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Abstract A construction of bases for cell modules of the Birman–Murakami–Wenzl
(or B–M–W) algebra Bn(q, r) by lifting bases for cell modules of Bn−1(q, r) is
given. By iterating this procedure, we produce cellular bases for B–M–W algebras
on which a large Abelian subalgebra, generated by elements which generalise the
Jucys–Murphy elements from the representation theory of the Iwahori–Hecke alge-
bra of the symmetric group, acts triangularly. The triangular action of this Abelian
subalgebra is used to provide explicit criteria, in terms of the defining parameters q

and r , for B–M–W algebras to be semisimple. The aforementioned constructions pro-
vide generalisations, to the algebras under consideration here, of certain results from
the Specht module theory of the Iwahori–Hecke algebra of the symmetric group.

Keywords Birman–Murakami–Wenzl algebra · Brauer algebra · Specht module ·
Cellular algebra · Jucys–Murphy operators

1 Introduction

Using a recursive procedure which lifts bases of Bi−1(q, r) to bases for Bi(q, r), for
i = 1,2, . . . , n, we obtain new cellular bases (in the sense of [5]) for the B–M–W
algebra Bn(q, r), indexed by paths in an appropriate Bratteli diagram, whereby

1. each cell module for Bn(q, r) admits a filtration by cell modules for Bn−1(q, r),
and

2. certain commuting elements in Bn(q, r), which generalise the Jucys–Murphy el-
ements in the Iwahori–Hecke algebra of the symmetric group, act triangularly on
each cell module for the algebra Bn(q, r).
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The triangular action of the generalised Jucys–Murphy elements, combined with the
machinery of cellular algebras from [5], allows us to obtain explicit criteria, in terms
of defining parameters, for any given B–M–W algebra to be semisimple. The afore-
mentioned provide generalisations of classical results from the representation theory
of the Iwahori–Hecke algebra of the symmetric group to the algebras under investi-
gation here.

The contents of this article are presented as follows.

1. Definitions concerning partitions and tableaux, along with standard facts from the
representation theory of the Iwahori–Hecke algebra of the symmetric group are
stated in Sect. 2.

2. In Sect. 3, we define a generic version of the B–M–W algebras and restate in a
more transparent notation the main results of [4] on cellular bases of the same
algebras.

3. In Sect. 4, we state for reference some consequences following from the state-
ments in Sect. 3 and the theory of cellular algebras given in [5].

4. In Sect. 5, an explicit description of the behaviour of the cell modules for generic
B–M–W algebras under restriction is obtained.

5. In Sect. 6, the results of Sect. 5 are used to construct new bases for B–M–W alge-
bras, indexed by pairs of paths in the Bratteli diagram associated with B–M–W al-
gebras and generalising Murphy’s construction [9] of bases for the Iwahori–Hecke
algebras of the symmetric group. A demonstration of the iterative procedure is
given in detail in Examples 6.2 and 6.3.

6. Certain results of R. Dipper and G. James on the Jucys–Murphy operators of the
Iwahori-Hecke algebra of the symmetric group are extended to generic B–M–W
algebras in Theorem 7.8.

7. Theorems 8.2 and 8.5 use the above mentioned results to give sufficient criteria
for the B–M–W algebras over a field to be semisimple.

8. Theorem 10.7 shows that the Jucys–Murphy elements act triangularly on each cell
module of the Brauer algebra, while the semisimplicity criterion of Theorem 11.1
is a weak version of a result of H. Rui [11].

9. Some conjectures on the semisimplicity of the Brauer algebras are given in
Sect. 12.

The author is indebted to B. Srinivasan for guidance, to A. Ram for remarks on a
previous version of this paper, and to I. Terada for discussions during the period this
work was undertaken. The author is grateful to T. Shoji and H. Miyachi for comments
and thanks the referees for numerous suggestions and corrections.

2 Preliminaries

2.1 Combinatorics and tableaux

Throughout, n will denote a positive integer and Sn will be the symmetric group
acting on {1, . . . , n} on the right. For i an integer, 1 ≤ i < n, let si denote the transpo-
sition (i, i + 1). Then Sn is generated as a Coxeter group by s1, s2, . . . , sn−1, which
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satisfy the defining relations

s2
i = 1 for 1 ≤ i < n;

sisi+1si = si+1sisi+1 for 1 ≤ i < n − 1;

sisj = sj si for 2 ≤ |i − j |.
An expression w = si1si2 · · · sik in which k is minimal is called a reduced expression
for w, and �(w) = k is the length of w.

Let f be an integer, 0 ≤ f ≤ [n/2]. If n − 2f > 0, a partition of n − 2f is a
non–increasing sequence λ = (λ1, . . . , λk) of integers, λi ≥ 0, such that

∑k
i=1 λi =

n − 2f ; otherwise, if n − 2f = 0, write λ = ∅ for the empty partition. The fact
that λ is a partition of n − 2f will be denoted by λ � n − 2f . We will also write
|λ| =∑i≥1 λi . The integers {λi : for i ≥ 1} are the parts of λ. If λ is a partition of
n − 2f , the Young diagram of λ is the set

[λ] = {(i, j) : λi ≥ j ≥ 1 and i ≥ 1 } ⊆ N × N.

The elements of [λ] are the nodes of λ and more generally a node is a pair (i, j) ∈
N × N. The diagram [λ] is traditionally represented as an array of boxes with λi

boxes on the i–th row. For example, if λ = (3,2), then [λ] = . Let [λ] be the
diagram of a partition. A node (i, j) is an addable node of [λ] if (i, j) �∈ [λ] and
[μ] = [λ] ∪ {(i, j)} is the diagram of a partition; in this case (i, j) is also referred to
as a removable node of [μ].

For our purposes, a dominance order on partitions is defined as follows: if λ and
μ are partitions, then λ � μ if either

1. |μ| > |λ| or
2. |μ| = |λ| and

∑k
i=1 λi ≥∑k

i=1 μi for all k > 0.

We will write λ � μ to mean that λ � μ and λ �= μ. Although the definition of the
dominance order on partitions employed here differs from the conventional defini-
tion [7] of the dominance order on partitions, when restricted to the partitions of the
odd integers {1,3, . . . , n} or to partitions of the even integers {0,2, . . . , n}, depend-
ing as n is odd or even, the order � as defined above is compatible with a cellular
structure of the Birman–Murakami–Wenzl and Brauer algebras, as shown in [4], [5]
and [13].

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . A λ–tableau
labeled by {2f + 1,2f + 2, . . . , n} is a bijection t from the nodes of the diagram [λ]
to the integers {2f + 1,2f + 2, . . . , n}. A given λ–tableau t : [λ] → {2f + 1,2f +
2, . . . , n} can be visualised by labeling the nodes of the diagram [λ] with the integers
2f + 1,2f + 2, . . . , n. For example, if n = 10, f = 2 and λ = (3,2,1),

t = (2.1)

represents a λ–tableau. A λ–tableau t labeled by {2f + 1,2f + 2, . . . , n} is said to
be standard if

t(i1, j1) ≥ t(i2, j2), whenever i1 ≥ i2 and j1 ≥ j2.
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If λ is a partition of n − 2f , write Stdn(λ) for the set of standard λ–tableaux labeled
by the integers {2f + 1,2f + 2, . . . , n}. We let tλ denote the element of Stdn(λ) in
which 2f + 1,2f + 2, . . . , n are entered in increasing order from left to right along
the rows of [λ]. Thus in the above example where n = 10, f = 2 and λ = (3,2,1),

t
λ = . (2.2)

The tableau tλ is referred to as the superstandard tableau in Stdn(λ). If t ∈ Stdn(λ),
we will write λ = Shape(t) and, abiding by the convention used in the literature,
Std(λ) will be used to denote the set of standard tableaux t : [λ] → {1,2, . . . , |λ|};
we will refer to elements of Std(λ) simply as standard λ–tableaux. If s ∈ Stdn(λ), we
will write ŝ for the tableau in Std(λ) which is obtained by relabelling the nodes of s

by the map i 
→ i − 2f .
If t ∈ Stdn(λ) and i is an integer 2f < i ≤ n, define t|i to be the tableau ob-

tained by deleting each entry k of t with k > i (compare Example 5.1 below). The set
Stdn(λ) admits an order � wherein s � t if Shape(s|i ) � Shape(t|i ) for each integer
i with 2f < i ≤ n. We adopt the usual convention of writing s � t to mean that s � t

and s �= t.
The subgroup Sn−2f = 〈si : 2f < i < n〉 ⊂ Sn acts on the set of λ–tableaux on

the right in the usual manner, by permuting the integer labels of the nodes of [λ]. For
example,

(6,8)(7,10,9) = . (2.3)

If λ is a partition of n − 2f , then for our purposes the Young subgroup Sλ is de-
fined to be the row stabiliser of tλ in Sn−2f . For instance, when n = 10, f = 2 and
λ = (3,2,1), as in (2.2) above, then Sλ = 〈s5, s6, s8〉. To each λ–tableau t, associate
a unique permutation d(t) ∈ Sn−2f by the condition t = tλd(t). If we refer to the
tableau t in (2.1) above for instance, then d(t) = (6,8)(7,10,9) by (2.3).

2.2 The Iwahori–Hecke algebra of the symmetric group

For the purposes of this section, let R denote an integral domain and q be a unit in R.
The Iwahori–Hecke algebra (over R) of the symmetric group is the unital associative
R–algebra Hn(q

2) with generators X1,X2, . . . ,Xn−1, which satisfy the defining re-
lations

(Xi − q)(Xi + q−1) = 0 for 1 ≤ i < n;

XiXi+1Xi = Xi+1XiXi+1 for 1 ≤ i < n − 1;

XiXj = XjXi for 2 ≤ |i − j |.
If w ∈ Sn and si1si2 · · · sik is a reduced expression for w, then

Xw = Xi1Xi2 · · ·Xik
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is a well defined element of Hn(q
2) and the set {Xw : w ∈ Sn} freely generates

Hn(q
2) as an R–module (Theorems 1.8 and 1.13 of [8]).

Below we state for later reference standard facts from the representation theory
of the Iwahori–Hecke algebra of the symmetric group, of which details can be found
in [8] or [9]. If μ is a partition of n, define the element

cμ =
∑

w∈Sμ

ql(w)Xw.

In this section, let ∗ denote the algebra anti–involution of Hn(q
2) mapping Xw 
→

Xw−1 . If λ is a partition of n, Ȟλ
n is defined to be the two–sided ideal in Hn(q

2)

generated by

{
cuv = X∗

d(u)cμXd(v) : u,v ∈ Std(μ), where μ � λ
}
.

The next statement is due to E. Murphy in [9].

Theorem 2.1 The Iwahori–Hecke algebra Hn(q
2) is free as an R–module with basis

M =
{

cuv = X∗
d(u)cλXd(v)

∣
∣
∣
∣

for u,v ∈ Std(λ) and
λ a partition of n

}

.

Moreover, the following statements hold.

1. The R–linear anti–involution ∗ satisfies ∗ : cst 
→ cts for all s, t ∈ Std(λ).
2. Suppose that h ∈ Hn(q

2), and that s is a standard λ–tableau. Then there exist
au ∈ R, for u ∈ Std(λ), such that for all v ∈ Std(λ),

cvsh ≡
∑

u∈Std(λ)

aucvu mod Ȟλ
n . (2.4)

The basis M is cellular in the sense of [5]. If λ is a partition of n, the cell (or
Specht) module Cλ for Hn(q

2) is the R–module freely generated by

{cs = cλXd(s) + Ȟλ
n : s ∈ Std(λ)}, (2.5)

and given the right Hn(q
2)–action

csh =
∑

u∈Std(λ)

aucu, for h ∈ Hn(q
2),

where the coefficients au ∈ R, for u ∈ Std(λ), are determined by the expression (2.4).
The basis (2.5) is referred to as the Murphy basis for Cλ and M is the Murphy basis
for Hn(q

2).

Remark 2.1 The Hn(q
2)–module Cλ is the contragradient dual of the Specht module

defined in [2].
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Let λ and μ be partitions of n. A λ–tableau of type μ is a map T : [λ] →
{1,2, . . . , d} such that μi = |{y ∈ [λ] : T(y) = i}| for i ≥ 1. A λ–tableau T of type
μ is said to be semistandard if (i) the entries in each row of T are non–decreasing,
and (ii) the entries in each column of T are strictly increasing. If μ is a partition, the
semistandard tableau Tμ is defined to be the tableau of type μ with Tμ(i, j) = i for
(i, j) ∈ [μ].

Example 2.1 Let μ = (3,2,1). Then the semistandard tableaux of type μ are

Tμ = , , , , , , , and

, as in Example 4.1 of [8]. All the semistandard tableaux of type μ are
obtainable from Tμ by “moving nodes up” in Tμ.

If λ and μ are partitions of n, the set of semistandard λ–tableaux of type μ will be
denoted by T0(λ,μ). Further, given a λ–tableau t and a partition μ of n, then μ(t) is
defined to be the λ–tableau of type μ obtained from t by replacing each entry i in t

with k if i appears in the k–th row of the superstandard tableau tμ ∈ Std(μ).

Example 2.2 Let n = 7, and μ = (3,2,1,1), so that tμ = . If ν = (4,3) and

t = , then μ(t) = .

Let μ and ν be partitions of n. If S is a semistandard ν–tableau of type μ, and t is
a standard ν–tableau, define in Hn(q

2) the element

cSt =
∑

s∈Std(ν)
μ(s)=S

q�(d(s))cst. (2.6)

Given a partition μ of n, let Mμ be the right Hn(q
2)–module generated by cμ. The

next statement is a special instance of a theorem of E. Murphy (Theorem 4.9 of [8]).

Theorem 2.2 Let μ be a partition of n. Then the collection

{cSt : S ∈ T0(ν,μ), t ∈ Std(ν), for ν a partition of n}

freely generates Mμ as an R–module.

If μ and λ are partitions of n−1 and n respectively, for the purposes of the present
Sect. 2.2, we write μ → λ to mean that the diagram [λ] is obtained by adding a node
to the diagram [μ], as exemplified by the truncated Bratteli diagram associated with
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Hn(q
2) displayed in (2.7) below (Sect. 4 of [6]).

(2.7)

If λ is a partition of n then, as in [6], define a path of shape λ in the Bratteli diagram
associated with Hn(q

2) to be a sequence of partitions

(
λ(0), λ(1), . . . , λ(n)

)

satisfying the conditions that λ(0) = ∅ is the empty partition, λ(n) = λ, and λ(i−1) →
λ(i), for 1 ≤ i ≤ n. As observed in Sect. 4 of [6], there is a natural correspondence
between the paths in the Bratteli diagram associated with Hn(q

2) and the elements
of Std(λ) whereby t 
→ (λ(0), λ(1), . . . , λ(n)) and λ(i) = Shape(t|i ) for 1 ≤ i ≤ n.

Example 2.3 Let n = 6 and λ = (3,2,1). Then the identification of standard λ–
tableau with paths of shape λ in the Bratteli diagram associated with Hn(q

2) maps

t = 
→
(

, , , , ,

)

.

Taking advantage of the bijection between the standard λ–tableaux and the paths of
shape λ in the Bratteli diagram of Hn(q

2), we will have occasion to write

t =
(
λ(0), λ(1), . . . , λ(n)

)
,

explicitly identifying each standard λ–tableau t with a path of shape λ in the Bratteli
diagram.
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For each integer i with 1 ≤ i ≤ n, consider Hi (q
2) as the subalgebra of Hn(q

2)

generated by the elements X1,X2, . . . ,Xi−1, thereby obtaining the tower of algebras

R = H1(q
2) ⊆ H2(q

2) ⊆ · · · ⊆ Hn(q
2). (2.8)

Given a right Hn(q
2)-module V , write Res(V ) for the restriction of V to Hn−1(q

2)

by the identifications (2.8). Lemma 2.3 below, which is a consequence of Theorem 7.2
of [9], shows that the Bratteli diagram associated with Hn(q

2) describes the behav-
iour of the cell modules for Hn(q

2) under restriction to Hn−1(q
2).

