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Abstract We show that the transition matrices between the standard and the canon-
ical bases of infinitely many weight subspaces of the higher-level q-deformed Fock
spaces are equal.

1 Introduction

The q-deformed higher-level Fock spaces were introduced in [6] in order to com-
pute the crystal graph of any irreducible integrable representation of level l ≥ 1
of Uq(̂sln). More precisely, the Fock representation Fq [sl] depends on a parameter
sl = (s1, . . . , sl) ∈ Z

l called multi-charge. It contains as a submodule the irreducible
integrable Uq(̂sln)-module with highest weight �s1 + · · · + �sl . The representation
Fq [sl] is a generalization of the level-one Fock representation of Uq(̂sln) ([4, 17], see
also [14, 15]).

The canonical bases are bases of the Fock representations that are invariant under
a certain involution of Uq(̂sln) and that give at q = 0 and q =∞ the crystal bases.
They were constructed for l = 1 in [14, 15] and for l ≥ 1 by Uglov [19]. In [19],
Uglov provides an algorithm for computing these canonical bases. He also gives an
expression of the transition matrices between the standard and the canonical bases in
terms of Kazhdan-Lusztig polynomials for affine Hecke algebras of type A.

In this article we prove three theorems.

1. The first one (Theorem 3.9) is a generalization to l ≥ 1 of a result of [13]. It
compares the transition matrices of the canonical bases of some weight subspaces
inside a given Fock space Fq [sl]. The weights involved are conjugated under the
action of the Weyl group of Uq(̂sln). This action leads to bijections σi that can
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be described in a combinatorial way by adding/removing as many i-nodes as pos-
sible to the l-multi-partitions indexing the canonical bases. These bijections are
generalizations of the Scopes bijections introduced in [18] in order to study, when
n = p is a prime number, the p-blocks of symmetric groups of a given defect.

2. In a dual manner, our second result (Theorem 4.4) gives some sufficient condi-
tions on multi-charges sl and t l with given residues modulo n that ensure that the
transition matrices of the canonical bases of some weight subspaces of Fq [sl] and
Fq [t l] coincide.

3. Our third result (Theorem 5.2) is an application of Theorem 4.4 to the case when
the multi-charges sl = (s1, . . . , sl) and t l = (t1, . . . , tl) are dominant, that is s1 �
· · · � sl and t1 � · · · � tl . It shows that the transition matrices of the canonical
bases of the Fock spaces Fq [sl] stabilize when sl becomes dominant (with a given
sequence of residues modulo n). This supports the following conjecture (see [22]).
We conjecture that if sl = (s1, . . . , sl) is dominant, then the transition matrix of
the homogeneous component of degree m of the canonical basis of the Fock space
Fq [sl] is equal to the decomposition matrix of the cyclotomic v-Schur algebra
SC,m(ζ ; ζ s1, . . . , ζ sl ) of [2], where ζ is a complex primitive n-th root of unity. This
conjecture generalizes both Ariki’s theorem for Ariki-Koike algebras (see [1]) and
a result of Varagnolo and Vasserot (see [20]) which relates the canonical basis of
the level-one Fock space and the decomposition matrix of v-Schur algebras with
parameter a complex n-th root of unity.

Notation Let N (respectively N
∗) denote the set of nonnegative (respectively posi-

tive) integers, and for a, b ∈ R denote by [[a;b]] the discrete interval [a, b] ∩ Z. For
X ⊂ R, t ∈ R, N ∈ N

∗, put

XN(t) := {(s1, . . . , sN ) ∈ XN | s1 + · · · + sN = t}. (1)

Throughout this article, we fix 3 integers n, l ≥ 1 and s ∈ Z. Let � denote the set of
all integer partitions, and for N ∈ N

∗, let �N denote the set of all N -multi-partitions.
The empty partition (respectively empty N -multi-partition) will be denoted by ∅ (re-
spectively ∅N ).

2 Higher-level q-deformed Fock spaces

In this section, we introduce the higher-level Fock spaces and their canonical bases.
We follow here [19], to which we refer the reader for more details. All definitions and
results given here are due to Uglov.

2.1 The quantum algebras Uq(̂sln) and Up(̂sll)

In this section, we assume that n ≥ 2 and l ≥ 2. Let ̂sln be the Kac-Moody algebra of
type A

(1)
n−1 defined over the field Q [7]. Let h∗ be the dual of the Cartan subalgebra

of ̂sln. Let �0, . . . ,�n−1 ∈ h∗ be the fundamental weights, α0, . . . , αn−1 ∈ h∗ be the
simple roots and δ := α0 +· · ·+αn−1 be the null root. It will be convenient to extend
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the index set of the fundamental weights by setting �i := �i mod n for all i ∈ Z. The
simple roots are related to the fundamental weights by

αi = 2�i − �i−1 −�i+1 + δi,0δ (0 ≤ i ≤ n− 1). (2)

For 0 ≤ i, j ≤ n− 1, let ai,j be the coefficient of �j in αi . The space

h
∗ =

n−1
⊕

i=0

Q�i ⊕ Q δ =
n−1
⊕

i=0

Qαi ⊕ Q�0

is equipped with a non-degenerate bilinear symmetric form (. , .) defined by

(αi, αj ) = ai,j , (�0, αi) = δi,0, (�0,�0) = 0 (0 ≤ i, j ≤ n − 1). (3)

Let Uq(̂sln) be the q-deformed universal enveloping algebra of ̂sln. This is an
algebra over Q(q) with generators ei , fi , t±1

i (0 ≤ i ≤ n − 1) and ∂ . Let U ′
q(̂sln)

be the subalgebra of Uq(̂sln) generated by ei , fi , t±1
i (0 ≤ i ≤ n − 1). The relations

in U ′
q(̂sln) are standard and will be omitted (see e.g. [10]). The relations among the

degree generator ∂ and the generators of U ′
q(̂sln) can be found in [19, §2.1]. If M is

a Uq(̂sln)-module, denote by P(M) the set of weights of M and let M〈w〉 denote the
subspace of M of weight w. If x ∈ M〈w〉 \ {0} is a weight vector, denote by

wt(x) := w (4)

the weight of x. The Weyl group of ̂sln (or Uq(̂sln)), denoted by Wn, is the subgroup
of GL(h∗) generated by the simple reflections σi defined by

σi(�) = � − (�,αi)αi (� ∈ h
∗, 0 ≤ i ≤ n− 1). (5)

Note that Wn is isomorphic to ˜Sn, the affine symmetric group which is a Coxeter
group of type A

(1)
n−1.

We also introduce the algebra Up(̂sll ) with

p := −q−1. (6)

In order to distinguish the elements related to Uq(̂sln) from those related to Up(̂sll ),
we put dots over the latter. For example, ėi , ḟi , ṫ±1

i (0 ≤ i ≤ l − 1) and ∂̇ are the
generators of Up(̂sll), α̇i (0 ≤ i ≤ l − 1) are the simple roots for Up(̂sll ), Ẇl =
〈σ̇0, . . . , σ̇l−1〉 is the Weyl group of Up(̂sll ) and so on. Similarly, if M is a Up(̂sll )-
module, denote by Ṗ(M) the set of weights of M .

2.2 The space �s

2.2.1 The vector space �s and its standard basis

Following [19], we now recall the definition of �s , the space of semi-infinite q-wedge
products of charge s (this space is denoted by �s+∞

2 in [19]). First, let r ≥ 2 be an
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integer, and �r
qV be the space of q-wedge products of finite length r (this space is

denoted by �r in [19]; we hope that this does not make any confusion with our �s ).
As a vector space over Q(q), �r

qV is spanned by the q-wedge products

uk = uk1 ∧ uk2 ∧ · · · ∧ ukr , k = (k1, k2, . . . , kr ) ∈ Z
r , (7)

with relations given in [19, Prop. 3.16]. These relations are called straightening rules
(we will not need them in this article). Now, define �s as the inductive limit

�s = lim−→�r
qV, (8)

where maps �r
qV → �r ′

q V (r ′ > r) are given by v �→ v ∧ us−r ∧ us−r−1 ∧ · · · ∧
us−r ′+1. Less formally, �s is spanned by q-wedge products of infinite length

uk = uk1 ∧ uk2 ∧ · · · , k = (k1, k2, . . .) ∈ P(s), (9)

where P(s) is the set of all sequences of integers (k1, k2, . . .) such that ki = s − i + 1
for i large enough. The straightening rules given in [19, Prop. 3.16 (i)] still hold for
any pair of adjacent factors of a q-wedge product uk ∈ �s . From now on, we shall
assume without further comment that all q-wedge products lie in �s (in particular,
they have infinitely many factors). Using the straightening rules, one can express
a q-wedge product as a linear combination of so-called ordered q-wedge products,
namely q-wedge products uk with k ∈ P++(s), where

P++(s) := {(k1, k2, . . .) ∈ P(s) | k1 > k2 > · · ·}. (10)

In fact, the ordered q-wedge products {uk | k ∈ P++(s)} form a basis of �s , called
the standard basis. In this article, it will be convenient to use different indexations of
this basis which we give now.

* Indexation uk . This is the indexation we have just described.

* Indexation λ. To the ordered q-wedge product uk corresponds a partition λ =
(λ1, λ2, . . .) defined by

λi := ki − (s + 1 − i) (i ≥ 1). (11)

If uk and λ are related this way, write

|λ, s〉 := uk. (12)

* Indexation λn. Recall the definition of Z
n(s) from (1). Uglov constructed a bijec-

tion

τ ′
n : � → �n × Z

n(s), λ �→ (λn, sn) (13)

(see [19, §4.1], where this map is denoted by τ s
n ). With the notation above, λn is the

n-quotient of λ and sn is a variation of the n-core of λ (see e.g. [16, Ex.8, p.12]).
Write

|λn, sn〉• := |λ, s〉 (14)
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if (λn, sn) = τ ′
n(λ). Note that this indexation coincides with the indexation λ if

n = 1.
* Indexation λl . Uglov constructed a bijection

τl : � → �l × Z
l (s), λ �→ (λl , sl ) (15)

(see again [19, §4.1], where this map is denoted by τ s
l ). The map τl is a variation

of the map τ ′
n defined above. Write

|λl , sl〉 := |λ, s〉 (16)

if (λl , sl ) = τl(λ). Note that this indexation coincides with the indexation λ if l = 1.

Example 2.1 Take n = 2, l = 3 and s =−1. Then we have

u3 ∧ u1 ∧ u0 ∧ u−2 ∧ u−4 ∧ u−6 ∧ u−7 ∧ · · · = ∣

∣(4,3,3,2,1),−1
〉

= ∣

∣

(

(3,3),∅)

, (−1,0)
〉•

= ∣

∣

(

(1,1), (1,1), (1)
)

, (0,0,−1)
〉

.

