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Abstract. Recently, interest in shuffle algebra has been renewed due to their connections with multiple zeta
values. In this paper, we prove a new shuffle convolution that implies a reduction formula for the multiple zeta
value ζ ({5, 1}n).

Keywords: multiple zeta values, Euler sums, shuffle algebra, multisets

1. Introduction

As in [4, 5, 7], let X be a finite set and let X∗ denote the free monoid generated by X . We
can regard X as an alphabet, and the elements of X∗ as words formed by concatenating any
finite number of letters (repetitions permitted) from X .

With the empty word denoted by 1, it is now possible to define the shuffle product by the
recursion

{∀w ∈ X∗, 1 w = w 1 = w,

∀a, b ∈ X, ∀u, v ∈ X∗, au bv = a(u bv) + b(au v).
(1)

We can easily see that the shuffle product is associative and commutative.
On the other hand, the shuffle product can be defined in terms of permutations. For non-

negative integers m and n, let Shuff(m, n) denote the set of all ( m+n
n ) permutations σ of

the index set {1, 2, . . . , m + n} that satisfy σ−1( j) < σ−1(k) for all 1 ≤ j < k ≤ m and
m + 1 ≤ j < k ≤ m + n. Then, the shuffle recursion (1) is easily seen to be equivalent to

(
m∏

j=1

x j

) (
m+n∏

j=m+1

x j

)
:=

∑
σ∈Shuff (m,n)

m+n∏
j=1

xσ ( j), x j ∈ X. (2)

The sum (2) is over all non-commutative products (counting multiplicity) of length m + n
in which the relative orders of the factors in the products x1 · · · xm and xn+1 · · · xm+n are
preserved. The term “shuffle” is used because such permutations arise in riffle shuffling a
deck of m + n cards cut into one pile of m cards and a second pile of n cards. Throughout
this paper, we will adopt this definition of the shuffles.

∗Research partially supported by a grant from the Number Theory Foundation.
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Interest in shuffles has been renewed due to their intimate connections with multiple zeta
values [1, 2, 5–10, 12] and multiple polylogarithms [3, 4, 13]. For example, in [2] it was
shown that the shuffle convolution formula

n∑
r=−n

(−1)r [(ab)n−r (ab)n+r ] = (4a2b2)n, 0 ≤ n ∈ Z,

implies the evaluation

ζ ({3, 1}n) := ζ (3, 1, . . . , 3, 1︸ ︷︷ ︸
2n arguments

) = 2π4n

(4n + 2)!
, 0 ≤ n ∈ Z,

for the multiple zeta function defined by

ζ (s1, . . . , sk) :=
∑

n1>···>nk>0

k∏
j=1

n
−s j

j .

The primary purpose of this paper is to prove a conjecture of D. Bowman on shuffles
(Conjecture 1 below). It follows from our proof of Conjecture 1 that (communication from
Bowman)

ζ ({5, 1}n) := ζ (5, 1, . . . , 5, 1︸ ︷︷ ︸
2n arguments

), 0 ≤ n ∈ Z,

can be explicitly evaluated. Unfortunately, this evaluation has not been communicated to
us.

Let n be a positive integer. We begin by observing that in (a4b2)n , every occurrence of
a4 after the first is separated on both sides by b2, and hence there are 2n − 1 ways in which
a single transposition of a letter b with an adjacent letter a can be performed. If we let

�n(k)

denote the sum of the ( 2n−1
k ) words obtained from (a4b2)n by making k such transpositions,

then we have the following result.

