marked points on the boundary).

Theorem 1.1 If the matching numbers mij are arranged as above, then they form a
frieze pattern of type DN .
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1 1 1 1 1 1
m13 m24 m35 m41 m52 m13

3 3 1 2 4 3
m14 m25 m31 m42 m53 m14

8 2 1 7 11 8
m15 m21 m32 m43 m52 m15

5 1 3 19 29 5
m11 m20 m33 m40 m55 m10

2 1 4 5 6 1
m10 m22 m30 m44 m50 m11

1 2 2 10 3 2

Fig. 4 A frieze pattern of type D5

Let A be a cluster algebra [11] of type DN . We consider the case in which all
coefficients are set to 1. Let xij be the cluster variable corresponding to the arc in S�
with end-points i and j [10, 18]. Fix a seed (x,B) of A, so that x is a cluster and B

is a skew-symmetric matrix. Let Q be the quiver associated to B . Let uij denote the
integer obtained from xij when the elements of x are all specialised to 1.

Theorem 1.2 Suppose that the quiver Q of the seed (x,B) is an orientation of the
Dynkin diagram of type DN . Let Dij be an arc in S�. Then mij = uij .

In Section 2 we introduce the necessary notation and definitions, describing the
matching numbers referred to above in detail. In Section 3 we give an example, and in
Section 4 we recall the properties of the numbers in Conway-Coxeter frieze patterns
that we need. In Section 5, we prove Theorem 1.1. In Section 6, we show how to
associate frieze patterns to the more general tagged triangulations, and in Section 7
we prove Theorem 1.2 and make two conjectures. In an appendix to this article, Hugh
Thomas proves one of these conjectures and a corrected version of the second.

2 Notations and definitions

We consider “triangulations” of bounded discs with a number of marked points on
the boundary and up to one marked point in the interior (a puncture). Such a disc
is a special case of a bordered surface with marked points as in recent work [10]
of Fomin, Shapiro and Thurston - they consider surfaces with an arbitrary number
of boundary components and punctures. We use the following notation: S denotes a
bounded disc with N marked points (or boundary vertices) on the boundary, N ≥ 3.
We add a subscript � if the disc has a puncture. We will usually label the points on the
boundary clockwise around the boundary with 1,2, . . . ,N and denote the puncture
by 0.

For any such disc let Bij denote the boundary arc from the vertex i up to the vertex
j , going clockwise. So if j = i +1, Bi,i+1 denotes the boundary component from i to
i + 1 including the two marked points. (Marked points are always taken modN ). If
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Fig. 5 The three types of
triangles

the disc has no puncture, we assume i �= j . If it has a puncture then i = j is allowed:
Bii denotes the whole boundary, starting and ending at i.

Definition 2.1 An arc D of a disc is a curve whose endpoints are marked points of
the disc and which does not intersect itself in the interior of the disc. Furthermore,
we require that the interior of the arc is disjoint from the boundary of the disc and
that it does not cut out an unpunctured monogon or digon. We consider arcs only up
to isotopy.

We note that, in an unpunctured disc, given i, j ∈ {1, . . . ,N} with j /∈ {i −1, i, i +
1}, there is a unique arc Dij = Dji (up to isotopy) with endpoints i, j . In a punctured
disc, given i ∈ {1, . . . ,N}, there are unique arcs Di0 (with endpoints i and 0), Dii

(with both endpoints i) and Di,i−1 (with endpoints i −1 and i). For i, j ∈ {1, . . . ,N}
satisfying j /∈ {i −1, i, i +1}, there are exactly two arcs, up to isotopy, with endpoints
i and j : the arc Dij which winds partly around 0, going clockwise from i to j , and
the arc Dji which goes clockwise from j to i, i.e. anticlockwise from i to j . Note
that for such i, j we have Dij = Dji if and only if the disc has no puncture. Note also
that by definition, a boundary arc Bi,i+1 is not considered to be an arc.

Using the arcs, the discs can be triangulated:

Definition 2.2 A triangulation T of a disc S (or S�) is a maximal collection T of
pairwise non-intersecting arcs of S (of S�).

By this we mean that we choose the representatives from the isotopy classes of
arcs in such a way as to minimize intersections (and only choose one representative
from any given isotopy class). It should be noted that arcs are allowed to intersect at
the endpoints, i.e. arcs can meet at marked points.

The arcs of the triangulation divide the disc into a collection of disjoint triangles.
We will often call them the triangles of T . There are three types of triangles appear-
ing, as shown in Figure 5. If the disc has no puncture, the only triangles appearing
have three vertices and three arcs as sides. If the disc has a puncture, there are two
more types of triangles, one with sides Dij , Dji and Dii (i, j �= 0) and one with the
corresponding sides obtained by setting j = 0. The latter is called a self-folded trian-
gle. These three types correspond to the triangles of label A1, A2 and A4 of Burman,
cf. [3] and are called ideal triangles in [10] - our notion of triangulation is thus an
ideal triangulation in [10].



354 J Algebr Comb (2009) 30: 349–379

The number of arcs in a triangulation is an invariant of the disc. It is clear that
any triangulation of S has N − 3 arcs and N − 2 triangles whereas triangulations of
punctured discs S� have N arcs and N triangles.

We often need to refer to a subset Vkl of the vertices of the disc:

Definition 2.3 For 1 ≤ k, l ≤ N we write Vkl := V (Bk,l) to denote the vertices
of the boundary arc Bk,l . In other words, we are referring to the vertices from k

to l, going clockwise. In case k > l, the set Vkl consists of the vertices k, k +
1, . . . ,N,1,2, . . . , l.

We will also need to consider truncations (Sij )� and Sij of the punctured disc S�,
defined as follows:

Definition 2.4 Let j �= i + 1. Together with Dij , the boundary arc Bji forms a
(smaller) punctured disc which we denote by (Sij )�. Its vertices are Vj,i . In par-
ticular, j is the clockwise neighbour of i in (Sij )�.

On the other hand, Dij and Bij form an unpunctured disc which we denote by Sij .
Its vertices are Vi,j , where i is the clockwise neighbour of j in Sij .

Note that for Dij we choose a representative of its isotopy class of arcs in a way
as to minimize intersections with the arcs of T .

In Sij and (Sij )�, some of the triangles of T may be cut open into several different
regions. If Dij is not an arc of the triangulation, then there are triangles of T which
are crossed by Dij . If Sij contains two connected components of such a triangle we
say that Dij splits the triangle.

Remark 2.5 If Dij is an arc of the triangulation, it does not cut across any triangles.
Hence no split triangles appear and the arcs of T induce triangulations of (Sij )� and
of Sij .

Definition 2.6 Let S� be a punctured disc with triangulation T .
We denote by T |Sij

the subdivision of Sij into triangles and regions obtained from
restricting the triangulation T to Sij .
In the same way, T |(Sij )� denotes the subdivision of (Sij )� into triangles and regions
obtained from restricting T to (Sij )�.

Figure 6 presents two examples, one where no triangles are split and one where
Dij splits triangles. Note that by the observations above, T |Sij

and T |(Sij )� are trian-
gulations of the corresponding discs if Dij ∈ T .

Remark 2.7 Consider the arc Dij (where j �= i + 1) in a punctured disc S� with
triangulation T . If there is a k in Vj,i such that T contains the central arc Dk0, then
T |Sij

does not contain any pair of split triangles.

Given a triangulation of any disc (punctured or unpunctured) we are interested in
the ways to allocate triangles to a subset I of the vertices. That is we are interested
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Fig. 6 Restricted triangulations through truncation by the arc Dij

in matchings between a subset of the vertices and a subset of the triangles. In the
case of a truncated version of a disc, we want to allocate triangles and regions of the
truncated triangulation to vertices.

Definition 2.8 Let S and S� be discs with vertices {1,2, . . . ,N}, S� with puncture
0. Fix a triangulation T of the disc and let I be a subset of the vertices {1, . . . ,N} of
cardinality r .

(i) A matching (for S) between I and T is a way to allocate to each vertex i ∈ I a
triangle of T incident with i in such a way that no triangle of T is allocated to more
than one vertex.