�

2.2.2 Three actions on �s

Following [3, 6, 19], the vector space �s can be made into an integrable repre-
sentation of level l of the quantum algebra Uq(̂sln). This representation can be
described in a nice way if we use the indexation λl . In order to recall the ex-
plicit formulas, let us first introduce some notation. Fix λl = (λ(1), . . . , λ(l)) ∈ �l

and sl = (s1, . . . , sl) ∈ Z
l . Identify the multi-partition λl with its Young diagram

{(i, j, b) ∈ N
∗ × N

∗ × [[1; l]] | 1 ≤ j ≤ λ
(b)
i }, whose elements are called nodes of

λl . For each node γ = (i, j, b) of λl , define its residue modulo n by

resn(γ ) = resn(γ, sl ) := (sb + j − i) mod n ∈ Z/nZ ∼= [[0;n− 1]]. (17)

If resn(γ ) = c, we say that γ is a c-node. If μl ∈ �l is such that μl ⊃ λl and γ :=
μl \ λl is a c-node of μl , we say that γ is a removable c-node of μl or that γ is an
addable c-node of λl . For 0 ≤ c ≤ n− 1, denote by

Mc(λl; sl;n) (respectively Ac(λl; sl;n), respectively Rc(λl; sl;n)) (18)

the number of c-nodes (respectively of addable c-nodes, respectively of removable
c-nodes) of λl . Put

Nc(λl; sl;n) := Ac(λl; sl;n)−Rc(λl; sl;n). (19)

For λl , μl ∈ �l , sl ∈ Z
l , c ∈ [[0;n− 1]] and k ∈ N

∗, write

λl
c:k−→ μl (20)

if there exists a sequence of l-multi-partitions ν
(0)
l ⊂ ν

(1)
l ⊂ · · · ⊂ ν

(k)
l such that λl =

ν
(0)
l , μl = ν

(k)
l and for all 1 ≤ j ≤ k, ν

(j)
l \ ν

(j−1)
l is an addable c-node of ν

(j−1)
l .
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Given a multi-charge (s1, . . . , sl) and two nodes γ = (i, j, b) and γ ′ = (i′, j ′, b′),
write

γ < γ ′ (21)

if either sb + j − i < sb′ + j ′ − i′ or sb + j − i = sb′ + j ′ − i′ and b < b′. This
defines a total ordering on the set of the addable and removable c-nodes of a given

multi-partition. If λl
c:k−→ μl , put

N>
c (λl;μl; sl;n) =

∑

γ∈μl\λl

(

�{β ∈ N
3 | β is an addable c-node of μl and β > γ }

− �{β ∈ N
3 | β is a removable c-node of λl and β > γ }

)

,(22)

and define similarly N<
c (λl;μl; sl;n).

Example 2.2 Take sl = (5,0,2,1), λl =
(

(5,3,3,1), (3,2), (4,3,1), (2,2,2,1)
)

,
n = 3 and c = 0. Then we have

Mc(λl; sl;n) = 11, Ac(λl; sl;n) = Rc(λl; sl;n) = 5 and Nc(λl; sl;n) = 0.

The addable c-nodes of λl are (5,1,4), (4,2,1), (1,4,2), (1,3,4) and (1,5,3). The
removable c-nodes of λl are (2,2,2), (3,1,3), (3,2,4), (2,3,3) and (1,5,1). The
list of all these nodes arranged with respect to the ordering described above is

(5,1,4) < (2,2,2) < (3,1,3) < (3,2,4) < (4,2,1) < (1,4,2)

< (2,3,3) < (1,3,4) < (1,5,3) < (1,5,1).

Take also μl =
(

(5,3,3,1), (3,2), (5,3,1), (2,2,2,1)
)

, so that μl \ λl = {(1,5,3)}
is a single c-node. Then N>

c (λl;μl; sl;n) = 0 − 1 = −1 and N<
c (λl;μl; sl;n) =

4 − 4 = 0. �

For sl = (s1, . . . , sl) ∈ Z
l , define

�(sl , n) := 1

2

l
∑

b=1

( s2
b

n
− sb

)

−
( (sb mod n)2

n
− (sb mod n)

)

. (23)

Now we can state the following result.

Theorem 2.3 [3, 6, 19] The following formulas define on �s a structure of an inte-
grable representation of level l of the quantum algebra Uq(̂sln).

ei .|νl , sl〉 =
∑

λl
i:1−→νl

q−N<
i (λl;νl;sl;n) |λl , sl〉, (24)

fi.|νl , sl〉 =
∑

νl
i:1−→μl

qN>
i (νl;μl;sl;n) |μl , sl〉, (25)
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ti .|νl , sl〉 = qNi(νl;sl;n) |νl , sl〉, (26)

∂.|νl , sl〉 = −(

�(sl , n) +M0(νl; sl;n)
) |νl , sl〉. (27)

�

Note that these formulas involve no straightening of q-wedge products. They are
therefore handy to use for computations.

In a completely similar way, �s can be made into an integrable representa-
tion of level n of the quantum algebra Up(̂sll). This action can be described us-
ing the indexation λn. Namely, we have (with obvious notation) the following re-
sult.

Theorem 2.4 [3, 6, 19] The following formulas define on �s a structure of an inte-
grable representation of level n of the quantum algebra Up(̂sll ).

ėi .|νn, sn〉• =
∑

λn
i:1−→νn

p−N<
i (λn;νn;sn;l) |λn, sn〉•, (28)

ḟi .|νn, sn〉• =
∑

νn
i:1−→μn

pN>
i (νn;μn;sn;l) |μn, sn〉•, (29)

ṫi .|νn, sn〉• = pNi(νn;sn;l) |νn, sn〉•, (30)

∂̇ .|νn, sn〉• = −(

�(sn, l) +M0(νn; sn; l)
) |νn, sn〉•. (31)

�

Theorems 2.3 and 2.4 show in particular that the vectors of the standard basis of
�s are weight vectors for the actions of Uq(̂sln) and Up(̂sll ), and the weights are
given by:

Corollary 2.5 [19], (27–30) With obvious notation, we have

wt(|λl , sl〉) = −�(sl , n)δ +�s1 + · · · +�sl −
n−1
∑

i=0

Mi(λl; sl;n)αi, (32)

ẇt(|λl , sl〉) = −(

�(sl , n) +M0(λl; sl;n)
)

δ̇ + (n − s1 + sl)�̇0

+
l−1
∑

i=1

(si − si+1) �̇i, (33)

ẇt(|λn, sn〉•) = −�(sn, l)δ̇ + �̇s1 + · · · + �̇sn −
l−1
∑

i=0

Mi(λn; sn; l) α̇i , (34)
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wt(|λn, sn〉•) = −(

�(sn, l) +M0(λn; sn; l)
)

δ + (l − s1 + sn)�0

+
n−1
∑

i=1

(si − si+1)�i. (35)

�

Definition 2.6 For m ∈ Z
∗, define an endomorphism Bm of �s by

Bm(uk1 ∧ uk2 ∧ · · ·) :=
+∞
∑

j=1

uk1 ∧ · · · ∧ ukj−1 ∧ ukj−nlm ∧ ukj+1 ∧ · · ·
(

(k1, k2, . . .) ∈ P++(s)
)

. (36)

�

Using a variation of [19, Lemma 3.18] for q-wedge products with infinitely many fac-
tors, one sees that the sum above involves only finitely many nonzero terms, hence
Bm is well-defined. This definition comes from a passage to the limit r → ∞ in
the action of the center of the Hecke algebra of ̂Sr on q-wedge products of r fac-
tors. However, the operators Bm do not commute, but by [19, Prop. 4.4], they span a
Heisenberg algebra

H := 〈Bm | m ∈ Z
∗〉. (37)

We now recall some results concerning the actions of Uq(̂sln), Up(̂sll) and H
on �s .

Proposition 2.7 [19], Prop. 4.6 Recall that p =−q−1. Then the actions of U ′
q(̂sln),

U ′
p(̂sll ) and H on �s pairwise commute. �

For L, N ∈ N
∗, introduce the finite set

AL,N(s) := {(r1, . . . , rL) ∈ Z
L(s) | r1 ≥ · · · ≥ rL, r1 − rL ≤ N}. (38)

Using [19, §4.1], it is not hard to see that if r l ∈ Z
l(s) and rn ∈ Z

n(s) are such that
|∅l , r l〉 = |∅n, rn〉•, then r l ∈ Al,n(s) and rn ∈ An,l(s). Conversely, if r l ∈ Al,n(s),
then there exists a unique rn ∈ An,l(s) such that |∅n, rn〉• = |∅l , r l〉, and if rn ∈
An,l(s), then there exists a unique r l ∈ Al,n(s) such that |∅l , r l〉 = |∅n, rn〉•. There-
fore,

{|∅l , r l〉 | r l ∈ Al,n(s)} = {|∅n, rn〉• | rn ∈ An,l(s)}
is a set of highest weight vectors simultaneously for the actions of U ′

q(̂sln) and

U ′
p(̂sll ). It is easy to see that these vectors are also singular for the action of H,

that is, they are annihilated by the Bm, m > 0. It turns out that these vectors are the
only singular vectors simultaneously for the actions of U ′

q(̂sln), U ′
p(̂sll) and H, and

we have the following theorem.



J Algebr Comb (2007) 26: 383–414 391

Theorem 2.8 [19], Thm. 4.8 We have

�s =
⊕

r l∈Al,n(s)

U ′
q(̂sln) ⊗H⊗ U ′

p(̂sll ).|∅l , r l〉

=
⊕

rn∈An,l(s)

U ′
q(̂sln) ⊗H⊗ U ′

p(̂sll ).|∅n, rn〉•.

�

2.2.3 The involution of �s

Following [19], the space �s can be endowed with an involution . Instead of recall-
ing the definition of this involution, we give its main properties (by [23, Thm. 3.11],
they turn out to characterize it completely).

Proposition 2.9 [19] There exists an involution of �s such that:

(i) is a Q-linear map of �s such that for all u ∈ �s , k ∈ Z, we have qk u = q−k u.
(ii) (Unitriangularity property). For all λ ∈ �, we have

|λ, s〉 ∈ |λ, s〉 +
⊕

μ�λ

Z[q, q−1] |μ, s〉,

where � stands for the dominance ordering on partitions.
(iii) For all λ ∈ �, we have wt(|λ, s〉) = wt(|λ, s〉) and ẇt(|λ, s〉) = ẇt(|λ, s〉).
(iv) For all 0 ≤ i ≤ n− 1, 0 ≤ j ≤ l − 1, m < 0, v ∈ �s , we have

fi.v = fi.v, ḟj .v = ḟj .v and Bm.v = Bm.v.