Conjecture 1 (D. Bowman) Let n be a positive integer. Then

n∑
r=−n

(−1)r [(a2b)n−r (a2b)n+r ] = 3n
2n−1∑
k=0

22n−k �n(k). (3)
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Example. When n = 2, the right hand side of Theorem 1 is equal to

32
3∑

k=0

24−k�2(k) = 144a4b2a4b2 + 72(a4b2a3bab + a4baba3b2 + a3baba4b2)

+ 36(a3baba3bab + a3ba2ba3b2 + a4baba2bab) + 18a3ba2ba2bab,

which implies that

144ζ ({5, 1}2) =
2∑

r=−2

(−1)rζ ({3}2−r )ζ ({3}2+r ) − 72(ζ (5, 1, 4, 2) + ζ (5, 2, 4, 1)

+ ζ (4, 2, 5, 1)) − 36(ζ (4, 2, 4, 2) + ζ (4, 3, 4, 1) + ζ (5, 2, 3, 2))

−18ζ (4, 3, 3, 2). (4)

The identity (4) is a special case of (12) below.
In Section 2, we present notation and establish some propositions which we use through-

out this paper. Conjecture 1 is proved and restated in terms of multiple zeta values in
Section 3.

2. Preliminaries

Before proving the shuffle convolution formula (3), we need to establish some additional
notation and results.

Henceforth, we adopt the convention that concatenation takes precedence over the shuffle
operation, so that in (2) the parentheses can be omitted. Also, it will be convenient to denote
the multi-set of words arising in the shuffle product (2) by

{x1 · · · xm xm+1 · · · xm+n}.

For example, {ab a} = {aba, aab, aab}. From (2), it is clear that to every distinct word

w ∈
{

m∏
j=1

x j

m+n∏
j=m+1

x j

}
,

there corresponds at least one permutation σ ∈ Shuff(m, n) such that

w =
m+n∏
j=1

xσ ( j).

We call such a permutation σ a shuffle corresponding to w.
In [11], D. Loeb introduced hybrid sets, which is defined as follows.



58 YEE

Definition 1 (D. Loeb [11]) Given a universe U , any function f : U → Z is called a
hybrid set. The value of f (x) is said to be the multiplicity of the element x . If f (x) �= 0,
we say x is a member of f and write x ∈ f ; otherwise, we write x /∈ f . Define the number
of elements # f to be the sum

∑
x∈U f (x). Then f is said to be an # f hybrid set.

Hybrid sets are denoted by { | }, where elements occurring with positive multiplicities
are written on the right of the bar, and elements occurring with negative multiplicities are
written on the left. Order is completely irrelevant. For example, if f = {d, e, e | a, b, c, b},
then f (a) = 1, f (b) = 2, f (c) = 1, f (d) = −1, f (e) = −2, and f (x) = 0 for x �=
a, b, c, d, e.

Note that in Loeb’s paper, elements occurring with positive multiplicities appear on the left
of the bar and elements occurring with negative multiplicities appear on the right of the bar,
but we follow the definition above throughout this paper.

Loeb did not discuss the product of hybrid sets. We define the product of hybrid sets as
follows.

Definition 2 Consider two hybrid sets f : U → Z and g : V → Z. We define the product
U × V of U and V as the set of elements obtained by concatenating x ∈ U and y ∈ V , i.e.,

U × V = {xy : x ∈ U, y ∈ V }.

The product f × g of f and g is a hybrid set from U × V to Z defined by

f × g (xy) = f (x)g(y),

where x ∈ f and y ∈ g.

From the definition of the number of elements of a hybrid set, the number of elements
# f × g is defined by

#( f × g) =
∑

xy∈ U×V

f × g(xy),

which is equal to
∑

x∈U, y∈V

f (x)g(y) =
∑
x∈U

f (x)
∑
y∈V

g(y) = (# f )(#g).

Similarly, we can generalize the product of two hybrid sets to more than two hybrid sets.
If w is any word, let |w| denote its length, that is, the number of letters in w, counting

multiplicity. For w ∈ {a, b}∗, we denote the number of occurrences of the letter a in w by
|w|a . Similarly, the number of occurrences of the letter b in w is denoted by |w|b, so that
|w| = |w|a + |w|b. For 1 ≤ j ≤ |w|b, let b j = b j (w) be the j th b from the left; let a(1) be
the number of times the letter a occurs to the left of b1; and for 1 < j ≤ |w|b let a( j) be
the number of times the letter a occurs between b j−1 and b j . Let A(w) denote the sequence
a(1), a(2), . . . , a(|w|b).
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Proposition 1 Let X be an alphabet, let m and n be non-negative integers, and let

w ∈
{

m∏
j=1

x j

m+n∏
j=m+1

x j

}
, x j ∈ X.