(ii) A matching (for S�) between I ∪ {0} and T is a way to allocate r +1 triangles
of T to the vertices of I and the puncture in the same way as above.

(iii) Given an arc Dij in S� let Sij be the truncated disc as in Definition 2.4 and
let I ⊂ Vi,j be a subset of the vertices between i and j . Then a matching (for Sij )
between I and T |Sij

is a way to allocate r = |I | triangles or regions of T |Sij
to the

vertices of I as above. If a triangle is split the two regions appearing because of this
are allowed to be allocated to different vertices.



356 J Algebr Comb (2009) 30: 349–379

Fig. 7 Type (i), i = 8

Fig. 8 Type (ii), i = 8

Now if T is a triangulation of a disc (with or without puncture), we want to refer
to the set of all matchings between a subset of the vertices of the disc and the triangles
of T :

Definition 2.9 Let T be a triangulation of a disc and I be a subset of the ver-
tices {1, . . . ,N} or of {1, . . . ,N} ∪ {0} in case the disc has a puncture. Then we set
M(I, T ) to be the set of all matchings between I and T .

Remark 2.10 Let S� be a punctured disc with N marked points on the boundary and
a fixed triangulation T , and let i ∈ {1,2, . . . ,N}. Then we distinguish four cases.
They are illustrated on the left hand sides of Figures 7, 8, 9 and 10:

(i) T contains at least two central arcs and Di0 /∈ T ;
(ii) T contains at least two central arcs and Di0 ∈ T ;
(iii) There is exactly one central arc Dk0 in the triangulation, i �= k;
(iv) The only central arc of T is Di0.
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Fig. 9 Type (iii), i = 8

Fig. 10 Type (iv), i = 8

We want to associate certain unpunctured discs P(i) and Q(i) to the vertex i, in a
similar way as we use an arc Dij to define the truncated discs Sij and (Sij )� obtained
from S�. Here we use one or two central arcs to cut open S�.

Definition 2.11 (i) Let i be a marked point of S� and j, k boundary vertices with
i ∈ Vkj such that Dj0,Dk0 ∈ T and such that there is no l ∈ Vkj other than k, j with
Dl0 ∈ T . Then we let P(i) be the unpunctured disc with boundary Bkj ∪ Dj0 ∪ Dk0.
On the other hand we let Q(i) be the unpunctured disc with boundary Bjk ∪ Dk0 ∪
Dj0. Figure 7 illustrates this.

(ii) Let i be a boundary vertex with Di0 ∈ T and let j be the nearest clock-
wise neighbour of i with Dj0 ∈ T . Then we let P(i) be the unpunctured disc
with boundary Bij ∪ Dj0 ∪ Di0 and Q(i) be the unpunctured disc with boundary
Bji ∪ Di0 ∪ Dj0. This is illustrated in Figure 8.

(iii) If the only central arc of T is Dk0 then we define P(i) to be the unpunctured
disc obtained by cutting up the disc at k, with boundary Bkk ∪ Dk0 ∪ Dk0. We obtain
an additional marked point on the boundary. We denote the anti-clockwise neighbour
of 0 by k and the clockwise neighbour of 0 by k′. An example is presented in Figure 9.

(iv) If the only central arc of T is Di0 then we define P(i) to be the unpunctured
disc obtained by cutting up the disc at i, with boundary Bii ∪ Di0 ∪ Di0. As before,
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we obtain an additional marked point on the boundary. We denote the anti-clockwise
neighbour of 0 by i and the clockwise neighbour of 0 by i′. An example is presented
in Figure 10.

In other words, in the first two cases we cut the disc S� along two central arcs and
Q(i) is the complement to P(i). In the latter two cases we unfold the disc along the
only central arc. In particular, Q(i) is not defined in these cases.

Remark 2.12 The vertex i and the puncture 0 are neighbours in P(i) if and only if
the arc Di0 is in the triangulation.

Definition 2.13 For P(i) and Q(i) as defined above, we let T |P(i) and T |Q(i) be
the triangulations of P(i) and Q(i) obtained from T by only considering the trian-
gles in P(i) and in Q(i) respectively. Then T |P(i) and T |Q(i) are triangulations of
unpunctured discs.

With the notation introduced in Definition 2.9 we can now associate numbers mij

to a disc with a fixed triangulation.

Definition 2.14 Let S� be a punctured disc with vertices {1,2, . . . ,N} and puncture
0. Fix a triangulation T of S�. Let i, j ∈ {1, . . . ,N}, j �= i, i + 1.

(i) Let Mij := M(Vi+1,j−1, T |Sij
), i.e. the set of matchings between Vi+1,j−1 and

T |Sij
.

(ii) Let Mi0 := M(V (P (i)) \ {i,0}, T |P(i)).
(iii) Let Mii := M(Vi+1,i−1 ∪ {0}, T ).

We set mi,i+1 = 1, mij = |Mij |, mi0 = |Mi0| and mii = |Mii |.

3 An Example

We consider an example of type D8. We take the triangulation T of the punctured
disc with 8 marked points on its boundary displayed in Figure 11. Each triangle has
been labelled with a letter for reference. The corresponding frieze pattern is shown in
Figure 12. Each entry in the frieze pattern (apart from the first row) is labelled by its
corresponding diagonal.

For example, the entry under D27 is 23, since there are 23 matchings between
T |S27 and the vertices V3,6 = {3,4,5,6}. Note that the triangles D and E are split by
the arc D27 and we include in the count matchings in which both resulting regions
are allocated to vertices. Thus, for example, the matching 3E 4B 5A 6E is included.

The entry under D52 is 5, since there are 5 matchings between T |S52 and the ver-
tices V5,2 = {6,7,8,1}. Note that in this case the arc S52 does not split any triangles.
The matchings are: 6A 7E 8G 1H , 6D 7E 8G 1H , 6A 7F 8G 1H , 6D 7F 8G 1H ,
and 6E 7F 8G 1H .

The entry under D22 is 12, since there are 12 matchings between T and the ver-
tices V31 = {3,4,5,6,7,8,1} and 0. In this case each triangle can only be allocated
to a single vertex, even triangle F which is split by the arc D22. The 12 matchings
are shown in Figure 13.



J Algebr Comb (2009) 30: 349–379 359

Fig. 11 A triangulation of a
punctured octagon

1 1 1 1 1 1 1 1 1
D13 D24 D35 D46 D57 D68 D71 D82 D13

3 4 2 2 3 3 2 1 3
D14 D25 D36 D47 D58 D61 D72 D83 D14
11 7 3 5 8 5 1 2 11

D15 D26 D37 D48 D51 D62 D73 D84 D15
19 10 7 13 13 2 1 7 19

D16 D27 D38 D41 D52 D63 D74 D85 D16
27 23 18 21 5 1 3 12 27

D17 D28 D31 D42 D53 D64 D75 D86 D17
62 59 29 8 2 2 5 17 62

D18 D21 D32 D43 D54 D65 D76 D87 D18
159 95 11 3 3 3 7 39 159

D11 D20 D33 D40 D55 D60 D77 D80 D11
32 3 4 1 4 1 8 5 32

D10 D22 D30 D44 D50 D66 D70 D88 D10
8 12 1 4 1 4 2 20 8

Fig. 12 A frieze pattern of type D8

4 The unpunctured case

In this section we recall the frieze patterns of Conway and Coxeter and describe
various interpretations of their entries and properties that they satisfy. We will phrase
these results in terms of our set-up above.

In [8], [9], Conway and Coxeter studied frieze patterns of positive numbers. These
are patterns of positive integers arranged in a finite number of rows where the top and
bottom rows consist of 1’s. The entries in the second row appear between the entries
in the first row, the entries in the third row appear between the entries in the second

row, and so on. Also, for every diamond of the form
b

a d

c

the relation ad − bc = 1

must be satisfied. The order N of the pattern is one more than the number of rows.
For an example see Figure 1.