Proof Let be the involution of �s defined in [19, Prop. 3.23 & Eqn. (39)]. By
construction, (i) holds. The other statements come from [19, Prop. 4.11 & 4.12] and
Corollary 2.5. �

2.3 q-deformed higher-level Fock spaces

2.3.1 Definition

By Theorem 2.3, the space

Fq [sl] :=
⊕

λl∈�l

Q(q)|λl , sl〉 ⊂ �s (sl ∈ Z
l (s)) (39)

is a Uq(̂sln)-submodule of �s . The reader should be aware that Fq [sl] is not a
Up(̂sll )-submodule of �s . In a similar way, by Theorem 2.4, the space

Fp[sn]• :=
⊕

λn∈�n

Q(q)|λn, sn〉• ⊂ �s (sn ∈ Z
n(s)) (40)

is a Up(̂sll )-submodule of �s .
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Definition 2.10 [19] The representations Fq [sl] and Fp[sn]• (sl ∈ Z
l (s), sn ∈ Z

n(s))
are called (q-deformed) Fock spaces. When l > 1 and n > 1, we speak of higher-level
Fock spaces. �

Since the maps τl and τ ′
n are bijections, we have the following decompositions:

�s =
⊕

sl∈Zl (s)

Fq [sl] =
⊕

sn∈Zn(s)

Fp[sn]•. (41)

Neither of these decompositions is compatible with the decompositions of �s given
in Theorem 2.8.

2.3.2 Fock spaces as weight subspaces of �s . Actions of the Weyl groups.

Let N , L ∈ N
∗. Recall the definition of Q

L(s) and Q
L(N) from (1) and define a map

θL,N : QL(s) → Q
L(N), (s1, . . . , sL) �→ (N − s1 + sL, s1 − s2, . . . , sL−1 − sL).

(42)
(Note that this map also depends on the charge s ∈ Z that we have fixed. How-
ever, since s will not vary in this paper, we do not keep it in our notation.) It is
easy to see that θL,N is bijective. Moreover, for (a1, . . . , aL) ∈ Q

L(N), the l-tuple
(s1, . . . , sL) := θ−1

L,N(a1, . . . , aL) is given by

si = 1

L

⎛

⎝s −
L−1
∑

j=1

jaj+1

⎞

⎠ +
L

∑

j=i+1

aj (1 ≤ i ≤ L). (43)

The next result shows that the Fock spaces are sums of certain weight subspaces of
�s . The proof follows easily from Corollary 2.5.

Proposition 2.11 [19]

(i) Let sn ∈ Z
n(s). Let (a1, . . . , an) := θn,l(sn) and w := ∑n

i=1 ai�i−1. Then

Fp[sn]• =
⊕

d∈Z

�s〈w + dδ〉.

(ii) Let sl ∈ Z
l (s). Let (a1, . . . , al) := θl,n(sl ) and ẇ := ∑l

i=1 ai�̇i−1. Then

Fq [sl] =
⊕

d∈Z

�s〈ẇ + dδ̇〉.

�

Note that the operator Bm (m ∈ Z
∗) maps the weight subspace �s〈w〉 (respec-

tively �s〈ẇ〉) into �s〈w + mδ〉 (respectively �s〈ẇ + mδ̇〉). Therefore, by Propo-
sition 2.11, the Fock spaces Fq [sl] and Fp[sn]• (sl ∈ Z

l (s), sn ∈ Z
n(s)) are stable

under the action of H.
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We now compare some weight subspaces of the Fock spaces. The proof follows
again from Corollary 2.5.

Proposition 2.12

(i) Let sl = (s1, . . . , sl) ∈ Z
l (s) and w be a weight of Fq [sl]. Then there exists a

unique pair (sn, ẇ) such that Fq [sl]〈w〉 = Fp[sn]•〈ẇ〉, where sn is in Z
n(s) and

ẇ is a weight of Fp[sn]•. More precisely, write w = dδ + ∑n
i=1 ai�i−1 with

a1, . . . , an, d ∈ Z, and put s0 := n + sl . Then we have sn = θ−1
n,l (a1, . . . , an) and

ẇ = dδ̇ +∑l−1
i=0 (si − si+1)�̇i .

(ii) Let sn = (s1, . . . , sn) ∈ Z
n(s) and ẇ be a weight of Fp[sn]•. Then there exists

a unique pair (sl ,w) such that Fp[sn]•〈ẇ〉 = Fq [sl]〈w〉, where sl is in Z
l (s)

and w is a weight of Fq [sl]. More precisely, write ẇ = dδ̇ + ∑l
i=1 ai�̇i−1 with

a1, . . . , al, d ∈ Z, and put s0 := l + sn. Then we have sl = θ−1
l,n (a1, . . . , al) and

w = dδ +∑n−1
i=0 (si − si+1)�i. �

Example 2.13 Take n = 3, l = 2, sl = (1,0) and w = −2�0 + �1 + 3�2 − 2δ.
Then by (32), we have wt

(∣

∣

(

(1,1), (1)
)

, sl

〉) = w, so w is a weight of Fq [sl]. By
Proposition 2.12 (i), we have Fq [sl]〈w〉 = Fp[sn]•〈ẇ〉 with sn = (2,1,−2) and
ẇ = 2�̇0 + �̇1 − 2δ̇. Moreover, using (32) and (34), we see that for all |λl , sl〉 =
|λn, sn〉• ∈ Fq [sl]〈w〉 = Fp[sn]•〈ẇ〉, we have M0(λl; sl;n) = 2, M1(λl; sl;n) = 1,
M2(λl; sl;n) = 0 and M0(λn; sn; l) = M1(λn; sn; l) = 0 (this shows a posteriori that
dim(Fq [sl]〈w〉) = 1). �

We now deal with the actions of the Weyl groups of Uq(̂sln) and Up(̂sll) on the set
of the weight subspaces of �s . Recall that Wn = 〈σ0, . . . , σn−1〉 is the Weyl group of
Uq(̂sln). Since the αi ’s are the simple roots and the �j ’s are the fundamental weights
for the Kac-Moody algebra ̂sln, we have (�j ,αi) = δi,j for all 0 ≤ i, j ≤ n − 1.
Hence by (5), Wn acts on the weight lattice

⊕n−1
i=0 Z�i ⊕ Zδ by

σi.δ = δ and

σi.�j =
{

�j if j �= i,

�i−1 + �i+1 −�i − δi,0 δ if j = i
(0 ≤ i, j ≤ n− 1). (44)

Moreover, it is easy to see that Wn acts faithfully on Z
n(s) by

{

σ0.(s1, . . . , sn) = (sn + l, s2, . . . , sn−1, s1 − l),

σi .(s1, . . . , sn) = (s1, . . . , si+1, si , . . . , sn) (1 ≤ i ≤ n− 1),
(45)

and the set An,l(s) defined by (38) is a fundamental domain for this action. In a
similar way, one can define two actions of the Weyl group Ẇl of Up(̂sll ), one on the
weight lattice

⊕l−1
i=0 Z�̇i ⊕Zδ̇ and one on Z

l (s). The following lemma will be useful
later.

Lemma 2.14 Let sn ∈ Z
n(s) and ẇ be a weight of Fp[sn]•. Let (sl ,w) ∈ Z

l(s) ×
P(�s) be the unique pair such that Fp[sn]•〈ẇ〉 = Fq [sl]〈w〉 (see Proposition 2.12



394 J Algebr Comb (2007) 26: 383–414

(i)). Let σ̇ ∈ Ẇl . In the same way, let (t l ,w
′) ∈ Z

l (s) × P(�s) be the unique pair
such that Fp[sn]•〈σ̇ .ẇ〉 = Fq [t l]〈w′〉. Then we have

t l = σ̇ .sl and w′ = w + wt(|∅l , t l〉) − wt(|∅l , sl〉).

Proof The proof follows immediately from the formulas given in Proposition 2.12. �

2.3.3 The lower crystal basis (L[sl],B[sl]) of Fq [sl] at q = 0

Let sl ∈ Z
l (s). Following [8], let A ⊂ Q(q) be the ring of rational functions which

are regular at q = 0, L[sl] := ⊕

λl∈�l A |λl , sl〉 and for 0 ≤ i ≤ n− 1, let ẽi
low, f̃i

low
,

ẽi
up and f̃i

up
denote Kashiwara’s operators acting on L[sl]. The following lemma

shows that sometimes, certain powers of the operators ẽi
low and ẽi

up coincide (one

has an analogous result for f̃i
low

and f̃i
up

).

Lemma 2.15 Let sl ∈ Z
l(s), w ∈ P(Fq [sl]), u ∈ (Ker ei) ∩ Fq [sl]〈w〉 and k :=

(w,αi). Then we have

(ẽi
up)k.(f

(k)
i .u) = (ẽi

low)k.(f
(k)
i .u) = u.

Proof The second equality follows easily by induction on k from the definition of
ẽi

low. Let us now show that (ẽi
up)k.(f

(k)
i .u) = u. Note that for 0 ≤ j ≤ k, we have

(wt(f (k−j)
i .u),αi) = (wt(u),αi) − (k − j)(αi, αi) = 2j − k.

By induction on 0 ≤ k′ ≤ k, we get therefore, by definition of ẽi
up,

(ẽi
up)k

′
.(f

(k)
i .u) =

⎛

⎝

k′−1
∏

j=0

[(2j − k) + (k − j) + 1]
[k − j ]

⎞

⎠ f
(k−k′)
i .u (0 ≤ k′ ≤ k).

As a consequence, we have (ẽi
up)k.(f

(k)
i .u) =

⎛

⎝

k−1
∏

j=0

[j + 1]
[k − j ]

⎞

⎠ u = u. �

Put

B[sl] := {|λl , sl〉 mod qL[sl] | λl ∈ �l}. (46)

From now on, we shall write more briefly λl for the element in B[sl] indexed by the
corresponding multi-partition. By [3, 6, 19], the pair (L[sl],B[sl]) is a lower crystal
basis of Fq [sl] at q = 0 in the sense of [8], and the crystal graph B[sl] contains the

arrow λl
i−→ μl if and only if the multi-partition μl is obtained from λl by adding

a good i-node in the sense of [19, Thm. 2.4]. We shall still denote by ẽi
low and f̃i

low

Kashiwara’s operators acting on B[sl] ∪ {0}.
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2.3.4 Uglov’s canonical bases of the Fock spaces

By Propositions 2.9 (iii) and 2.11, the Fock spaces Fq [sl] and Fp[sn]• (sl ∈ Z
l (s),

sn ∈ Z
n(s)) are stable under the involution . The involution induced on these spaces

will still be denoted by . Let sl ∈ Z
l(s). For μl ∈ �l , write

|μl , sl〉 =
∑

λl∈�l

aλl ,μl; sl
(q) |λl , sl〉 (47)

with aλl ,μl; sl
(q) ∈ Z[q, q−1], and let

Asl
(q) := (

aλl ,μl; sl
(q)

)

λl ,μl∈�l (48)

denote the matrix of the involution of Fq [sl]. Since the weight subspaces of Fq [sl]
are stable under the involution , (32) implies that aλl ,μl; sl

(q) is zero unless |λl | =
|μl |, where |λl | (respectively |μl |) denotes the number of boxes contained in the
Young diagram of |λl | (respectively |μl |). By Proposition 2.9 (ii), the matrix Asl

(q)

is unitriangular. One can therefore define, by a classical argument, canonical bases of
the Fock space Fq [sl] as follows.