Lemma 2.3 Let λ be a partition of n. For each partition μ of n − 1 with μ → λ, let
Aμ denote the R–submodule of Cλ freely generated by

{cv : v ∈ Std(λ) and Shape(v|n−1) � μ}

and write Ǎμ for the R–submodule of Sλ freely generated by

{cv : v ∈ Std(λ) and Shape(v|n−1) � μ}.
If v ∈ Stdn(λ) and v|n−1 = tμ, then the R–linear map determined on generators by

cvXd(u) + Ǎμ 
→ cu, for u ∈ Std(μ),

is an isomorphism Aμ/Ǎμ ∼= Cμ of Hn−1(q
2)–modules.

The Jucys–Murphy operators D̃i in Hn(q
2) are usually defined (Sect. 3 of [8]) by

D̃1 = 0 and

D̃i =
i−1∑

k=1

X(k,i), for i = 1, . . . , n. (2.9)

As per an exercise in [8], we define D1 = 1 and set Di = Xi−1Di−1Xi−1. Since
Di = 1 + (q − q−1)D̃i , and the D̃i can be cumbersome, we work with the Di rather
than the D̃i . We also refer to the Di as Jucys–Murphy elements; this should cause no
confusion. The following proposition is well known.

Proposition 2.4 Let i and k be integers, 1 ≤ i < n and 1 ≤ k ≤ n.

1. Xi and Dk commute if i �= k − 1, k.
2. Di and Dk commute.
3. Xi commutes with DiDi+1 and Di + Di+1.

Let t = (λ(0), λ(1), . . . , λ(n)) be a standard λ–tableau identified with the correspond-
ing path in the Bratteli diagram of Hn(q

2). For each integer k with 1 ≤ k ≤ n, define

Pt(k) = q2(j−i) where [λ(k)] = [λ(k−1)] ∪ {(i, j)}. (2.10)

The next statement is due to R. Dipper and G. James (Theorem 3.32 of [8]).
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Theorem 2.5 Suppose that λ is a partition of n and let s be a standard λ–tableau. If
k is an integer, 1 ≤ k ≤ n, then there exist av ∈ R, for v � s, such that

cs Dk = Ps(k)cs +
∑

v∈Std(λ)
v�s

avcv.

One objective at hand is to provide an extension of Lemma 2.3 and Theorem 2.5 to
the Brauer and Birman–Murakami–Wenzl algebras.

3 The Birman–Murakami–Wenzl algebras

Let q, r be indeterminates over Z and R = Z[q±1, r±1, (q − q−1)−1]. The Birman–
Murakami–Wenzl algebra Bn(q, r) over R is the unital associative R–algebra gener-
ated by the elements T1, T2, . . . , Tn−1, which satisfy the defining relations

(Ti − q)(Ti + q−1)(Ti − r−1) = 0 for 1 ≤ i < n;

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n − 2;

TiTj = TjTi for 2 ≤ |i − j |;
EiT

±1
i−1Ei = r±1Ei for 2 ≤ i ≤ n − 1;

EiT
±1
i+1Ei = r±1Ei for 1 ≤ i ≤ n − 2;

TiEi = EiTi = r−1Ei for 1 ≤ i ≤ n − 1,

where Ei is the element defined by the expression

(q − q−1)(1 − Ei) = Ti − T −1
i .

Writing

z = (q + r)(qr − 1)

r(q + 1)(q − 1)
, (3.1)

then (Sect. 3 of [12]) one derives additional relations

E2
i = zEi,

EiT
±1
i = r∓1Ei = T ±1

i Ei,

T 2
i = 1 + (q − q−1)(Ti − r−1Ei)

Ei±1TiTi±1 = TiTi±1Ei

EiTi±1Ei = rEi

EiT
−1
i±1Ei = r−1Ei

EiEi±1Ei = Ei

EiEi±1 = EiTi±1Ti = Ti±1TiEi±1.
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If w ∈ Sn is a permutation and w = si1si2 · · · sik is a reduced expression for w, then

Tw = Ti1Ti2 · · ·Tik

is a well defined element of Bn(q, r).

Remark 3.1 The generator Ti above differs by a factor of q from the generator used
in [4] but coincides with the element gi of [6] and [12].

If f is an integer, 0 ≤ f ≤ [n/2], define B
f
n to be the two sided ideal of Bn(q, r)

generated by the element E1E3 · · ·E2f −1. Then

(0) ⊆ B
[n/2]
n ⊆ B

[n/2]−1
n ⊆ · · · ⊆ B1

n ⊆ B0
n = Bn(q, r) (3.2)

gives a filtration of Bn(q, r). As in Theorem 4.1 of [4] (see also [13]), refining the
filtration (3.2) gives the cell modules, in the sense of [5], for the algebra Bn(q, r). If
f is an integer, 0 ≤ f ≤ [n/2], and λ is a partition of n − 2f , define the element

xλ =
∑

w∈Sλ

q�(w)Tw,

where Sλ is row stabiliser in the subgroup 〈si : 2f < i < n〉 of the superstandard
tableau tλ ∈ Stdn(λ) as defined in Sect. 2; finally define

mλ = E1E3 · · ·E2f −1xλ

which is the analogue to the element cλ in the Iwahori-Hecke algebra of the symmet-
ric group.

Example 3.1 Let n = 10 and λ = (3,2,1). From the λ–tableau displayed in (2.2)
comes the subgroup Sλ = 〈s5, s6, s8〉, and

mλ = E1E3

∑

w∈Sλ

q�(w)Tw

= E1E3(1 + qT5)(1 + qT6 + q2T6T5)(1 + qT8).

If f is an integer, 0 ≤ f ≤ [n/2], define

Df,n =
⎧
⎨

⎩
v ∈ Sn

∣
∣
∣
∣
∣

(2i + 1)v < (2j + 1)v for 0 ≤ i < j < f ;
(2i + 1)v < (2i + 2)v for 0 ≤ i < f ;
and (i)v < (i + 1)v for 2f < i < n

⎫
⎬

⎭
.

As shown in Sect. 3 of [4], the collection Df,n is a complete set of right coset repre-
sentatives for the subgroup Bf × Sn−2f in Sn, where Sn−2f is identified with the
subgroup 〈si : 2f < i < n〉 of Sn and B0 = 〈1〉, B1 = 〈s1〉 and, for f > 1,

Bf = 〈s2i−1, s2i s2i+1s2i−1s2i : 1 ≤ i ≤ f 〉.
Additionally, it is evident (Proposition 3.1 of [4]) that if v is an element of Df,n, then
�(uv) = �(u) + �(v) for all u in 〈si : 2f < i < n〉.
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Remark 3.2 After fixing a choice of over and under crossings, there is a natural bi-
jection between the coset representatives Df,n and the (n,n − 2f )–dangles of Defi-
nition 3.3 of [13].

For each partition λ of n − 2f , define In(λ) to be the set of ordered pairs

In(λ) = {(s, v) : s ∈ Stdn(λ) and v ∈ Df,n,
}

(3.3)

and define Bλ
n to be the two–sided ideal in Bn(q, r) generated by mλ and let

B̌λ
n =
∑

μ�λ

Bμ
n

so that B
f +1
n ⊆ B̌λ

n , by the definition of the dominance order on partitions given in
Sect. 2. Let ∗ be the algebra anti–involution of Bn(q, r) which maps Tw 
→ Tw−1 and
Ei 
→ Ei .

That Bn(q, r) is cellular in the sense of [5] was shown in [13]; the next statement
which is Theorem 4.1 of [4], gives an explicit cellular basis for Bn(q, r).

Theorem 3.1 The algebra Bn(q, r) is freely generated as an R–module by the col-
lection

{

T ∗
v T ∗

d(s)mλTd(t)Tu

∣
∣
∣
∣
(s, v), (t, u) ∈ In(λ), for λ a partition

of n − 2f , and 0 ≤ f ≤ [n/2]
}

.

Moreover, the following statements hold.

1. The algebra anti–involution ∗ satisfies

∗ : T ∗
v T ∗

d(s)mλTd(t)Tu 
→ T ∗
u T ∗

d(t)mλTd(s)Tv

for all (s, v), (t, u) ∈ In(λ).
2. Suppose that b ∈ Bn(q, r) and let f be an integer, 0 ≤ f ≤ [n/2]. If λ is a partition

of n − 2f and (t, u) ∈ In(λ), then there exist a(u,w) ∈ R, for (u,w) ∈ In(λ), such
that for all (s, v) ∈ In(λ),

T ∗
v T ∗

d(s)mλTd(t)Tub ≡
∑

(u,w)

a(u,w)T
∗
v T ∗

d(s)mλTd(u)Tw mod B̌λ
n . (3.4)

As a consequence of the above theorem, B̌λ
n is the R–module freely generated by

the collection

{
T ∗

v T ∗
d(s)mμTd(t)Tu : (s, v), (t, u) ∈ In(μ), for μ � λ

}
.

If f is an integer, 0 ≤ f ≤ [n/2], and λ is a partition of n − 2f , the cell module Sλ

is defined to be the R–module freely generated by
{
mλTd(t)Tu + B̌λ

n : (t, u) ∈ In(λ)
}

(3.5)
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and given the right Bn(q, r) action

mλTd(t)Tub + B̌λ
n =
∑

(u,w)

a(u,w)mλTd(u)Tw + B̌λ
n for b ∈ Bn(q, r),

where the coefficients a(u,w) ∈ R, for (u,w) in In(λ), are determined by the expres-
sion (3.4).

Example 3.2 Let n = 6, f = 1, and λ = (3,1). If i, j are integers with 1 ≤ i < j ≤ n,
write vi,j = s2s3 · · · sj−1s1s2 · · · si−1, so that

Df,n = {vi,j : 1 ≤ i < j ≤ n}.
Since

Stdn(λ) =
{

t
λ = , tλs5 = , tλs5s4 =

}

and mλ = E1(1 + qT4)(1 + qT3 + q2T3T4), the basis for Sλ, of the form displayed
in (3.5), is

{
mλTd(s)Tvi,j

+ B̌λ
n : s ∈ Stdn(λ) and 1 ≤ i < j ≤ n

}
.

As in Proposition 2.4 of [5], the cell module Sλ for Bn(q, r) admits a symmetric
associative bilinear form 〈 , 〉 : Sλ × Sλ → R defined by

〈mλTd(u)Tv,mλTd(v)Tw〉mλ ≡ mλTd(u)TvT
∗
wT ∗

d(v)mλ mod B̌λ
n . (3.6)

We return to the question of using the bilinear form (3.6) to extract explicit informa-
tion about the structure of the B–W–W algebras in Sect. 8, but record the following
example for later reference.

Example 3.3 Let n = 3 and λ = (1) so that B̌λ
n = (0) and mλ = E1. We order the

basis (3.5) for the module Sλ as v1 = E1, v2 = E1T2 and v3 = E1T2T1 and, with
respect to this ordered basis, the Gram matrix 〈vi ,vj 〉 of the bilinear form (3.6) is

⎡

⎣
z r 1
r z + (q − q−1)(r − r−1) r−1

1 r−1 z

⎤

⎦ .

The determinant of the Gram matrix given above is

(r − 1)2(r + 1)2(q3 + r)(q3r − 1)

r3(q − 1)3(q + 1)3
. (3.7)

Remark 3.3 (i) Let κ be a field and r̂ , q̂, (q̂ − q̂−1) be units in κ . The assignments
ϕ : r 
→ r̂ and ϕ : q 
→ q̂ determine a homomorphism R → κ , giving κ an R–module
structure. We refer to the specialisation Bn(q̂, r̂) = Bn(q, r) ⊗R κ as a B–M–W al-
gebra over κ . If 0 ≤ f ≤ [n/2] and λ is a partition of n − 2f then the cell module
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Sλ ⊗R κ for Bn(q̂, r̂) admits a symmetric associative bilinear form which is related
to the generic form (3.6) in an obvious way.

(ii) Whenever the context is clear and no possible confusion will arise, the abbre-
viation Sλ will be used for the Bn(q̂, r̂)–module Sλ ⊗R κ .

The proof of Theorem 3.1 given in [4] rests upon the following facts, respectively
Proposition 3.2 of [12] and Proposition 3.3 of [4], stated below for later reference.

Lemma 3.2 Let f be an integer, 0 ≤ f ≤ [n/2], write Cf for the subalgebra of
Bn(q, r) generated by the elements T2f +1, . . . , Tn−1, and If for the two sided ideal
of Cf generated by the element E2f +1. Then the map defined on algebra generators
of Hn−2f (q2) by

φ : Xi 
→ T2f +i + If , for 1 ≤ i < n − 2f ,

and extended to all of Hn−2f by φ(h1h2) = φ(h1)φ(h2) whenever h1, h2 ∈ Hn−2f ,
is an algebra isomorphism Hn−2f (q2) ∼= Cf /If .

Lemma 3.3 Let f be an integer, 0 ≤ f < [n/2], and Cf and If be as in Lemma 3.2
above. If i is an integer, 2f < i < n, and b ∈ Cf , then

E1E3 · · ·E2f −1bEi ≡ E1E3 · · ·E2f −1Eib ≡ 0 mod B
f +1
n .

Since Hn−2f (q2) ⊆ Hn(q
2) is generated by {Xj : 1 ≤ j < n − 2f }, from Lem-

mas 3.2 and 3.3 we obtain Corollary 3.4; cf. Sect. 3 of [4].

Corollary 3.4 If f is an integer, 0 ≤ f < [n/2], then there is a well defined R–
module homomorphism ϑf : Hn−2f (q2) → B

f
n /B

f +1
n , determined by

ϑf : Xv̂ → E1E3 · · ·E2f −1Tv + B
f +1
n ,

where v = si1si2 · · · sid is a permutation in 〈si : 2f < i < n〉 and ŵ is the permutation
v̂ = si1−2f si2−2f · · · sid−2f . Additionally, the map ϑf satisfies the property

ϑf (Xv̂Xj ) = ϑf (Xv̂)T2f +j , (3.8)

whenever 1 ≤ j < n − 2f .

Remark 3.4 The fact that ϑf is an isomorphism of R–modules was not used in the
proof of Theorem 3.1; however it may be deduced from Theorem 3.1 which implies
that the dimension over R of the image space of ϑf is equal to the dimension of
Hn−2f (q2) over R.

Lemma 3.5 Let f be an integer, 0 < f ≤ [n/2]. If b ∈ Bn(q, r), w ∈ Df,n, and
1 ≤ i < n, then there exist au,v in R, for u in 〈si : 2f < i < n〉 and v in Df,n, uniquely
determined by

E1E3 · · ·E2f −1Twb ≡
∑

u,v

au,vE1E3 · · ·E2f −1TuTv mod B
f +1
n . (3.9)
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Proof For the uniqueness of the expression (3.9), observe that there is a one–to–one
map

E1E3 · · ·E2f −1TuTv + B
f +1
n 
→

∑

s,t∈Stdn(λ)
λ�n−2f

as,t T ∗
d(s)mλTd(t)Tv + B

f +1
n ,

for u ∈ 〈sj : 2f < j < n〉 and v ∈ Df,n, determined by the map ϑf and the transition
between the basis {Xw : w ∈ Sn−2f } and the Murphy basis for Hn−2f (q2), where
the expression on the right hand side above is an R–linear sum of the basis elements
for B

f
n /B

f +1
n given by Theorem 3.1.

The proof of the lemma makes repeated use of the following fact. If u′ ∈ 〈si : 2f <

i < n〉 and v′ ∈ Sn, then E1E3 · · ·E2f −1Tu′Tv′ is expressible as a sum of the form
that appears on the right hand side of (3.9). To see this, first note that, given an integer
i with 2f < i < n and (i + 1)v′ < (i)v′,

Tu′Tv′ =
{

Tu′si Tsiv
′ , if �(u′) < �(u′si);

(Tu′si + (q − q−1)(Tu′ − r−1Tu′si Ei))Tsiv, otherwise.