Conway and Coxeter proved in [8, 9] that the second row of a frieze pattern of or-
der n is equal to the sequence of numbers of triangles at the vertices of a triangulation
of a disc with N marked points. Start with a vertex i of S and label it 0. Whenever i
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Fig. 13 Matchings for the arc
D22

3C 4B 5A 6E 7F 8G 1H 0D,
3D 4B 5A 6E 7F 8G 1H 0C,
3D 4C 5A 6E 7F 8G 1H 0B,
3D 4C 5B 6E 7F 8G 1H 0A,
3E 4B 5A 6D 7F 8G 1H 0C,
3E 4C 5A 6D 7F 8G 1H 0B,
3E 4C 5B 6A 7F 8G 1H 0D,
3E 4C 5B 6D 7F 8G 1H 0A,
3F 4B 5A 6D 7E 8G 1H 0C,
3F 4C 5A 6D 7E 8G 1H 0B,
3F 4C 5B 6A 7E 8G 1H 0D,
3F 4C 5B 6D 7E 8G 1H 0A.

is connected to another vertex j by an edge (including boundary edges) of T , label
j by 1. Furthermore, if 
 is a triangle with exactly two vertices which have been
labelled already, label the third vertex with the sum of the other two labels. Iterating
this procedure, we obtain labels for all vertices of S. The labels clearly depend on i

and the label obtained at j (for j �= i) is denoted by (i, j).

Remark 4.1 Note that it is clear from the definition that (i, i + 1) = 1 for all i and
that (i, j) = 1 whenever i and j are the two ends of an arc of T .

The frieze pattern corresponding to T can then be described by displaying the
numbers (i, j) in the following way:

(1,2) (2,3) · · · · · · (N − 1,N)

(1,3) · · · · · · (N − 2,N)

. . . . .
.

(1,N − 1) (2,N)

(1,N)

This fundamental region is then repeated upside down to the right and left, then
the right way up on each side of that, and so on. Broline, Crowe and Isaacs have given
the following interpretation of the numbers (i, j).

Theorem 4.2 [1, Theorem 1] Let S be a disc with N marked points on the boundary
with triangulation T . Let i, j be distinct marked points. Then:
(a) We have that (i, j) is equal to |M(Vi+1,j−1, T )|, i.e. the number of matchings
between T and i + 1, . . . , j − 1.
(b) We have that (i, j) = |M(Vj+1,i−1, T )|.
In particular, (i, j) = (j, i).

Definition 4.3 Let i, j be a distinct pair of marked points on the boundary of S, and
let T be a triangulation of S. Let nij (= nij (T )) = |M({1, . . . ,N} \ {i, j}, T )|, i.e.
the number of matchings between {1,2, . . . ,N} \ {i, j} and T .
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Carroll and Price have shown that the numbers (i, j) coincide with the nij defined
above. This is discussed in [16].

Theorem 4.4 [7] With the notation above, (i, j) = nij for any pair of distinct vertices
i, j .

We note the following corollary as we shall use it a lot later:

Corollary 4.5 With the notation above,

nij = |M(Vi+1,j−1, T )| = |M(Vj+1,i−1, T )|,
for any pair of distinct vertices i, j .

Propp reports that one of the main steps in the proof of Carroll and Price is the
following, which is a direct consequence of the Condensation Lemma of Kuo [14,
Theorem 2.5].

Proposition 4.6 Let i, j, k, l be four boundary vertices of S in clockwise order
around the boundary of S. Then:

niknjl = nijnkl + nlinjk.

Finally, we note that the numbers (i, j) can be interpreted as specialisations of
cluster variables by work of Fomin and Zelevinsky [12, 12.2]. Let A be a cluster
algebra of type AN−3 with trivial coefficients. Then the cluster variables of A are
in bijection with the set consisting of all of the diagonals of S (using also [13]). For
distinct vertices i, j , let xij be the cluster variable corresponding to the diagonal Dij

of S. By [11, 3.1], xij is a Laurent polynomial in the cluster variables corresponding
to the diagonals of T .

The following result is proved in [16, §3] (for the nij ), but we include a proof for
the convenience of the reader. We also note that a connection between frieze patterns
and cluster algebras was first explicitly given in [5].

Theorem 4.7 Let i, j be distinct vertices on the boundary of S. Then (i, j) is equal
to the number uij obtained from xij by specialising each of the cluster variables
corresponding to the arcs of T to 1.

Proof This follows from [12] together with Theorem 4.4 and Proposition 4.6, which
show that the (i, j) and the uij both satisfy the relations of Proposition 4.6. Since
(i, j) = 1 is equal to the specialisation of xij whenever Dij is an arc in T , the equality
for arbitrary diagonals follows from iterated application of these relations. �

5 Construction of frieze patterns of type DN

Our aim in this section is to prove the main result, that the numbers mii , mij and mi0
form a frieze pattern of type D. In order to do that we have to prove that the frieze
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relations (see Section 1) hold. We now work with the disc S� with puncture 0 and
N marked points on the boundary labelled {1,2, . . . ,N}. We first need the following
result.

Lemma 5.1 Let T be a triangulation of S�, and let i, j ∈ {1, . . . ,N} with j �= i + 1.
(1) If Dij ∈ T then mij = 1.
(2) If Di0 ∈ T then mi0 = 1.

Proof (1) Consider the truncated disc Sij with boundary Bij and Dij . Since Dij ∈ T ,
none of the triangles of T are split by Dij and T |Sij is a triangulation of Sij . Suppose
first that i �= j . Then mij is the number of matchings between {i + 1, . . . , j − 1} and
T |Sij

. Such a matching is a matching between T |Sij
and all of the vertices of the

unpunctured disc Sij except i and j which are neighbours on the boundary of Sij . By
Remark 4.1, mij = 1.

Suppose instead that i = j . Then mii is the number of matchings between
{1,2, . . . ,N} \ {i} ∪ {0} and T . Such a matching is a matching between T |Sii

and
all of the vertices of the unpunctured disc P(i) except i and i′ which are joined by
the arc Dii′ in P(i) induced by the arc Dii of T . By Remark 4.1, mii = 1.

(2) If Di0 ∈ T then i and 0 are neighbours in P(i) and the statement follows with
the same reasoning. �

Remark 5.2 We recall that in a triangulation of an unpunctured disc with N marked
points on the boundary, there are N − 2 triangles. It follows that there are no match-
ings between a triangulation of the disc and a subset of the boundary vertices of
cardinality greater than N − 2.

Definition 5.3 Let M be a matching between a subset I of {1, . . . ,N} ∪ {0} and a
triangulation T of S�. Let P be a subset of S� consisting of a union of triangles of T .
We denote by M|P the restriction of M to P : this is the matching between T |P and
I ∩ P obtained by allocating each vertex its corresponding triangle in M whenever
that triangle is contained in P .

In order to do some computations of numbers of matchings, we need the following
simple observation:

Lemma 5.4 Let T be a triangulation of S�, and let S� = P ∪Q be a decomposition
of S� into two subsets with common boundary given by arcs of T . Given a subset I of
{1,2, . . . ,N} ∪ {0}, let J denote the subset of I consisting of vertices on the common
boundary between P and Q. Then the number of matchings between T and I is given
by

|M(I, T )| =
∑

J ′,J ′′ :J=J ′�J ′′
nJ ′,J ′′ .

Here nJ ′,J ′′ is the number of matchings between T and I in which all vertices of J ′
are allocated triangles in P and all vertices of J ′′ are allocated triangles in Q. It is
given by the product of the number of matchings between T |P and P ∩ (I \ J ′′) and
the number of matchings between T |Q and Q ∩ (I \ J ′).
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Fig. 14 Proof of Lemma 5.5, Cases (I) and (II)

Proof Let M be a matching between I and T . Given a pair MP ,MQ of matchings
for T |P and T |Q which are compatible in the sense that any vertex of J is allocated
precisely one triangle in either T |P or T |Q (but not both), we can put them together to
obtain a matching M between I and T . This gives us a bijection between matchings
M between I and T and compatible pairs M ′,M ′′ of matchings for T |P and T |Q.
The result follows from dividing up such pairs according to the allocation of the
vertices of J to triangles in P or in Q. �

Lemma 5.5 Let T be a triangulation of S�. Let d0 denote the number of triangles
of T incident with the puncture, 0, and let i denote any boundary vertex of S�. Then
we have d0mi0 = mii .