Theorem 2.16 [19] Let sl ∈ Z
l (s). Then there exists a unique base

{G+(λl , sl ) | λl ∈ �l}
(

respectively {G−(λl , sl ) | λl ∈ �l}
)

of Fq [sl] such that:

(i) G+(λl , sl) = G+(λl , sl ) (respectively G−(λl , sl ) = G−(λl , sl) ),
(ii) G+(λl , sl) ≡ |λl , sl〉 mod qL+[sl] (respectively G−(λl , sl ) ≡ |λl , sl〉

mod q−1L−[sl] ),

where Lε[sl] :=
⊕

λl∈�l

Z[qε] |λl , sl〉 (ε =±1). �

Definition 2.17 The bases {G+(λl , sl ) | λl ∈ �l} and {G−(λl , sl) | λl ∈ �l} are
called Uglov’s canonical bases of Fq [sl]. Define entries �+

λl ,μl; sl
(q), �−

λl ,μl; sl
(q) ∈

Z[q, q−1] (λl , μl ∈ �l) by

G+(μl , sl) =
∑

λl∈�l

�+
λl ,μl; sl

(q) |λl , sl〉, G−(μl , sl ) =
∑

λl∈�l

�−
λl ,μl; sl

(q) |λl , sl〉,

(49)
and denote by

�ε
sl
(q) := (

�ε
λl ,μl; sl

(q)
)

λl ,μl∈�l (ε =±1) (50)

the transition matrices between the standard and the canonical bases of Fq [sl]. �
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By [19], the entries of �+
sl
(q) (respectively �−

sl
(q)) are Kazhdan-Lusztig poly-

nomials of parabolic submodules of affine Hecke algebras of type A, so by [11],
these polynomials are in N[q] (respectively N[p]). Moreover, both canonical bases
of Fq [sl] are dual to each other with respect to a certain bilinear form, which gives an
inversion formula for Kazhdan-Lusztig polynomials; see [19, Thm. 5.15]. By [19],
the basis {G+(λl , sl ) | λl ∈ �l} is a lower global crystal basis (in the sense of [8]) of
the integrable Uq(̂sln)-module Fq [sl].

Let sn ∈ Z
n(s). In a similar way, one can define canonical bases {Gε(λn, sn)

• |
λn ∈ �n} (ε = ±1) of the Fock space Fp[sn]•. By [19], the basis {G−(λn, sn)

• |
λn ∈ �n} is a lower global crystal basis of the integrable Up(̂sll)-module Fp[sn]•.
For μn ∈ �n, ε =±1, write

Gε(μn, sn)
• =

∑

λn∈�n

�̇ε
λn,μn; sn

(q) |λn, sn〉•, (51)

where the entries �̇ε
λn,μn; sn

(q) are in Z[q, q−1]. Since the weight subspaces of �s

are stable under the involution , we have �̇ε
λn,μn; sn

(q) = 0 unless wt(|λn, sn〉•) =
wt(|μn, sn〉•) and ẇt(|λn, sn〉•) = ẇt(|μn, sn〉•). In this case, by Proposition 2.12
(ii), there exist sl ∈ Z

l(s) and λl , μl ∈ �l such that |λl , sl〉 = |λn, sn〉• and |μl , sl〉 =
|μn, sn〉•. It is then not hard to see that

�̇ε
λn,μn; sn

(q) = �ε
λl ,μl; sl

(q). (52)

3 Comparison of canonical bases of weight subspaces of Fq[sl] (sl ∈ Z
l(s))

From now on, we shall use the following notation.

Notation 3.1 For sl ∈ Z
l (s) and w ∈P(Fq [sl]), put

�l(sl;w) := {λl ∈ �l
∣

∣ |λl , sl〉 ∈ �s〈w〉}, (53)

and define similarly �n(sn; ẇ) for sn ∈ Z
n(s) and ẇ ∈ Ṗ(Fp[sn]•). �

Definition 3.2 Let sl , t l ∈ Z
l(s), w ∈P(Fq [sl]) and w′ ∈ P(Fq [t l]). We say that the

canonical bases of Fq [sl]〈w〉 and Fq [t l]〈w′〉 are similar if there exists a bijection

σ : �l(sl;w) → �l(t l;w′)

such that for all λl , μl ∈ �l(sl;w), ε =±1, we have

�ε
σ(λl ),σ (μl ); t l (q) = �ε

λl ,μl; sl
(q).

In other words, the canonical bases of Fq [sl]〈w〉 and Fq [t l]〈w′〉 are similar if the
transition matrices between the standard bases and the canonical bases are equal up
to a reindexing of rows and columns. �
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Notation 3.3 Throughout this section we fix a multi-charge sl ∈ Z
l (s). To simplify,

we drop the multi-charge sl in the notation of this section, that is we denote by λl

(respectively G±(λl)) the vector of the standard (respectively canonical) basis of
Fq [sl] indexed by the corresponding multi-partition and so on. In particular, we use
the notation λl either for a vector of the standard basis of Fq [sl] or for a vertex in the
crystal graph B := B[sl]. �

3.1 The bijections σi

We recall here the definition of the involution σi (0 ≤ i ≤ n − 1) of the crystal graph
B. We sometimes view σi as a bijection of �l .

Definition 3.4 Let λl ∈ B ∼= �l and i ∈ [[0;n − 1]]. Let C be the i-chain in B con-
taining λl . Let σi(λl) ∈ B ∼= �l be the unique element in C such that wt(σi(λl )) =
σi.(wt(λl)). In other words, σi(λl ) is obtained from λl via a central symmetry in the
middle of C. This defines an involution σi of B. This map induces, for w ∈ P(Fq [sl]),
a bijection

σi : �l(sl;w)
∼−→ �l(sl;σi.w). (54)

�

By [9], the definition of σ0, . . . , σn−1 as bijections of B gives actually rise to an
action of the Weyl group Wn on B, but we do not need this fact in this article.

Proposition 3.5 Let w ∈ P(Fq [sl]) and i ∈ [[0;n − 1]] be such that w + αi /∈
P(Fq [sl]). Let λl ∈ �l(sl;w) and μl := σi(λl ). Then we have the following:

(i) μl is the multi-partition obtained by adding to λl all its addable i-nodes, and
we have |μl \ λl | = ki := (w,αi).

(ii) In Fq [sl], we have μl = f
(ki )
i .λl and λl = e

(ki )
i .μl .

(iii) In B, we have μl = (f̃i
low

)ki .λl and λl = (ẽi
low)ki .μl .

Proof Let C be the i-chain in B containing λl and μl . Since w + αi is not a weight
of Fq [sl], λl has no removable i-node. This implies, by [19, Thm. 2.4], that λl is the
head of the chain C, and by symmetry μl is the tail of C. Note that since w+αi is not
a weight of Fq [sl], σi.(w + αi) = (σi .w) − αi is also not a weight of Fq [sl], so μl

has no addable i-node. By [19, Thm. 2.4], μl is obtained by adding some i-nodes (let
us say k of them) to λl . The integer k = |μl \ λl | is none other than the length of the
chain C. By a well-known formula for crystal graphs relating weights and positions
in the i-chains, since λl is the head of C, we have ki = (wt(λl ), αi) = k. Thus C is a
i-chain of length ki with head λl and tail μl , which proves (iii). The divided powers
e
(k)
i , f

(k)
i ∈ Uq(̂sln) (k ∈ N

∗) act on νl ∈ Fq [sl] as follows, with notation of Section
2.2.2:

e
(k)
i .νl =

∑

κ l
i:k−→νl

q−N<
i (κ l;νl;sl;n) κ l and f

(k)
i .νl =

∑

νl
i:k−→ξ l

qN>
i (νl;ξ l;sl;n) ξ l .

(∗)
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(For k = 1, this is a part of Theorem 2.3. The general case follows by induction on
k; see e.g. [5] for a detailed proof.) Since μl has no addable i-node and λl has no
removable i-node, μl \ λl is the set of the addable i-nodes of λl and also the set of
the removable i-nodes of μl , and this set has exactly ki elements. This proves (i), and
this together with (∗) proves (ii). �

Example 3.6 Take n=3, l =2, sl = (1,2), i =0, λl = ((2,2,1), (3,2)) and w =
wt(|λl , sl〉). Then we have σi(λl) = ((3,2,2), (3,3,1)). Note that w + αi is not a
weight of Fq [sl], so Proposition 3.5 can be applied in this case. �

Remark 3.7 The proof of Proposition 3.5 shows (with the assumptions and notation
of this proposition) that λl = σ−1

i (μl) is the multi-partition obtained by removing to
μl all its removable i-nodes. �

3.2 A first theorem of comparison

Define a symmetric bilinear non-degenerate form (. , .) on Fq [sl] by

(λl ,μl) = q‖λl‖δλl ,μl
(λl , μl ∈ �l), (55)

where we put

‖λl‖ := (wt(λl ),wt(λl ))/2 (λl ∈ �l). (56)

This form enjoys the following property:

Lemma 3.8 For u, v ∈ Fq [sl], 0 ≤ i ≤ n − 1, we have

(ti .u , v) = (u , ti .v) and (ei .u , v) = (u ,fi .v).

Proof Identical to the proof of [12, Prop. 8.1]. �

Let {G∗(λl ) | λl ∈ �l} denote the adjoint basis of {G+(λl ) | λl ∈ �l} with respect
to the form (. , .). Since the basis {G+(λl ) | λl ∈ �l} is a lower global crystal ba-
sis of Fq [sl] in the sense of [8], it follows by Lemma 3.8 and [8, Prop. 3.2.2] that
{G∗(λl ) | λl ∈ �l} is an upper global crystal basis of Fq [sl].

We are now ready to prove the following result, which is a generalization to higher-
level Fock spaces of [13, Thm. 20].

Theorem 3.9 Let sl ∈ Z
l(s), w ∈ P(Fq [sl]) and i ∈ [[0;n − 1]] be such that w + αi

is not a weight of Fq [sl]. Let σi : �l(sl;w) → �l(sl;σi.w) be the bijection defined
by (54). Then we have, for λl , μl ∈ �l(sl;w),

(i) �+
σi(λl ),σi (μl ); sl

(q) = �+
λl ,μl; sl

(q) and

(ii) �−
σi(λl ),σi (μl ); sl

(q) = �−
λl ,μl; sl

(q).
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As a consequence, the canonical bases of Fq [sl]〈w〉 and Fq [sl]〈σi.w〉 are similar in
the sense of Definition 3.2.

Proof Let us prove (i). Let μl ∈ �l(sl;w). Taking adjoint bases in (49) yields

q−‖σi(μl )‖σi(μl ) =
∑

νl∈�l(sl;σi .w)

�+
σi(μl ),νl; sl

(q) G∗(νl).