Thus, using Lemma 3.3, we have au,v ∈ R, for u ∈ 〈si : 2f < i < n〉 and v ∈ Sn,
such that

E1E3 · · ·E2f −1Tu′Tv′ ≡
∑

u,v

au,vE1E3 · · ·E2f −1TuTv mod B
f +1
n ,

where (i)v < (i + 1)v, for 2f < i < n, whenever au,v �= 0 in the above expres-
sion. Noting that E1E3 · · ·E2f −1Tv = r−1E1E3 · · ·E2f −1Ts2i−1v if 1 ≤ i ≤ f and
�(s2i−1v) < �(v), and applying Proposition 3.7 or Corollary 3.1 of [4], we may as-
sume that v ∈ Df,n, whenever au,v �= 0 in the above expression.

Proceeding with the proof of the lemma, first consider the case where b = Ei for
some 1 ≤ i < n. Let k = (i)w−1 and l = (i + 1)w−1. If (i + 1)w−1 < (i)w−1, then
TwEi = r−1Twsi Ei , where wsi ∈ Df,n. We may therefore suppose that k < l. Using
Proposition 3.4 of [4],

TwEi =
{

EkTw, if l = k + 1;

T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′, otherwise,
(3.10)

where w′ = sk+1sk+2 · · · sl−1w and, for k < j < l,

εj =
{

1, if i + 1 < (j)w;

−1, otherwise.

Considering the two cases in (3.10) separately, multiply both sides of the expres-
sion (3.10) by E1E3 · · ·E2f −1. If l = k + 1, then

E1E3 · · ·E2f −1TwEi =

⎧
⎪⎨

⎪⎩

zE1E3 · · ·E2f −1Tw, if k < 2f and k is odd;

E1E3 · · ·E2f −1TkTk−1Tw, if k ≤ 2f and k is even;

E1E3 · · ·E2f −1EkTw, if 2f < k.
(3.11)
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By Proposition 3.8 of [4], there exist av′ ∈ R, for v′ ∈ Sn such that, given w′ ∈ Sn

satisfying (2j)w′ + 1 = (2j + 1)w′, together with ε2j−1, ε2j ∈ {±1},

E2j−1T
ε2j

2j T
ε2j−1
2j−1 Tw′ =

∑

v′∈Sn

av′E2j−1Tv′ . (3.12)

Using (3.12) with k = 2j , the term appearing in the second case on the right hand
side of (3.11) can be rewritten as

E1E3 · · ·E2f −1TkTk−1Tw′ =
∑

v′∈Sn

av′E1E3 · · ·E2j−1Tv′ .

As already noted, the right hand side of the above expression may be rewritten mod-
ulo B

f +1
n as an R–linear combination of the required form. On the other hand, the

term appearing on the right in the last case in (3.11) above is zero modulo B
f +1
n .

The second case on the right hand side of (3.10) gives rise to three sub–cases as
follows. First, if 2f < k < n, then

E1E3 · · ·E2f −1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′ ≡ 0 mod B
f +1
n ;

if 1 ≤ k < 2f and k is odd, then

EkT
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′ = rεk+1EkT
εl−1
l−1 T

εl−2
l−2 · · ·T εk+2

k+2 Tw′ ; (3.13)

if 1 < k ≤ 2f and k is even, then

Ek−1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′ = Ek−1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 TkTk−1Tw′ . (3.14)

When 1 ≤ k < 2f and k is odd, using (3.10) and (3.13), and successively apply-
ing (3.12) with j = k, k − 2, . . . , we obtain

E1E3 · · ·E2f −1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′

=
∑

v′∈Sn

av′T εl−1
l−1 T

εl−2
l−2 · · ·T ε2f +1

2f +1 E1E3 · · ·E2f −1Tv′

where T
εl−1
l−1 T

εl−2
l−2 · · ·T ε2f +1

2f +1 can be expressed as a sum

T
εl−1
l−1 T

εl−2
l−2 · · ·T ε2f +1

2f +1 =
∑

u′∈〈sj :2f <j<n〉
au′Tu′ + b′,

and b′ lies in the two sided ideal of 〈Tj : 2f < j < n〉 generated by E2f +1. Since b′

satisfies E1E3 · · ·E2f −1b
′ ∈ B

f +1
n , it follows that

E1E3 · · ·E2f −1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 EkTw′

≡
∑

v′∈Sn

u′∈〈sj :2f <j<n〉

au′,v′E1E3 · · ·E2f −1Tu′Tv′ mod B
f +1
n .
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As already noted, the right hand side of the above expression may be rewritten mod-
ulo B

f +1
n as an R–linear combination of the required form. In the same way, if

1 < k ≤ 2f and k is even, then using (3.14), we obtain the product

E1E3 · · ·E2f −1T
εl−1
l−1 T

εl−2
l−2 · · ·T εk+1

k+1 TkTk−1Tw′

which is also expressible as a sum of the required form using the arguments above.
Thus we have shown that the lemma holds in case 1 ≤ i < n and b = Ei .

Let w ∈ Df,n. If 1 ≤ i < n, and �(w) < �(wsi) then

E1E3 · · ·E2f −1TwTi = E1E3 · · ·E2f −1Twsi ,

and, if �(wsi) < �(w), then

E1E3 · · ·E2f −1TwTi = E1E3 · · ·E2f −1(Twsi + (q − q−1)(Tw − r−1Twsi Ei)).

We have already observed that the terms appearing on the right hand side in each
of the two above expressions may be expressed as an R–linear combination of the
required form. Thus we have shown that the lemma holds when b ∈ {Ti : 1 ≤ i < n}.

Now, given that the lemma holds when b ∈ {Ti : 1 ≤ i < n}, Lemma 3.3 shows
that any product

E1E3 · · ·E2f −1TuTvTi, for u ∈ 〈si : 2f < i < n〉 and v ∈ Df,n,

can also be written as an R–linear combination of the form appearing on the right
hand side of (3.9). Since {Ti : 1 ≤ i < n} generates Bn(q, r), the proof of the lemma
is complete. �

If f is an integer, 0 ≤ f ≤ [n/2], and μ is a partition of n − 2f , define Lμ to be
the right Bn(q, r)–submodule of B

f
n /B

f +1
n generated by the element mμ + B

f +1
n .

The next result will be used in Sect. 5 below; the element mSt defined in the next
lemma is an analogue to the element cSt ∈ Hn(q

2) given in (2.6).

Lemma 3.6 Let f be an integer, 0 ≤ f ≤ [n/2], and given partitions λ,μ of n− 2f ,
with λ � μ, define

mSt =
∑

s∈Stdn(λ)
μ(ŝ)=S

q�(d(s))T ∗
d(s)mλTd(t), for S ∈ T0(λ,μ) and t ∈ Stdn(λ).

Then the collection
{

mStTv + B
f +1
n

∣
∣
∣
∣
for S ∈ T0(λ,μ), t ∈ Stdn(λ),

λ � n − 2f and v ∈ Df,n

}

(3.15)

freely generates Lμ as an R–module.

Proof If b ∈ Bn(q, r) and w ∈ Df,n, then by the previous lemma, there exist au,v ∈
R, for u ∈ 〈si : 2f < i < n〉 and v ∈ Df,n such that

E1E3 · · ·E2f −1Twb ≡
∑

u,v

au,vE1E3 · · ·E2f −1TuTv mod B
f +1
n .
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Multiplying both sides of the above expression by xμ on the left, and using the prop-
erty (3.8) and Theorem 2.2, we obtain aS,t ∈ R, for S ∈ T0(λ,μ), t ∈ Stdn(λ) and
λ � n − 2f , such that

mμTwb + B
f +1
n =

∑

u,v

au,v E1E3 · · ·E2f −1xμTuTv + B
f +1
n

=
∑

u,v

au,v ϑf (cμXû)Tv =
∑

u,v

au,v

∑

S∈T0(λ,μ)
t∈Stdn(λ)

aS,t ϑf (cSt̂
)Tv

=
∑

u,v

au,v

∑

S∈T0(λ,μ)
t∈Stdn(λ)

aS,t mStTv + B
f +1
n .

This proves the spanning property of the set (3.15). The fact that each element of
the set (3.15) lies in Lμ follows from an argument similar to the above, using Theo-
rem 2.2 and the property (3.8). We now outline the proof of the linear independence
of the elements of (3.15) over R.

(i) Let {Si : 1 ≤ i ≤ k} be the semistandard tableaux of type μ, ordered so that
Si ∈ T0(λi,μ) and j ≥ i whenever λi � λj , and take Li to denote the R–module
generated by

{
mSj tTv + B

f +1
n : 1 ≤ j ≤ i, t ∈ Stdn(λj ) and v ∈ Df,n

}
.

(ii) Using the property (3.8) and Theorem 2.2 as above, it is shown that the R–
module homomorphism Li/Li−1 → Sλi defined, for t ∈ Stdn(λi) and w ∈ Df,n, by

mSitTw + Li−1 
→ mλi
Td(t)Tw + B̌λi

n (3.16)

is an isomorphism of right Bn(q, r)–modules. Thus, analogous to the filtration of
each permutation module of the Iwahori–Hecke algebra of the symmetric group given
in Corollary 4.10 of [8], there is a filtration of Lμ by Bn(q, r)–modules

(0) = L0 ⊆ L1 ⊆ · · · ⊆ Lk = Lμ, (3.17)

wherein each factor Li/Li−1 is isomorphic to a cell module Sλi for Bn(q, r).
(iii) From (3.17), it is deduced that dimR(Lμ) =∑k

i=1 dimR(Sλi ). Since this sum
coincides with the order of the set (3.15) obtained by simply counting, the linear
independence over R of the elements of (3.15) now follows. �

4 Representation theory over a field

We state for later reference some consequences, for B–M–W algebras over a field, of
the theory of cellular algebras constructed in [5]. These results of C.C. Xi appeared
in [13].
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Proposition 4.1 Let Bn(q̂, r̂) be a B–M–W algebra over a field κ . If f is an integer,
0 ≤ f ≤ [n/2], and λ is a partition of n − 2f , then the radical

rad(Sλ) = {v ∈ Sλ : 〈v,u〉 = 0 for all u ∈ Sλ}

of the form on Sλ determined by (3.6) is a Bn(q̂, r̂)–submodule of Sλ.

Proposition 4.2 Let Bn(q̂, r̂) be a B–M–W algebra over a field κ , and suppose that
f,f ′ are integers 0 ≤ f,f ′ ≤ [n/2], and λ,μ are partitions of n − 2f and n − 2f ′
respectively. If M is a Bn(q̂, r̂)–submodule of Sλ, and ψ : Sμ → Sλ/M is a non–
trivial Bn(q̂, r̂)–module homomorphism, then λ � μ.

Let Bn(q̂, r̂) be a B–M–W algebra over a field κ . If f is an integer with 0 ≤ f ≤
[n/2], and λ is a partition of n − 2f , define the Bn(q̂, r̂)–module Dλ = Sλ/ rad(Sλ).

Theorem 4.3 If κ is a field and Bn(q̂, r̂) is a B–M–W algebra over κ , then {Dλ :
Dλ �= 0, λ � n − 2f and 0 ≤ f ≤ [n/2]} is a complete set of pairwise inequivalent
irreducible Bn(q̂, r̂)–modules.

Theorem 4.4 Let κ be a field and Bn(q̂, r̂) be a B–M–W algebra over κ . Then the
following statements are equivalent.

1. Bn(q̂, r̂) is (split) semisimple.
2. Sλ = Dλ for all λ � n − 2f and 0 ≤ f ≤ [n/2].
3. rad(Sλ) = 0 for all λ � n − 2f and 0 ≤ f ≤ [n/2].

5 Restriction

Given an integer, 1 ≤ i ≤ n, regard Bi(q, r) as the subalgebra of Bn(q, r) generated
by the elements T1, T2, · · · , Ti−1, thereby obtaining the tower

R = B1(q, r) ⊆ B2(q, r) ⊆ · · · ⊆ Bn(q, r). (5.1)

If V is a Bn(q, r)–module, using the identification (5.1), we write Res(V ) for the
restriction of V to Bn−1(q, r).

In order to construct a basis for the cell module Sλ which behaves well with respect
to both restriction in the tower (5.1) and with respect to the action of the Jucys–
Murphy operators in Bn(q, r), we first consider in this section the behaviour of the
cell module Sλ under restriction from Bn(q, r) to Bn−1(q, r). This description of the
restriction functor on the cell modules for the B–M–W algebras given here will be
used in Sect. 6 to construct a basis for the cell module Sλ which behaves regularly
with respect to restriction in the tower (5.1) and with respect to the Jucys–Murphy
operators in Bn(q, r).

The material of this section is motivated by the Wedderburn decomposition of the
semisimple B–M–W algebras over a field C(q̂, r̂) given by H. Wenzl in [12], and by
the bases for the B–M–W algebras indexed by paths in the Bratteli diagram associated
with the B–M–W algebras, constructed in the semisimple setting over C(q̂, r̂), by
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R. Leduc and A. Ram in [6]. As made clear by [6] and [12], paths in the Bratteli
diagram associated with the B–M–W algebras provide the most natural generalisation
to our setting of the standard tableaux from the representation theory of the symmetric
group. However, while the bases constructed in Sect. 6 and in [6] are both indexed
by paths in the appropriate Bratteli diagram, we have sought a generic basis over a
ring R = Z[q±1, r±1, (q − q−1)−1]. Thus the construction here will not require the
assumptions about semisimplicity which are necessary in [6].

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . Henceforth,
write μ → λ to mean that either

1. μ is a partition of n − 2f + 1 and the diagram [μ] is obtained by adding a node
to the diagram [λ] or,

2. μ is a partition of n − 2f − 1 and the diagram [μ] is obtained by deleting a node
from the diagram [λ],

as illustrated in the truncated Bratteli diagram associated with Bn(q, r) displayed
in (5.2) below (Sect. 5 of [6]).

(5.2)

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n−2f with t removable
nodes and suppose that

μ(1) � μ(2) � · · · � μ(t) (5.3)

is the ordering of the set {μ : μ → λ and |λ| > |μ|} by dominance order on partitions.
For each partition μ(k) in the list (5.3), define an element

yλ
μ(k) = mλTd(s) + B̌λ

n where s|n−1 = t
μ(k)

, (5.4)

and let Nμ(k)
denote the Bn−1(q, r)–submodule of Sλ generated by

{yλ
μ(k)Td(u) : u ∈ Stdn−1(μ

(k))};

write Ňμ(k)
for the Bn−1(q, r)–submodule of Sλ generated by

{yλ
μ(j)Td(u) : u ∈ Stdn−1(μ

(j)) and j < k}.
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Example 5.1 Let n = 10, f = 2 and λ = (3,2,1). Then

mλ = E1E3

∑

w∈Sλ

q�(w)Tw = E1E3(1 + qT5)(1 + qT6 + q2T6T5)(1 + qT8)

and the elements yλ
μ(k) , for each partition μ(k) → λ with |λ| > |μ(k)|, are as follows.

1. If μ(1) = (3,2), then tμ = s|n−1, where s = , so

yλ
μ(1) = mλ + B̌λ

n .

2. If μ(2) = (3,1,1) and s = , then tμ
(2) = s|n−1, so

yλ
μ(2) = mλTd(s) + B̌λ

n = mλT9 + B̌λ
n .

3. If μ(3) = (2,2,1), then tμ
(3) = s|n−1, where s = , so

yλ
μ(3) = mλTd(s) + B̌λ

n = mλT7T8T9 + B̌λ
n .

Write Df,n−1 = {v ∈ Df,n : (n)v = n}, so identifying Df,n−1 ⊆ Df,n.

Lemma 5.1 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f .
If μ is a partition with |λ| > |μ| and μ → λ, then Nμ/Ňμ is the R–module freely
generated by

{yλ
μTd(u)Tw + Ňμ : u ∈ Stdn−1(μ) and w ∈ Df,n−1}.