If k is an integer such that 0 ≤ k ≤ m + n, and w = uv with |u| = k, then there exist
non-negative integers m1 and n1 satisfying m1 + n1 = k and such that

u ∈
{

m1∏
j=1

x j

m1+n1∏
j=m1+1

xm−m1+ j

}
(5)

and

v ∈
{

m−m1∏
j=1

xm1+ j

m−m1+n−n1∏
j=m−m1+1

xm1+n1+ j

}
. (6)

Conversely, given non-negative integers m1, m2, n1, and n2, let

u ∈
{

m1∏
j=1

x j

m1+n1∏
j=m1+1

x j

}
and v ∈

{
m2∏
j=1

y j

m2+n2∏
j=m2+1

y j

}
, x j , y j ∈ X.

Then

uv ∈
{ (

m1∏
j=1

x j

)(
m2∏
j=1

y j

) (
m1+n1∏

j=m1+1

x j

)(
m2+n2∏

j=m2+1

y j

)}
. (7)

Proof: Let σ be a shuffle corresponding to w. Then

u =
k∏

j=1

xσ ( j) and v =
m+n∏

j=k+1

xσ ( j).

Let m1 = |{ j ∈ Z : 1 ≤ j ≤ k, σ ( j) ≤ m}|, and put n1 = k − m1. Note that if 1 ≤ j ≤ k
and σ ( j) ≤ m, then σ ( j) ≤ m1, since σ ∈ Shuff (m, n). Similarly, 1 ≤ j ≤ k and
m + 1 ≤ σ ( j) ≤ m + n implies m + 1 ≤ σ ( j) ≤ m + n1. Hence, we can define a
permutation τ on {1, 2, . . . , k} by

τ ( j) =
{
σ ( j), if 1 ≤ σ ( j) ≤ m,

σ ( j) − m + m1, if m + 1 ≤ σ ( j) ≤ m + n.
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Similarly, we can define a permutation ρ on {1, 2, . . . , m + n − k} by

ρ( j) =
{
σ ( j + k) − m1, if 1 ≤ σ ( j + k) ≤ m,

σ ( j + k) − k, if m + 1 ≤ σ ( j + k) ≤ m + n.

Since σ ∈ Shuff(m, n), we see that τ ∈ Shuff(m1, n1) and ρ ∈ Shuff(m − m1, n − n1). Let
z j = x j for 1 ≤ j ≤ m1 and z j = xm−m1+ j for m1 + 1 ≤ j ≤ m1 + n1. Then

u =
k∏

j=1

zτ ( j).

Since τ ∈ Shuff(m1, n1), it follows that

u ∈
{

m1∏
j=1

z j

m1+n1∏
j=m1+1

z j

}
,

which is equivalent to (5). Similarly, we can show that ρ is a shuffle corresponding to v in
the shuffle product (6).

For the converse, let τ ∈ Shuff(m1, n1) and ρ ∈ Shuff(m2, n2) be shuffles corresponding
to u and v, respectively. Then

u =
m1+n1∏

j=1

xτ ( j) and v =
m2+n2∏

j=1

yρ( j).

We define a permutation σ on {1, 2, . . . , m1 + n1 + m2 + n2} by

σ ( j) =
{
τ ( j), if 1 ≤ τ ( j) ≤ m1,

τ ( j) + m2, if m1 + 1 ≤ τ ( j) ≤ m1 + n1,

for 1 ≤ j ≤ m1 + n1, and

σ ( j) =
{
ρ( j − m1 − n1) + m1, if 1 ≤ ρ( j − m1 − n1) ≤ m2,

ρ( j − m1 − n1) + m1 + n1, if m2 + 1 ≤ ρ( j − m1 − n1) ≤ m2 + n2,

for m1 +n1 +1 ≤ j ≤ m1 +n1 +m2 +n2. Since τ ∈ Shuff(m1, n1) and ρ ∈ Shuff (m2, n2),
it follows that σ ∈ Shuff (m1 + m2, n1 + n2). Let

z j =




x j , if 1 ≤ j ≤ m1,

y j−m1 , if m1 + 1 ≤ j ≤ m1 + m2,

x j−m2 , if m1 + m2 + 1 ≤ j ≤ m1 + m2 + n1,

y j−m1−n1 , if m1 + m2 + n1 + 1 ≤ j ≤ m1 + m2 + n1 + n2.
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Then

uv =
m1+n1+m2+n2∏

j=1

zσ ( j).