Since σi : �l(sl;w) → �l(sl;σi.w) is a bijection, we can make in the sum above the
reindexing νl = σi(λl ). If we now apply e

(ki )
i with ki := (w,αi) to both hand-sides

of this equality, we get

q−‖σi(μl )‖e(ki )
i .σi(μl ) =

∑

λl∈�l(sl;w)

�+
σi(μl ),σi (λl ); sl

(q) e
(ki )
i .G∗(σi(λl )). (∗)

Note that

‖σi(μl)‖ = (

σi.wt(μl) , σi .wt(μl)
)

/2 = (

wt(μl ) , wt(μl)
)

/2 = ‖μl‖. (∗∗)

By Proposition 3.5 (ii), we have e
(ki )
i .σi(μl) = μl . Now let λl ∈ �l(sl;w). Since

w + αi is not a weight of Fq [sl], we have ei .λl = 0, whence ẽi
up.λl = 0. Moreover,

again by Proposition 3.5, we have σi(λl ) = f
(ki )
i .λl . Therefore, by Lemma 2.15, we

have

λl = (ẽi
low)ki .(f

(ki )
i .λl ) = (ẽi

up)ki .(f
(ki )
i .λl ) = (ẽi

up)ki .(σi(λl )),

whence (ẽi
up)ki+1.σi(λl ) = 0. Since {G∗(νl ) | νl ∈ �l} is an upper global crystal

basis of Fq [sl], [8, Lemma 5.1.1 (ii)] then implies

e
(ki )
i .G∗(σi(λl )) = G∗((ẽi

up)ki .(σi(λl))
) = G∗(λl ). (∗ ∗ ∗)

Combining (∗), (∗∗) and (∗ ∗ ∗) we get

q−‖μl‖μl =
∑

λl∈�l(sl;w)

�+
σi(μl ),σi (λl ); sl

(q) G∗(λl ).

Since this is valid for any μl ∈ �l(sl;w), we get the claimed formula by taking again
adjoint bases.

Let us now prove (ii). Let w′ ∈ P(Fq [sl]). If we know the basis {G+(λl ) | λl ∈
�l(sl;w′)}, then we can compute the involution of Fq [sl]〈w′〉 by solving a uni-
triangular system. Since the canonical basis {G−(λl ) | λl ∈ �l(sl;w′)} is uniquely
determined by the involution of Fq [sl]〈w′〉, the basis {G−(λl ) | λl ∈ �l(sl;w′)} is
uniquely determined by the basis {G+(λl ) | λl ∈ �l(sl;w′)} (and conversely). Thus
(i) implies (ii). (For a different proof of this fact, one can also apply [19, Thm
5.15].) �

Example 3.10 Take n = 3, l = 2, sl = (1,0), w = wt(|∅l , sl〉) − (2α0 + 3α1 + α2)

and i = 2. One can easily check that w + αi is not a weight of Fq [sl]. The elements
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of �l(sl;w) are

(

(1), (5)
)

,
(

(4), (2)
)

,
(

(4,2),∅)

,
(

(1), (2,2,1)
)

,
(

(2,2), (2)
)

,
(

(1,1), (2,1,1)
)

,
(

(1,1,1,1), (2)
)

,
(

(1), (2,1,1,1)
)

,

and their respective images by the map σi are

(

(2), (6,1)
)

,
(

(5), (3,1)
)

,
(

(5,3,1),∅)

,
(

(2), (3,2,2)
)

,
(

(2,2,1), (3,1)
)

,
(

(2,1,1), (3,1,1)
)

,
(

(2,1,1,1), (3,1)
)

,
(

(2), (3,1,1,1,1)
)

.

With obvious notation, the transition matrices of the canonical bases of Fq [sl]〈w〉
are

�+
sl
〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q 1 . . . . . .

0 q 1 . . . . .

q 0 0 1 . . . .

q q2 q 0 1 . . .

q2 0 0 q q 1 . .

0 0 q 0 q2 q 1 .

0 0 0 q2 0 q 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(1), (5)
)

(

(4), (2)
)

(

(4,2),∅)

(

(1), (2,2,1)
)

(

(2,2), (2)
)

(

(1,1), (2,1,1)
)

(

(1,1,1,1), (2)
)

(

(1), (2,1,1,1)
)

and

�−
sl
〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q−1 1 . . . . . .

q−2 −q−1 1 . . . . .

−q−1 0 0 1 . . . .

0 0 −q−1 0 1 . . .

q−2 −q−1 q−2 −q−1 −q−1 1 . .

−q−3 q−2 0 q−2 0 −q−1 1 .

0 q−2 −q−3 0 q−2 −q−1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(1), (5)
)

(

(4), (2)
)

(

(4,2),∅)

(

(1), (2,2,1)
)

(

(2,2), (2)
)

(

(1,1), (2,1,1)
)

(

(1,1,1,1), (2)
)

(

(1), (2,1,1,1)
)

.

In the same way, the transition matrices of the canonical bases of Fq [sl]〈σi.w〉 are

�+
sl
〈σi.w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q 1 . . . . . .

0 q 1 . . . . .

q 0 0 1 . . . .

q q2 q 0 1 . . .

q2 0 0 q q 1 . .

0 0 q 0 q2 q 1 .

0 0 0 q2 0 q 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(2), (6,1)
)

(

(5), (3,1)
)

(

(5,3,1),∅)

(

(2), (3,2,2)
)

(

(2,2,1), (3,1)
)

(

(2,1,1), (3,1,1)
)

(

(2,1,1,1), (3,1)
)

(

(2), (3,1,1,1,1)
)

and
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�−
sl
〈σi.w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q−1 1 . . . . . .

q−2 −q−1 1 . . . . .

−q−1 0 0 1 . . . .

0 0 −q−1 0 1 . . .

q−2 −q−1 q−2 −q−1 −q−1 1 . .

−q−3 q−2 0 q−2 0 −q−1 1 .

0 q−2 −q−3 0 q−2 −q−1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(2), (6,1)
)

(

(5), (3,1)
)

(

(5,3,1),∅)

(

(2), (3,2,2)
)

(

(2,2,1), (3,1)
)

(

(2,1,1), (3,1,1)
)

(

(2,1,1,1), (3,1)
)

(

(2), (3,1,1,1,1)
)

,

in agreement with Theorem 3.9. �

4 Comparison of canonical bases of Fq[sl]〈w〉 for w in a given coset in
P(�s)/Zδ and different multi-charges sl

Notation 4.1 For al , bl ∈ Z
l (s), introduce the shorter notation

d(al ,bl) := �(al , n)− �(bl , n) ∈ Z. (57)

Throughout this section we fix sl ∈ Z
l (s), w ∈ P(Fq [sl]) and i ∈ [[0; l − 1]]. Fi-

nally, let (sn, ẇ) ∈ Z
n(s)× Ṗ(�s) be the pair such that Fq [sl]〈w〉 = Fp[sn]•〈ẇ〉 (see

Proposition 2.12 (i)). �

4.1 A second theorem of comparison

Recall that Ẇl = 〈σ̇0, . . . , σ̇l−1〉 ∼= ˜Sl is the Weyl group of Up(̂sll ).

Definition 4.2 Keep Notation 4.1. By analogy with Definition 3.4, define a bijection

σ̇i : �n(sn; ẇ) → �n(sn; σ̇i .ẇ) (58)

which enjoys similar properties as the bijections σj from (54). Since Fq [sl]〈w〉 =
Fp[sn]•〈ẇ〉, we have a bijection between the standard basis of Fq [sl]〈w〉 (as a sub-
space of Fq [sl]) and the standard basis of Fp[sn]•〈ẇ〉 (as a subspace of Fp[sn]•).

We thus have a bijection �l(sl;w)
∼−→ �n(sn; ẇ). Put t l := σ̇i .sl . The same argu-

ment gives, by Lemma 2.14, a bijection �|(t |;w+d(s|, t |) δ
) ∼−→ �n(sn; σ̇i .ẇ). We

therefore have the following commutative diagram of bijections, in which the dashed
arrow will still be denoted by σ̇i .

�n(sn; ẇ)
σ̇i−→ �n(sn; σ̇i .ẇ)

↑ ↑
�l(sl;w)

∼��� �l
(

σ̇i .sl ; w + d(sl , σ̇i .sl ) δ
)

. �

Example 4.3 Take n = 2, l = 3, sl = (0,2,−1) and i = 2. Note that d(sl , σ̇i .sl) = 0
in this case. Take λl =

(∅, (2),∅) ∈ �l(sl;w), where w := wt(|∅l , sl〉) − (α0 + α1).
By Proposition 2.12 (i), we have ẇ = ẇt(|∅n, sn〉•) − (2α̇0 + 3α̇1 + α̇2) with
sn := (1,0). We have |λl , sl〉 = |λn, sn〉• with λn := (

(1), (5)
)

. One computes
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μn := σ̇i (λn) =
(

(2), (6,1)
)

(see Example 3.10). Let t l := σ̇i .sl = (0,−1,2). Then
σ̇i (λl) is the l-multi-partition such that |σ̇i (λl ), t l〉 = |μn, sn〉•, namely σ̇i (λl ) =
(∅,∅, (2)

)

. �

Since {G−(λn, sn)
• | λn ∈ �n} is a lower global crystal basis of Fp[sn]•, one can

prove for the Fock space Fp[sn]• an analogue of Theorem 3.9. Rephrasing this result
in terms of the indexation λl leads to the following result.

Theorem 4.4 Keep Notation 4.1 and assume that ẇ + α̇i is not a weight of Fp[sn]•.
Let σ̇i : �l(sl;w) → �l

(

σ̇i .sl ; w + d(sl , σ̇i .sl ) δ
)

be the bijection from Defini-
tion 4.2. Then we have, for λl , μl ∈ �l(sl;w), ε =±1:

�ε
σ̇i (λl ),σ̇i (μl ); σ̇i .sl

(q) = �ε
λl ,μl; sl

(q).

Proof Apply the analogue for Fp[sn]• of Theorem 3.9 mentioned above, then use
Lemma 2.14 and (52). �

Example 4.5 (see Examples 3.10 and 4.3) Take n, l, sl , w and i as in Example
4.3 (namely, n := 2, l := 3, sl := (0,2,−1), w := wt(|∅l , sl〉) − (α0 + α1) and i :=
2). Note that ẇ + α̇i /∈ Ṗ(Fp[sn]•) (see Example 3.10). The elements of �l(sl;w)

are

(∅, (2),∅)

,
(∅,∅, (1,1)

)

,
(∅, (1), (1)

)

,
(∅,∅, (2)

)

,
(

(2),∅,∅)

,
(

(1),∅, (1)
)

,
(

(1,1),∅,∅)

,
(∅,∅, (1,1)

)

,

and their respective images by the map σ̇i are

(∅,∅, (2)
)

,
(∅,∅, (1,1)

)

,
(∅, (1), (1)

)

,
(

(2),∅,∅)

,
(∅, (2),∅)

,
(

(1), (1),∅)

,
(

(1,1),∅,∅)

,
(∅, (1,1),∅)

,

On the one hand, the transition matrices of the canonical bases of Fq [sl]〈w〉
are

�+
sl
〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q 1 . . . . . .

q2 q 1 . . . . .

