A Local Analysis of Imprimitive Symmetric Graphs

SANMING ZHOU*

smzhou@ms.unimelb.edu.au

Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

Received March 3, 2004; Revised April 13, 2005; Accepted May 12, 2005

Abstract. Let Γ be a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Let $\Gamma_{\mathcal{B}}$ be the quotient graph of Γ with respect to \mathcal{B} . For each block $B \in \mathcal{B}$, the setwise stabiliser G_B of *B* in *G* induces natural actions on *B* and on the neighbourhood $\Gamma_{\mathcal{B}}(B)$ of *B* in $\Gamma_{\mathcal{B}}$. Let $G_{(B)}$ and $G_{[B]}$ be respectively the kernels of these actions. In this paper we study certain "local actions" induced by $G_{(B)}$ and $G_{[B]}$, such as the action of $G_{[B]}$ on *B* and the action of $G_{(B)}$ on $\Gamma_{\mathcal{B}}(B)$, and their influence on the structure of Γ .

Keywords: symmetric graph, arc-transitive graph, quotient graph, locally quasiprimitive graph

1. Introduction

Let *G* be a finite group acting on a finite set Ω . A partition \mathcal{B} of Ω is *G*-invariant if $B^g \in \mathcal{B}$ for $B \in \mathcal{B}$ and $g \in G$, where $B^g := \{\alpha^g : \alpha \in B\}$; and \mathcal{B} is nontrivial if $1 < |B| < |\Omega|$. If Ω admits a nontrivial *G*-invariant partition, then *G* is said to be *imprimitive* on Ω ; otherwise *G* is said to be *primitive* on Ω . The group *G* is *regular* on Ω if *G* is transitive on Ω and the only element of *G* that fixes a point of Ω is the identity. The *kernel* of the action of *G* on Ω is defined to be the subgroup of all elements of *G* which fix each point of Ω . If this kernel is equal to the identity subgroup of *G*, then *G* is said to be *faithful* on Ω .

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite graph and G a finite group. If G acts on the vertex set $V(\Gamma)$ of Γ such that G preserves the adjacency of Γ , then Γ is said to *admit* G as a group of automorphisms. If such a group G is transitive on $V(\Gamma)$ and, in its induced action, transitive on the set $\operatorname{Arc}(\Gamma)$ of arcs of Γ , then Γ is said to be a *G*-symmetric graph, where an *arc* of Γ is an ordered pair of adjacent vertices of Γ . In the following we will assume without mentioning explicitly that Γ is *nontrivial*, that is, $\operatorname{Arc}(\Gamma) \neq \emptyset$. Then Γ contains no isolated vertices since it is required to be *G*-vertex-transitive. Roughly speaking, in most cases G acts imprimitively on the vertex set of a G-symmetric graph Γ , that is, $V(\Gamma)$ admits a nontrivial *G*-invariant partition \mathcal{B} ; in this case Γ is called an *imprimitive G*-symmetric graph. From permutation group theory [2, Corollary 1.5A], this happens precisely when the stabiliser $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$ of α in G is not a maximal subgroup of G, where $\alpha \in V(\Gamma)$. A standard approach to studying imprimitive G-symmetric graphs Γ is to analyse the quotient graph Γ_B of Γ with respect to \mathcal{B} , which is defined to be the graph with

*Supported by a Discovery Project Grant (DP0558677) from the Australian Research Council and a Melbourne Early Career Researcher Grant from The University of Melbourne.

vertex set \mathcal{B} in which $B, C \in \mathcal{B}$ are adjacent if and only if there exist $\alpha \in B$ and $\beta \in C$ such that $\{\alpha, \beta\}$ is an edge of Γ . In the following we assume that $\Gamma_{\mathcal{B}}$ contains at least one edge, so that each block of \mathcal{B} is an independent set of Γ (see [1, Proposition 22.1] or [8]). Also, without loss of generality we assume that $\Gamma_{\mathcal{B}}$ is connected for otherwise Γ must be disconnected and we may deal with its connected components individually. (However, the connectedness of Γ is not required in this paper. Note that $\Gamma_{\mathcal{B}}$ can be connected when Γ is disconnected. For example, if Γ is a matching with at least two edges, then it is disconnected but the quotient graph with respect to the natural bipartition is connected.) This quotient graph $\Gamma_{\mathcal{B}}$ conveys a lot of information about the graph Γ and inherits some properties of Γ . For example, $\Gamma_{\mathcal{B}}$ is *G*-symmetric under the induced action (possibly unfaithful) of *G* on \mathcal{B} [8, Lemma 1.1(a)]. Nevertheless, $\Gamma_{\mathcal{B}}$ does not determine Γ completely since it does not tell us how adjacent blocks of \mathcal{B} are joined by edges of Γ . To compensate for this shortage, we need [3] the "inter-block" subgraph induced by two adjacent blocks of \mathcal{B} . Let $\Gamma(\alpha) := \{\beta \in V(\Gamma) : \{\alpha, \beta\} \in E(\Gamma)\}$, the *neighbourhood* of α in Γ . For each $B \in \mathcal{B}$, let