Additionally, the map defined, for u ∈ Stdn−1(μ) and w ∈ Df,n−1, by

yλ
μTd(u)Tw + Ňμ 
→ mμTd(u)Tw + B̌

μ
n−1 (5.5)

determines an isomorphism Nμ/Ňμ ∼= Sμ of Bn−1(q, r)–modules.

Proof Let b ∈ Bn−1(q, r) and w ∈ Df,n−1. By Lemma 3.5, there exist au,v ∈ R, for
u ∈ 〈si : 2f < i < n − 1〉 and v ∈ Df,n−1, determined uniquely by

E1E3 · · ·E2f −1Twb ≡
∑

u,v

au,vE1E3 · · ·E2f −1TuTv mod B
f +1
n−1 . (5.6)

Let v ∈ Stdn(λ) satisfy v|n−1 = tμ so that yλ
μ = mλTd(v) + B̌λ

n , and let u ∈ Stdn−1(μ).

Since B
f +1
n−1 ⊂ B

f +1
n , we use (5.6) and Lemma 2.3 to obtain as, at ∈ R, for s ∈
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Stdn−1(μ) and t ∈ Stdn(λ) such that

mλTd(v)Td(u)Twb + B
f +1
n

=
∑

u,v

au,v ϑf (cλXd(v̂)Xd(û)Xû)Tv

=
∑

u,v

au,v

∑

s∈Stdn−1(μ)

as ϑf (cλXd(v̂)Xd(ŝ))Tv

+
∑

u,v

au,v

∑

t∈Stdn(λ)
Shape(t|n−1)�μ

at ϑf (cλXd(t̂))Tv +
∑

u,v

au,v ϑf (h)Tv,

where h ∈ Ȟλ
n−2f and ϑf (h) ⊆ B̌λ

n . We thus obtain,

mλTd(v)Td(u)Twb + B
f +1
n =

∑

u,v

au,v

∑

s∈Stdn−1(μ)

as mλTd(v)Td(s)Tv

+
∑

u,v

au,v

∑

t∈Stdn(λ)
Shape(t|n−1)�μ

at mλTd(t)Tv + b′,

where b′ ∈ B̌λ
n . Since Ňμ is generated as a Bn−1(q, r) module by {mλTd(t) + B̌λ

n :
t ∈ Stdn(λ) and Shape(t|n−1) � μ}, it follows that

yλ
μTd(u)Twb ≡

∑

u,v

au,v

∑

s∈Stdn−1(μ)

as yλ
μTd(s)Tv mod Ňμ. (5.7)

Using (5.6) and Lemma 2.3 again the as, for s ∈ Stdn−1(μ), given above also
satisfy

mμTd(u)Twb + B
f +1
n−1 =

∑

u,v

au,v ϑf (cμXd(û)Xû)Tv

=
∑

u,v

au,v

∑

s∈Stdn−1(μ)

as ϑf (cμXd(ŝ))Tv +
∑

u,v

au,v ϑf (h′)Tv,

where h′ ∈ Ȟ
μ
n−2f −1. Since ϑf (h′) ⊆ B̌

μ
n−1,

mμTd(u)Twb + B̌
μ
n−1 =

∑

u,v

au,v

∑

s∈Stdn−1(μ)

as mμTd(s)Tv + B̌
μ
n−1. (5.8)

Comparing coefficients in (5.7) and (5.8) shows that the R–module isomorphism (5.5)
is also a Bn−1(q, r)–module homomorphism. �

Corollary 5.2 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . If
μ is a partition of n−2f −1 with μ → λ, then Nμ is the R–module freely generated
by

{
mλTd(s)Tv + B̌λ

n : s ∈ Stdn(λ), Shape(s|n−1) � μ and v ∈ Df,n−1
}
.
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Let f be an integer, 0 < f ≤ [n/2], with λ a partition of n − 2f having t removable
nodes and (p − t) addable nodes, and suppose that

μ(t+1) � μ(t+2) � · · · � μ(p) (5.9)

is the ordering of {μ : μ → λ and |μ| > |λ|} by dominance order on partitions. By the
definition of the dominance order on partitions which we use here, the list (5.3) can
be extended as

μ(1) � μ(2) � · · · � μ(t) � μ(t+1) � μ(t+2) � · · · � μ(p). (5.10)

In the manner of Lemma 5.1, we seek to assign to each partition μ(k), with k > t ,
in the list (5.9), a Bn−1(q, r)–submodule Nμ(k)

of Sλ, and an associated generator
yλ
μ(k) + Ňμ(k)

in Sλ/Ňμ(k)
. To this end, first let

wp = sn−2sn−3 · · · s2f −1sn−1sn−2 · · · s2f (5.11)

and write Nμ(p)
for the Bn−1(q, r)–submodule of Sλ generated by the element

yλ
μ(p) = mλT

−1
wp

+ B̌λ
n . (5.12)

From the defining relations for Bn(q, r), or using the presentation for Bn(q, r) in
terms of tangles given in [1], it is readily observed that E2f −1T

−1
wp

= E2f −1Tw−1
p

,

and consequently that mλT
−1
wp

= mλTw−1
p

. Since w−1
p is an element of Df,n with

(2f )w−1
p = n, Corollary 5.2 implies that the element mλTw−1

p
+B̌λ

n is contained in the

complement of Nμ(t)
in Sλ. Furthermore, using the relation EiTi+1Ti = Ti+1TiEi+1

it can be seen that

E2f −1Tw−1
p

= E2f −1T2f T2f +1 · · ·Tn−2Tn−1T2f −1T2f · · ·Tn−3Tn−2

= T2f T2f −1T2f +1T2f · · ·Tn−2Tn−3En−2Tn−1Tn−2,

whence, if s ∈ Stdn(λ),

mλTd(s)T
−1
wp

= mλTd(s)Tw−1
p

= E1E3 · · ·E2f −3E2f −1xλTd(s)Tw−1
p

= E1E3 · · ·E2f −3xλTd(s)TvEn−2Tn−1Tn−2, (5.13)

where v = w−1
p sn−2sn−1 lies in Df,n−1. From the defining relations of Bn(q, r),

En−2Tn−1Tn−2En−2 = En−2,

and, multiplying both sides of (5.13) on the right by the element En−2,

mλTd(s)Tw−1
p

En−2 = mλTd(s)Tv, where v = w−1
p sn−2sn−1.

Since v ∈ Df,n−1, Corollary 5.2 implies a strict inclusion Nμ(t) ⊆ Nμ(p)
of

Bn−1(q, r)–modules.
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Recall that if λ is a partition of n − 2f and s ∈ Stdn(λ), then ŝ is defined as the
standard tableau obtained after relabelling the entries of s by i 
→ i − 2f and d(s)

is the permutation in 〈si : 2f < i < n〉 defined by the condition that s = tλd(s). For
the lemmas following, we also recall the definition of the permutation wp in (5.11)
above.

Lemma 5.3 Let f be an integer, 0 < f ≤ [n/2], and λ be a partition of n− 2f . Sup-
pose that μ(p) is minimal in {ν : ν → λ and |ν| > |λ|} with respect to the dominance
order on partitions, let μ be a partition of n−2f +1 with μ�μ(p) and s ∈ Stdn−1(μ)

be a tableau such that μ(p)(ŝ) ∈ T0(μ,μ(p)). If τ = Shape(s|n−2) � λ, then

E2f −1T
−1
wp

T ∗
d(s)mμ = E1E3 · · ·E2f −1T

−1
wp

T ∗
d(s)xμ ≡ 0 mod B̌λ

n .

Proof Recall that xμ =∑w∈Sμ
q�(w)Tw where Sμ is the row stabiliser of tμ ∈

Stdn−1(μ) in 〈si : 2f − 1 ≤ i < n − 1〉. Let

k = min{i : 2f − 1 ≤ i ≤ n − 2 and (n − 1)d(s)−1 ≤ (i)d(s)−1},
so that

�(d(s)sn−2sn−3 · · · sk) = �(d(s)) − n + k + 1.

If we write v = d(s)sn−2sn−3 · · · sk and u = sksk+1 · · · sn−2wp , then

E2f −1T
−1
wp

T ∗
d(s)mμ = E2f −1T

−1
wp

E1E3 · · ·E2f −3T
∗
d(s)xμ

= E1E3 · · ·E2f −1T
−1
wp

T ∗
d(s)xμ = E1E3 · · ·E2f −1T

−1
u T ∗

v xμ.

(5.14)

Since v has a reduced expression v = si1si2 · · · sil in the subgroup 〈si : 2f − 1 ≤ i <

n − 2〉, we define v′ = si1+2si2+2 · · · sil+2 and, using the braid relation T −1
i T −1

i+1Ti =
Ti+1T

−1
i T −1

i+1, obtain

T −1
u Ti =

{
Ti+2T

−1
u if 2f − 1 ≤ i < k;

Ti+1T
−1
u if k < i < n,

(5.15)

which allows us to rewrite (5.14) as

E2f −1T
−1
wp

T ∗
d(s)mμ = E1E3 · · ·E2f −1T

∗
v′T −1

u xμ. (5.16)

Now, to each row i of tμ ∈ Stdn−1(μ), associate the subgroup

Rtμ,i = 〈si′ : i′, i′ + 1 appear in row i of t
μ〉

and define Rtτ ,i analogously for tτ ∈ Stdn(τ ). Let us suppose that n − 1 appears as
an entry in row j of s; if i �= j , then by (5.15)

∑

w∈Rtμ,i

q�(w)T −1
u Tw =

∑

w∈Rtτ ,i

q�(w)TwT −1
u . (5.17)
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On the other hand, within Rtμ,j take the parabolic subgroup

Ptμ,j = 〈w ∈ Rtμ,j : (k)w = k〉
and, noting that the set of distinguished right coset representatives for Ptμ,j in Rtμ,j

(Proposition 3.3 of [8]) is

D = {vi : v0 = 1 and vi = vi−1sk−i for 0 < i ≤ τj },
we write

∑

w∈Rtμ,j

q�(w)T −1
u Tw =

∑

w∈Ptμ,j

q�(w)T −1
u Tw

∑

v∈D

q�(v)Tv.

Using the last expression and (5.15), we obtain

T −1
u

∑

w∈Ptμ,j

q�(w)Tw =
∑

w∈Rtτ ,j

q�(w)TwT −1
u ,

which, together with (5.17), implies that

T ∗
v′T −1

u xμ = T ∗
v′
∑

i≥1

∑

w∈Rtτ ,i

q�(w)TwT −1
u

∑

v∈D

q�(v)Tv

= T ∗
v′xτT

−1
u

∑

v∈D

q�(v)Tv.

Since v′ ∈ 〈si : 2f < i < n〉, multiplying both sides of the last expression by
E1E3 · · ·E2f −1 on the left and referring to (5.16), we obtain

E2f −1T
−1
wp

T ∗
d(s)mμ = T ∗

v′E1E3 · · ·E2f −1xτT
−1
u

∑

v∈D

q�(v)Tv.

As the term on the right hand side of the above expression lies in B̌λ
n , the result now

follows. �

The next example illustrates Lemma 5.3.

Example 5.2 In parts (a) and (b) below, let n = 10, f = 2 and λ = (3,2,1). Since λ

has three removable nodes and four addable nodes, the partitions μ(i) with μ(i) → λ

and |μ(i)| > |λ| are

μ(4) = (4,2,1) � μ(5) = (3,3,1) � μ(6) = (3,2,2) � μ(7) = (3,2,1,1).

(a) Taking p = 7, we have wp = s8s7s6s5s4s3s9s8s7s6s5s4,

t
λ = and t

μ(p) = ,
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so that xμ(p) = (1 + qT3)(1 + qT4 + q2T4T3)(1 + qT6). Using the braid relation

T −1
j T −1

j+1Tj = Tj+1T
−1
j T −1

j+1, it is verified that

E3T
−1
wp

mμ(p) = mλT
−1
wp

.

(b) Let μ = (4,3) and s = so d(s) = s6s7s8. Then

ŝ = and μ(p)(ŝ) = ,

as shown in Example 2.2. Now,

6 = min{i |2f − 1 ≤ i ≤ n − 2 and (n − 1)d(s)−1 ≤ (i)d(s)−1},
hence, writing u = s5s4s3s9s8s7s6s5s4, one obtains

E3T
−1
wp

T ∗
d(s)mμ = E3T

−1
u mμ = E3T

−1
u E1xμ

where

xμ = (1 + qT3)(1 + qT4 + q2T4T3)(1 + qT5 + q2T5T4 + q3T5T4T3)

× (1 + qT7)(1 + qT8 + q2T8T7).

Using the braid relation,

T −1
u xμ = xτT

−1
u (1 + qT5 + q2T5T4 + q3T5T4T3),

where tτ = and

xτ = (1 + qT5)(1 + qT6 + q2T6T5)(1 + qT8)(1 + qT9 + q2T9T8).

As τ � λ, it follows that

E3T
−1
wp

T ∗
d(s)mμ = E1E3xτT

−1
u (1 + qT5 + q2T5T4 + q3T5T4T3)

= mτT
−1
u (1 + qT5 + q2T5T4 + q3T5T4T3) ≡ 0 mod B̌λ

n .

Corollary 5.4 Let f be an integer 0 < f ≤ [n/2] and λ be a partition of n − 2f

with (p − t) addable nodes. Suppose that μ(1) � μ(2) � · · · � μ(p) is the ordering of
{μ : μ → λ} by the dominance order on partitions. If μ is a partition of n − 2f + 1
such that μ � μ(t+1), and S ∈ T0(μ,μ(p)), then

E2f −1T
−1
wp

mSt ≡ 0 mod Bλ
n , for all t ∈ Stdn−1(μ).

Proof There are p − t standard tableaux s labelled by the integers {2f − 1,2f, . . . ,

n − 1} which satisfy the conditions (i) Shape(s|n−2) = λ, and (ii) μ(p)(s) ∈
T0(ν,μ(p)), for some partition ν of n − 2f + 1; each such tableau s additionally
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satisfies the condition that Shape(s) = μ(i) for some i with t < i ≤ p (the precise
form that any such d(s) must take is given in (5.19) below). Thus if μ is as given in
the statement of the corollary and s ∈ Stdn−1(μ) satisfies μ(p)(ŝ) ∈ T0(μ,μ(p)), then
τ = Shape(s|n−2) � λ, so by Lemma 5.3,

E2f −1T
−1
wp

T ∗
d(s)mμ ≡ 0 mod Bλ

n .

Using the definition of mSt, the result now follows. �

Lemma 5.5 Let f be an integer, 0 < f ≤ [n/2], and λ � n − 2f , μ � n − 2f + 1
be partitions such that μ → λ. If μ(p) is minimal with respect to dominance order
among {ν : ν → λ and |ν| > |λ|}, and s ∈ Stdn−1(μ) is a tableau such that μ(p)(ŝ) ∈
T0(μ,μ(p)), then there exist a(t,w) ∈ R, for (t,w) ∈ In(λ), such that

E2f −1T
−1
wp

T ∗
d(s)mμ ≡

∑

(t,w)∈In(λ)

a(t,w)mλTd(t)Tw mod B̌λ
n .

Proof There is a unique tableau s ∈ Stdn−1(μ) satisfying the hypotheses of the
lemma, namely the tableau with s|n−1 = tλ ∈ Stdn−2(λ). Furthermore,

d(s) = sksk+1 · · · sn−2 where k = (n − 1)d(s)−1.