0 0 q 1 . . . .

q 0 0 0 1 . . .

q2 q q2 q q 1 . .

q3 q2 0 0 q2 q 1 .

0 q2 q3 q2 0 q 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(∅, (2),∅)

(∅,∅, (1,1)
)

(∅, (1), (1)
)

(∅,∅, (2)
)

(

(2),∅,∅)

(

(1),∅, (1)
)

(

(1,1),∅,∅)

(∅,∅, (1,1)
)

and
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�−
sl
〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

−q−1 1 . . . . . .

0 −q−1 1 . . . . .

−q−1 q−2 −q−1 1 . . . .

−q−1 0 0 0 1 . . .

q−2 0 0 −q−1 −q−1 1 . .

0 0 −q−1 q−2 0 −q−1 1 .

0 0 0 0 q−2 −q−1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(∅, (2),∅)

(∅,∅, (1,1)
)

(∅, (1), (1)
)

(∅,∅, (2)
)

(

(2),∅,∅)

(

(1),∅, (1)
)

(

(1,1),∅,∅)

(∅,∅, (1,1)
)

.

On the other hand, the transition matrices of the canonical bases of Fq [σ̇i .sl]〈w〉
are

�+
σ̇i .sl

〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q 1 . . . . . .

q2 q 1 . . . . .

0 0 q 1 . . . .

q 0 0 0 1 . . .

q2 q q2 q q 1 . .

q3 q2 0 0 q2 q 1 .

0 q2 q3 q2 0 q 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(∅,∅, (2)
)

(∅,∅, (1,1)
)

(∅, (1), (1)
)

(

(2),∅,∅)

(∅, (2),∅)

(

(1), (1),∅)

(

(1,1),∅,∅)

(∅, (1,1),∅)

and

�−
σ̇i .sl

〈w〉(q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

−q−1 1 . . . . . .

0 −q−1 1 . . . . .

−q−1 q−2 −q−1 1 . . . .

−q−1 0 0 0 1 . . .

q−2 0 0 −q−1 −q−1 1 . .

0 0 −q−1 q−2 0 −q−1 1 .

0 0 0 0 q−2 −q−1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(∅,∅, (2)
)

(∅,∅, (1,1)
)

(∅, (1), (1)
)

(

(2),∅,∅)

(∅, (2),∅)

(

(1), (1),∅)

(

(1,1),∅,∅)

(∅, (1,1),∅)

,

in agreement with Theorem 4.4 (note that d(sl , σ̇i .sl ) = 0 in this case). �

4.2 A sufficient condition for Theorem 4.4

Keep again Notation 4.1. We can apply Theorem 4.4 if ẇ + α̇i is not a weight of
Fp[sn]•. By [7, Prop. 3.6 (iv)], this condition holds if and only if ėi .(|λl , sl〉) = 0 for
all λl ∈ �l(sl;w). We therefore have to check, for all λl ∈ �l(sl;w), whether λn has
a removable i-node, where λn ∈ �n is related to λl by |λl , sl〉 = |λn, sn〉•. It is not
very convenient to make such tests in practice when the cardinality of �l(sl;w) is
large. We shall therefore give a sufficient condition on sl and w that ensures, without
further computation, that ẇ + α̇i is not a weight of Fp[sn]•.

Notation 4.6 Let sl ∈ Z
l (s), w ∈ P(Fq [sl]) and i ∈ [[0; l − 1]]. By (32), the integer

Mi(λl; sl;n) only depends on sl and w, but not on λl ∈ �l(sl;w). From now on, this
number will be denoted by Mi(w; sl). �



404 J Algebr Comb (2007) 26: 383–414

Lemma 4.7 Keep Notation 4.1. Then for all σ̇ ∈ Ẇl , 0 ≤ i ≤ n − 1, w ∈ P(Fq [sl]),
we have

Mi

(

w + d(sl , σ̇ .sl ) δ ; σ̇ .sl

) = Mi(w; sl ).

Proof By (32) and the definition of the integers Mj

(

w + d(sl , σ̇ .sl ) δ ; σ̇ .sl

)

and
d(sl , σ̇ .sl ), we have

w + d(sl , σ̇ .sl ) δ

= wt(|∅l , σ̇ .sl〉) −
n−1
∑

j=0

Mj

(

w + d(sl , σ̇ .sl) δ ; σ̇ .sl

)

αj

= wt(|∅l , sl〉) + d(sl , σ̇ .sl) δ −
n−1
∑

j=0

Mj

(

w + d(sl , σ̇ .sl ) δ ; σ̇ .sl

)

αj ,

whence w = wt(|∅l , sl〉) −
n−1
∑

j=0

Mj

(

w + d(sl , σ̇ .sl ) δ ; σ̇ .sl

)

αj . The lemma follows.

�
Lemma 4.8 Keep Notation 4.1. Assume that

si − si+1 ≥ n
(

M0(w ; sl) + 1
)

(where we put s0 := n+ sl if i = 0). Then ẇ + α̇i is not a weight of Fp[sn]•.

Proof Assume on the contrary that ẇ + α̇i is a weight of Fp[sn]•. Let (λl , t l ) ∈
�l × Z

l (s) be such that ẇt(|λl , t l〉) = ẇ + α̇i . Write ẇ = dδ̇ + ∑l
j=1 bj �̇j−1 with

b1, . . . , bl, d ∈ Z. Then by (2), we have ẇ + α̇i = (d + δi,0)δ̇ +
∑l

j=1 (bj + ai, j−1)�̇j−1, where (ai′, j ′)0≤i′,j ′≤l−1 is the Cartan matrix of ̂sll . Since

the vectors �̇0, . . . , �̇l−1 and δ̇ are linearly independent, we get by (33) the following
relations:

−(

�(t l , n)+ M0(λl; t l;n)
) = −(

�(sl , n)+ M0(w ; sl )
) + δi,0, (∗)

t l =
{

(s1, . . . , si−1, si + 1, si+1 − 1, si+2, . . . , sl) if i ≥ 1,

(s1 − 1, s2, . . . , sl−1, sl + 1) if i = 0.

(∗∗)

For a ∈ Z, denote temporarily by a ∈ [[0;n − 1]] the residue of a modulo n. Using
(∗∗) and the fact that s0 − s0 = 1 + (sl − sl), we get

�(t l , n) = �(sl , n)+ 1

n
(si − si+1) + 1

n
(si+1 − si) + δsi+1 ,0 − δi,0. (∗ ∗ ∗)
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Moreover, by assumption we have M0(w ; sl) − 1
n
(si − si+1) ≤ −1. This together

with (∗) and (∗ ∗ ∗) imply

M0(λl; t l;n) = −1

n
(si+1 − si) − δsi+1 ,0 + M0(w ; sl ) − 1

n
(si − si+1)

≤ −1

n
(si+1 − si) − δsi+1 ,0 − 1 < 0,

which is absurd since M0(λl; t l;n) is the number of 0-nodes of the multi-partition
λl . �

Remark 4.9 The lower bound si − si+1 ≥ n
(

M0(w ; sl ) + 1
)

from Lemma 4.8 is
certainly not the best to ensure that ẇ+ α̇i /∈ Ṗ(Fp[sn]•). We actually conjecture that
the latter statement holds if

si − si+1 ≥ M0(w ; sl) + · · · +Mn−1(w ; sl )

(this lower bound is in general better). �

4.3 A graph containing multi-charges conjugated under the action of Ẇl

Definition 4.10 Fix r l ∈ Al,n(s) and M ∈ N
∗. (Recall that the set Al,n(s) defined

by (38) is a fundamental domain for the action of Ẇl .) For sl = (s1, . . . , sl) ∈ Ẇl.r l ,

t l ∈ Ẇl.r l , 0 ≤ i ≤ l − 1, write sl
i−→ t l if t l = σ̇i .sl and si − si+1 ≥ M (if i = 0, we

put s0 := n + sl). Let �(M) be the graph containing Ẇl.r l as set of vertices and the

arrows sl
i−→ t l (sl , t l ∈ Ẇl.r l , 0 ≤ i ≤ l − 1). �

Remark 4.11 Note that �(1) is connected. More generally, we claim that �(M)

has finitely many connected components. To see this, introduce the following no-
tation. For sl ∈ Ẇl.r l , let σ̇ (sl) ∈ Ẇl be the element of minimal length such that
sl = σ̇ (sl ).r l , and let �(sl ) denote the length of σ̇ (sl). Now, for each connected
component C in �(M), choose sl (C) ∈ C such that �(sl(C)) is minimal in the set
{�(t l ) | t l ∈ C}. (We think that this determines sl(C) in a unique way, but we do not
have the proof for this fact.) One can then show easily that sl (C) lies in the finite set

{(t1, . . . , tl) ∈ Z
l (s) | ∀ 0 ≤ i ≤ l − 1, ti+1 − ti ≤ M − 1},

which proves the claim. �

We now give a relation between (the connected components of) �(M) and the
comparison of canonical bases. We shall give an important application of this result
in Section 5.

Proposition 4.12 Let r l ∈ Al,n(s) and w ∈ P(Fq [r l]). Put M := n(M0(w ; r l ) + 1).
Let sl and t l be two multi-charges in the same connected component of �(M)

(in particular, sl and t l are in the Ẇl-orbit of r l). Then the canonical bases of
Fq [sl]〈w + d(r l , sl ) δ〉 and Fq [t l]〈w + d(r l , t l) δ〉 are similar in the sense of Def-
inition 3.2.
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Proof We may assume that sl
i−→ t l with i ∈ [[0; l − 1]]. With obvious notation, we

have by Lemma 4.7 : si − si+1 ≥ n(M0(w ; r l )+1) = n
(

M0(w+d(r l , sl) δ ; sl)+1
)

.
We can therefore apply Lemma 4.8 and then Theorem 4.4 to conclude. �

With the notation above, Proposition 4.12 and Remark 4.11 show that there are
only finitely many similarity classes of canonical bases of Fq [sl]〈w + d(r l , sl ) δ〉,
where sl ranges over the Ẇl-orbit of r l and (r l ,w) is fixed.

5 Comparison of canonical bases for dominant multi-charges

Definition 5.1 Let M ∈ N. We say that (x1, . . . , xN) ∈ R
N is M-dominant if for all

1 ≤ i ≤ N − 1, we have

xi − xi+1 ≥ M. �

Throughout Section 5, we keep the following notation.

5.1 Notation

* Recall that R
l(s) = {(x1, . . . , xl) ∈ R

l | x1 + · · · + xl = s}. The subset of R
l(s)

formed by the M-dominant elements will be denoted by CM .

* The group Ẇl
∼= ˜Sl is a semidirect product of the finite symmetric group Sl and

an Abelian group Q̇ which is free of rank l − 1. More precisely, Q̇ is spanned by
τ̇1, . . . , τ̇l−1, where τ̇i (1 ≤ i ≤ l − 1) acts on Z

l(s) by

τ̇i .(s1, . . . , sl) = (s1, . . . , si−1, si +n, si+1−n, si+2, . . . , sl)
(

(s1, . . . , sl) ∈ Z
l (s)

)

(59)
(since Ẇl acts faithfully on Z

l (s), this determines τ̇i completely).