Proof If there are at least two arcs incident with 0 in T , let j be the first boundary
vertex strictly clockwise from i such that Dj0 ∈ T , and let k be the first boundary
vertex anticlockwise from i (possibly equal to i) such that Dk0 ∈ T . Since there are
no arcs of the form Dl0 ∈ T for l ∈ Vk+1,j−1, we have Dkj ∈ T . If there is only one
arc Dl0 incident with 0 in T then we take j = k = l. In this case Djj ∈ T .

Let P(i) and Q(i) be the unpunctured discs associated to i in Definition 2.11
(where defined). For a, b any distinct pair of boundary vertices of P(i), let pab denote
the number of matchings between T |P(i) and all of the boundary vertices of P(i)

except a and b (thus pab = nab(T |P(i)); see Definition 4.3, noting that P(i) is an
unpunctured disc). Let qab denote the corresponding number for a distinct pair of
boundary vertices of Q(i).

We consider four cases (I) - (IV), following the cases (i)-(iv) of Definition 2.11.
Case (I): We assume first that i, j and k are all distinct. See Figure 14(a). If, in
a matching in Mii , both j and k are allocated triangles in P(i) then 0 must be
allocated a triangle in Q(i) by Remark 5.2 applied to P(i). By restriction of such a
matching to P(i) we obtain a matching for T |P(i) in which i and 0 are not allocated
triangles and by restriction to Q(i) we obtain a matching for T |Q(i) in which j and
k are not allocated triangles. Thus there are pi0qjk matchings in Mii in which j and
k are both allocated triangles in P(i). Using the fact that pi0 = mi0 (by definition)
and Corollary 4.5 (which implies that qjk is the number of triangles at 0 in Q(i), i.e.,
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Fig. 15 Proof of Lemma 5.5,
Case (III)

qjk = d0 − 1), we see that this is equal to mi0(d0 − 1). If j is allocated a triangle
in Q(i) and k is allocated a triangle in P(i) then 0 is allocated a triangle in P(i) by
Remark 5.2 applied to Q(i), and we obtain pij q0k = pij · 1 = pij matchings of this
type by Remark 4.1. Similarly, there are pik matchings in Mii in which j is allocated
a triangle in P(i) and k is allocated a triangle in Q(i).

There are no matchings in Mii in which both j and k are allocated trian-
gles in Q(i), by Remark 5.2 applied to Q(i), so we have covered all cases. By
Lemma 5.4 we have that mii = |Mii | = (d0 −1)mi0 +pij +pik . By Proposition 4.6,
pi0pjk = pijp0k +pikp0j . Since Dkj ∈ T , pjk = 1 by Remark 4.1, and we also have
by Remark 4.1 that p0j = p0k = 1, so pij + pik = pi0 = mi0. We obtain

mii = (d0 − 1)mi0 + mi0 = d0mi0

as required.
Case (II): We assume next that i = k. See Figure 14. If, in a matching in Mii , j

is allocated a triangle in P(i), then 0 must be allocated a triangle in Q(i) by Re-
mark 5.2 applied to P(i), and we see that there are pi0qij matchings of this type.
By Corollary 4.5 this is equal to mi0(d0 − 1) = d0 − 1, noting that mi0 = 1 by
Lemma 5.1. If j is allocated a triangle in Q(i), then 0 must be allocated a trian-
gle in P(i) by Remark 5.2 applied to Q(i). We obtain pij q0i = 1 · 1 = 1 matchings
of this type by Remark 4.1. By Lemma 5.4 we obtain a total number of matchings
mii = |Mii | = d0 − 1 + 1 = d0 = mi0d0 as required.
Case (III): We assume next that i �= j = k. In a matching in Mii , only one of j, j ′
is allocated a triangle. See Figure 15.

We see that mii is given by the sum of the number of matchings between T |P(i)

and Vi+1,i−1 ∪ {0} and the number of matchings between T |P(i) and Vi+1,i−1 ∪ {0}
with j replaced by j ′. There are pij matchings of the first kind and pij ′ matchings
of the second kind, making a total of pij + pij ′ . We have that pi0pjj ′ = pijp0j +
pij ′p0j ′ , by Proposition 4.6, so mi0 = pi0 = pij + pij ′ by Remark 4.1, noting that
0, j and 0, j ′ are adjacent on the boundary of P(i) and Dj ′j lies in T |P(i). We obtain
mii = mi0 = mi0d0 as required.
Case (IV) We finally assume that i = j = k, so that there is a unique arc incident
with 0 in T given by Di0. See Figure 16. We have that mii is given by the number
of matchings between Vi+1,i−1 ∪ {0} and T |P(i), so we obtain mii = pii′ = 1 by
Remark 4.1 since Di′i ∈ T |P(i). Hence mii = d0mi0 as required, since d0 = 1 and
mi0 = 1 by Lemma 5.1.

The proof of Lemma 5.5 is complete. �
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Fig. 16 Proof of Lemma 5.5,
Case (IV)

As an example, we recall the type D8-frieze pattern of Section 3: there, mii/mi0 =
4 (for all i), the number of triangles of T incident with 0.

In order to prove the frieze relations hold, we first need the following:

Lemma 5.6 Let T be a triangulation of S�. Let i, j be boundary vertices of S� with
j �= i + 1. Then the restriction T |Sij

can be extended to a triangulation of the entire
disc S with different marked points and the puncture removed.

Proof Let a1, a2, . . . , at be the vertices on the arc Bi,j (distinct from i and j ) in
order clockwise from i, which lie on arcs of T whose other end lies in Vj+1,i−1 ∪{0}
For each l, let bl,1, bl,2, . . . , bl,ul

be the end-points (other than al) of the arcs of T
incident with al whose other end lies in Vj+1,i−1 ∪ {0}.

The arc Di,a1 must lie in T if a1 �= i + 1, else the region on the i-side of the arc
Da1,bl,1 will not be a triangle, since the other end-point of any arc incident with any
of the vertices on the boundary arc Bi+1,a1−1 can only be a vertex on the boundary
arc Bi,a1 . Similarly, the arcs Dam,am+1 must all be in T if am+1 �= am + 1, as must
Dat ,j if j �= at + 1.

Remove the vertices Vj+1,i−1 ∪ {0} and introduce new vertices on the boundary
between j and i labelled

c1,1, c1,2, . . . , c1,u1 , c2,1, . . . , cl,ul
,

going anticlockwise from i to j . We identify cm,um with cm+1,1 for each m. We re-
place the part of each arc Dam,bl,m

below the arc Di,j with a new arc linking cl,m with
the intersection of Dam,bl,m

and Di,j , and add arcs Dc1,1,i and Dj,ct,ut
. See Figure 17

for an example. In this way we can complete T |Si,j
to a triangulation of the disc S,

with new marked points on the boundary and the puncture removed, as required. �

We first note the following consequence:

Lemma 5.7 Let T be a triangulation of S�. Let i, j be boundary vertices of S� with
j �= i, i + 1. Then the numbers mii , mij and mi0 as in Definition 2.14 are all positive.

Proof By Definition 2.14, the mi0 can be interpreted as entries in Conway-Coxeter
frieze patterns (using Theorem 4.4), so are positive. By Lemma 5.6 the same argu-
ment applies to the mij . Then the mii are positive by Lemma 5.5. �
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Fig. 17 Completing to a
triangulation of the unpunctured
disc

We can now prove that the frieze relations hold:

Proposition 5.8 Let T be a triangulation of S�. Let i, j be boundary vertices of S�
with j �= i, i + 1. Let the numbers mii , mij and mi0 be as in Definition 2.14. Then the
following hold:

(1) mij · mi+1,j+1 = mi+1,j · mi,j+1 + 1
(2) mi,i−1 · mi+1,i = mi+1,i−1 · mii · mi0 + 1
(3) mii · mi+1,0 = mi+1,i + 1
(4) mi0 · mi+1,i+1 = mi+1,i + 1

,

i.e. the frieze relations (1.1) to (1.4).