Suppose that k appears as an entry in the row j of s. As in the proof of Lemma 5.3,
we associate to row j of tμ the subgroup

Rtμ,j = 〈si : i, i + 1 appear in row j of t
μ〉

and take the parabolic subgroup Ptμ,j = 〈w ∈ Rtμ,j : (k)w = k〉 ⊆ Rtμ,j . The set of
distinguished right coset representatives for Ptμ,j in Rtμ,j is

D = {vi : v0 = 1 and vi = vi−1sk−i for 0 < i ≤ λj }.
As in the proof of Lemma 5.3, the coset representatives D enable us to write

E2f −1T
−1
wp

T ∗
d(s)mμ = mλT

−1
u

∑

v∈D

q�(v)Tv, (5.18)

where u = sksk+1 · · · sn−2wp = sk−1sk−2 · · · s2f −1sn−1sn−2 · · · s2f . �

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n−2f with t removable
and p − t addable nodes. Take μ(t+1) � μ(t+2) � · · · � μ(p) as the ordering of the
set {μ : μ → λ and |μ| > |λ|} by dominance order on partitions and, for t < k ≤ p,
suppose that [λ] is the diagram obtained by deleting a node from the row jk of [μ(k)].
There exists for each μ(k) with μ(k) → λ and |μ(k)| > |λ|, a unique tableau sk ∈
Stdn−1(μ

(k)) such that μ(p)(sk) ∈ T0(μ
(k),μ(p)) and Shape(sk|n−2) = λ. To wit, sk

is determined by

d(sk) = sak
sak+1 · · · sn−2 where ak = 2(f − 1) +

jk∑

i=1

μ
(k)
i . (5.19)
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Thus we let

wk = d(sk)
−1wp = sak−1sak−2 · · · s2f −1sn−1sn−2 · · · s2f , (5.20)

and write

yλ
μ(k) = E2f −1T

−1
wk

mμ(k) + B̌λ
n . (5.21)

By Lemma 5.5, we note that yλ
μ(k) is a well defined element in the Bn(q, r)–module

Sλ. We define Nμ(k)
, for t < k ≤ p, to be the Bn−1(q, r)–submodule of Sλ generated

by yλ
μ(k) .

Example 5.3 Let n = 4, f = 1. If λ = (1,1), and μ = (2,1), then s = is the

unique tableau with s|n−1 = tλ ∈ Stdn−2(λ). Thus yλ
μ = E1T

−1
wp

T ∗
d(s)mμ + B̌λ

4 =
E1T

−1
2 T −1

1 T −1
3 (1 + qT1) + B̌λ

4 .

Recall that Nμ(t) ⊆ Nμ(p)
is a strict inclusion of Bn−1(q, r)–modules.

Lemma 5.6 Let f be an integer, 0 < f ≤ [n/2], and λ be a partition of n−2f with t

removable nodes and (p− t) addable nodes. Suppose that μ(t+1)�μ(t+2)� · · ·�μ(p)

is the ordering of {μ : μ → λ and |μ| > |λ|} by dominance order on partitions. Then
the right Bn−1(q, r)–module Nμ(p)

/Nμ(t)
is generated as an R–module by

{
yλ
μ(k)Td(t)Tw + Nμ(t) : (t,w) ∈ In−1(μ

(k)) and t < k ≤ p
}

.

Proof From the expression (5.21), observe that the Bn−1(q, r)–module Nμ(p)
is gen-

erated as an R–module by elements of the form

yλ
μ(p)b = mλT

−1
wp

b + B̌λ
n = E2f −1T

−1
wp

mμ(p)b + B̌λ
n , for b ∈ Bn−1(q, r).

Let b ∈ Bn−1(q, r). Then, by Lemma 3.6, there exist S ∈ T0(μ,μ(p)), for μ�μ(p)

and |μ| = |μ(p)|, together and aS,t,w , for (t,w) ∈ In−1(μ), such that

mμ(p)b =
∑

μ�μ(p)

(t,w)∈In−1(μ)

S∈T0(μ,μ(p))

aS,t,w mStTw + b′, (5.22)

where b′ ∈ B
f

n−1. Since the process of rewriting a product

E1E3 · · ·E2f −3TuTvb, for u ∈ 〈si : 2f − 2 < i < n − 1〉, v ∈ Df −1,n−1,

in terms of the basis (3.5) depends only on (3.12), Proposition 3.7 of [4] and opera-
tions in the subalgebra 〈Ti : 2f − 2 < i < n − 1〉 ⊆ Bn−1(q, r), we note that the term
b′ in (5.22) satisfies

b′ ∈ (E1E3 · · ·E2f −3)Bn−1(q, r) ∩ B
f

n−1.
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By decomposing the set {μ : |μ| = n − 2f + 1 and μ � μ(p)} and using Lemma 5.3,
we obtain, for each w ∈ Df −1,n−1, an expression:

∑

μ�μ(p)

t∈Stdn−1(μ)

S∈T0(μ,μ(p))

aS,t,w mStTw =
∑

t<k≤p

t∈Stdn−1(μ
(k))

S∈T0(μ
(k),μ(p))

aS,t,w mStTw +
∑

μ�μ(t+1)

t∈Stdn−1(μ)

S∈T0(μ,μ(p))

aS,t,w mStTw.

(5.23)

Hence, multiplying both sides of (5.22) by E2f −1T
−1
wp

on the left, and using (5.23)
together with Corollary 5.4, we obtain:

E2f −1T
−1
wp

mμ(p)b + B̌λ
n

= E2f −1T
−1
wp

∑

t<k≤p

(t,w)∈In−1(μ
(k))

S∈T0(μ
(k),μ(p))

aS,t,w mStTw + E2f −1T
−1
wp

b′ + B̌λ
n .

We recall the definition of the tableaux sk ∈ Stdn−1(μ
(k)), for t < k ≤ p, in (5.19),

and also that the wk defined, for t < k ≤ p, by (5.20), are chosen so that T −1
wp

T ∗
d(sk)

=
T −1

wk
. Thus

E2f −1T
−1
wp

mμ(p)b + B̌λ
n

=
∑

t<k≤p

(t,w)∈In−1(μ
(k))

ak,t,w E2f −1T
−1
wk

mμ(k)Td(t)Tw + E2f −1T
−1
wp

b′ + B̌λ
n ,

where ak,t,w = q�(d(sk))aS,t,w whenever μ(p)(ŝk) = S. Thus we have shown that

E2f −1T
−1
wp

mμ(p)b + B̌λ
n =

∑

t<k≤p

(t,w)∈In−1(μ
(k))

ak,t,w yλ
μ(k)Td(t)Tw + E2f −1T

−1
wp

b′ + B̌λ
n .

(5.24)

It now remains to show that E2f −1T
−1
wp

b′ + B̌λ
n ∈ Nμ(t)

. Noting the characterisation

of the Bn−1(q, r)–module Nμ(t)
given in Corollary 5.2, to complete the proof of the

lemma, it suffices to demonstrate the statement following.

Claim 5.7 If b ∈ (E1E3 · · ·E2f −3)Bn−1(q, r)∩B
f

n−1 then there exist as,t,w ∈ R, for
s, t ∈ Stdn(ν), w ∈ Df,n−1 and ν � n − 2f , such that

E2f −1T
−1
wp

b ≡
∑

ν�n−2f
s,t∈Stdn(ν)
w∈Df,n−1

as,t,wT ∗
d(s)mνTd(t)Tw mod B

f +1
n . (5.25)
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We now prove the claim. Let b ∈ (E1E3 · · ·E2f −3)Bn−1(q, r)∩B
f

n−1. As in the proof

of Lemma 3.5, we may write b, modulo B
f +1
n−1 ⊂ B

f +1
n , as an R-linear combination

of elements of the form
{

T ∗
v E1E3 · · ·E2f −1TuTw

∣
∣
∣
∣
v,w ∈ Df,n−1, u ∈ 〈si : 2f < i < n − 1〉

and v ∈ 〈si : 2f − 2 < i < n − 1〉
}

.

Multiplying an element of the above set on the left by E2f −1T
−1
wp

, we obtain:

E1E3 · · ·E2f −3E2f −1T
−1
wp

T ∗
v E2f −1TuTw. (5.26)

There are two cases following. In the first case, suppose that v has a reduced expres-
sion v = si1si2 · · · sil in 〈si : 2f − 2 < i < n − 2〉. Applying the relations

T −1
i T −1

i+1Ti = Ti+1T
−1
i T −1

i+1 and T −1
i T −1

i+1Ei = Ei+1T
−1
i T −1

i+1,

we obtain T −1
wp

T ∗
v E2f −1 = T ∗

v′′E2f +1T
−1
wp

, where v′′ = si1+2si2+2 · · · sil+2. As T ∗
v′′

commutes with E1E3 · · ·E2f −1, substitution into (5.26) yields:

E1E3 · · ·E2f −1T
−1
wp

T ∗
v E2f −1TuTw = T ∗

v′′E1E3 · · ·E2f +1T
−1
wp

TuTw

which is visibly a term in B
f +1
n .

In the second case, suppose that v does not have a reduced expression in 〈si :
2f − 2 < i < n − 2〉. To obtain an explicit expression for such v, we first enumerate
the elements of

Df,n−1 ∩ 〈si : 2f − 2 < i < n − 1〉. (5.27)

As in Example 3.2, the elements of the set (5.27) take the form

vi,j = s2f s2f +1 · · · sj−1s2f −1s2f · · · si−1, for 2f − 2 < i < j < n.

Now, vi,j does not have a reduced expression in 〈si : 2f − 2 < i < n − 2〉 if and only
if vi,j does not stabilise n−1; thus vi,j = vi,n−1, for some 2f −2 < i < n−1. Define

vi = vi,n−1 = s2f s2f +1 · · · sn−2s2f −1s2f · · · si−1, for 2f − 2 < i < n − 1,

so the elements of the set (5.27) which do not stabilise n − 1 are precisely

{vi : 2f − 1 ≤ i ≤ n − 2}.
Let j be an integer, 2f −1 ≤ j ≤ n−2, and calculate E2f −1T

−1
wp

T ∗
vj

E2f −1 explicitly,
beginning with:

E2f −1T
−1
wp

T ∗
vj

E2f −1

= E2f −1T
−1
wp

(Tj−1Tj−2 · · ·T2f −1)(Tn−2Tn−3 · · ·T2f )E2f −1

= E2f −1T
−1
wp

(Tn−2Tn−3 · · ·Tj+1)(Tj−1Tj−2 · · ·T2f −1)(TjTj−1 · · ·T2f )E2f −1

= E2f −1(T
−1

2f T −1
2f +1 · · ·T −1

n−1)
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×(T −1
2f −1T

−1
2f · · ·T −1

j )(Tj−1Tj−2 · · ·T2f −1)(TjTj−1 · · ·T2f )E2f −1

= E2f −1(T
−1
2f T −1

2f +1 · · ·T −1
j+1)(T

−1
2f −1T

−1
2f · · ·T −1

j )(Tj−1Tj−2 · · ·T2f −1)

×(TjTj−1 · · ·T2f )E2f −1(T
−1
j+2T

−1
j+3 · · ·T −1

n−1).

Using the relations

E2f −1(T
−1
2f T −1

2f +1 · · ·T −1
j+1)(T

−1
2f −1T

−1
2f · · ·T −1

j ) = E2f −1E2f · · ·Ej+1

and

(Tj−1Tj−2 · · ·T2f −1)(TjTj−1 · · ·T2f )E2f −1 = EjEj−1 · · ·E2f −1,

we now obtain:

E2f −1T
−1
wp

T ∗
vj

E2f −1 = (E2f −1E2f · · ·EjEj+1)(EjEj−1 · · ·E2f −1)

×(T −1
j+2T

−1
j+3 · · ·T −1

n−1).

Further applying relations like Ei(Ei+1Ei+2Ei+1)Ei = EiEi+1Ei = Ei in the right
hand side of the above expression gives:

E2f −1T
−1
wp

T ∗
vj

E2f −1 = E2f −1(T
−1
j+2T

−1
j+3 · · ·T −1

n−1). (5.28)

Multiplying both sides of (5.28) by E1E3 · · ·E2f −3 on the left and by TuTw on the
right, the term (5.26), with vj substituted for v, becomes

E1E3 · · ·E2f −1T
−1
wp

T ∗
vj

E2f −1TuTw = E1E3 · · ·E2f −1(T
−1
j+2T

−1
j+3 · · ·T −1

n−1)TuTw.

Now (T −1
j+2T

−1
j+3 · · ·T −1

n−1)Tu lies in 〈T2f +1, T2f +2, . . . , Tn−1〉 ⊆ Bn(q, r) and conse-
quently, using Theorem 3.1, can be expressed as an R–linear sum of elements from
the set {Tu′ : u′ ∈ 〈si : 2f < i < n〉} together with an element b′ from the two–sided
ideal of 〈T2f +1, T2f +2, . . . , Tn−1〉 generated by E2f +1. By Lemma 3.3, the element
labelled b′ immediately preceding satisfies

E1E3 · · ·E2f −1E2f −1b
′Tw ∈ B

f +1
n ,

and can be safely ignored in any calculation modulo B̌λ
n . If w ∈ Df,n−1, then straight-

ening a term

E1E3 · · ·E2f −1Tu′Tw, for u′ ∈ 〈si : 2f < i < n〉, (5.29)

into linear combinations of the basis elements given in Theorem 3.1, is achieved using
relations in Hn−2f (q2), via the map ϑf , and does not involve any transformation of
Tw; it follows that there exist au,v,w , for u,v ∈ Stdn(ν) and ν � n − 2f , such that the
term (5.29) can be expressed as

E1E3 · · ·E2f −1Tu′Tw ≡
∑

ν�n−2f
u,v∈Stdn(ν)

au,v,wT ∗
d(u)mνTd(v)Tw mod B

f +1
n .
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This completes the proof of the claim. �

We continue to use the notation established in the statement of Lemma 5.6.
If t < k ≤ p, then by Lemma 5.6, there is a proper inclusion of Bn−1(q, r)–

modules Nμ(t) ⊆ Nμ(k)
.

Corollary 5.8 Let f be an integer, 0 < f ≤ [n/2], and λ be a partition of n−2f with
t removable nodes and (p − t) addable nodes. Suppose that μ(1) � μ(2) � · · · � μ(p)

is the ordering of {μ : μ → λ} by dominance order on partitions. Then

(0) = Nμ(0) ⊆ Nμ(1) ⊆ · · · ⊆ Nμ(p) = Res(Sλ)

is a filtration of Res(Sλ) by Bn−1(q, r)–modules, wherein each quotient
Nμ(k)

/Nμ(k−1)
, for 1 ≤ k ≤ p, is isomorphic to the cell module Sμ(k)

via

yλ
μ(k)Td(t)Tw + Nμ(k−1) 
→ mμ(k)Td(t)Tw + B̌

μ(k)

n−1, (5.30)

for (t,w) ∈ Stdn−1(μ
(k)).

Proof It has been shown in Lemma 5.1 that the map (5.30) is an isomorphism
Nμ(k)

/Nμ(k−1) ∼= Sμ(k)
, for 1 ≤ k ≤ t .

For each k with t < k ≤ p, let Sk = μ(p)(sk), where sk is the tableau defined
by (5.19). If v ∈ Stdn−1(μ

(k)) and b ∈ Bn−1(q, r), then using Lemmas 3.6 and 5.3,
there exist aj,t,w ∈ R, for (t,w) ∈ In−1(μ

(j)), and t < j ≤ k, such that

mSkvb =
∑

t<j≤k

(t,w)∈In−1(μ
(j))

aj,t,w mSj tTw +
∑

μ�μ(t+1)

S∈T0(μ,μ(p))
(u,v)∈In−1(μ)

aS,u,vmSuTv + b′, (5.31)

where μ runs over partitions of n − 2f + 1 and

b′ ∈ E1E3 · · ·E2f −3Bn−1(q, r) ∩ B
f

n−1.

Multiplying both sides of the expression (5.31) by E2f −1T
−1
wp

and using Lemma 5.3,
we obtain

q�(d(sk))yλ
μ(k)Td(v)b = E2f −1T

−1
wk

mμ(k)b + B̌λ
n

=
∑

t<j≤k

(t,w)∈In−1(μ
(j))

aj,t,w q�(d(sj ))yλ
μ(j)Td(t)Tw

+ E2f −1T
−1
wp

b′ + B̌λ
n ,
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where E2f −1T
−1
wp

b′ + B̌λ
n ∈ Nμ(t)

by Claim 5.7. Thus

q�(d(sk))yλ
μ(k)Td(v)b ≡

∑

t<j≤k

(t,w)∈In−1(μ
(j))

aj,t,w q�(d(sj ))yλ
μ(j)Td(t)Tw mod Nμ(t)

and

q�(d(sk))yλ
μ(k)Td(v)b ≡

∑

(t,w)∈In−1(μ
(k))

ak,t,w q�(d(sk))yλ
μ(k)Td(t)Tw

+
∑

t<j<k

(t,w)∈In−1(μ
(j))

aj,t,w q�(d(sj ))yλ
μ(j)Td(t)Tw mod Nμ(t)

.