Since σ ∈ Shuff(m1 + m2, n1 + n2),

uv ∈
{

m1+m2∏
j=1

z j

m1+m2+n1+n2∏
j=m1+m2+1

z j

}
,

which is equivalent to (7).

In the remainder of our paper, X has only two elements, a and b. We need to make further
definitions, to study carefully the formation of words in the shuffle convolution (3), and to
carefully examine words in X∗.

Definition 3 For a non-negative integer n, let �n be the set of all non-negative integer
sequences π = (π1, π2, . . . , πn) satisfying

2m ≤
m∑

j=1

π j ≤ 2m + 2 for m < n, and
n∑

j=1

π j = 2n. (8)

Proposition 2 Let n and r be non-negative integers with n ≥ r, and let

w ∈ {(a2b)r (a2b)n−r }.

Then A(w) belongs to �n.
Conversely, there exists a non-negative integer r with r ≤ n such that w ∈ {(a2b)n−r

(a2b)r } for w ∈ {a, b}∗, and A(w) belongs to �n.

Proof: Let n ≥ r , 1 ≤ m ≤ n, u := (a2b)r , and v := (a2b)n−r , and suppose w ∈ {u v}.
Since each b in any power of a2b is immediately preceded by two consecutive occurrences
of the letter a, the shuffle rule (2) implies that the number of times the letter a appears to
the left of bm is at least 2m. In other words,

2m ≤
m∑

j=1

a( j).

It is possible that there are up to two additional occurrences of the letter a preceding
bm . Let τ be the initial subword of w consisting of the letters from w1 up to and including
bm . In the formation of τ , let k be the number of occurrences of the letter b that came
from u; then the remaining m − k came from v. If bm came from u, then τ was formed
from (a2b)k (a2b)m−ks, where s is either a, a2, or the empty word. Similarly, if bm



62 YEE

came from v, then τ was formed from (a2b)ms (a2b)m−k . Since the letters of s could
precede bm in τ , it follows that

m∑
j=1

a( j) ≤ 2m + 2.

For the converse, first observe that if w ∈ {a, b}∗ satisfies |w|a = 2|w|b = 2n and the
system of inequalities (8) holds for 1 ≤ m ≤ n, then 2 ≤ a(1) ≤ 4 and 0 ≤ a(m) ≤ 4
for 1 < m ≤ n. Suppose there are precisely s indices m1 < m2 < · · · < ms satisfying
0 ≤ a(mk) ≤ 1 for 1 ≤ k ≤ s. We may assume s > 0, for otherwise |w|a = 2|w|b implies
w = (a2b)n , and the conclusion is trivial. Since

2m1 <

m1∑
j=1

a( j) ≤ 2m1 + 2,

there exists m < m1 for which 3 ≤ p := a(m) ≤ 4 − a(m1). Choose the maximal such m,
and remove p − 2 of the letters a that occur between bm−1 and bm (before b1 if m = 1),
so that in the modified word, a(m) = 2. If p = 4, then two letters a are removed; let us
also remove bm1 so that a2b has been removed. If p = 3, then only one letter a is removed,
and either a(m1) = 1, or there exists m ′ < m for which a(m ′) = 3. Now remove also bm1

and the a that immediately precedes bm1 if a(m1) = 1. Otherwise, remove bm1 and the a
that immediately precedes bm ′ , so that now a(m ′) = 2. Then a2b has been removed from
w. Repeat the process for m2, . . . , ms until we get (a2b)n−r left for some r ≤ s. Note that
(a2b)r is removed from w and w ∈ {(a2b)r (a2b)n−r }.

