On the evaluation at $\left(j, j^{2}\right)$ of the Tutte polynomial of a ternary matroid

Emeric Gioan - Michel Las Vergnas

Received: 17 January 2002 / Accepted: 12 April 2006 /
Published online: 9 September 2006
© Springer Science + Business Media, LLC 2007

Abstract

F. Jaeger has shown that up to a \pm sign the evaluation at $\left(j, j^{2}\right)$ of the Tutte polynomial of a ternary matroid can be expressed in terms of the dimension of the bicycle space of a representation over $G F(3)$. We give a short algebraic proof of this result, which moreover yields the exact value of \pm, a problem left open in Jaeger's paper. It follows that the computation of $t\left(j, j^{2}\right)$ is of polynomial complexity for a ternary matroid.

Keywords Matroid • Ternary matroid • Tutte polynomial • Graph • Knot theory • Jones polynomial Computational complexity

In the seminal paper [4] on the complexity of Tutte polynomials, it is shown that the point $\left(j, j^{2}\right)$ and its conjugate $\left(j^{2}, j\right)$ are two out of eight 'easy' special points, where 'easy' is intended from a computational point of view. Each of these eight points have remarkable combinatorial interpretations. A result of F. Jaeger [3] relates $t\left(j, j^{2}\right)$ and $t\left(j^{2}, j\right)$ to ternary matroids. Specifically, let E be a finite set, V be a subspace of the vector space $G F(3)^{E}$, and $M(V)$ be the matroid on E whose circuits are the inclusion-minimal supports of non-zero vectors of V. Then $t\left(M(V) ; j, j^{2}\right)=$ $\pm j^{|E|+\operatorname{dim} V}(i \sqrt{3})^{\operatorname{dim}\left(V \cap V^{\perp}\right)}$. Graphs, via graphic matroids, are a special case of ternary matroids. We refer the reader to the introduction of [3] (see also [4] Section 6) for

[^0]the relevance of these properties to the Jones polynomial in Knot Theory. We also mention the related paper [5], where the problem of the complexity of the computation of $t(M ; x, y)$, for x, y algebraic numbers and M vectorial over a given finite field, is addressed in full generality.

The main step of the proof in [3] is to establish that $\sum_{u \in V} j^{|s(u)|}=$ $\pm(i \sqrt{3})^{\operatorname{dim} V+\operatorname{dim}\left(V \cap V^{\perp}\right)}$, where $s(u)$ denotes the support of u. The proof of this last property in Jaeger's paper uses deletion/contraction of elements of E, and is about four pages long. Our purpose in the present note is to provide a short algebraic proof. Moreover, we obtain the exact value of \pm, a question left open in Jaeger's paper. As a consequence $t\left(M ; j, j^{2}\right)$ is of polynomial complexity for a ternary matroid M.

Let K be a field and E be a finite set. The canonical bilinear form on the space K^{E} is defined by $\langle u, v\rangle=\sum_{e \in E} u(e) v(e)$ for $u, v \in K^{E}$. In K^{E}, the subspace orthogonal to a subspace V is defined by $V^{\perp}=\left\{u^{\prime} \in K^{E} \mid<u, u^{\prime}>=0\right.$ for all $\left.u \in V\right\}$. A vector $u \in K^{E}$ is isotropic if $\langle u, u\rangle=0$.

We will use two classical results about orthogonal bases. The orthogonalization algorithm of Lemma 1.1, which allows isotropic vectors in the orthogonal basis, is different from the current Gram-Schmidt orthogonalization algorithm valid for real spaces. We include proofs for completeness.

Lemma 1.1. Let V be a finite dimensional vector space over a field of characteristic $\neq 2$ endowed with a bilinear form. Then V has an orthogonal basis.

More specifically an orthogonal basis of V can be constructed from any given basis in polynomial time.

Proof: Let $\left(u_{k}\right)_{1 \leq k \leq d}$ be a basis of V. If there is an index $1 \leq \ell \leq d$ such that $<u_{\ell}, u_{\ell}>\neq 0$, then reindex in such a way that $\ell=1$ and set $u_{1}^{\prime}=u_{1}$. Otherwise, if there is an index $2 \leq \ell \leq d$ such that $<u_{1}+u_{\ell}, u_{1}+u_{\ell}>\neq 0$, then set $u_{1}^{\prime}=u_{1}+u_{\ell}$. In both cases, update u_{k} as $u_{k}-<u_{1}^{\prime}, u_{k}><u_{1}^{\prime}, u_{1}^{\prime}>^{-1} u_{1}^{\prime}$ for $2 \leq k \leq d$. We have $<u_{1}^{\prime}, u_{k}>=0$ for $2 \leq k \leq d$.