(5.32)

From (3.16) and (5.31), the {ak,t,w ∈ R : (t,w) ∈ In−1(μ
(k))} appearing in (5.32)

satisfy ak,t,w = at,w , where

mμ(k)Td(v)b ≡
∑

(t,w)∈In−1(μ
(k))

at,wmμ(k)Td(t)Tw mod B̌
μ(k)

n−1,

thus demonstrating that (5.30) determines a Bn−1(q, r)–module isomorphism when-
ever t < k ≤ p.

It remains to observe that Nμ(p) = Res(Sλ). To this end,

dimR(Nμ(p)

) =
p∑

i=1

dimR(Nμ(i)

/Nμ(i−1)

) =
∑

μ→λ

dimR(Sμ) = dimR(Sλ)

where the last equality follows, for instance, from the semisimple branching law
given in Theorem 2.3 of [12]. �

The statement below follows from Corollary 5.8.

Theorem 5.9 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f .
Suppose that for each partition μ with μ → λ there exists an index set Tn−1(μ)

together with

{bu ∈ Bn−1(q, r) : u ∈ Tn−1(μ)}
such that

{mu = mμbu + B̌
μ
n−1 : u ∈ Tn−1(μ)}

freely generates Sμ as an R–module. Then

{yλ
μbu : u ∈ Tn−1(μ) for μ → λ}
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is a free R–basis for Sλ. Moreover, if Ňμ denotes the Bn−1(q, r)–submodule of Sλ

generated by

{yλ
ν bt : t ∈ Tn−1(ν) for ν → λ and ν � μ},

then

yλ
μbu + Ňμ 
→ mμbu + B̌

μ
n−1 for u ∈ Tn−1(μ) with μ → λ,

determines an isomorphism Nμ/Ňμ ∼= Sμ of Bn−1(q, r)–modules.

6 New bases for the B-M-W algebras

If f is an integer, 0 ≤ f ≤ [n/2], and λ is a partition of n−2f then, appropriating the
definition given in [6], we define a path of shape λ in the Bratteli diagram associated
with Bn(q, r) to be a sequence of partitions

t =
(
λ(0), λ(1), . . . , λ(n)

)

where λ(0) = ∅ is the empty partition, λ(n) = λ, and λ(i−1) → λ(i), whenever 1 ≤ i ≤
n. Let Tn(λ) denote the set of paths of shape λ in the Bratteli diagram of Bn(q, r). If
t = (λ(0), λ(1), . . . , λ(n)) is in Tn(λ), and i is an integer, 0 ≤ i ≤ n, define

t|i =
(
λ(0), λ(1), . . . , λ(i)

)
.

The set Tn(λ) is equipped with a dominance order � defined as follows: given paths

t =
(
λ(0), λ(1), . . . , λ(n)

)
and u =

(
μ(0),μ(1), . . . ,μ(n)

)

in Tn(λ), write t � u if λ(k) � μ(k) for k = 1,2, . . . , n. As usual, we write t � u to
mean that t � u and t �= u. There is a unique path in Tn(λ) which is maximal with
respect to the order �. Denote by tλ the maximal element in Tn(λ).

Example 6.1 Let n = 10, f = 2 and λ = (3,2,1). Then

t
λ =
(

∅, ,∅, ,∅, , , , , ,

)

is the maximal element in Tn(λ) with respect to the order �.

Let λ be a partition of n−2f , for 0 ≤ f ≤ [n/2]. Theorem 5.9 will now be applied
iteratively to give the Bn(q, r)–module Sλ a generic basis indexed by the set Tn(λ).

Assume that for each partition μ with μ → λ, we have defined a set

{mu = mμbu + B̌
μ
n−1 : u ∈ Tn−1(μ)} (6.1)
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which freely generates Sμ as an R–module. To define {bt : t ∈ Tn(λ)}, we refer to the
definition of yλ

μ given in (5.4) and (5.21), and write

mt = yλ
μbu whenever u ∈ Tn−1(μ) and t|n−1 = u. (6.2)

By Theorem 3.1 there exist aw , for w ∈ Sn, depending only on bu, such that the term
yλ
μbu on the right hand side of the expression (6.2) can be expressed in terms of the

basis (3.5) as

mt = yλ
μbu =

∑

w∈Sn

awmλTw + B̌λ
n . (6.3)

Thus, given t ∈ Tn(λ) and u ∈ Tn−1(μ) with t|n−1 = u, define

bt =
∑

w∈Sn

awTw (6.4)

where the elements aw ∈ R, for w ∈ Sn, are determined uniquely by the basis (3.5)
and the expression (6.3).

From Theorem 5.9 it follows that set

{mt = mλbt + B̌λ
n : t ∈ Tn(λ)} (6.5)

constructed by the above procedure is a basis for Sλ over R and that, for 1 ≤ i ≤ n,
the basis (6.5) admits natural filtrations by Bi(q, r)–modules, which is analogous to
the property of the Murphy basis for Hn(q

2) given in Lemma 2.3.
With little further ado, the above construction allows us to write the following.

Theorem 6.1 The algebra Bn(q, r) is freely generated as an R module by the col-
lection

M = {mst = b∗
smλbt : s, t ∈ Tn(λ), λ � n − 2f , and 0 ≤ f ≤ [n/2]}.

Moreover the following statements hold:

1. The algebra anti–involution ∗ satisfies ∗ : mst 
→ mts, for all mst ∈ M;
2. Suppose that b ∈ Bn(q, r) and let f be an integer 0 ≤ f ≤ [n/2]. If λ is a partition

of n − 2f and t ∈ Tn(λ), then there exist av ∈ R, for v ∈ Tn(λ), such that, for all
s ∈ Tn(λ),

mstb ≡
∑

v∈Tn(λ)

avmsv mod B̌λ
n .

If λ is a partition of n − 2f , then as a consequence of the theorem, B̌λ
n is the free

R-module generated by {mst : s, t ∈ Tn(μ) and μ � λ}.
Example 6.2 We explicitly compute a basis of the form displayed in (6.5) for the
B4(q, r)–modules Sλ and Sλ′

where λ = (2) and λ′ = (1,1). Our iterative construc-
tion the basis for Sλ entails explicit computation of bu, for all u ∈ Ti (λ

(i)) for which

(∅, . . . , λ(i−1), λ(i), . . . , λ) ∈ T4(λ),

with similar requirements for computing the basis for Sλ′
.



J Algebr Comb (2007) 26: 291–341 325

(a) The algebra B2(q, r) has three one dimensional cell modules; if μ is one of
the partitions ∅, (2) or (1,1), associate to the path in T2(μ) an element of Sμ as

(∅, ,∅) 
→ E1;
(∅, , ) 
→ (1 + qT1) + B̌

(2)
2

(∅, , ) 
→ 1 + B
(1,1)
2 ,

to obtain a cellular basis for B2(q, r) which is compatible with the ordering of parti-
tions ∅ � (2) � (1,1).

(b) The algebra B3(q, r) has four cell modules, one corresponding to each of the
partitions, (1) � (3) � (2,1) � (13).

(i) If μ = (1) then B̌
μ
3 = 0 and mμ = E1; since ν → μ precisely if ν is one of

∅ � (2)� (1,1), using part (a) above, we associate to each path in T3(μ) an element
of Sμ as

(∅, ,∅, ) 
→ mtμ = E1;
(∅, , , ) 
→ mtμT −1

2 T −1
1 (1 + qT1);

(∅, , , ) 
→ mtμT −1
2 T −1

1 = mtμT2T1.

The transition matrix from the basis {mt = mλbt + B̌
μ
3 : t ∈ T3(μ)} for Sμ given

in (6.5) and ordered by dominance as above, to the ordered basis

{vi = mμTvi
: v1 = 1, v2 = s2, v3 = s2s1}

for Sμ given in (3.5) is:

⎡

⎣
1 1 − q2 0
0 q 0
0 q2 1

⎤

⎦ . (6.6)

The elements {bt : t ∈ T3(μ)} of (6.5) are made explicit by the above transition ma-
trix.

(ii) If μ = (3), then Sμ is one–dimensional and

(∅, , , ) 
→ mtμ = (1 + qT1)(1 + qT2 + q2T2T1) + B̌
(3)
3 .

(iii) If μ = (2,1), then mμ = (1 + qT1) and a basis for Sμ is obtained by associ-
ating to each path in T3(μ) an element as

(

∅, , ,

)


→ mtμ = (1 + qT1) + B̌
(2,1)
3 ;

(

∅, , ,

)


→ mtμT2.
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(iv) Finally, if μ = (1,1,1), then Sμ is the right B3(q, r)–module generated by
1 + B̌

(1,1,1)
3 .

(c) Let n = 4 and λ = (2). Then mλ = E1(1 + qT3) and μ → λ if μ is one of
the partitions μ(1) = (1) � μ(2) = (3) � μ(3) = (2,1). Thus, based on (b) above, we
associate to each path t ∈ T4(λ) a basis element of the cell module Sλ as follows:

(∅, ,∅, , ) 
→ yλ
μ(1) = mtλ = E1(1 + qT3) + B̌λ

4 ;
(∅, , , , ) 
→ yλ

μ(1)T
−1
2 T −1

1 (1 + qT1);

∅, , , , ) 
→ yλ
μ(1)T

−1
2 T −1

1 = mtλT2T1;
(∅, , , , ) 
→ yλ

μ(2) = E1(T2T1T3T2)
−1mμ(2) + B̌λ

4

= E1(1 + qT3)(T2T1T3T2)
−1

× (1 + qT2 + q2T2T1) + B̌λ
4

= mtλ(T2T1T3T2)
−1(1 + qT2 + q2T2T1);

(∅, , , , ) 
→ yλ
μ(3) = E1(T2T1T3T2)

−1mμ(3) + B̌λ
4

= mtλ(T2T1T3T2)
−1 = mtλT2T3T1T2;

(∅, , , , ) 
→ yλ
μ(3)T2 = mtλ(T2T1T3T2)

−1T2

= mtλT
−1
2 T −1

3 T −1
1 .

Expanding the terms on the right hand side above using results from Sect. 3 of [4],
we obtain the transition matrix from the basis {mt = mλbt + B̌λ

4 : t ∈ T4(λ)} for Sλ

given in (6.5) and ordered by dominance as above, to basis

{vi,j = mλTvi,j
+ B̌λ

4 : vi,j = s2s3 · · · sj−1s1s2 · · · si−1}
for Sλ given in (3.5), ordered lexicographically, as:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 − q2 0 1 − q2 0 0
0 q 0 q(1 − q2) 0 0
0 0 0 q2 0 0

0 q2 1 q2(1 − q2) 0 1 − q2

q
0 0 0 q3 0 1

0 0 0 q4 1 q2 − 1
q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It may be observed that the elements {bt : t ∈ T4(λ)}, given by the above matrix, are
consistent with (6.6) above and reflect the existence of an embedding Sμ(1)

↪→ Sλ of
B3(q, r)–modules, as Nμ(1)

/Ňμ(1) ∼= Sμ(1)
, where Ňμ(1) = 0.

(d) Now consider the partition λ′ = (1,1); here mλ′ = E1 and μ → λ′ if μ is
one of the partitions μ(1) = (1) � μ(2) = (2,1) � μ(3) = (1,1,1); thus, based on
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Example 5.3 and the calculations (b) above, we associate to each path t ∈ T4(λ
′)

a basis element in the cell module Sλ′
as follows:

(∅, ,∅, , ) 
→ yλ′
μ(1) = m

tλ′ = E1 + B̌λ′
4 ;

(∅, , , , ) 
→ yλ′
μ(1)T

−1
2 T −1

1 (1 + qT1);

(∅, , , , 
→ yλ′
μ(1)T

−1
2 T −1

1 = mtλT2T1;

(∅, , , , ) 
→ yλ′
μ(2) = E1(T2T1T3T2)

−1T2 mμ(1) + B̌λ′
4

= m
tλ′ T −1

2 T −1
3 T −1

1 (1 + qT1);

(∅, , , , ) 
→ yλ′
μ(2)T2 = m

tλ′ T −1
2 T −1

3 T −1
1 (1 + qT1)T2;

(∅, , , , ) 
→ yλ′
μ(3) = E1(T2T1T3T2)

−1mμ(2) + B̌λ′
4

= m
tλ′ (T2T1T3T2)

−1 = m
tλ′ T2T3T1T2.

The transition matrix from the basis {mt = mλ′bt + B̌λ′
4 : t ∈ T4(λ

′)} for Sλ′
given

in (6.5) and ordered by dominance, to the basis

{vi,j = mλ′Tvi,j
+ B̌λ′

4 : vi,j = s2s3 · · · sj−1s1s2 · · · si−1}

for Sλ′
given in (3.5) and ordered lexicographically, is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 − q2 0 q(q2 − 1) 1 − q2 0

0 q2 0 1 − q2 q2 − 1
q 0

0 0 0 q −1 0

0 q3 1 q(1 − q2)
1 − q2

qr 0

0 0 0 q2 0 0
0 0 0 0 q2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.7)

The elements {bt : t ∈ Tn(λ
′)} are made explicit by the above transition matrix.

Example 6.3 Let n = 5 and λ = (2,1). Then μ → λ if μ is one of the partitions

μ(1) = (2) � μ(2) = (1,1) � μ(3) = (3,1) � μ(4) = (2,2) � μ(5) = (2,1,1).

By considering a suitable basis for Nμ(2)
/Nμ(1)

, we make explicit the elements bt,
for t ∈ Tn(λ), defined by (6.3) and

{
yλ
μ(2)bu = mtλ bt : t ∈ Tn(λ) and t|n−1 = u ∈ Tn−1(μ

(2))
}
.
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For brevity, write μ = μ(2). Since s = satisfies s|n−1 = tμ, we have yλ
μ =

mtλTd(s) = mtλT4, where mtλ = E1(1 + qT3) + B̌λ
n . The transition matrix from the

basis

{
yλ
μ bu + Ňμ = mtλbt + Ňμ : t ∈ Tn(λ) and t|n−1 = u ∈ Tn−1(μ)

}
,

which is ordered by dominance, to the basis

{
vi,j = mtλTd(s)Tvi,j

+ Ňμ : vi,j = s2s3 · · · sj−1s1s2 · · · si−1
}
,

which we order lexicographically, is given by (6.7) above. Observe that though
Nμ/Ňμ ∼= Sμ(2)

as Bn−1(q, r)–modules, the construction does not give an embed-
ding Sμ(2)

↪→ Sλ of Bn−1(q, r)–modules.

7 Jucys–Murphy operators

Define the operators Li ∈ Bn(q, r), for i = 1,2, . . . , n, by L1 = 1 and Li =
Ti−1Li−1Ti−1 when i = 2, . . . , n. Let L = Ln denote the subalgebra of Bn(q, r) gen-
erated by L1, . . . ,Ln. The next statement, which is the analogue to Proposition 2.4,
is easily obtained from the braid relation TiTi+1Ti = Ti+1TiTi+1.

Proposition 7.1 Let i and k be integers, 1 ≤ i < n and 1 ≤ k ≤ n. Then the following
statements hold.

1. Ti and Lk commute if i �= k − 1, k.
2. Li and Lk commute.
3. Ti commutes with LiLi+1.
4. L2 · · ·Ln belongs to the centre of Bn(q, r).

Remark 7.1 (i) The elements Li are a special case of certain operators defined in
Corollary 1.6 of [6] in a context of semisimple path algebras.

(ii) The elements Li bear an analogy with the Jucys–Murphy operators Di defined
in Sect. 2.2; we therefore refer to the Li as “Jucys–Murphy operators” in Bn(q, r).