* For al = (a1, . . . , al) ∈ Z
l , put

Lal
:= {(s1, . . . , sl) ∈ Z

l (s) | ∀1 ≤ i ≤ l, si ≡ ai (mod n)}. (60)

Note that Q̇ acts transitively on Lal
; in particular, two elements of Lal

lie in a same
Ẇl-orbit.

* For sl , t l ∈ Z
l (s) and M ∈ N, write

sl ≡
M

t l (61)

if Lsl
= Lt l , and there exist s

(0)
l , . . . , s

(r)
l ∈ Lsl

∩ CM such that s
(0)
l = sl , s

(r)
l = t l

and for all 1 ≤ i ≤ r , we have s
(i)
l ∈ {τ̇±1

j .s
(i−1)
l | 1 ≤ j ≤ l − 1}. In other words,

put into a non-oriented graph all the elements of Z
l (s) and draw an edge between

two vertices if they are Ẇl-conjugated to each other by a generator of Q̇ or its
inverse. Then sl ≡

M
t l if and only if there exists a path in this graph connecting sl

and t l through M-dominant vertices (including sl and t l).
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* Let r l = (r1, . . . , rl) ∈ Al,n(s) and w ∈ P(Fq [r l]). Recall the definition of the in-
tegers d(r l , sl ) (sl ∈ Z

l(s)) from (57) and Mi(w; r l) (0 ≤ i ≤ n − 1) from Nota-
tion 4.6.

5.2 A third theorem of comparison

The goal of Section 5 is to prove the following theorem.

Theorem 5.2
Keep Notation 5.1. Then there exists N ∈ N (which only depends on n, l and

M0(w; r l )) such that for all N -dominant multi-charges sl , t l ∈ Ẇl.r l with Lsl
= Lt l ,

the canonical bases of Fq [sl]〈w+ d(r l , sl) δ〉 and Fq [t l]〈w+ d(r l , t l) δ〉 are similar.
�

Remark 5.3 The proof of Theorem 5.1 will provide an integer N of the form

N = nM0(w; r l) + c,

where c is a constant that can be explicitly calculated. This c a priori depends on the
multi-charge r l ∈ Al,n(s) that we have fixed in Notation 5.1. However, by taking a
maximum over the finite set Al,n(s), we can make c independent of r l (see the proof
of Proposition 5.6). More precisely, by Remark 5.13 we can take c ≥ n(l2 + l + 3).
However, the corresponding value of N is probably not optimal. Indeed, according to
Remark 4.9 and explicit calculus of canonical bases, we conjecture that Theorem 5.2
holds if we replace this N by

N ′ := M0(w; r l) + · · · +Mn−1(w; r l)

(the latter lower bound is in general better). �
Example 5.4 Take n = 3, l = 2, r l = (1,0) and w = wt(|∅l , r l〉) − (α0 + α1 + α2).
With notation from Theorem 5.2 and Remark 5.3, we can take N = 30 and N ′ = 3.
Note that all the multi-charges s

(k)
l := (3k + 1,−3k) (k ∈ Z) are in the Ẇl-orbit of

r l and they have the same pair of residues modulo n. Put wk := w + d(r l , s
(k)
l ) δ

(k ∈ Z). By Theorem 5.2, the canonical bases of Fq [s(k)
l ]〈wk〉, k ≥ 5 are pairwise

similar. By Remark 5.3, the canonical bases of Fq [s(k)
l ]〈wk〉, k ≥ 1 should be pairwise

similar, which can be actually checked for 1 ≤ k ≤ 5 by explicit calculus. Namely,
the transition matrices �ε

k(q) of the canonical bases of Fq [s(k)
l ]〈wk〉 (k ≥ 1, ε =±1)

are

�+
k (q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

q 1 . . . . . .

q2 q 1 . . . . .

0 q 0 1 . . . .

0 q2 q q 1 . . .

0 0 q 0 0 1 . .

0 0 q2 0 q q 1 .

0 0 0 q q2 0 q 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(3),∅)

(

(2,1),∅)

(

(2), (1)
)

(

(1,1,1),∅)

(

(1), (1,1)
)

(∅, (3)
)

(∅, (2,1)
)

(∅, (1,1,1)
)

and
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�−
k (q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

−q−1 1 . . . . . .

0 −q−1 1 . . . . .

q−2 −q−1 0 1 . . . .

0 q−2 −q−1 −q−1 1 . . .

−q−1 q−2 −q−1 0 0 1 . .

q−2 −q−3 q−2 q−2 −q−1 −q−1 1 .

−q−3 0 0 0 0 q−2 −q−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(3),∅)

(

(2,1),∅)

(

(2), (1)
)

(

(1,1,1),∅)

(

(1), (1,1)
)

(∅, (3)
)

(∅, (2,1)
)

(∅, (1,1,1)
)

.

One can check moreover that

�+
0 (q) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 . . . . . . .

0 1 . . . . . .

0 q 1 . . . . .

q q 0 1 . . . .

0 q2 q q 1 . . .

0 0 q2 0 q 1 . .

q2 0 0 q 0 0 1 .

0 0 0 q2 q 0 q 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

(3),∅)

(

(2,1),∅)

(

(2), (1)
)

(

(1,1,1),∅)

(

(1), (1,1)
)

(∅, (3)
)

(∅, (2,1)
)

(∅, (1,1,1)
)

.

Note that �+
1 (q) has 22 nonzero entries, whereas �+

0 (q) has only 21 nonzero entries.

As a consequence, the canonical bases of Fq [s(k)
l ]〈wk〉 for k = 0 and k = 1 are not

similar. �

The proof of Theorem 5.2 relies on the two following propositions.

Proposition 5.5 Keep Notation 5.1. Let sl ∈ Ẇl.r l be an M-dominant multi-charge
with M := n(M0(w; r l ) + 2). Let 1 ≤ i ≤ l − 1 and t l := τ̇i .sl . Then the canonical
bases of Fq [sl]〈w + d(r l , sl ) δ〉 and Fq [t l]〈w + d(r l , t l ) δ〉 are similar.

Proof We give the proof for 2 ≤ i ≤ l − 3 (the proof for i = 1, i = l − 2 and i = l − 1
is similar). One easily checks that

τ̇i = σ̇i−1σ̇i−2 · · · σ̇1σ̇0σ̇l−1 · · · σ̇i+2σ̇i+1σ̇i+2 · · · σ̇l−1σ̇0σ̇1 · · · σ̇i .

Let 0 ≤ k ≤ 2l − 2. Denote by τ̇i[k] the right factor of length k in this word (we thus
have τ̇i[0] = id, τ̇i[1] = σ̇i , τ̇i[2] = σ̇i−1σ̇i and so on). Put

s
(k)
l = (s

(k)
1 , . . . , s

(k)
l ) := τ̇i[k].sl .

For 1 ≤ k ≤ 2l − 2, let ik ∈ [[0; l − 1]] be such that τ̇i[k] = σ̇ik τ̇i[k − 1]. Let now
0 ≤ k ≤ 2l − 3. By computing the action of τ̇i[k] on sl , one can show the following:

(i) s
(k)
ik+1

, s
(k)
ik+1+1 ∈ {s1, . . . , sl, sl + n, si + n, si+1 − n}.

(ii) If s
(k)
ik+1

= sa + εn and s
(k)
ik+1+1 = sa′ + ε′n with a, a′ ∈ [[1; l]], ε, ε′ ∈ {−1,0,1},

then a �= a′ and εε′ = 0.
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Note moreover that by assumption on sl , we have for all a, b ∈ [[1; l]] such that a �= b,
∣

∣sb − sa
∣

∣ ≥ M
∣

∣b − a
∣

∣ ≥ M . This together with (i), (ii) imply that

∣

∣s
(k)
ik+1

− s
(k)
ik+1+1

∣

∣ ≥ M − n.

As a consequence, �(M − n) contains the arrow s
(k)
l

ik−→ s
(k+1)
l or s

(k+1)
l

ik−→ s
(k)
l .

It follows that sl and t l are in the same connected component of �(M − n) =
�

(

n(M0(w; r l ) + 1)
)

. We can therefore apply Proposition 4.12 to conclude. �

Proposition 5.6 Keep Notation 5.1. Let M ∈ N. Then there exists c ∈ Z (which only
depends on l and n, but not on M nor r l) such that for all (M + c)-dominant multi-
charges sl , t l ∈ Ẇl.r l with Lsl

= Lt l , we have sl ≡
M

t l .

Proof We shall prove this proposition in Section 5.3. �

Proof of Theorem 5.2 from Propositions 5.5 and 5.6. Let M := n(M0(w; r l ) + 2).
Let c ∈ Z be the integer given by Proposition 5.6 and put N := M + c. Let sl , t l ∈
Ẇl.r l be two N -dominant multi-charges such that Lsl

= Lt l . Put L := Lsl
= Lt l . By

Proposition 5.6, there exist s
(0)
l , . . . , s

(r)
l ∈ L ∩ CM such that s

(0)
l = sl , s

(r)
l = t l and

for all 1 ≤ i ≤ r , we have s
(i)
l ∈ {τ̇±1

j .s
(i−1)
l | 1 ≤ j ≤ l − 1}. Let 1 ≤ i ≤ r . Since

L
s
(i−1)
l

= L
s
(i)
l

= L, we have s
(i−1)
l , s

(i)
l ∈ Ẇl.r l . By Proposition 5.5, the canonical

bases of Fq [s(i−1)
l ]〈w + d(r l , s

(i−1)
l ) δ〉 and Fq [s(i)

l ]〈w + d(r l , s
(i)
l ) δ〉 are similar.

Theorem 5.2 follows. �

5.3 Proof of Proposition 5.6

The idea of the proof is the following. Let sl and t l be two multi-charges as in Propo-
sition 5.6 and put L := Lsl

= Lt l . First, we introduce a suitable change of coordinates
ϕ that maps L to Z

l−1 and such that al ≡
M

bl if and only if ϕ(al ) is Z-connected to

ϕ(bl ), that is there exists a piecewise affine path connecting ϕ(al) to ϕ(bl ) with edges
parallel to the axes of coordinates of Z

l−1 (see Lemma 5.8). Roughly speaking, the
aim is to replace the lattice L by Z

l−1 and the action of Q̇ by the obvious action of
Z

l−1 by translations. Doing this, we replace the set of M-dominance CM by a cer-
tain cone (that is, an intersection of half-spaces), temporarily denoted by CM . Note
that two arbitrary points in CM ∩Z

l−1 are not necessarily Z-connected in CM . How-
ever, and this is the second step of the proof, we shall construct an integer c such
that CM+c ⊂ CM and any two points in CM+c ∩ Z

l−1 are Z-connected in CM (see
Proposition 5.12).

Notation 5.7 In addition to Notation 5.1, we shall use for the proof the following
notation.