Proof We prove each relation in turn.
Proof of (1): By Lemma 5.6 we can complete T |Si,j+1 to a triangulation T ′ of the
disc S (with the puncture removed) and new marked points on the boundary. We see
that mi,j+1 is the number of matchings between T ′ and Vi+1,j−1. It is clear that mij ,
mi+1,j and mi,j+1 are the numbers of matchings between T ′ and Vi+1,j−1, Vi+2,j−1

and Vi+1,j respectively. Hence the frieze relation (1) holds by Proposition 4.6.
Proof of (2): We adopt the same notation for j and k as in the proof of Lemma 5.5.

Let M̃ii denote the set of matchings between I := {1,2, . . . ,N} \ {i} and T |Sii
.

Set m̃ii = |M̃ii |. It is straightforward to show (along the lines of the proof of (1))
that, for any boundary vertex i of S�,

mi,i−1mi+1,i = mi+1,i−1m̃ii + 1.
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Fig. 18 Proof of Proposition 5.8(2), Cases (I) and (II)

Hence for (2) it is enough to show that m̃ii = mi0mii . By Lemma 5.5, this is equiva-
lent to showing that m̃ii = d0m

2
i0.

If there is more than one arc incident with 0 in T , then we have a decomposition
of the disc S� into smaller discs P(i) and Q(i) (see Definition 2.11). We shall apply
Lemma 5.4 in these cases. Let pab and qab be as in the proof of Lemma 5.5. Again,
we distinguish four cases (I)-(IV) to follow the cases (i)-(iv) of Definition 2.11.
Proof of (2), Case (I): We assume first that i, j and k are distinct. See Figure 18(a).

(a) Suppose first that in a matching in M̃ii , j, k are both allocated triangles
in P(i). Then restricting the matching to P(i) we obtain a matching between
T |P(i) and Vi+1,j ∪ Vk,i−1. Since the arc Dii divides P(i) into two parts, there are
|M(Vi+1,j , T |P(i))| · |M(Vk,i−1, T |P(i))| of these. By Corollary 4.5, this is equal
to m2

i0. Restricting T to Q(i), no triangles are split by Dii . Therefore there are
|M(Vj+1,k−1, T |Q(i))| matchings of this type in M̃ii . By Corollary 4.5, this is equal
to |M({0}, T |Q(i))| = d0 − 1. We see that there are (d0 − 1)m2

i0 matchings in M̃ii in
which j and k are both allocated triangles in P(i).

(b) Arguing as above we see that there are |M(Vk+1,i−1, T |P(i))| · |M(Vi+1,j ,

T |P(i))| possible restrictions to P(i) of a matching in M̃ii in which j is allo-
cated a triangle in P(i) and k a triangle in Q(i). By Corollary 4.5 this is equal to
pkipi0 = pkimi0. Similarly we see that there is |M(Vj+1,k, T |Q(i))| = qj0 = 1 pos-
sible restriction to Q(i), the last equality using Remark 4.1. We get a total of pkimi0
matchings of this type in M̃ii .

(c) Arguing as in (b) we see that there are pjimi0 matchings in M̃ii in which j is
allocated a triangle in Q(i) and k a triangle in P(i).

(d) By Remark 5.2 for Q(i), j and k cannot both be allocated triangles in Q(i)

for any matching in M̃ii .
By Lemma 5.4 we see that m̃ii = (d0 − 1)m2

i0 + (pki + pij )pi0. But by Proposi-
tion 4.6, pi0 = pij + pki , so m̃ii = d0m

2
i0 as required.

Proof of (2), Case (II): We next assume that i = k �= j . See Figure 18(b).
(a) There are |M(Vi+1,j , T |P(i))| possible restrictions to P(i) of a matching in

M̃ii in which j is allocated a vertex in P(i). There are |M(Vj+1,i−1, T |Q(i))| pos-
sible restrictions to Q(i), giving a total of

|M(Vi+1,j , T |P(i))| · |M(Vj+1,i−1, T |Q(i))| = pi0|M({0}, T |Q(i))| = (d0 − 1)

by Corollary 4.5 and the fact that pi0 = mi0 = 1 (by Lemma 5.1).
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Fig. 19 Proof of
Proposition 5.8(2), Case (III)

Fig. 20 Proof of
Proposition 5.8(2), Case (IV)

(b) There are |M(Vi+1,j−1, T |P(i))| possible restrictions to P(i) of a matching
in M̃ii in which j is allocated a triangle in Q(i). There are |M(Vj,i−1, T |Q(i))|
possible restrictions to Q(i). By Corollary 4.5 the product of these is equal to pij qi0,
which is equal to 1 by Lemma 5.1.

By Lemma 5.4, we have m̃ii = d0 − 1 + 1 = d0. This equals m2
i0d0 by Lemma 5.1

so we are done.
Proof of (2), Case (III): We next assume that j = k �= i. See Figure 19.

A matching in M̃ii induces a matching of T |P(i) in which either j or j ′ is al-
located a triangle but not both. Since P(i) is split by Dii completely, there are
|M(Vj ′,i−1, T |P(i))| · |M(Vi+1,j−1, T |P(i))| matchings of the first kind. By Corol-
lary 4.5 this is equal to pi0pij . Similarly there are pij ′pi0 matchings of the second
kind.

We get a total of pi0(pij +pij ′) matchings in M̃ii . By Proposition 4.6 we see that
pi0 = pij + pij ′ , and we obtain m̃ii = p2

i0 = m2
i0 = d0m

2
i0 as required, since d0 = 1.

Proof of (2), Case (IV): Finally we consider the case where i = j = k. See Figure 20.
A matching in M̃ii induces a matching of T |P(i) in which all boundary vertices

except i and i′ are allocated a triangle. Since Di′i is an arc in T |P(i), we see by
Remark 4.1 that there is only one possible such matching. So m̃ii = 1 = d0m

2
i0, since

mi0 = 1 by Lemma 5.1.
Proof of (3): We note that by Lemma 5.5, it is sufficient to show that d0mi0mi+1,0 =
mi+1,i + 1. Here, we distinguish six cases, labelled (Ia), (Ib), (IIa), (IIb), (III), (IV)
where (Ia) and (Ib) correspond to (i) of Definition 2.11, etc.
Proof of (3), Case (Ia): We first assume that i, i + 1, j and k are all distinct. See
Figure 21(a).

(a) There are |M(Vi+2,j , T |P(i))| · |M(Vk,i−1, T |P(i))| possible restrictions to
P(i) of a matching in Mi+1,i in which both j and k are allocated triangles in P(i),
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Fig. 21 Proof of Proposition 5.8(3), Cases (Ia) and (Ib)

since Di+1,i splits P(i) completely. By Corollary 4.5 (and the definition of mi0 and
mi+1,0), this equals mi+1,0mi0. There are |M(Vj+1,k−1, T |Q(i))| possible restric-
tions to Q(i), which by Corollary 4.5 is equal to |M({0}, T |Q(i))| = d0 − 1. Hence
there are (d0 − 1)mi0mi+1,0 matchings in Mi+1,i in total in which both j and k are
allocated triangles in P(i).

(b) There are |M(Vi+2,j , T |P(i))| · |M(Vk+1,i−1, T |P(i))| possible restrictions to
P(i) of a matching in Mi+1,i in which j is allocated a triangle in P(i) and k is
allocated a triangle in Q(i). By Corollary 4.5 this is equal to pi+1,0pik = mi+1,0pik .
There are |M(Vj+1,k, T |Q(i))| possible restrictions to Q(i), which is equal to q0j by
Corollary 4.5 and thus equal to 1 by Remark 4.1. Thus we see that there are a total
of pikmi+1,0 matchings in Mi+1,i in which j is allocated a triangle in P(i) and k is
allocated a triangle in Q(i).

(c) Arguing in a similar way to (b) we see that there are pi+1,jmi0 matchings in
Mi+1,i in which j is allocated a triangle in Q(i) and k is allocated a triangle in P(i).