For integers j, k, with 1 ≤ j, k ≤ n, define the elements L
(j)
k by L

(j)

1 = 1 and

L
(j)
k = Tj+k−2L

(j)

k−1Tj+k−2, for k ≥ 2.

In particular L
(1)
k , for k = 1, . . . , n, are the usual Jucys–Murphy operators in Bn(q, r).

The next proposition is a step on the way to showing that the set {mt = mλbt+B̌λ
n :

t ∈ Tn(λ)} defined in (6.5) above is a basis of generalised eigenvectors for the action
of Jucys–Murphy operators on the cell module Sλ.
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Proposition 7.2 Let i, k be integers with 1 ≤ i ≤ n and 1 < k ≤ n. Then

EiL
(i)
k =

⎧
⎪⎨

⎪⎩

r−2Ei if k = 2;

Ei if k = 3;

EiL
(i+2)
k−2 if k ≥ 4.

Proof If k = 2, then EiL
(i)
k = EiT

2
i = r−2Ei . For k = 3, we use the relations

EiEi+1 = EiTi+1Ti = Ti+1TiEi+1 and EiEi+1Ei = Ei to obtain

EiL
(i)
3 = EiTi+1TiTiTi+1 = EiEi+1TiTi+1 = EiEi+1Ei = Ei. (7.1)

If k ≥ 4, then using (7.1),

EiL
(i)
k = EiTi+k−2Ti+k−3 · · ·Ti+2L

(i)
3 Ti+2 · · ·Ti+k−3Ti+k−2

= Ti+k−2Ti+k−3 · · ·Ti+2EiL
(i)
3 Ti+2 · · ·Ti+k−3Ti+k−2

= EiTi+k−2Ti+k−3 · · ·Ti+2Ti+2 · · ·Ti+k−3Ti+k−2 = EiL
(i+2)
k−2 .

�

Corollary 7.3 Let f, k be integers, 0 < f ≤ [n/2] and 1 ≤ k ≤ n. Then

E1E3 · · ·E2f −1Lk =

⎧
⎪⎨

⎪⎩

E1E3 · · ·E2f −1 if k is odd, 1 ≤ k ≤ 2f + 1;

r−2E1E3 · · ·E2f −1 if k is even, 1 < k ≤ 2f ;

E1E3 · · ·E2f −1L
(2f +1)

k−2f if 2f + 1 < k ≤ n.

Proof If k is odd, 1 < k ≤ 2f + 1, then by the proposition above,

E1E3 · · ·EkLk = E1E3 · · ·EkL
(1)
k = E1E3 · · ·EkL

(3)
k−2 = · · ·

· · · = E1E3 · · ·EkL
(k)
1 = E1E3 · · ·Ek. (7.2)

Since Ek+2Ek+4 · · ·E2f −1 commutes with Lk , the first statement has been proved. If
k is even, 1 < k ≤ 2f , then use the relation EiTi = r−1Ti and (7.2) so that

E1E3 · · ·E2f −1Lk = E1E3 · · ·E2f −1Tk−1Lk−1Tk−1

= r−1E1E3 · · ·E2f −1Lk−1Tk−1 = r−2E1E3 · · ·E2f −1,

as above. The final case where 2f + 1 < k ≤ n is similar to (7.2) above. �

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . Suppose that
t = (λ(0), λ(1), . . . , λ(n)) is a path in Tn(λ), and that k is an integer, 1 ≤ k ≤ n. Then
generalise the definition (2.10) by writing

Pt(k) =
{

q2(j−i) if [λ(k)] = [λ(k−1)] ∪ {(i, j)}
q2(i−j)r−2 if [λ(k)] = [λ(k−1)] \ {(i, j)}.
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Since q does not have finite multiplicative order in R, the next result which is similar
in flavour to Lemma 5.20 of [6], follows immediately from Lemma 3.34 of [8].

Lemma 7.4 Let f be an integer 0 ≤ f < [n/2] and λ(n−1) be a partition of n − 1 −
2f . If s = (λ(0), λ(1), . . . , λ(n−1)) is a path in Tn−1(λ

(n−1)), then the terms (Pt(n) :
t|n−1 = s) are all distinct.

The next proposition is essentially a restatement of Theorem 2.5. Recall that if f

is an integer, 0 ≤ f ≤ [n/2], and λ is a partition of n − 2f , then tλ is the element in
Tn(λ) which is maximal under the dominance order.

Proposition 7.5 If λ is a partition of n and k is an integer 1 ≤ k ≤ n, then mtλLk =
Ptλ(k)mtλ .

Proof By definition, mtλ = mλ + B̌λ
n so, using the property (3.8),

mλLk + B1
n = ϑ0(cλDk) = Ptλ(k)ϑ0(cλ)

where the last equality follows from Theorem 2.5. Now, given that B1
n ⊆ B̌λ

n when-
ever λ is a partition of n, the result follows. �

Proposition 7.6 Let f be an integer, 0 < f ≤ [n/2], and λ be a partition of n − 2f .
Then mtλLk = Ptλ(k)mtλ .

Proof If k is an integer, 1 ≤ k ≤ 2f + 1, the statement follows from Corollary 7.3;
otherwise, using the corollary and property (3.8),

mλLk + B
f +1
n = xλE1E3 · · ·E2f −1Lk + B

f +1
n

= xλE1E3 · · ·E2f −1L
(2f +1)

k−2f + B
f +1
n

= ϑf (cλDk−2f ) = P
t̂λ(k − 2f )ϑf (cλ)

= Ptλ(k)mλ + B
f +1
n ,

whence the result follows, since B
f +1
n ⊆ B̌λ

n whenever λ is a partition of n − 2f . �

Proposition 7.7 Let f be an integer, 0 ≤ f ≤ [n/2] and λ be a partition of n − 2f .
Then there exists an invariant α ∈ R such that (L2 · · ·Ln) acts on Sλ as a multiple by
α of the identity.

Proof Consider an element
∑

w∈Sn
awmλTw + B̌λ

n , for aw ∈ R. Since (L2 · · ·Ln) is
central in Bn(q, r),

∑

w∈Sn

awmλTw(L2 · · ·Ln) =
∑

w∈Sn

awmλ(L2 · · ·Ln)Tw,

so α =∏n
k=2 Ptλ(k), by the previous proposition. �
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For the proof of Theorem 7.8 we use the filtration of the Bn(q, r) module Sλ by
Bn−1(q, r)–modules given in Theorem 5.9.

Theorem 7.8 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . If
t ∈ Tn(λ), then there exist au ∈ R, for u ∈ Tn(λ), such that

mtLk = Pt(k)mt +
∑

u∈Tn(λ)
u�t

aumu.

Proof We proceed by induction. Let t be in Tn(λ) and suppose that s = t|n−1 is an
element of Tn−1(μ). Then mt + Ňμ 
→ ms under the isomorphism Nμ/Ňμ → Sμ of
Bn−1(q, r)–modules given in Theorem 5.9. Hence, if 1 ≤ k < n, there exist av ∈ R,
for v ∈ Tn−1(μ), such that

mtLk + Ňμ 
→ Ps(k)ms +
∑

v∈Tn−1(μ)
v�s

avmv

under the Bn−1(q, r)–module isomorphism Nμ/Ňμ → Sμ. Thus the av ∈ R, for
v ∈ Tn−1(μ), satisfy

mtLk ≡ Ps(k)mt +
∑

v∈Tn−1(μ)
v�s

avyλ
μbv mod Ňμ.

If v ∈ Tn−1(μ) and v� s, then, using the definition (6.3), yλ
μbv = mu, where u|n−1 =

v � s = t|n−1, and thus u � t. Since Pt(k) = Ps(k) whenever 1 ≤ k < n, the above
expression becomes

mtLk ≡ Pt(k)mt +
∑

u∈Tn(λ)
u�t

aumu mod Ňμ, (7.3)

where au = av whenever u|n−1 = v. Now, Ňμ is the Bn−1(q, r)–module freely gen-
erated by

{
mu = yλ

ν bv : u ∈ Tn(λ), ν → λ, ν � μ and u|n−1 = v ∈ Tn−1(ν)
}
,

and so it follows that Ňμ is contained in the R–submodule of Sλ generated by {mu :
u ∈ Tn(λ) and u � t}. Thus (7.3) shows that the theorem holds true whenever 1 ≤ k <

n.
That Ln acts triangularly on Sλ, can now be deduced using Proposition 7.7:

mtLn =
n∏

k=1

Pt(k)mt(L2L3 · · ·Ln−1)
−1.

Thus the generalised eigenvalue for Ln acting on mt is Pt(n). �
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8 Semisimplicity criteria for B–M–W algebras

Let κ be a field and take q̂, r̂, (q̂ − q̂−1) to be units in κ . In this section we consider the
algebra Bn(q̂, r̂) = Bn(q, r) ⊗R κ . For t ∈ Tn(λ) and k = 1, . . . , n, let P̂t(k) denote
the evaluation of the monomial Pt(k) at (q̂, r̂),

P̂t(k) =
{

q̂2(j−i) if [λ(k)] = [λ(k−1)] ∪ {(i, j)}
q̂2(i−j)r̂−2 if [λ(k)] = [λ(k−1)] \ {(i, j)},

and define the ordered n-tuple P̂ (t) = (P̂t(1), . . . , P̂t(n)). The next statement is the
counterpart to Proposition 3.37 of [8].

Proposition 8.1 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f .
(i) Let ρ = (ρ1, . . . , ρn) be a sequence of elements of κ such that there exists a path

t ∈ Tn(λ) with ρ = P̂ (t). Then there exists a one–dimensional L–module Lρ = κxρ

such that

xρLk = ρkxρ for k = 1,2, . . . , n.

Moreover, every irreducible L–module has this form.
(ii) Let f be an integer, 0 ≤ f ≤ [n/2], and suppose that λ is a partition of n−2f .

Fix an ordering t1, . . . , tk = tλ of Tn(λ) so that i > j whenever ti � tj . Then Sλ has
a L–module composition series

Sλ = S1 > S2 > · · · > Sk > Sk+1 = 0

such that Si/Si+1 = Lρi , for each i, where ρi = P̂ (ti ).

Proof As in [8], we prove (ii) from which item (i) will follow. Order the elements
of Tn(λ) as in item (ii), and for i = 1, . . . , k, let Si be the κ–module generated by
{mtj

: i ≤ j ≤ k}. By Theorem 7.8, each Si is an L–module, and so Sλ = S1 > · · · >
Sk > 0 is an L–module filtration of Sλ. Further, by Theorem 7.8 again, Si/Si+1 =
κ(mti

+ Si+1) is a one dimensional module isomorphic to Li . �

Theorem 8.2 Suppose that for each pair of partitions λ of n − 2f and μ of n − 2f ′,
for integers f,f ′ with 0 ≤ f,f ′ ≤ [n/2], and that for each pair of paths s ∈ Tn(λ)

and t ∈ Tn(μ), the conditions λ � μ and P̂ (s) = P̂ (t) together imply that λ = μ.
Then Bn(q̂, r̂) is a semisimple algebra over κ .

Proof The hypotheses of the theorem imply that given a pair of partitions λ and μ

with λ � μ, there are no L–module composition factors in common between Sλ

and Sμ. However, if Bn(q̂, r̂) is not semisimple, then using Theorem 4.4, Dμ is a
Bn(q̂, r̂)–module composition factor of Sλ for some pair of partitions λ and μ for
which, by Proposition 3.6 of [5], λ � μ; in particular, by Proposition 8.1, there must
be L–module composition factors in common between Sλ and Sμ, which as already
noted, is an impossibility. �
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From the next statement (Lemma 5.20 of [6]), it will follow that the Jucys–Murphy
operators do in fact distinguish between cell modules of Bn(q, r).

Lemma 8.3 Let f be an integer 0 ≤ f < [n/2] and λ(n−1) be a partition of n − 1 −
2f . If s = (λ(0), λ(1), . . . , λ(n−1)) is a path in Tn−1(λ

(n−1)), then the terms
(
Pt(n) :

t|n−1 = s
)

are all distinct.

For the case where κ = C(q̂, r̂), a form of the following statement can be found in
Corollary 5.6 of [12].

Corollary 8.4 If κ is a field, then a B–M–W algebra Bn(q̂, r̂) over κ is semisimple
for almost all (all but finitely many) choices of the parameters q̂ and r̂ . If Bn(q̂, r̂) is
not semisimple then necessarily q̂ is a root of unity or r̂ = ±q̂k for some integer k.

Theorem 8.5 may be compared with Theorem 11.2 below. Theorem 8.5 gives a
semisimplicity criterion for Bn(q, r).

Theorem 8.5 Let λ be a partition of n − 2f and μ be a partition of n − 2g, where
0 ≤ f < g ≤ [n/2]. If HomBn(q̂,r̂)(S

λ, Sμ) �= 0, then

r̂2(g−f )q̂
2
∑

(i,j)∈[λ] (j−i) = q̂
2
∑

(i,j)∈[μ] (j−i)
.

Proof Suppose that u ∈ Sλ, v ∈ Sμ are non–zero and that u 
→ v under some element
in HomBn(q̂,r̂)(S

λ, Sμ). Then, using Lemma 7.7, on the one hand u(L2L3 · · ·Ln) =
r̂−2f q̂

2
∑

(i,j)∈[λ](j−i)u, while on the other vL2L3 · · ·Ln = r̂−2gq̂
2
∑

(i,j)∈[μ](j−i)v.
Since v is the homomorphic image of u, it follows that r̂−2f q̂

2
∑

(i,j)∈[λ](j−i) =
r̂−2gq̂

2
∑

(i,j)∈[μ](j−i); hence the result. �

As the next example shows, Theorem 8.2 gives a sufficient but not the neces-
sary condition for Bn(q̂, r̂) to be a semisimple algebra over κ ; it can also be seen
from the example that Theorem 8.5 gives a necessary but not sufficient condition for
HomBn(q̂,r̂)(S

λ, Sμ) to be non–zero.

Example 8.1 Let n = 3, λ = (1), μ = (3), κ = Q(q̂, r̂), and suppose that r̂ = −q̂−3,
where q̂ is not a root of unity. Since q̂ is not root of unity, the cell modules for
B3(q̂, r̂) corresponding to the partitions (3), (2,1) and (1,1,1) are absolutely irre-
ducible (Theorem 3.43 of [8] together with Lemma 3.2 with f = 0). On the other
hand, if

s = (∅, , , ) ∈ Tn(λ) and t = (∅, , , ) ∈ Tn(μ),

then P̂ (s) = (1, q̂2, q̂−2r̂−2) = (1, q̂2, q̂4) and P̂ (t) = (1, q̂2, q̂4). Since P̂ (s) = P̂ (t)

whilst λ � μ, the pair s, t violates the hypotheses of Theorem 8.2. But we note by
reference to the determinant of Gram matrix associated to Sλ in Example 3.3 that Sλ

is absolutely irreducible and hence that B3(q̂, r̂) remains semisimple over κ (Theo-
rems 4.3 and 4.4).
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9 Brauer algebras

The foregoing construction for the B–M–W algebras applies with minor modification
to the Brauer algebras over an arbitrary field. We begin once more by considering
Brauer algebras over a polynomial ring over Z. Take z to be an indeterminate over Z;
we write R = Z[z] and define the Brauer algebra Bn(z) over R as the associative uni-
tal R–algebra generated by the transpositions s1, s2, . . . , sn−1, together with elements
E1,E2, . . . ,En−1, which satisfy the defining relations:

s2
i = 1 for 1 ≤ i < n;

sisi+1si = si+1sisi+1 for 1 ≤ i < n − 1;

sisj = sj si for 2 ≤ |i − j |;
E2

i = zEi for 1 ≤ i < n;

siEj = Ejsi for 2 ≤ |i − j |;
EiEj = EjEi for 2 ≤ |i − j |;
Eisi = siEi = Ei for 1 ≤ i < n;

Eisi±1si = si±1siEi±1 = EiEi±1 for 1 ≤ i, i ± 1 < n;

Eisi±1Ei = EiEi±1Ei = Ei for 1 ≤ i, i ± 1 < n.

