
J Algebr Comb (2007) 25:1–6

DOI 10.1007/s10801-006-0035-2

On the evaluation at (j, j2) of the Tutte polynomial
of a ternary matroid

Emeric Gioan · Michel Las Vergnas

Received: 17 January 2002 / Accepted: 12 April 2006 /

Published online: 9 September 2006

C© Springer Science + Business Media, LLC 2007

Abstract F. Jaeger has shown that up to a ± sign the evaluation at ( j, j2) of the Tutte

polynomial of a ternary matroid can be expressed in terms of the dimension of the

bicycle space of a representation over G F(3). We give a short algebraic proof of this

result, which moreover yields the exact value of ±, a problem left open in Jaeger’s

paper. It follows that the computation of t( j, j2) is of polynomial complexity for a

ternary matroid.
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In the seminal paper [4] on the complexity of Tutte polynomials, it is shown that

the point ( j, j2) and its conjugate ( j2, j) are two out of eight ‘easy’ special points,

where ‘easy’ is intended from a computational point of view. Each of these eight

points have remarkable combinatorial interpretations. A result of F. Jaeger [3] relates

t( j, j2) and t( j2, j) to ternary matroids. Specifically, let E be a finite set, V be a

subspace of the vector space G F(3)E , and M(V ) be the matroid on E whose circuits

are the inclusion-minimal supports of non-zero vectors of V . Then t(M(V ); j, j2) =
± j |E |+dim V (i

√
3)dim(V ∩V ⊥). Graphs, via graphic matroids, are a special case of ternary

matroids. We refer the reader to the introduction of [3] (see also [4] Section 6) for
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the relevance of these properties to the Jones polynomial in Knot Theory. We also

mention the related paper [5], where the problem of the complexity of the computation

of t(M ; x, y), for x, y algebraic numbers and M vectorial over a given finite field, is

addressed in full generality.

The main step of the proof in [3] is to establish that
∑

u∈V j |s(u)| =
±(i

√
3)dim V +dim(V ∩V ⊥), where s(u) denotes the support of u. The proof of this last

property in Jaeger’s paper uses deletion/contraction of elements of E , and is about

four pages long. Our purpose in the present note is to provide a short algebraic proof.

Moreover, we obtain the exact value of ±, a question left open in Jaeger’s paper. As

a consequence t(M ; j, j2) is of polynomial complexity for a ternary matroid M .

Let K be a field and E be a finite set. The canonical bilinear form on the space K E is

defined by < u, v >= ∑
e∈E u(e)v(e) for u, v ∈ K E . In K E , the subspace orthogonal

to a subspace V is defined by V ⊥ = {u′ ∈ K E |< u, u′ >= 0 for all u ∈ V }. A vector

u ∈ K E is isotropic if < u, u >= 0.

We will use two classical results about orthogonal bases. The orthogonalization

algorithm of Lemma 1.1, which allows isotropic vectors in the orthogonal basis, is

different from the current Gram-Schmidt orthogonalization algorithm valid for real

spaces. We include proofs for completeness.

Lemma 1.1. Let V be a finite dimensional vector space over a field of characteristic
�= 2 endowed with a bilinear form. Then V has an orthogonal basis.

More specifically an orthogonal basis of V can be constructed from any given basis
in polynomial time.

Proof: Let (uk)1≤k≤d be a basis of V . If there is an index 1 ≤ � ≤ d such that

< u�, u� >�= 0, then reindex in such a way that � = 1 and set u′
1 = u1. Otherwise, if

there is an index 2 ≤ � ≤ d such that< u1 + u�, u1 + u� >�= 0, then set u′
1 = u1 + u�.

In both cases, update uk as uk− < u′
1, uk >< u′

1, u′
1 >−1 u′

1 for 2 ≤ k ≤ d. We have

< u′
1, uk >= 0 for 2 ≤ k ≤ d.

Otherwise we have < uk, uk >= 0 for 1 ≤ k ≤ d, and < u1 + uk, u1 + uk >= 0

for 2 ≤ k ≤ d. From < u1 + uk, u1 + uk >= 0, we get < u1, u1 > +2 < u1, uk >

+ < uk, uk >= 2 < u1, uk >= 0, hence < u1, uk >= 0 in characteristic �= 2. We set

u′
1 = u1.