Otherwise we have $<u_{k}, u_{k}>=0$ for $1 \leq k \leq d$, and $<u_{1}+u_{k}, u_{1}+u_{k}>=0$ for $2 \leq k \leq d$. From $<u_{1}+u_{k}, u_{1}+u_{k}>=0$, we get $<u_{1}, u_{1}>+2<u_{1}, u_{k}>$ $+<u_{k}, u_{k}>=2<u_{1}, u_{k}>=0$, hence $<u_{1}, u_{k}>=0$ in characteristic $\neq 2$. We set $u_{1}^{\prime}=u_{1}$.

In all three cases, $\left\{u_{1}^{\prime}, u_{2}, \ldots, u_{d}\right\}$ is a basis of V such that u_{1}^{\prime} is orthogonal to the space generated by u_{k} for $2 \leq k \leq d$. Lemma 1.1 follows by induction.

Lemma 1.2. The isotropic vectors of any orthogonal basis of V constitute a basis of $V \cap V^{\perp}$.

Proof: Let $\left(u_{k}\right)_{1 \leq k \leq d}$ be an orthogonal basis of V, and $u=\sum_{1 \leq k \leq d} a_{k} u_{k} \in V \cap V^{\perp}$. For $1 \leq \ell \leq d$, we have $0=<u, u_{\ell}>=\sum_{1 \leq k \leq d} a_{k}<u_{k}, u_{\ell}>=a_{\ell}<u_{\ell}, u_{\ell}>$. Hence if $<u_{\ell}, u_{\ell}>\neq 0$, we have $a_{\ell}=0$. It follows that u is generated by the isotropic vectors of the basis. These vectors being independent, they constitute a basis of $V \cap V^{\perp}$.

Our basic result is the following strengthening of Jaeger's proposition.

Proposition 1. Let E be a finite set, and V be a subspace of $G F(3)^{E}$. We have

$$
\sum_{u \in V} j^{|s(u)|}=(-1)^{d+d_{1}}(i \sqrt{3})^{d+d_{0}}
$$

where $d=\operatorname{dim} V, d_{0}=\operatorname{dim} V \cap V^{\perp}$ and d_{1} is the number of vectors with support of size congruent to 1 modulo 3 in any orthogonal basis of V with respect to the canonical bilinear form.

Proof: We have $G F(3) \cong Z / 3 Z$, in other words the elements of $G F(3)$ can be assimilated to integer residues modulo 3 . We observe that for $u \in G F(3)^{E}$ we have $|s(u)|$ modulo $3=<u, u>$, where $<u, v>=\sum_{e \in E} u(e) v(e)$ is the canonical bilinear form. It follows that $j^{|s(u)|}=j^{<u, u\rangle}$.

By Lemma 1.1, there is an orthogonal basis $\left(u_{k}\right)_{1 \leq k \leq d}$ of V. We have

$$
\begin{aligned}
\sum_{u \in V} j^{|s(u)|} & =\sum_{u \in V} j^{<u, u>} \\
& =\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in G F(3)^{d}} j^{<\sum_{1 \leq k \leq d} a_{k} u_{k}, \sum_{1 \leq k \leq d} a_{k} u_{k}>} \\
& =\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in G F(3)^{d}} j^{\sum_{1 \leq k \leq d} a_{k}^{2}<u_{k}, u_{k}>} \\
& =\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in G F(3)^{d}} \prod_{1 \leq k \leq d} j^{a_{k}^{2}<u_{k}, u_{k}>} \\
& =\prod_{1 \leq k \leq d} \sum_{a_{k} \in G F(3)} j^{a_{k}^{2}<u_{k}, u_{k}>} \\
& =\prod_{1 \leq k \leq d}\left(1+2 j^{<u_{k}, u_{k}>}\right) \\
& =3^{d_{0}}(1+2 j)^{d_{1}}\left(1+2 j^{2}\right)^{d_{2}}
\end{aligned}
$$

where d_{0} resp. d_{1}, d_{2} is the number of vectors $u_{k} 1 \leq k \leq d$ such that $\left.<u_{k}, u_{k}\right\rangle=$ 0 resp. $=1=2$. We have $1+2 j=i \sqrt{3}, 1+2 j^{2}=-i \sqrt{3}, d=d_{0}+d_{1}+d_{2}$, and $d_{0}=\operatorname{dim} V \cap V^{\perp}$ by Lemma 1.2. Proposition 1 follows.