Regard the group ring RSn as the subring of Bn(z) generated by the transpositions
{si = (i, i + 1) : for 1 ≤ i < n}. If f is an integer, 0 ≤ f ≤ [n/2], and λ is a partition
of n − 2f , define the elements

xλ =
∑

w∈Sλ

w and mλ = E1E3 · · ·E2f −1xλ,

where Sλ is the row stabiliser in 〈s2f +1, s2f +2, . . . , sn−1〉 of the superstandard
tableau tλ ∈ Stdn(λ). Let Bλ

n be the two sided ideal of Bn(z) generated by mλ and
write

B̌λ
n =
∑

μ�λ

Bμ
n .

A cellular basis in terms of dangles has been given for the Brauer algebra in [5].
Replacing cellular bases for Hn(q

2) with cellular bases for RSn, the process used to
construct cellular bases the B–M–W algebras in [4] will produce also cellular bases
for Bn(z) as follows.

If f is an integer, 0 ≤ f ≤ [n/2], and λ a partition of n − 2f , then In(λ) retains
the meaning assigned in (3.3).

Theorem 9.1 The algebra Bn(z) is freely generated as an R–module by the collec-
tion

{

(d(s)v)−1mλd(t)u

∣
∣
∣
∣
(s, v), (t, u) ∈ In(λ) for λ a partition

of n − 2f and 0 ≤ f ≤ [n/2]
}

.
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Moreover, the following statements hold.

1. The R–linear map determined by

(d(s)v)−1mλd(t)u 
→ (d(t)u)−1mλd(s)v

is an algebra anti–involution of Bn(z).
2. Suppose that b ∈ Bn(z) and let f be an integer, 0 ≤ f ≤ [n/2]. If λ is a partition

of n − 2f and (t, u) ∈ In(λ), then there exist a(u,w) ∈ R, for (u,w) ∈ In(λ), such
that for all (s, v) ∈ In(λ),

(d(s)v)−1mλd(t)ub ≡
∑

(u,w)

a(u,w)(d(s)v)−1mλd(u)w mod B̌λ
n . (9.1)

As a consequence of the above theorem, B̌λ
n is the R–module freely generated by

{
(d(s)v)−1mμd(t)u : (s, v), (t, u) ∈ In(μ), for μ � λ

}
.

If f is an integer, 0 ≤ f ≤ [n/2], and λ is a partition of n − 2f , the cell module
Sλ is defined to be the R–module freely generated by

{
mλd(t)u + B̌λ

n | (t, u) ∈ In(λ)
}

(9.2)

with right Bn(z) action

(mλd(t)u)b + B̌λ
n =
∑

(u,w)

a(u,w)mλd(u)w + B̌λ
n for b ∈ Bn(z),

where the coefficients a(u,w) ∈ R, for (u,w) in In(λ), are determined by the expres-
sion (9.1).

The construction of cellular algebras [5] equips the Bn(z)–module Sλ with a sym-
metric associative bilinear form (compare (3.6) above). Following is the counterpart
to Example 3.3, stated for reference in Sect. 11.

Example 9.1 Let n = 3 and λ = (1) so that B̌λ
n = (0) and mλ = E1. We order the

basis (9.2) for the module Sλ as v1 = E1, v2 = E1s2 and v3 = E1s2s1 and, with
respect to this ordered basis, the Gram matrix 〈vi ,vj 〉 of the bilinear form on the
Bn(z)–module Sλ is

⎡

⎣
z 1 1
1 z 1
1 1 z

⎤

⎦ .

The determinant of the Gram matrix given above is

(z − 1)2(z + 2).

By Theorem 2.3 of [12], the Bratteli diagram associated with Bn(z) is identical
to the Bratteli diagram for Bn(q, r). Thus μ → λ retains the meaning assigned in
Sect. 5.
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Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n−2f with t removable
nodes and (p− t) addable nodes. Suppose that μ(1) �μ(2) � · · ·�μ(p) is the ordering
of {μ : μ → λ} by dominance order on partitions. If 1 ≤ k ≤ t , define

yλ
μ(k) = mλd(s) + B̌λ

n where s|n−1 = t
μ(k) ∈ Stdn−1(μ

(k))

and, if t < k ≤ p define wk by (5.20) and, by analogy with (5.21), write

yλ
μ(k) = E2f −1w

−1
k mμ(k) + B̌λ

n .

Given the elements yλ
μ in Sλ for each partition μ → λ, define Nμ to be the Bn−1(z)–

submodule of Sλ generated by

{yλ
ν : ν → λ and ν � μ}

and let Ňμ be the Bn−1(z)–submodule of Sλ generated by

{yλ
ν : ν → λ and ν � μ}.

Theorem 5.9 and the construction given for the B–M–W algebras in Sect. 6 have
analogues in the context of Bn(z). Thus the cell module (9.2) has a basis over R,

{mt = mλbt + B̌λ
n : t ∈ Tn(λ)}

indexed by the paths Tn(λ) of shape λ in the Bratteli diagram associated with Bn(z),
and defined in the same manner as the basis (6.5).

10 Jucys–Murphy operators for the Brauer algebras

Define the operators Li , for i = 1, . . . , n, in Bn(z) by L1 = 0 and

Li = si−1 − Ei−1 + si−1Li−1si−1 for 1 < i ≤ n.

Remark 10.1 The elements Li as defined above bear an obvious analogy with the
elements D̃i defined in Sect. 2.2; thus we refer to the elements Li as the “Jucys–
Murphy operators” in Bn(z).

In [10], M. Nazarov made use of operators xi with are related to the Li defined
above by xi = z−1

2 + Li . Since the difference of Li and the xi of [10] is a scalar
multiple of the identity, we derive the next statement from results in Sect. 2 of [10].

Proposition 10.1 Let i and k be integers, 1 ≤ i < n and 1 ≤ k ≤ n.

1. si and Lk commute if i �= k − 1, k.
2. Li and Lk commute.
3. si commutes with Li + Li+1.
4. L2 + L3 + · · · + Ln belongs to the centre of Bn(z).
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For integers j, k with 1 ≤ j, k ≤ n, we define the elements L
(j)
k by L

(j)

1 = 0 and

L
(j)

k+1 = sj+k−1 − Ej+k−1 + sj+k−1L
(j)
k sj+k−1, for k ≥ 1.

In particular, L
(1)
k = Lk , for k = 1, . . . , n, are the Jucys–Murphy elements for Bn(z).

The objective now is to show that mtλ is a common eigenvector for the action of
the Jucys–Murphy elements Lk on the cell module Sλ.

Proposition 10.2 Let i, k be integers with 1 ≤ i ≤ n and 1 < k ≤ n. Then

EiL
(i)
k =

⎧
⎪⎨

⎪⎩

(1 − z)Ei if k = 2;

0 if k = 3;

EiL
(i+2)
k−2 if k ≥ 4.

Proof If k = 2 then EiL
(i)
k = Ei(si − Ei) = (1 − z)Ei . For k = 3 we have

EiL
(i)
3 = Ei(si+1 − Ei+1 + si+1sisi+1 − si+1Eisi+1)

= Ei(si+1 − Ei+1) + Ei(Ei+1si+1 − si+1) = 0.

If k = 4 then,

EiL
(i)
4 = Ei(si+2 − Ei+2) + si+2EiL

(i)
3 si+2

= Ei(si+2 − Ei+2) = EiL
(i+2)
2 ,

and when k > 4,

EiL
(i)
k = Ei(si+k−2 − Ei+k−2) + si+k−2EiL

(i)
k−1si+k−2

= Ei(si+k−2 − Ei+k−2) + si+k−2EiL
(i+2)
k−3 si+k−2

= Ei(si+k−2 − Ei+k−2 + si+k−2L
(i+2)
k−3 si+k−2) = EiL

(i+2)
k−2

by induction. �

Corollary 10.3 Let f, k be integers, 0 < f ≤ [n/2] and 1 ≤ k ≤ n. Then

E1E3 · · ·E2f −1Lk =

⎧
⎪⎨

⎪⎩

0, if k is odd, 1 ≤ k ≤ 2f + 1;

(1 − z)E1E3 · · ·E2f −1, if k is even, 1 < k ≤ 2f ;

E1E3 · · ·E2f −1L
(2f +1)

k−2f , if 2f + 1 < k ≤ n.

Proof If k is odd, 1 < k ≤ 2f + 1, then by Proposition 10.2,

E1E3 · · ·EkLk = E1E3 · · ·EkL
(1)
k = E1E3 · · ·EkL

(3)
k−2 = · · ·

· · · = E1E3 · · ·EkL
(k)
1 = 0. (10.1)
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Since Ek+2Ek+3 · · ·E2f −1 commutes with Lk , the first case follows. If k is even and
1 < k ≤ 2f , then the relations Eisi = Ei and E2

i = zEi , together with (10.1), show
that

E1E3 · · ·E2f −1Lk = E1E3 · · ·E2f −1(sk−1 − Ek−1 + sk−1Lk−1sk)

= (1 − z)E1E3 · · ·E2f −1 + E1E3 · · ·E2f −1Lk−1sk−1

= (1 − z)E1E3 · · ·E2f −1.

The final case follows in a similar manner. �

Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n − 2f . For each path
t ∈ Tn(λ), define the polynomial

Pt(k) =
{

j − i if [λ(k)] = [λ(k−1)] ∪ {(i, j)}
i − j + 1 − z if [λ(k)] = [λ(k−1)] \ {(i, j)}.

The proof of the next statement is identical to the proof of Proposition 7.5 given
above; for the proof of Proposition 10.5, we refer to the proof of Proposition 7.6.

Proposition 10.4 If λ is a partition of n and k is an integer with 1 ≤ k ≤ n, then
mtλLk = Ptλ(k)mtλ .

Proposition 10.5 Let f be an integer, 0 < f ≤ [n/2], and λ be a partition of n−2f .
Then mtλLk = Ptλ(k)mtλ .

Proposition 10.6 Let f be an integer, 0 ≤ f ≤ [n/2], and λ be a partition of n−2f .
Then there exists an invariant α ∈ R such that L2 + L3 + · · · + Ln acts on Sλ as a
scalar multiple by α of the identity.

Proof As in the proof of Proposition 7.7, we obtain α =∑n
k=2 Ptλ(k). �

Theorem 10.7 Let f be an integer 0 ≤ f ≤ [n/2] and λ be a partition of n − 2f . If
t ∈ Tn(λ), then there exist av ∈ R, for v ∈ Tn(λ) with v � t, such that

mtLk = Pt(k)mt +
∑

v∈Tn(λ)
v�t

avmv.

Proof By repeating word for word the argument given in the proof of Theorem 7.8,
we show that the statement holds true when 1 ≤ k < n.

That Ln acts triangularly on Sλ, can then be observed using Proposition 10.6:

mtLn =
n∑

k=1

Pt(k)mt − mt(L2 + L3 + · · · + Ln−1).

Thus the generalised eigenvalue for Ln acting on mt is Pt(n). �
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11 Semisimplicity criteria for Brauer algebras

Below are analogues for the Brauer algebras of the results of Sect. 8. Let κ be a field
and take ẑ ∈ κ . Then z 
→ ẑ determines a homomorphism R → κ , giving κ an R–
module structure. A Brauer algebra over κ is a specialisation Bn(ẑ) = Bn(z) ⊗R κ .
For t ∈ Tn(λ) and k = 1, . . . , n, let P̂t(k) denote the evaluation of the monomial
Pt(k) at ẑ,

P̂t(k) =
{

j − i if [λ(k)] = [λ(k−1)] ∪ {(i, j)}
i − j + 1 − ẑ if [λ(k)] = [λ(k−1)] \ {(i, j)},

and as previously, define the ordered n-tuple P̂ (t) = (P̂t(1), . . . , P̂t(n)). The opera-
tors Li provide conditions necessary for the existence of a homomorphic image of
one cell module for Bn(ẑ) in another cell module for Bn(ẑ).

Theorem 11.1 Let κ be a field. Suppose that for each pair of partitions λ of n − 2f

and μ of n − 2f ′, for integers f,f ′ with 0 ≤ f,f ′ ≤ [n/2], and for each pair of
partitions s ∈ Tn(λ) and t ∈ Tn(μ), the conditions λ � μ and P̂ (s) = P̂ (t) together
imply that λ = μ. Then Bn(ẑ) is a semisimple algebra over κ .

By an analogous statement to Lemma 8.3, the Jucys–Murphy elements do in fact
distinguish between the cell modules of Bn(z) in Theorem 11.1.

The results of this section can be used to derive the next statement which is The-
orem 3.3 of [3]. As in Theorem 8.5, the statement may be generalised to the setting
where |λ| > |μ|.

Theorem 11.2 Let λ be a partition of n and μ be a partition of n−2f , where f > 0.
If HomBn(ẑ)(S

λ, Sμ) �= 0, then

∑

(i,j)∈[λ]
(j − i) −

∑

(i,j)∈[μ]
(j − i) = f (1 − ẑ).

Proof Suppose that u ∈ Sλ, v ∈ Sμ are non–zero and that u 
→ v under some element
in HomBn(ẑ)(S

λ, Sμ). Then, using Proposition 10.6,

n∑

i=1

uLi =
∑

(i,j)∈[λ]
(j − i)u

while

n∑

i=1

vLi = f (1 − ẑ)v +
∑

(i,j)∈[μ]
(j − i)v.

Since v is the homomorphic image of u, it follows that
∑

(i,j)∈[λ]
(j − i) = f (1 − ẑ) +

∑

(i,j)∈[μ]
(j − i).
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Hence the result. �

Theorem 11.1 gives a sufficient but not the necessary condition for Bn(ẑ) to be a
semisimple algebra over κ . Necessary and sufficient conditions on the semisimplicity
of Bn(ẑ) have been given by H. Rui in [11].

Example 11.1 Let κ = Q and ẑ = 4. Take n = 3, λ = (1) and μ = (1,1,1). In char-
acteristic zero the cell modules corresponding to the partitions (3), (2,1) and (1,1,1)

are absolutely irreducible. But, taking

t = (∅, , , ) ∈ Tn(λ) and u =
(

∅, , ,

)

∈ Tn(μ),

then

P̂ (t) = (0,−1,2 − ẑ) = (0,−1,−2) and P̂ (u) = (0,−1,−2).

Since P̂ (t) = P̂ (u) whilst λ � μ, the pair t,u violates the hypotheses of Theo-
rem 11.1. However, by reference to the determinant of Gram matrix associated to
Sλ in Example 9.1, it follows that Sλ is absolutely irreducible and hence that B3(ẑ)

remains semisimple by appeal to appropriate analogues of Theorems 4.3 and 4.4.

12 Conjectures

Define a sequence of polynomials (pi(z) | i = 1,2, . . . , ) by p1(z) = (z + 2)(z − 1)

and

pi(z) =
{

(z + 2i)(z − i)(z + i − 2)pi−1(z) if i is odd;

(z + 2i)(z − i)pi−1(z) if i is even.

Conjecture 12.1 For κ a field, ẑ ∈ κ and an algebra over κ , with n ≥ 2, the following
statements hold:

(i) If n = 2k + 1, then the bilinear form on the Bn(ẑ)–module S(1) determined
by (3.6) is non–degenerate if and only if pk(ẑ) �= 0.

(ii) If n = 2k, then the bilinear form on the Bn(ẑ)–module S∅ determined by (3.6)
is non–degenerate if and only if ẑ �= 0 and pk(ẑ) �= 0.

Conjecture 12.2 For κ a field, ẑ ∈ κ and an algebra over κ , with n ≥ 2, the following
statements hold:

(i) If n = 2k + 1, then Bn(ẑ) is semisimple and only if κSn is semisimple and
p2k−1(ẑ) �= 0.

(ii) If n = 2k, then Bn(ẑ) is semisimple and only if κSn is semisimple, ẑ �= 0 and
p2k−2(ẑ) �= 0.
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