3. The main result

Definition 4 For each non-negative integer n and each integer r with |r | ≤ n, let

Sn,r := {(a2b)n−r (a2b)n+r } and Sn := {∪r odd Sn,r | ∪r even Sn,r }.
Definition 5 For a non-negative integers n, let �n be the subset of �2n such that



2m + 1 ≤
m∑

j=1

π j ≤ 2m + 2, if m is odd,

2m ≤
m∑

j=1

π j ≤ 2m + 1, if m is even and less than 2n,

2n∑
j=1

π j = 4n, if m = 2n,

(9)

and for a non-negative integer k, let �n(k) be the subset of �n such that

e(π ) := π2 + π4 + · · · + π2n = k. (10)
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Since (9) implies 0 ≤ π2m ≤ 2 for any m < n and 0 ≤ π2n ≤ 1, we see that �n(k) is empty
if k ≥ 2n. In other words, we partition �n into 2n subsets �n(k),

�n =
2n−1⋃
k=0

�n(k). (11)

Example. When n = 2,

�2(0) = {(4, 0, 4, 0)}, �2(1) = {(4, 0, 3, 1), (4, 1, 3, 0), (3, 1, 4, 0)},
�2(2) = {(4, 1, 2, 1), (3, 1, 3, 1), (3, 2, 3, 0)}, �2(3) = {(3, 2, 2, 1)}.

Theorem 1 Let n be a positive integer. Then

n∑
r=−n

(−1)r [(a2b)n−r (a2b)n+r ] = 3n
2n−1∑
k=0

22n−k
∑

A(w)∈�n (k)

w.

In the following lemma, we show that Theorem 1 is equivalent to Conjecture 1, which is
restated in terms of multiple zeta values. Using [4], we conclude that

n∑
r=−n

(−1)rζ ({3}n−r )ζ ({3}n+r )

= 3n
2n−1∑
k=0

22n−k
∑

(s1,s2...,s2n )∈�n (k)

ζ (s1 + 1, s2 + 1, . . . , s2n + 1). (12)

Lemma 1 Let n and k be integers with 0 ≤ k < 2n. Then

�n(k) =
∑

A(w)∈�n (k)

w.

Proof: Let w̄ := (a4b2)n and A(w̄) := (ā(1), ā(2), . . . , ā(2n)), where ā(1) is the number
of times the letter a occurs to the left of b1 in w̄, and, for 1 < j ≤ |w̄|b, ā( j) is the number
of times the letter a occurs between b j−1 and b j , i.e.,

ā( j) =
{

4, if j is odd,

0, if j is even.

Note that ā(w) satisfies (9).
We first show that for a given sequence π ∈ �n(k), we can produce a word w from w̄

using the allowed transpositions of a and b in w̄. Let π be a sequence in �n(k). We will
make transpositions within w̄ such that the number of a’s on the left of b1 becomes π1 and
the number of a’s between bi−1 and bi becomes π j for 1 < i ≤ 2n. Since π satisfies (9),
3 ≤ π1 ≤ 4 and 4 ≤ π1 +π2 ≤ 5. There are four cases for (π1, π2): (4, 0), (4, 1), (3, 1), and
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(3, 2). If π1 = 4 and π2 = 0, then we do not make any transposition of a single a in the first
a4 and a single b in the first b2. If π1 = 4 and π2 = 1, then we transpose a single a among
the second a4 and a single b in the first b2. If π1 = 3 and π2 = 1, then we transpose a single
a among the first a4 and single b in the first b2. If π1 = 3 and π2 = 2, we transpose a single
a in the first a4 and a single b in the first b2, and then transpose a single a in the second
a4 and the b which was not transposed in the first b2. We make transpositions of single a’s
and single b’s proceeding from the left in w̄ in this way. Then we see that we can only use
the allowed transpositions since π satisfies (9). Moreover, the number of transpositions we
made is k since π ∈ �n(k). Let w be the word with A(w) = π . Hence, w arises in �n(k).