It follows from Proposition 1 and Lemma 1.1 that
Corollary 2. Let E be a finite set, and V be a subspace of $G F(3)^{E}$.
The parity of the number of vectors with support of cardinality congruent to 1 resp. 2 modulo 3 in an orthogonal basis of V does not depend on the particular orthogonal basis.

By Corollary 2 the residue modulo 2 of the number of vectors with support of cardinality congruent to 1 resp. 2 modulo 3 in an orthogonal basis of a subspace V of $G F(3)^{E}$ is a $0-1$ invariant of V. We will denote it by $\bar{d}_{1}(V)$ resp. $\bar{d}_{2}(V)$. It follows
from Lemma 1.1 that $\bar{d}_{1}(V)$ can be computed in polynomial time from any given basis of V.

We recall that by a theorem of Greene [2], given a subspace V of $G F(q)^{E}, q$ a prime power, we have $\sum_{u \in V} z^{|s(u)|}=z^{|E|-d}(1-z)^{d} t(M ; 1 / z, 1+q z /(1-z))$, where $d=\operatorname{dim} V$.

Theorem 3. Let M be a ternary matroid on a finite set E. We have

$$
t\left(M ; j, j^{2}\right)=(-1)^{d_{2}} j^{|E|+d}(i \sqrt{3})^{d_{0}}
$$

where $d=\operatorname{dim} V, d_{0}=\operatorname{dim} V \cap V^{\perp}$, and d_{2} is the number of vectors with support of cardinality congruent to 2 modulo 3 in any orthogonal basis of a subspace V of $G F(3)^{E}$ such that $M=M(V)$.

Proof: As in Jaeger's paper, we derive Theorem 3 from Proposition 1 by means of Greene's theorem. Specializing this formula to $z=j$ and $q=3$, and applying Proposition 1, we get

$$
t\left(M ; j^{2}, j\right)=(-1)^{d+d_{1}} j^{-|E|-d}(i \sqrt{3})^{d_{0}}
$$

Since $t\left(M ; j, j^{2}\right)$ is the complex conjugate of $t\left(M ; j^{2}, j\right)$, Theorem 2 follows.

A short proof of Greene's theorem is given in [3] Proposition 7 (see also [1] for another short proof).

Theorem 3 provides the exact value of \pm in Jaeger's formula for $t\left(M ; j, j^{2}\right)$ when M is a ternary matroid. This answers the question in [3] p. 25 asking for an interpretation of the parameter $\epsilon(M)$, defined by $t\left(M ; j, j^{2}\right)=\epsilon(M) j^{|E|+d}(i \sqrt{3})^{d_{0}}$. By Corollary 2 , $\bar{d}_{1}=\bar{d}_{1}(V)=\bar{d}_{1}(M)$ is a 0-1 invariant of polynomial complexity of a ternary matroid M. By Theorem 3, we have

$$
\epsilon(M)=(-1)^{d+\bar{d}_{1}}=(-1)^{d_{0}+\bar{d}_{2}}
$$

As well-known, if V is defined by a basis, the dimension $d_{0}=\operatorname{dim} V \cap V^{\perp}$ is of polynomial complexity (also a corollary of Lemmas 1.1 and 1.2). Hence

Corollary 4. The evaluation $t\left(M ; j, j^{2}\right)$ of the Tutte polynomial of a ternary matroid $M=M(V)$, with V defined by a basis, is of polynomial complexity.

Corollary 4 strengthens the previously known polynomial complexity of the modulus $\left|t\left(M ; j, j^{2}\right)\right|$, used in $[4,5]$.

As noted by Jaeger (see [3] Proposition 9) $\epsilon(M)$ and $\epsilon\left(M^{*}\right)$ are related.
Corollary 5. Let M be a ternary matroid on a set E. We have $\bar{d}_{1}\left(M^{*}\right) \equiv \bar{d}_{1}(M)+$ $d_{0}(M)+|E|$ modulo 2 , where M^{*} denotes the dual matroid of M.