In all three cases, {u′
1, u2, . . . , ud} is a basis of V such that u′

1 is orthogonal to the

space generated by uk for 2 ≤ k ≤ d. Lemma 1.1 follows by induction.

Lemma 1.2. The isotropic vectors of any orthogonal basis of V constitute a basis of
V ∩ V ⊥.

Proof: Let (uk)1≤k≤d be an orthogonal basis of V , and u = ∑
1≤k≤d akuk ∈ V ∩ V ⊥.

For 1 ≤ � ≤ d, we have 0 =< u, u� >= ∑
1≤k≤d ak < uk, u� >= a� < u�, u� >.

Hence if < u�, u� >�= 0, we have a� = 0. It follows that u is generated by the isotropic

vectors of the basis. These vectors being independent, they constitute a basis of

V ∩ V ⊥.

Our basic result is the following strengthening of Jaeger’s proposition.
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Proposition 1. Let E be a finite set, and V be a subspace of G F(3)E . We have∑
u∈V

j |s(u)| = (−1)d+d1 (i
√

3)d+d0

where d = dim V , d0 = dim V ∩ V ⊥ and d1 is the number of vectors with support of
size congruent to 1 modulo 3 in any orthogonal basis of V with respect to the canonical
bilinear form.

Proof: We have G F(3) ∼= Z/3Z , in other words the elements of G F(3) can be as-

similated to integer residues modulo 3. We observe that for u ∈ G F(3)E we have

|s(u)| modulo 3 =< u, u >, where < u, v >= ∑
e∈E u(e)v(e) is the canonical bilin-

ear form. It follows that j |s(u)| = j<u,u>.

By Lemma 1.1, there is an orthogonal basis (uk)1≤k≤d of V . We have∑
u∈V

j |s(u)| =
∑
u∈V

j<u,u>

=
∑

(a1,a2,...,ad )∈G F(3)d

j<
∑

1≤k≤d ak uk ,
∑

1≤k≤d ak uk>

=
∑

(a1,a2,...,ad )∈G F(3)d

j
∑

1≤k≤d a2
k <uk ,uk>

=
∑

(a1,a2,...,ad )∈G F(3)d

∏
1≤k≤d

ja2
k <uk ,uk>

=
∏

1≤k≤d

∑
ak∈G F(3)

j a2
k <uk ,uk>

=
∏

1≤k≤d

(1 + 2 j<uk ,uk>)

= 3d0 (1 + 2 j)d1 (1 + 2 j2)d2

where d0 resp. d1, d2 is the number of vectors uk 1 ≤ k ≤ d such that < uk, uk >=
0 resp. = 1 = 2. We have 1 + 2 j = i

√
3, 1 + 2 j2 = −i

√
3, d = d0 + d1 + d2, and

d0 = dim V ∩ V ⊥ by Lemma 1.2. Proposition 1 follows.

It follows from Proposition 1 and Lemma 1.1 that

Corollary 2. Let E be a finite set, and V be a subspace of G F(3)E .
The parity of the number of vectors with support of cardinality congruent to 1 resp.

2 modulo 3 in an orthogonal basis of V does not depend on the particular orthogonal
basis.

By Corollary 2 the residue modulo 2 of the number of vectors with support of

cardinality congruent to 1 resp. 2 modulo 3 in an orthogonal basis of a subspace V
of G F(3)E is a 0-1 invariant of V . We will denote it by d̄1(V ) resp. d̄2(V ). It follows

Springer



4 J Algebr Comb (2007) 25:1–6

from Lemma 1.1 that d̄1(V ) can be computed in polynomial time from any given basis

of V .

We recall that by a theorem of Greene [2], given a subspace V of G F(q)E , q a

prime power, we have
∑

u∈V z|s(u)| = z|E |−d (1 − z)d t(M ; 1/z, 1 + qz/(1 − z)), where

d = dim V .