We now consider the reverse. In other words, we will show the A(w) is in �n(k) for a
given w that arises in �n(k). Since ā(2i − 1) + ā(2i) = 4 for 1 ≤ i ≤ n, the transposition
of a single a in the i th a4 and a single b in the i th b2 does not change ā(2i −1)+ ā(2i) = 4.
If a transposition of a single a in the (i + 1)st a4 and a single b in the i th b2 is made, then
ā(2i −1)+ ā(2i) becomes 5. Suppose that w is a word arising in �n(k). Since w is obtained
from w̄ by making k such transpositions, it can be easily shown that A(w), the sequence
of the number of a’s between b’s, satisfies (9). Furthermore, whenever a transposition is
made, the number of the a’s between the (2i − 1)st b and the 2i th b increases by 1. Hence,
A(w) ∈ �n(k).

We now prove Theorem 1. In the alternating sum in this theorem, many words are
cancelled because they appear with equal coefficients but opposite signs. We characterize
the words cancelled in the alternating sum.

Lemma 2 For a positive integer n and an integer r, |r | ≤ n, let w be a word in Sn,r whose
A(w) does not belong to �n. Then there is a unique r ′ with different parity from r such that
the word w belongs to Sn,r ′ as well. Furthermore, the number of occurrences of the word
w in Sn,r is equal to the number of occurrences in Sn,r ′ .

Proof: Let m be the smallest positive integer for which (9) is not satisfied.
First, suppose that m is odd. Write w = uv, where u is the initial subword of w con-

sisting of the letters from w1 up to including bm . Since |u|a = 2|u|b = 2m, we infer from
Proposition 1 that there exists s with s ≤ m and such that

u ∈ {(a2b)s (a2b)m−s} and v ∈ {(a2b)n−r−s (a2b)n+r−m+s}.

Since the shuffle product is commutative, u′ = u ∈ {(a2b)m−s (a2b)s} as well. Let
w′ := u′v. Then w′ ∈ Sn,r−m+2s . Since m is odd, the parity of (r −m +2s) must be opposite
to the parity of r .

Now we show that the number of occurrences of the word w in Sn,r and Sn,r−m+2s are
equal. Let σ ∈ Shuff(n − r, n + r ) be a shuffle corresponding to w. Then Proposition 1
implies that there exist shuffles τ and ρ corresponding to u and v, respectively.

We define a permutation τ ′ induced from τ by

τ ′( j) =
{
τ ( j) + 3m − 3s, if 1 ≤ τ ( j) ≤ 3s,

τ ( j) − 3s, if 3s + 1 ≤ τ ( j) ≤ 3m.
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It is easily seen that τ ′ is a shuffle corresponding to u′, and that τ ′ and ρ produce a unique
shuffle σ ′ corresponding to w′.

On the other hand, suppose that m is even. Write w = uv, where u is the initial subword
of w consisting of the letters from w1 up to but excluding bm . Proposition 1 now implies
that there exists s < m such that

u ∈ {(a2b)sa2 (a2b)m−1−sa2} and v ∈ {b(a2b)n−r−s−1 b(a2b)n+r−m+s}.

Since the shuffle product is commutative, u′ = u ∈ {(a2b)m−1−sa2 (a2b)sa2} as well.
Let w′ := u′v. Then w′ ∈ Sn,r−m+1+2s . Since m is even, the parity of (r − m + 1 + 2s) must
be opposite to the parity of r .

As we did in the case when m is odd, we can show the number of occurrences of the
word w in Sn,r and Sn,r−m+1+2s are equal. We omit the details.

Lemma 2 implies that there remain only the words w with A(w) ∈ �n in the alternating
sum in Theorem 1.

Proof of Theorem 1: Throughout this proof, we assume that any words arising from
{u v}, u, v ∈ {a, b}∗, have negative and positive multiplicities if the difference of the
numbers of b’s in u and v is congruent to 2 and 0 modulo 4, respectively.

Let Qn,r be a multi-set consisting of those words in Sn,r such that A(w) belongs to �n ,
and let Qn be a hybrid set defined by

{∪r odd Qn,r | ∪r even Qn,r }.

By the definition of Sn , Lemma 2, and the definition of Qn , we can rewrite the alternating
sum in Theorem 1 as

∑
|r |≤n

(−1)r
∑

w∈Sn,r

w =
∑
w∈Sn

w =
∑

w∈Qn

w.