(d) We note that it is not possible for both j and k to be allocated triangles in Q(i)

in a matching in Mi+1,i , by Remark 5.2 applied to Q(i).
By Lemma 5.4 we see that

mi+1,i = (d0 − 1)mi0mi+1,0 + pikmi+1,0 + pi+1,jmi0.

By Proposition 4.6 we have that pi0pjk = pijp0k +pikp0j , so pi0 = pij +pik , noting
that Dkj is an arc in T |P(i), so pjk = 1. Hence

mi+1,i = (d0 − 1)mi0mi+1,0 + mi+1,0(pi0 − pij ) + mi0pi+1,j

= (d0 − 1)mi0mi+1,0 + mi+1,0(mi0 − pij ) + mi0pi+1,j

= (d0 − 1)mi0mi+1,0 + mi0mi+1,0 − mi+1,0pij + mi0pi+1,j

= (d0 − 1)mi0mi+1,0 + mi0mi+1,0 − 1

= d0mi0mi+1,0 − 1,

using the fact that

pi+1,0pij = pi+1,jpi0 + p0jpi,i+1

= pi0pi+1,j + 1,
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Fig. 22 Proof of Proposition 5.8(3), Cases (IIa) and (IIb)

from Proposition 4.6. Hence d0mi0mi+1,0 = mi+1,i + 1 as required.
Proof of (3), Case (Ib): We next assume that i, i+1 and k are distinct while i+1 = j .
See Figure 21(b).

(a) There are |M({0}∪Vk,i−1, T |P(i))| possible restrictions to P(i) of a matching
in Mi+1,i in which k is allocated a triangle in P(i). By Corollary 4.5 this is equal to
pi0 = mi0. There are |M(Vi+2,k−1, T |Q(i))| possible restrictions to Q(i), which by
Corollary 4.5 is equal to |M({0}, T |Q(i))| = d0 −1. We see that there are (d0 −1)mi0

matchings in Mi+1,i in which k is allocated a triangle in P(i).
(b) There are |M(Vk+1,i−1, T |P(i))| possible restrictions to P(i) of a matching in

Mi+1,i in which k is allocated a triangle in Q(i). By Corollary 4.5 this is equal to pki .
There are |M(Vi+2,k, T |Q(i))| possible restrictions to Q(i), which by Corollary 4.5
is equal to q0,i+1. This equals 1 by Remark 4.1. We see that there are pki matchings
in Mi+1,i in which k is allocated a triangle in Q(i).

By Lemma 5.4 we obtain mi+1,i = (d0 − 1)mi0 + pki . But by Proposition 4.6, we
have that pi0 = pki +1 (using the fact that Di+1,k is an arc in T |P(i) and Remark 4.1),
so we get that mi+1,i = d0mi0 − 1, so mi+1,i + 1 = d0mi0mi+1,0 as required, since
mi+1,0 = 1 by Lemma 5.1.
Proof of (3), Case (IIa): We next assume that i, i + 1 and j are distinct while i = k.
See Figure 22(a).

It follows from symmetry with Case (Ib) above that d0mi+1,0 = mi+1,i + 1, so
d0mi+1,0mi0 = mi+1,i + 1 as required, since mi0 = 1 by Lemma 5.1.
Proof of (3), Case (IIb): We next assume that i = k and i + 1 = j . See Figure 22(b).

A matching in Mi+1,i is determined by its restriction to Q(i). The number of
possible restrictions is |M(Vi+2,i−1, T |Q(i))| which is |M({0}, T |Q(i))| = d0 − 1 by
Corollary 4.5. So mi+1,i = d0 − 1. Since mi0 = mi+1,0 = 1 by Lemma 5.1 we obtain
mi+1,i + 1 = d0mi0mi+1,0 as required.
Proof of (3), Case (III): We next assume that i, i + 1 and j are distinct, with j = k.
See Figure 23.

There are |M(Vi+2,j , T |P(i))| · |M(Vj+1,i−1, T |P(i))| possible restrictions to
P(i) of a matching in Mi+1,i in which j gets allocated a triangle, since Di+1,i

splits P(i) completely. There are |M(Vi+2,j−1, T |P(i))| · |M(Vj ′,i−1, T |P(i))| pos-
sible restrictions to P(i) in which j ′ gets allocated a triangle. Thus the total num-
ber of matchings in Mi+1,i is the sum of these, which by Corollary 4.5 is equal to
pi+1,0pj ′i + pi+1,jp0i . By Proposition 4.6, pi0pjj ′ = pijp0j ′ + pij ′p0j , so pi0 =
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Fig. 23 Proof of
Proposition 5.8(3), Case (III)

Fig. 24 Proof of
Proposition 5.8(3), Case (IVa)

pij + pij ′ . We thus have that

mi+1,i = mi+1,0(pi0 − pij ) + mi0pi+1,j

= mi+1,0mi0 − mi+1,0pij + mi0pi+1,j

= mi+1,0mi0 − 1

= d0mi0mi+1,0 − 1,

as required. Here we use the fact that

pi+1,0pij = pi+1,jpi0 + p0jpi,i+1 = pi0pi+1,j + 1

from Corollary 4.5 and Remark 4.1, and the fact that d0 = 1.
Proof of (3), Case (IVa): We assume that i = j = k. See Figure 24.

Since a matching in Mi+1,i is determined its restriction to P(i), which is a match-
ing between T |P(i) and Vi+2,i−1 we have that mi+1,i = |M(Vi+2,i−1, T |P(i))| which
equals pi+1,i by Corollary 4.5. By Proposition 4.6, we have that

pi+1,0pi′i = pi+1,ip0i′ + pi′,i+1pi0,

so, since mi+1,0 = pi+1,0 (by definition of mi+1,0), mi+1,i = pi+1,i (by Corol-
lary 4.5), and pi′i = p0i′ = pi0 = 1 (using Remark 4.1), we obtain mi+1,0 = mi+1,i +
1, so d0mi0mi+1,0 = mi+1,i + 1, as required, since d0 = mi0 = 1.
Proof of (3), Case (IVb): We assume that i + 1 = j = k. The argument for this case
is analogous to that for Case (IVa).
Proof of (4): We note that mi0mi+1,i+1 = mi0d0mi+1,0 = miimi+1,0 by Lemma 5.5,
so (4) follows from (3).
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The proposition is proved. �

Theorem 5.9 Let T be a triangulation of S�. Then the numbers mij , mii and mi0 in
Definition 2.14 (arranged as in the introduction) form a frieze pattern of type DN .

Proof This follows immediately from Proposition 5.8 and Lemma 5.7. �

6 Tagged triangulations

In Section 5, we have established a way to obtain a frieze pattern of type DN from
a triangulation of a punctured disc with N boundary vertices using the matching
numbers. Here, we will show that there exist frieze patterns (of type DN ) which
cannot be obtained in the same way. We will describe another way to construct such
frieze patterns and will show how they can be associated to tagged triangulations (as
defined below).

Definition 6.1 We denote the frieze pattern of type DN associated in Theorem 5.9 to
the triangulation T of a punctured disc by F(T ).

The frieze patterns of the form F(T ) do not give all possible frieze patterns of
type DN , as we will see now.

Definition 6.2 Let P be a frieze pattern of type DN . We define ι(P ) to be the pattern
obtained from P by interchanging the last two rows.

Thus, if T is a triangulation of S�, ι(F (T )) is also a frieze pattern of type DN .
If a triangulation has only one triangle at the puncture (i.e. d0 = 1), then mii = mi0
for all i (by Lemma 5.5), so the process of interchanging the last two rows does not
give a new pattern, so ι(F (T )) = F(T ). Otherwise, ι(F (T )) cannot be obtained via
a triangulation of a punctured disc:

Remark 6.3 Let T be a triangulation of a punctured disc S�. If T has at least two
central arcs then there is no triangulation T ′ of S� such that ι(F (T )) = F(T ′).