Corollary 5 follows from the relation $\epsilon(M)=(-1)^{d+\bar{d}_{1}}$, combined with [3] Proposition 9.(i). It can also be easily derived directly from Theorem 2.

Finally, we mention that the initial motivation of the present note was the computation of $\sum_{u \in V} j^{|s(w+u)|}$, where w is any vector of $G F(3)^{E}$.

Corollary 6. Let $w \in G F(3)^{E}$.

- If $w \in V+V^{\perp}$, say $w=w^{\prime}+w^{\prime \prime}$ with $w^{\prime} \in V$ and $w^{\prime \prime} \in V^{\perp}$, then, with notation of Proposition 1, we have

$$
\sum_{u \in V} j^{|s(w+u)|}=(-1)^{d+d_{1}}(i \sqrt{3})^{d+d_{0}} j^{\left|s\left(w^{\prime \prime}\right)\right|}
$$

- If $w \notin V+V^{\perp}$, we have

$$
\sum_{u \in V} j^{|s(w+u)|}=0
$$

Proof: If $w=w^{\prime}+w^{\prime \prime}$ with $w^{\prime} \in V$ and $w^{\prime \prime} \in V^{\perp}$, we have

$$
\begin{aligned}
\sum_{u \in V} j^{|s(w+u)|} & =\sum_{u \in V} j^{\left|s\left(w^{\prime}+w^{\prime \prime}+u\right)\right|} \\
& =\sum_{u \in V} j^{\left|s\left(w^{\prime \prime}+u\right)\right|}=\sum_{u \in V} j^{<w^{\prime \prime}+u, w^{\prime \prime}+u>} \\
& =\sum_{u \in V} j^{<w^{\prime \prime}, w^{\prime \prime}>+<u, u>}=j^{<w^{\prime \prime}, w^{\prime \prime}>} \sum_{u \in V} j^{<u, u>}
\end{aligned}
$$

Then we obtain Corollary 4 by applying Proposition 1.
If $w \notin V+V^{\perp}$, then there is $v \in V \cap V^{\perp}=\left(V+V^{\perp}\right)^{\perp}$ such that $<w, v>\neq 0$. Let V^{\prime} be a supplement of $\langle v\rangle$ in V. We have

$$
\begin{aligned}
\sum_{u \in V} j^{|s(w+u)|} & =\sum_{u \in V^{\prime}} \sum_{a \in G F(3)} j^{|s(w+u+a v)|} \\
& =\sum_{u \in V^{\prime}} \sum_{a \in G F(3)} j^{<w+u+a v, w+u+a v>} \\
& =\sum_{u \in V^{\prime}} \sum_{a \in G F(3)} j^{<w+u, w+u>+a<w, v>} \\
& =\sum_{u \in V^{\prime}} j^{<w+u, w+u>}\left(\sum_{a \in G F(3)} j^{a<w, v>}\right) \\
& =\sum_{u \in V^{\prime}} j^{<w+u, w+u>}\left(1+j+j^{2}\right)=0
\end{aligned}
$$

References

1. G. Etienne and M. Las Vergnas, "The Tutte polynomial of a morphism of matroids III. Vectorial matroids," Adv. Appl. Math. 32 (2004), 198-211.
2. C. Greene, "Weight enumeration and the geometry of linear codes," Stud. Appl. Math. 55 (1976), 119128.
3. F. Jaeger, "Tutte polynomials and bicycle dimension of ternary matroids," Proc. Amer. Math. Soc. 107 (1989), 17-25.
4. F. Jaeger, D.L. Vertigan, and D.J.A. Welsh, "On the computational complexity of the Jones and Tutte polynomials," Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53.
5. D. Vertigan, "Bicycle dimension and special points of the Tutte Polynomial," J. Comb. Theory B74 (1998), 378-396.

[^0]: E. Gioan: C.N.R.S., Montpellier
 M. Las Vergnas: C.N.R.S., Paris
 E. Gioan (\square)

 Université Montpellier 2, LIRMM, 161 rue Ada, 34392 Montpellier cedex 5, France
 e-mail: Emeric.Gioan@lirmm.fr
 M. Las Vergnas

 Université Pierre et Marie Curie (Paris 6), case 189 - Combinatoire \& Optimisation, 4 place Jussieu, 75005 Paris, France
 e-mail: mlv@math.jussieu.fr