* For x = (x1, . . . , xN) ∈ R
N (N ∈ N

∗), put

�x� := (�x1�, . . . , �xN�) ∈ Z
N (62)

and define  x! in a similar way.
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* Let

A :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(63)

denote the Cartan matrix of sll . In particular, A has l − 1 rows and l − 1
columns.

* For 1 ≤ j ≤ l − 1, let εj := (δi,j )1≤i≤l−1 be the j -th vector of the natural basis of
R

l−1. Put also 1 := ε1 + · · · + εl−1.

* Define a partial ordering on the set of matrices (or vectors) of a given size with
entries in R by writing x = (xi)i∈I ≤ y = (yi)i∈I if xi ≤ yi for all i ∈ I . By defini-
tion, the maximum of x and y is max(x,y) := (max(xi, yi))i∈I . One may similarly
define the maximum of a greater number of matrices (or vectors) of a given size
provided the max in the right hand-side above still exists. Now, for b ∈ R

l−1 define
the cones

Cb := {x ∈ R
l−1 | A.x ≥ b} and C′

b := {x ∈ R
l−1 | A.x ≤ b}. (64)

The unique vector ω = ω(b) ∈ R
l−1 such that A.ω = b is called the vertex of Cb

(or C′
b).

* For M ∈ N, let b(M) = b(M;n, l, r l ) = (b
(M)
1 , . . . , b

(M)
l−1 ) ∈ R

l−1 denote the vector
defined by

b
(M)
i := (M + ri+1 − ri)/n (1 ≤ i ≤ l − 1). (65)

* Define a map ϕ : (s1, . . . , sl) ∈ R
l(s) �→ (x1, . . . , xl−1) = ϕ(s1, . . . , sl) ∈ R

l−1

by

xi := 1

n

i
∑

j=1

(sj − rj ) (1 ≤ i ≤ l − 1). (66)

Conversely, let ψ : (x1, . . . , xl−1) ∈ R
l−1 �→ (s1, . . . , sl) = ψ(x1, . . . , xl−1) ∈

R
l (s) be the map defined by

si := n(xi − xi−1) + ri (1 ≤ i ≤ l), (67)

where we put x0 = xl := 0. (Note that ϕ and ψ depend on the multi-charge
r l ∈ Al,n(s) that we have fixed in Notation 5.1.) �

Lemma 5.8 Keep Notation 5.7. Then we have the following.
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(i) The maps ϕ : R
l (s) → R

l−1 and ψ : R
l−1 → R

l (s) are bijections inverse to
each other.

(ii) We have ψ(Zl−1) = Lr l
, and for 1 ≤ i ≤ l − 1, (x1, . . . , xl−1) ∈ Z

l−1, we have

ψ(x1, . . . , xi + 1, . . . , xl−1) = τ̇i .ψ(x1, . . . , xl−1).

(iii) For M ∈ N, we have ϕ(CM) = Cb(M).

Proof The proof of (i) and (ii) is straightforward. With obvious notation, we have the
equivalence

si − si+1 ≥ M ⇐⇒−xi−1 + 2xi − xi+1 ≥ (M + ri+1 − ri)/n ;
Statement (iii) follows. �

Definition 5.9 Let D ⊂ R
l−1. We say that x, y ∈ D are Z-connected in D if there

exist vectors x(0), . . . ,x(N) ∈ D ∩ Z
l−1 such that x(0) = x, x(N) = y and for all

0 ≤ i ≤ N − 1, we have x(i+1) − x(i) ∈ {±εj | 1 ≤ j ≤ l − 1}; in particular, we have
x, y ∈ Z

l−1. In this case, write x −−−−
D

y. �

In order to prove Proposition 5.6, we have to deal with Z-connected points in cones
Cb (b ∈ R

l−1). Note that two points in Cb ∩ Z
l−1 are not necessary Z-connected in

Cb. For example, take l = 3 (so l − 1 = 2) and b = (0,0). Then x := (1,1) and
y := (0,0) are two points in Cb which are not Z-connected in Cb, because none of
the points (0,±1) and (±1,0) lies in Cb. However, given b ∈ R

l−1, one can construct
c ≤ b such that any two points in Cb with integer coordinates are Z-connected in Cc.
This leads to the introduction of the following set. For b ∈ R

l−1, put

A(b) := {c ∈ R
l−1 | c ≤ b and ∀x,y ∈ Cb, x −−−−

Cc

y}. (68)

Proposition 5.10 Let b = (b1, . . . , bl−1) ∈ R
l−1. Then we have the following.

(i) The set A(b) is nonempty.
(ii) For all c ∈A(b), we have c′ ≤ c ⇒ c′ ∈A(b).

(iii) The map b �→A(b) is increasing.
(iv) For all b′ ∈ R

l−1 such that A−1.(b − b′) ∈ Z
l−1, we have A(b) =A(b′) + (b −

b′).

Proof We prove (i) and leave the other statements to the reader. Let ω =
(ω1, . . . ,ωl−1) be the vertex of Cb, b′ := b + 2.1 and ω′ be the vertex of Cb′ .
Let ω′′ = (ω′′

1, . . . ,ω′′
l−1) be equal to max(ω′,  ω!) and let ω′′

0 = ω′′
l := 0. Now let

c = (c1, . . . , cl−1) ∈ R
l−1 be the vector defined by

ci := −ω′′
i−1 + 2ωi − ω′′

i+1 (1 ≤ i ≤ l − 1).

We shall show that c ∈A(b). It is well-known that A−1 ≥ 0, whence x ∈ Cb ⇒ x ≥ ω
and y ∈ C′

b′ ⇒ y ≤ ω′. Since b ≤ b′, we get ω ∈ C′
b′ and therefore ω ≤ ω′ ≤ ω′′.
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Consider the set

P := {x ∈ R
l−1 | ω ≤ x ≤ ω′′}.

The argument above shows that Cb ∩ C′
b′ ⊂ P, and by construction we also have

 ω! ∈ P. By definition of c, we have ω ∈ P ⊂ Cc, whence c ≤ b. Let us now show that
any x ∈ Cb ∩ Z

l−1 is Z-connected to  ω! in Cc. Note that for x = (x1, . . . , xl−1) ∈
Cb ∩ Z

l−1, we have x ≥ ω (because x ∈ Cb) and therefore x ≥  ω!. We can thus
argue by induction on

N(x) :=
l−1
∑

i=1

(xi −  ωi!) ∈ N.

If N(x) = 0, then we have x =  ω! ∈ P ⊂ Cc and we are done. Assume now that
x ∈ Cb ∩ Z

l−1, N(x) > 0, and consider two cases. Assume first that x ∈ C′
b′ . Then

we have x ∈ Cb ∩ C′
b′ ⊂ P; moreover, we have  ω! ∈ P, so x −−−−

P
 ω! because any

two points in P ∩Z
l−1 are Z-connected. Since P ⊂ Cc, we can conclude in this case.

Assume now that x /∈ C′
b′ . Let 1 ≤ i ≤ l−1 be such that −xi−1 +2xi −xi+1 > bi +2

(where we put x0 = xl := 0). Consider the vector

y = (y1, . . . , yl−1) := (x1, . . . , xi−1, xi − 1, xi+1, . . . , xl−1) ∈ Z
l−1

and put y0 = yl := 0. Note that for 1 ≤ j ≤ l − 1, we have

−yj−1 + 2yj − yj+1 ≥−xj−1 + 2xj − xj+1 − 2δi,j .

Using this fact together with the definition of i and the assumption x ∈ Cb, we get
y ∈ Cb. Moreover, since N(y) = N(x) − 1, we have by induction y −−−−

Cc

 ω!. Note

also that x −−−−
Cc

y because c ≤ b, hence x −−−−
Cc

 ω!. �

Keep Notation 5.7. We now construct an integer c such that for all M ∈ N, we
have b(M) ∈A

(

b(M + c)
)

. Let b ∈ R
l−1. By Proposition 5.10, we can define

mM = mM(n, l, r l ) := max
c

min
1≤i≤l−1

(ci) ∈ Z, (69)

where c = (c1, . . . , cl−1) ranges over the set A
(

b(M;n, l, r l)
) ∩ Z

l−1.

Lemma 5.11 The sequence (mM)M∈N defined by (69) is increasing. Moreover, we
have mnlM = lM + m0 for all M ∈ N.

Proof The first statement follows from the fact that the maps M → b(M) and b �→
A(b) are increasing (the latter by Proposition 5.10). Let M ∈ N, b := b(nlM) and
b′ := b(0). Since det(A) = l, the Cramer formula shows that A−1.(b − b′) ∈ Z

l−1.
Applying Proposition 5.10 (iv) to the pair (b,b′) yields A

(

b(nlM)
) = A

(

b(0)
) +

(lM, . . . , lM). The second statement follows. �

Put m
(min)
0 := min

al∈Al,n(s)
m0(n, l,al ) ∈ R. This is well-defined because Al,n(s) is a

finite set.
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Proposition 5.12 With the notation above, put

c := n +  −m
(min)
0 n! + nl ∈ Z.

Then c does not depend on r l ∈ Al,n(s) and for all M ∈ N, we have b(M) ∈A
(

b(M+
c)

)

.

Proof The first statement is clear. Let c = (c1, . . . , cl−1) ∈ A(b(M + c)) ∩ Z
l−1 be

such that min1≤i≤l−1(ci) = mM+c. By proposition 5.10 (ii), it is enough to show that
b(M) ≤ c. We have

M + c ≥ nl

(

M + n −m0n

nl
+ 1

)

≥ nl

⌈

M + n−m0n

nl

⌉

= nl

⌈
(

M
n

+ 1
) −m0

l

⌉

.

By Lemma 5.11, we get

mM+c ≥ l

⌈
(

M
n

+ 1
)− m0

l

⌉

+m0 ≥ l

(
(

M
n

+ 1
)− m0

l

)

+m0 ≥
⌈

M

n

⌉

.

Let 1 ≤ i ≤ l − 1. Since r l ∈ Al,n(s), we have ri+1 − ri ≤ 0, whence

ci ≥ mM+c ≥
⌈

M

n

⌉

≥ M

n
+ ri+1 − ri

n
= b

(M)
i .

The result follows. �

Remark 5.13 The author proved in [21, Lemma 4.43] that m
(min)
0 ≥−l2, which gives

an explicit upper bound for the smallest c ∈ Z satisfying the conclusions of Proposi-
tions 5.12 and 5.6. �

Proof of Proposition 5.6 Let c ∈ Z be the integer defined in Proposition 5.12. Let sl ,
t l ∈ Ẇl.r l ∩ CM+c be such that Lsl

= Lt l . By Lemma 5.8, we have ϕ(sl), ϕ(t l ) ∈
Cb(M+c) ∩Z

l−1. Proposition 5.12 now implies that b(M) is in A
(

b(M + c)
)

, whence
ϕ(sl) −−−−

Cb(M)

ϕ(t l ). Applying again Lemma 5.8 yields sl ≡
M

t l . �
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