Proof Let F(T ) be obtained from the matching numbers mij of T and let ι(F (T )) be
defined as above. Assume that d0 > 1. Then since mi0 = d0mii (Lemma 5.5) we have
mi0 < mii . Now if there exists a triangulation T ′ of S� with matching numbers m′

ij

giving rise to ι(F (T )), then by Lemma 5.5 (applied to T ′), the matching numbers of
T ′ must satisfy m′

i0 < m′
ii for all i. But by construction, m′

i0 = mii > mi0 = m′
ii . �

We thus have a way to construct a second frieze pattern for every triangulation
with d0 > 1. We now recall the definition of tagged arcs resp. of tagged edges as
introduced in [10, Definition 7.1] for triangulated surfaces and then in [18, Section
2.1] for punctured polygons respectively. The idea is to attach labels to arcs in the
punctured disc S�:
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Fig. 25 Three tagged triangulations

Definition 6.4 Let S� be a punctured disc with N boundary vertices with puncture
0. The set of tagged arcs of S� is the following:

{D1
ij , D1

i0, D−1
i0 | 1 ≤ i, j ≤ N, j �= i, i + 1}.

We will often just write Dij instead of D1
ij . When drawing tagged arcs, we indicate

the label −1 of an arc by a short crossing line on it. Arcs labelled 1 are drawn as the
usual arcs, cf. Figure 25.

Remark 6.5 Note that the tagged arcs are in bijection with the arcs in the sense of
Definition 2.1: The arcs D1

ij (j �= i, i + 1) correspond to the usual arcs Dij (j �=
i, i + 1), the central arcs D1

i0 to the usual central arcs Di0 and the arcs D−1
i0 of label

−1 correspond to the loops Dii .

Following [10, Definition 7.7] and [18, Section 2.4] we can now define tagged
triangulations of punctured discs.

Definition 6.6 A tagged triangulation T̃ of S� is a collection of tagged arcs of S�
obtained from a triangulation T of S� as follows:

(i) If d0 = 1, replace the pair Dii , Di0 by the tagged arcs D−1
i0 , D1

i0
and replace the arcs Dij by tagged arcs D1

ij .
(ii) If d0 = k ≥ 2, replace all central arcs Dij ,0 either by k tagged arcs D1

ij ,0

or by k tagged arcs D−1
ij ,0.

See Figure 25 for three tagged triangulations for a punctured disc with 5 boundary
vertices.

In other words: if T is a triangulation of S� containing a unique central arc Di0
and hence also the loop Dii (in particular, d0 = 1), then T gives rise to a tagged
triangulation T̃ whose only central tagged arcs are D1

i0 and D−1
i0 . If T has central

arcs Di1,0, . . . ,Dik,0, k ≥ 2 (so d0 = k ≥ 2), then T gives rise to two tagged arc
triangulations: one with k central tagged arcs D1

ij ,0 and one with k central tagged

arcs D−1
ij ,0.

Definition 6.7 Let T̃ be an arbitrary tagged triangulation of a punctured disc S�.
Then we associate a frieze pattern F(T̃ ) to it as follows:
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(a) If T̃ has only arcs labelled 1, let T be the triangulation of S� obtained via the
bijection of Remark 6.5. We then define F(T̃ ) as the frieze pattern of the matching
numbers of T , i.e. we set F(T̃ ) = F(T ).

(b) If T̃ has exactly one tagged arc labelled −1, say D−1
i0 and hence also D1

i0, then
let T be the triangulation of S� obtained through the bijection in Remark 6.5. As in
(a), we let F(T̃ ) be the frieze pattern F(T ) containing the matching numbers of T .

(c) Suppose that T̃ has at least two arcs labelled −1. Then every arc incident with
0 must be labelled −1. Let T ′ be the triangulation of S� consisting of all arcs Di0
such that D−1

i0 lies in T̃ and all arcs Dij (for i and j boundary vertices of S�) such
that D1

ij lies in T̃ . Then we set F(T̃ ) = ι(F (T ′)).

We also note the following:

Proposition 6.8 The entries in a frieze pattern M of type DN associated to a tagged
triangulation T̃ of a punctured disc are determined by the numbers of triangles inci-
dent with the marked points, together with the number of triangles incident with the
puncture.

Proof Suppose first that T is a triangulation (without tags). We remark that it follows
from the definition of F(T ) that an entry mi,i+2 in the first row (with 1 ≤ i ≤ N ) is
equal to the number of triangles incident with vertex i in T .

It is clear that, by induction on the rows, these entries determine the entries mij in
the pattern for all pairs of boundary vertices i, j with i �= j , via relation (1) in Propo-
sition 5.8. Relations (2) and (3) can be used to determine miimi0 for each boundary
vertex i. Using Lemma 5.5 we see that all entries in F(T ) are determined in cases
(a) and (b) of Definition 6.7. In case (c) we have F(T̃ ) = ι(F (T )) and it is clear that
the same approach works for such T̃ . �

7 Cluster algebras and frieze patterns of type DN

Let A be a cluster algebra [11] of type DN , as in the classification of cluster algebras
of finite type [12]. We consider the case in which all coefficients are set to 1. The
algebra A is a subring of the rational function field F := Q(x1, x2, . . . , xN). It is
determined by an initial seed, i.e. a pair consisting of a free generating set x0 of F over
Q and a skew-symmetric integer matrix B0 with rows and columns indexed by x0.
For each element of x0, a new seed can be produced from (x0,B0) by a combinatorial
process known as mutation. We obtain a collection of seeds via arbitrary iterative
mutation of (x0,B0).

The free generating sets arising are known as clusters and A is generated by their
union. The generators are known as cluster variables. We note that a skew-symmetric
matrix B appearing in a seed (x,B) can be encoded by a quiver, with vertices indexed
by x and bxy arrows from the vertex indexed by x to the vertex indexed by y whenever
bxy > 0.

By [10, Theorem 7.11] (see also [18]), the cluster variables of A are in bijection
with the set of all tagged arcs in S�, and the seeds of A are in bijection with the
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tagged triangulations of S�. The matrix B of a seed corresponding to a given tagged
triangulation is described in [10, Definition 9.6].

Combining the above bijection between cluster variables and tagged arcs with the
bijection in Remark 6.5, we obtain a bijection between cluster variables and the arcs
of S� in the sense of Definition 2.1. For Dij (respectively, Di0) an arc of S�, let xij

(respectively, xi0) denote the corresponding cluster variable.

Definition 7.1 Let T̃ be a tagged triangulation of S�, and let x be the corresponding
cluster of A. We know from (a special case of) [11, 3.1] that each cluster variable of
A can be expressed as a Laurent polynomial in the elements of x with integer coeffi-
cients. For any arc Dij (respectively, Di0) of S�, let uij (respectively, ui0) denote the
integer obtained from xij (respectively, xi0) when the elements of x are all specialised
to 1.

Following [4, 5], let Fc(T̃ ) be the array of integers uij written in the same posi-
tions as the mij in Figures 2 and 3.

Proposition 7.2 For any tagged triangulation T̃ , the array Fc(T̃ ) defined above is a
frieze pattern of type DN .

Proof (A similar proof in type A is given in [5, §5]). If Dij (respectively, Di0) lies
in T , then uij = 1 (respectively, ui0 = 1) is positive. The positivity of any entry
in Fc(T ) then follows by induction on the number of mutations needed from x to
obtain the corresponding cluster variable, using the exchange relations in A. The
frieze relations follow from some of the exchange relations in A, i.e. those arising
from [18, 5.1, 5.2] (using [5, 2.6(ii)]). The frieze relation (1.1) arises from case (1)
of [18, 5.1] in the case where a �= d in Schiffler’s notation. Relation (1.2) also arises
from case (1), in the case where a = d . Relations (1.3) and (1.4) arise from case (2)
of [18, 5.1]. (Note that the exchange relations for a cluster algebra of type DN are
also described in [12, 12.4]). �

Definition 7.3 A slice of a frieze pattern of type DN is defined as follows. We ini-
tially select an entry E1 in the top row. For 2 ≤ i ≤ N − 1, suppose that an entry
Ei−1 in the i − 1st row has already been chosen. We select an entry Ei in the ith
row which is either immediately down and to the right of Ei−1 or immediately down
and to the left of Ei−1. In addition, we select an entry EN in row N below the entry
immediately to the right of and below EN−2 or below the entry immediately to the
left of and below EN−2.