Theorem 3. Let M be a ternary matroid on a finite set E. We have

t(M ; j, j2) = (−1)d2 j |E |+d (i
√

3)d0

where d = dim V , d0 = dim V ∩ V ⊥, and d2 is the number of vectors with support
of cardinality congruent to 2 modulo 3 in any orthogonal basis of a subspace V of
G F(3)E such that M = M(V ).

Proof: As in Jaeger’s paper, we derive Theorem 3 from Proposition 1 by means

of Greene’s theorem. Specializing this formula to z = j and q = 3, and applying

Proposition 1, we get

t(M ; j2, j) = (−1)d+d1 j−|E |−d (i
√

3)d0

Since t(M ; j, j2) is the complex conjugate of t(M ; j2, j), Theorem 2 follows.

A short proof of Greene’s theorem is given in [3] Proposition 7 (see also [1] for

another short proof).

Theorem 3 provides the exact value of ± in Jaeger’s formula for t(M ; j, j2) when M
is a ternary matroid. This answers the question in [3] p. 25 asking for an interpretation

of the parameter ε(M), defined by t(M ; j, j2) = ε(M) j |E |+d (i
√

3)d0 . By Corollary 2,

d̄1 = d̄1(V ) = d̄1(M) is a 0-1 invariant of polynomial complexity of a ternary matroid

M . By Theorem 3, we have

ε(M) = (−1)d+d̄1 = (−1)d0+d̄2

As well-known, if V is defined by a basis, the dimension d0 = dim V ∩ V ⊥ is of

polynomial complexity (also a corollary of Lemmas 1.1 and 1.2). Hence

Corollary 4. The evaluation t(M ; j, j2) of the Tutte polynomial of a ternary matroid
M = M(V ), with V defined by a basis, is of polynomial complexity.

Corollary 4 strengthens the previously known polynomial complexity of the mod-

ulus |t(M ; j, j2)|, used in [4, 5].

As noted by Jaeger (see [3] Proposition 9) ε(M) and ε(M∗) are related.

Corollary 5. Let M be a ternary matroid on a set E. We have d̄1(M∗) ≡ d̄1(M) +
d0(M) + |E | modulo 2, where M∗ denotes the dual matroid of M.
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Corollary 5 follows from the relation ε(M) = (−1)d+d̄1 , combined with [3] Propo-

sition 9.(i). It can also be easily derived directly from Theorem 2.

Finally, we mention that the initial motivation of the present note was the compu-

tation of
∑

u∈V j |s(w+u)|, where w is any vector of G F(3)E .

Corollary 6. Let w ∈ G F(3)E .� If w ∈ V + V ⊥, say w = w′ + w′′ with w′ ∈ V and w′′ ∈ V ⊥, then, with notation
of Proposition 1, we have∑

u∈V

j |s(w+u)| = (−1)d+d1 (i
√

3)d+d0 j |s(w′′)|

� If w �∈ V + V ⊥, we have ∑
u∈V

j |s(w+u)| = 0.

Proof: If w = w′ + w′′ with w′ ∈ V and w′′ ∈ V ⊥, we have∑
u∈V

j |s(w+u)| =
∑
u∈V

j |s(w′+w′′+u)|

=
∑
u∈V

j |s(w′′+u)| =
∑
u∈V

j<w′′+u,w′′+u>

=
∑
u∈V

j<w′′,w′′>+<u,u> = j<w′′,w′′>
∑
u∈V

j<u,u>

Then we obtain Corollary 4 by applying Proposition 1.

If w �∈ V + V ⊥, then there is v ∈ V ∩ V ⊥ = (V + V ⊥)⊥ such that < w, v > �= 0.

Let V ′ be a supplement of < v > in V . We have∑
u∈V

j |s(w+u)| =
∑
u∈V ′

∑
a∈G F(3)

j |s(w+u+av)|

=
∑
u∈V ′

∑
a∈G F(3)

j<w+u+av,w+u+av>

=
∑
u∈V ′

∑
a∈G F(3)

j<w+u,w+u>+a<w,v>

=
∑
u∈V ′

j<w+u,w+u>

( ∑
a∈G F(3)

j a<w,v>

)

=
∑
u∈V ′

j<w+u,w+u>(1 + j + j2) = 0
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