Since �n has the partition (11), to complete the proof of Theorem 1, it suffices to show that
for each 0 ≤ k < 2n,

∑
w∈Qn (k)

w = 3n22n−k
∑

A(w)∈�n (k)

w, (13)

where Qn(k) is a hybrid subset consisting of those words of Qn such that A(w) belongs to
�n(k).

To this end, let w be a word in Qn(k). Suppose that there are exactly h = h(w) positive
integers m that satisfy

∑m
j=1 a( j) = 2m, say, m1 < m2 < · · · < mh = 2n. Since w

satisfies (9), m p must be even for each p = 1, 2, . . . , h. Let

u1 :=
3m1∏
j=1

w j , u p :=
3m p∏

j=3m p−1+1

w j , 2 ≤ p ≤ h.
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We call w = u1u2 · · · uh the subword decomposition of w, and write m p = m p(w) when
we want to emphasize the dependence of the sequence m1, m2, . . . on the word w.

It is necessary to partition Qn(k) into more refined hybrid subsets. Let α be a composition
of n. In other words, α is a vector of positive integers whose components sum to n. Say
α = (α1, α2, . . . , αh) ∈ (Z+)h , where

|α| :=
h∑

j=1

α j = n.

For such α, let Qα
n (k) be a hybrid set consisting of w ∈ Qn(k), where m p(w) = 2

∑p
j=1 α j

for 1 ≤ p ≤ h. Then, by Definition 2,

Qα
n (k) =

⋃̇
|τ |=k

Q(α1)
α1

(τ1) × · · · × Q(αh )
αh

(τh), (14)

where the union is over all compositions τ of k and the superscript (α j ) in Q
(α j )
α j (τ j ) is the

composition of α j with one part. By (14), the left hand side of the equality in (13) becomes

∑
w∈Qn (k)

w =
∑
|α|=n

∑
w∈Qα

n (k)

w =
∑
|α|=n

∑
|τ |=k

h∏
j=1

∑
u j ∈Q

(α j )
α j (τ j )

u j .

On the other hand, let �′
α j

(τ j ) be the subset of �α j (τ j ) such that
∑m

l=1 πl = 2m + 1 for
any even m < 2α j . Then subword decompositions imply that

∑
A(w)∈�n (k)

w =
∑
|α|=n

∑
|τ |=k

h∏
j=1

∑
A(u j )∈�′

α j
(τ j )

u j .

Hence, it suffices to prove that

∑
w∈Q(n)

n (k)

w = 3n22n−k
∑

A(w)∈�′
n (k)

w. (15)

Recall that |w|b = 2n and a(2) + a(4) + · · · + a(2n) = k. We write w as s1 · · · sn , where
s1 contains the letters from the leftmost letter of w up to including b2, and s j contains the
letters from the letter immediately following b2( j−1) up to including b2 j for j > 1. Note
that any distinct word w in Qn is determined by the sequence a(i) for 1 ≤ i ≤ 2n from the



NEW SHUFFLE CONVOLUTION 67

definition of Qn . We rewrite the conditions for the sequence π , where π ∈ �′
n(k), as




2m + 1 ≤
m∑

j=1

π j ≤ 2m + 2, if m is odd,

m∑
j=1

π j = 2m + 1, if m �= 2n is even,

m∑
j=1

π j = 2m, if m = 2n,

π2 + π4 + · · · + π2n = k.

(16)

We will count the number of w ∈ Q(n)
n (k) in (15) with A(w) = π for a given sequence

π ∈ �′
n(k).

Let n = 1. Then π1 + π2 = 4. From (16), 3 ≤ π1 ≤ 4, and 0 ≤ π2 ≤ 1. Thus w ∈
{|(a2b) (a2b)}. Now, we count the multiplicity of w in {|(a2b) (a2b)}. If π1 = 4, then
w = a4bb. Otherwise, w = a3bab. If w = a4bb, then there are 3 · 22 w in (a2b) (a2b).
Otherwise, there are only 3 · 2 w from the shuffle rule. Hence, there are 3n · 22n−e(π ) w in
(15), and w comes from {|(a2b) (a2b)}.