Definition 7.3 is motivated by the notion of a slice in representation theory
(see [17]).

Remark 7.4 Let (x,B) be a seed of A. Let � be the quiver associated to B and let
T̃ be a tagged triangulation. Then it can be checked using [10, Definition 9.6] that �

is an orientation of the Dynkin diagram of type DN if and only if the corresponding
subset of Fc(T̃ ) is a slice in the above sense.
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Lemma 7.5 The entries in a slice of a frieze pattern of type DN determine the entire
pattern.

Proof It is straightforward to see that the frieze relations can be used to determine all
of the entries in the pattern. �

Theorem 7.6 Suppose that the cluster x corresponds to a slice in the frieze pattern,
and let T̃ be the corresponding tagged triangulation. Then the frieze patterns F(T̃ )

and Fc(T̃ ) coincide.

Proof As stated in Definition 6.7, F(T̃ ) is a frieze pattern of type DN . By Proposi-
tion 7.2, Fc(T̃ ) is a frieze pattern of type DN . The entry in Fc(T̃ ) corresponding to
any tagged arc D of T is 1 by definition. If T̃ has at most one arc tagged with −1 then
the entry of F(T̃ ) corresponding to D is 1 by Lemma 5.1. If T̃ has more than one
arc tagged with −1 then this entry is 1 by the definition of F(T̃ ) (Definition 6.7(c)).

The fact that F(T̃ ) and Fc(T̃ ) coincide then follows from iterative application
of the relations of Proposition 5.8 and the frieze relations for Fc(T̃ ) (using Proposi-
tion 7.2). We use Lemma 7.5. �

Finally, motivated by the situation for classical frieze patterns, we make the fol-
lowing conjectures:

Conjecture 7.7 Let T̃ be any tagged triangulation of S�. Then F(T̃ ) and Fc(T̃ )

coincide.

Conjecture 7.8 Every frieze pattern of type DN is of the form F(T̃ ) for some tagged
triangulation T̃ of S�.

Acknowledgements The second author would like to thank Karin Baur and the ETH Zürich for their
kind hospitality during a visit in autumn 2007. We would also like to thank the referees for their helpful
comments on an earlier version of this paper.

Appendix A: Resolution of Conjectures 7.7 and 7.8 (by Hugh Thomas)

In this appendix, we prove Conjecture 7.7 of the paper. We show that Conjecture 7.8
is false as stated, but we prove a modified version of it.

Let A be the cluster algebra of type DN associated to the punctured disc S�, over
k an arbitrary ground field of characteristic zero. A is, by definition, contained in
some field of rational functions over k, so in particular, it is an integral domain. Write
K(A) for the field of fractions of A.

Write � for the set of (homotopy classes of) tagged arcs in S�. Contained in A are
the cluster variables xγ for γ ∈ �. The cluster variables, by definition, satisfy a col-
lection of relations, called the exchange relations. These include the frieze relations
(1.1)–(1.4) but there are more exchange relations than frieze relations. However, as
we shall see below, in an important sense, the frieze relations suffice to define the
cluster algebra.
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Let X� = {Xγ | γ ∈ �} be a set of indeterminates, and consider the polynomial
ring S = k[X�] in this set of variables. Choose a triangulation A of the punctured
disc which corresponds to a slice of the frieze pattern. Write SA for the localization
of S at the indeterminates Xα with α ∈ A.

Consider the map φ from SA to K(A) which sends Xγ to xγ . Let I be the kernel
of this map. Since the elements xγ satisfy the frieze relations, I contains an element
expressing each of the frieze relations. (For example, corresponding to the frieze
relation (1.1), we have elements of the form XijXi+1,j+1 − Xi+1,jXi,j+1 − 1 in I .)

Lemma A.1 I is generated, as an ideal in SA, by the frieze relations.

Proof Let F denote the ideal of SA generated by the frieze relations. We write XA for
the subset of X� corresponding to arcs of A, and similarly xA for the corresponding
cluster of cluster variables.

Let f ∈ I . Suppose that some indeterminate Xγ with γ �∈ A appears in f . By
Lemma 7.5, the frieze relations determine an expression for xγ as a Laurent polyno-
mial in terms of the elements xA, say xγ = pγ (xA). Thus, since gγ = Xγ − pγ (XA)

is an element of SA, we have that gγ ∈ F .
We can use this element to eliminate Xγ from f . Applying the same argument re-

peatedly, we find that f can be written as some S-linear combination of the elements
gγ for γ �∈ A, plus some remainder f̃ in which the only indeterminates that appear
are elements of XA. Since the elements gγ are in F and therefore in I , it follows
that f̃ must be in I , or in other words, φ(f̃ ) = 0. The elements xα are algebraically
independent for α ∈ A, so φ is injective on k[X±

A ]. Thus f̃ must be zero. It follows
that f ∈ F , and thus that F = I . �

From the above lemma, it follows that φ determines an injection from SA/F to
K(A). Note that A is contained in the image of φ. Thus φ allows us to identify A as
a subring of SA/F .

Let F be a frieze pattern of type D. Define ψ̂F : S → k which sends Xγ to the
corresponding entry of the frieze pattern. Since the entries of the frieze pattern are by
definition positive integers, and hence invertible in k, ψ̂F descends to SA. Because
the entries of the frieze pattern satisfy the frieze relations, ψ̂F descends further, to
SA/F , and thus determines a map ψF : A → k.

We are now ready to prove Conjecture 7.7.

Proof of Conjecture 7.7 Let T be a triangulation. It determines two frieze patterns,
F (T ) and Fc(T ), and thus two maps from A to k, namely ψF (T ) and ψFc(T ).

As in the proof of Theorem 7.6, note that ψF (T )(xγ ) = 1 = ψFc(T )(xγ ), for γ ∈
T . By the Laurent phenomenon [11], any cluster variable in A can be expressed as
a Laurent polynomial in the variables xT . Thus, ψF (T ) and ψFc(T ) coincide. This
implies that F (T ) and Fc(T ) also coincide. �
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We now consider Conjecture 7.8. As stated, the conjecture is false. For example,
consider the following frieze pattern of type D4.

1 1 1 1
2 2 2 2

3 3 3 3
2 2 2 2
2 2 2 2

This frieze pattern does not arise as the frieze pattern of a tagged triangulation
since such frieze patterns must have at least one 1 in the bottom two rows, because
there is some edge connecting the puncture to a marked point on the boundary.

However, we can prove the following revision of the conjecture.

Proposition A.2 Any frieze pattern with at least one 1 in the bottom two rows corre-
sponds to some tagged triangulation.

Proof Let F be a frieze pattern with at least one 1 in the bottom two rows. Without
loss of generality, we can assume that there is an entry of the form mi0 which equals
1. This entry corresponds to an arc α connecting a boundary vertex to the puncture.
The (untagged) arcs compatible with α are precisely the arcs of the unpunctured disc
P obtained by cutting open the punctured disc along α.

The cluster variables corresponding to arcs of P generate a subalgebra of A, which
we will denote B. In a natural way, B is a cluster algebra of type AN−1, in which xi0
appears as a coefficient. Now consider the entries in F which correspond to arcs of
P . Since ψF (xi0) = 1, these entries satisfy the type AN−1 exchange relations with
no coefficients. Thus, in particular, if these numbers are rearranged into a type AN−1
frieze pattern, they satisfy the frieze relations.

Now, by the type AN−1 result of Coxeter and Conway [8, 9], this type AN−1
frieze pattern corresponds to a triangulation T ′ of P , which, combined with α, yields
a triangulation T of the punctured disc. We know that ψF (T )(xγ ) = ψF (xγ ) for γ

an arc of P or γ = α. In particular, ψF (T ) and ψF agree for every γ ∈ T . As in
the proof of Conjecture 7.7, it follows that ψF and ψF (T ) coincide, and thus that
F = F (T ), so T is the desired triangulation. �
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