$$\Gamma(B) := \bigcup_{\alpha \in B} \Gamma(\alpha).$$

For adjacent blocks B, C of \mathcal{B} , define $\Gamma[B, C]$ to be the subgraph of Γ induced by ($\Gamma(C) \cap B$) \cup ($\Gamma(B) \cap C$). Then $\Gamma[B, C]$ is a bipartite graph with bipartition { $\Gamma(C) \cap B, \Gamma(B) \cap C$ } as B and C are both independent sets of Γ . Since $\Gamma_{\mathcal{B}}$ is G-symmetric, up to isomorphism, $\Gamma[B, C]$ is independent of the choice of adjacent blocks B, C of \mathcal{B} . Let

$$\Gamma_{\mathcal{B}}(B) := \{ C \in \mathcal{B} : \{ B, C \} \in E(\Gamma_{\mathcal{B}}) \}$$

be the neighbourhood of *B* in $\Gamma_{\mathcal{B}}$. To depict genuinely the structure of Γ we also need a "cross-sectional" geometry [3], namely the incidence structure

$$\mathcal{D}(B) := (B, \Gamma_{\mathcal{B}}(B), I)$$

in which α I*C* for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ if and only if $\alpha \in \Gamma(C)$. Clearly, the set of points of $\mathcal{D}(B)$ incident with a block $C \in \Gamma_{\mathcal{B}}(B)$ is $\Gamma(C) \cap B$. We denote by $\Gamma_{\mathcal{B}}(\alpha)$ the set of blocks of $\mathcal{D}(B)$ incident with a point $\alpha \in B$, that is,

$$\Gamma_{\mathcal{B}}(\alpha) := \{ C \in \Gamma_{\mathcal{B}}(B) : \alpha \in \Gamma(C) \}.$$

Denote

$$v := |B|, \quad r := |\Gamma_{\mathcal{B}}(\alpha)|, \quad b := |\Gamma_{\mathcal{B}}(B)|, \quad k := |\Gamma(C) \cap B|, \quad s := |\Gamma(\alpha) \cap C|.$$
(1)

Since Γ and $\Gamma_{\mathcal{B}}$ are *G*-symmetric, these parameters are all independent of the choice of adjacent blocks *B*, *C* of *B* and the *flag* (α , *C*) of $\mathcal{D}(B)$. One can check that $\mathcal{D}(B)$ is a 1-(v, k, r) design with b blocks and, up to isomorphism, is independent of the choice of *B*. Also, the *setwise stabiliser* $G_B := \{g \in G : B^g = B\}$ of *B* in *G* induces a group of automorphisms of $\mathcal{D}(B)$, and G_B is transitive on the points, the blocks and the flags of

 $\mathcal{D}(B)$ [3]. Thus, the number of times a block *C* of $\mathcal{D}(B)$ is repeated is independent of the choice of *B* and *C*. We denote this number by *m* and call it the *multiplicity* of $\mathcal{D}(B)$. In the following we will view $\mathcal{D}(B)$ as the 1-(v, k, r) design with point set *B* and blocks the subsets $\Gamma(C) \cap B$ of *B*, for $C \in \Gamma_{\mathcal{B}}(B)$, each repeated *m* times. We will reserve the letters v, r, b, k, s for the above-defined parameters with respect to \mathcal{B} . Then the valency of Γ is equal to *rs*, and the valencies of $\Gamma_{\mathcal{B}}$ and $\Gamma[B, C]$ are *b* and *s*, respectively. If k = v, s = 1, then $\Gamma[B, C]$ is a perfect matching between *B* and *C*, and in this case Γ is a cover of $\Gamma_{\mathcal{B}}$. In general, if k = v, then following [6], Γ is called a *multicover* of $\Gamma_{\mathcal{B}}$.