Let n ≥ 2. From (16), π1 + π2 = 5 and π2n−1 + π2n = 3. We decompose w into s1 · · · sn

and first examine s1. There are two cases: π1 = 4, π2 = 1 and π1 = 3, π2 = 2. In other
words, s1 is either a4bab or a3ba2b. Thus s1 comes from one of the hybrid sets

A1 = {a (a2b)2 | (a2b)a (a2b)}

or

A2 = {(a2b)2 a | (a2b) (a2b)a}.

If s1 is a4bab, then it appears on the right of the bars in A1 and A2; s1 occurs in A1 with
multiplicity 6 = 3 · 22−π2 by (2). By symmetry, s1 = a4bab occurs in A2 with multiplicity
6. On the other hand, if s1 is a3ba2b, then it appears on both sides in A1 and A2. Using (2),
we easily find that s1 occurs with multiplicity 3 on the left sides and multiplicity 3 · 2 on
the right sides in A1 and A2. Thus the multiplicity of s1 becomes 3 = 3 · 22−π2 in A1 and
A2 after cancellation.

Similarly, sn is either a3bb or a2bab, which come from one of the hybrid sets

C1 = {ab a2b} or C2 = {a2b ab}.

Either of these multi-sets contains sn = a3bb with multiplicity 6 = 3·21−π2n and sn = a2bab
with multiplicity 3 = 3 · 21−π2n .

If n = 2, then any w ∈ Q(n)
n comes from the hybrid set

A1 × C1 ∪ A2 × C2,
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and so its multiplicity in Q(n)
n is

3 · 22−π2 · 3 · 21−π4 + 3 · 22−π2 · 3 · 21−π4 = 32 · 24−π2−π4 = 32 · 24−e(π ).

For the cases when n ≥ 3, we must consider si with 1 < i < n. From (16), we see that
π2i−1 +π2i = 4. Thus si is either a3bab or a2ba2b, which come from one of the four hybrid
sets

B11 = {1 (a2b)2 | aba a2b},
B12 = {ab(a2b) a | ab (a2b)a},
B21 = {a ab(a2b) | (a2b)a ab},
B22 = {(a2b)2 1 | a2b aba}.

If si = a3bab, then it cannot appear on the left sides of the bars in the four hybrid sets above.
The multiplicity of si = a3bab is 3 = 3 · 21−π2i in each of these hybrid sets, while that
of a2ba2b is 3 in B11 and B22, and 0 in B12 and B21 after cancellation, since si = a2ba2b
occurs with multiplicity 1 on the left of the bar and with multiplicity 4 on the right of the
bar in B11, and it occurs with multiplicity 1 on both sides in B12. Then, for example, any
w ∈ Q(4)

4 comes from the hybrid set

A1 × B11 × B11 × C1 ∪ A1 × B11 × B12 × C2 ∪ A1 × B12 × B21 × C1 ∪ A1 × B12

× B22 × C2 ∪ A2 × B21 × B11 × C1 ∪ A2 × B21 × B12 × C2 ∪ A2 × B22 × B21

× C1 ∪ A2 × B22 × B22 × C2,

with each of the Bi j occurring in each position exactly one fourth of the time. In general,
any w ∈ Q(n)

n comes from the hybrid set

⋃
I

Ai1

(
n−1∏
j=2

Bi j−1i j

)
Cin−1 ,

where I runs over all distinct sequences (i1, . . . , in−1) consisting of 1’s and 2’s. Each of
the Bi j occurs in each position exactly one fourth of the time. We see that the average
multiplicity of si = a3bab is 3 = 3 · 21−π2i , and of si = a2ba2b is 3/2 = 3 · 21−π2i .
Since the decomposition of Q(n)

n has 2n−1 terms, the total multiplicity of w = s1 · · · sn =
aπ1 baπ2 b · · · aπ2n−1 baπ2n b in Q(n)

n is

2n−1 · 3 · 22−π2

n−1∏
i=2

(3 · 21−π2i ) · 3 · 21−π2n = 3n · 22n−e(π ),

which completes the proof.
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