Thus, with any imprimitive *G*-symmetric graph Γ and nontrivial *G*-invariant partition \mathcal{B} of $V(\Gamma)$ we have associated three configurations, namely the quotient graph $\Gamma_{\mathcal{B}}$, the bipartite graph $\Gamma[B, C]$, and the 1-design $\mathcal{D}(B)$. Gardiner and Praeger [3] suggested that we may analyse the triple ($\Gamma_{\mathcal{B}}$, $\Gamma[B, C]$, $\mathcal{D}(B)$) in order to study Γ . This approach is a geometric one in the sense that it involves the "cross-sectional" geometry $\mathcal{D}(B)$. It has been proved to be very useful in studying imprimitive symmetric graphs, see [3–5, 7, 12–15]. Clearly, G_B induces natural actions on *B* and $\Gamma_{\mathcal{B}}(B)$. These "local actions" may have significant influence on the structure of Γ , and the analysis of them is fundamental to make effective use of the approach. For example, it was proved in [12] that, if the actions of G_B on *B* and $\Gamma_{\mathcal{B}}(B)$ are permutationally equivalent, then Γ can be reconstructed from Γ_B and the action of *G* on \mathcal{B} via a simple construction, called the 3-arc graph construction, which was first introduced in [7] in the case where $k = v - 1 \ge 2$ and $\mathcal{D}(B)$ contains no repeated blocks. (For a group *G* acting on two sets Ω and Δ , the actions of *G* on Ω and Δ are said to be *permutationally equivalent* if there exists a bijection $\psi : \Omega \to \Delta$ such that $\psi(\alpha^g) = (\psi(\alpha))^g$ for all $\alpha \in \Omega$ and $g \in G$.)

The purpose of this paper is to study actions induced by the kernels $G_{(B)}$, $G_{[B]}$ of the actions of G_B on B, $\Gamma_{\mathcal{B}}(B)$, where by definition

$$G_{(B)} := \{ g \in G_B : \alpha^g = \alpha \text{ for each } \alpha \in B \}$$

$$G_{[B]} := \{ g \in G_B : C^g = C \text{ for each } C \in \Gamma_{\mathcal{B}}(B) \}.$$

In particular, we will investigate the action of $G_{[B]}$ on B and the actions of $G_{(B)}$ on $\Gamma_B(B)$, $\Gamma(\alpha)$ and $\Gamma_B(\alpha)$ (where $\alpha \in B$), and the influence of these "local actions" on the structure of Γ . For our purpose it seems natural to distinguish whether one of $G_{(B)}$, $G_{[B]}$ is a subgroup of the other. With respect to this we have the following (not necessarily exclusive) possibilities: (i) $G_{[B]} \leq G_{(B)}$; (ii) $G_{[B]} \not\leq G_{(B)}$; (iii) $G_{(B)} \leq G_{[B]}$; (iv) $G_{(B)} \not\leq G_{[B]}$; (v) $G_{[B]} \not\leq G_{(B)}$ and $G_{(B)} \not\leq G_{[B]}$. Setting $M = G_{(B)}G_{[B]}$, M is a normal subgroup of G_B and we have Figure 1 in the lattice of subgroups of G_B .

We will put our discussion in a general setting and consider the following subgroups of G_B . Let d be the *diameter* of Γ_B , that is, the longest distance between two vertices of Γ_B . For each i with $0 \le i \le d$, let $\Gamma_B(i, B)$ denote the set of blocks of \mathcal{B} with distance in Γ_B no more than i from B. Then G_B leaves $\Gamma_B(i, B)$ invariant, that is, $C \in \Gamma_B(i, B)$ implies $C^g \in \Gamma_B(i, B)$ for any $g \in G_B$, and hence G_B induces a natural action on $\Gamma_B(i, B)$. The kernel of this action is

 $G_{[i,B]} := \{g \in G_B : C^g = C \text{ for each } C \in \Gamma_{\mathcal{B}}(i, B)\}.$

Figure 1. $G_{(B)}$ and $G_{[B]}$.

In particular, $G_{[0,B]} = G_B$, $G_{[1,B]} = G_{[B]}$, and $G_{[d,B]}$ coincides with the kernel of the induced action of G on \mathcal{B} . Figure 2 illustrates the relationships among these groups $G_{[i,B]}$, $0 \le i \le d$.

The results obtained in this paper are generic in nature. In Section 2, we will show (Theorem 2.5) that each $G_{[i,B]}$ induces a *G*-invariant partition \mathcal{B}_i of $V(\Gamma)$ such that the sequence

 $\mathcal{B} = \mathcal{B}_0, \mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_d$

is a tower possessing some nice "level structure" properties, where as in [8] a sequence of G-invariant partitions is called a *tower* if each partition is a refinement of the previous partition. We will show (Theorem 2.7) further that, if $G_{[i,B]} \leq G_{(B)}$ for some $i \geq 1$ then G is faithful on \mathcal{B} ; whilst if $G_{[i,B]} \not\leq G_{(B)}$ for some $i \geq 1$ then either \mathcal{B}_i is a genuine refinement of \mathcal{B} , or Γ is a multicover of $\Gamma_{\mathcal{B}}$. (For two partitions $\mathcal{P}_1, \mathcal{P}_2$ of a set Ω , we say that \mathcal{P}_1 is a *refinement* of \mathcal{P}_2 if each block of \mathcal{P}_2 is a union of some blocks of \mathcal{P}_1 ; and \mathcal{P}_1 is a genuine *refinement* of \mathcal{P}_2 if in addition $\mathcal{P}_1 \neq \{\{\alpha\} : \alpha \in \Omega\}$ and $\mathcal{P}_1 \neq \mathcal{P}_2$.) In Section 3 we will study an extreme case where any two blocks of $\mathcal{D}(B)$ are either repeated or disjoint, that is, for any $C, D \in \Gamma_{\mathcal{B}}(B)$, either $\Gamma(C) \cap B = \Gamma(D) \cap B$, or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$. Based on these results, we then study in Section 4 the case where Γ is G-locally quasiprimitive. (A G-symmetric graph Γ is said to be G-locally quasiprimitive if G_{α} is quasiprimitive on $\Gamma(\alpha)$, that is, every non-identity normal subgroup of G_{α} is transitive on $\Gamma(\alpha)$.) In this case we will show (Theorem 4.2) amongst other things that, if \mathcal{B} is a minimal G-invariant partition, then either $G_{[B]} = G_{(B)}$, or k = 1 and $G_{[B]} < G_{(B)}$, or Γ is a multicover of $\Gamma_{\mathcal{B}}$. For $\alpha \in V(\Gamma)$, we use $G_{[\alpha]}$ to denote the subgroup of G_{α} fixing setwise each block of $\Gamma_{\mathcal{B}}(\alpha)$, that is, $G_{[\alpha]} := \{g \in G_{\alpha} : C^g = C \text{ for each } C \in \Gamma_{\mathcal{B}}(\alpha)\}$. Then $G_{[\alpha]}$ induces a natural action on $\Gamma(\alpha) \cap C$. In Section 4 we will also study *G*-locally quasiprimitive graphs Γ such that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap C$, and prove that in this case either Γ is a bipartite graph or $\Gamma[B, C]$ is a matching.

Figure 2. Relationships among $G_{[i,B]}$'s.

2. Tower induced by $G_{[i,B]}$

We will follow standard terminology and notation for permutation groups, see e.g. [2]. For a *G*-invariant partition \mathcal{B} of a finite set Ω , each block *B* of \mathcal{B} is a *block of imprimitivity* for *G* in Ω in the sense that, for each $g \in G$, either $B^g = B$ or $B^g \cap B = \emptyset$. Conversely, for a transitive group *G* acting on Ω , any block *B* of imprimitivity for *G* in Ω induces a *G*-invariant partition of Ω , namely { $B^g : g \in G$ }. As usual write $N \leq G$ if *N* is a normal subgroup of *G*, and $N \leq G$ if $N \leq G$ and $N \neq G$.

Lemma 2.1 (see e.g. [10, Lemma 10.1]) *Let a group G act on a finite set* Ω *, and let* $N \leq G$ *. Then the set of N-orbits on* Ω *is a G-invariant partition of* Ω *.*

We will denote this partition by \mathcal{B}_N and, following [11], call it the *G*-normal partition of Ω induced by *N*. Clearly, for *G* transitive on Ω , the trivial partitions { Ω } and {{ α } : $\alpha \in \Omega$ } of Ω are *G*-normal partitions. If these are the only *G*-normal partitions of Ω , then *G* is said

to be *quasiprimitive* on Ω . Thus, G is quasiprimitive on Ω if and only if every non-indentity normal subgroup of G is transitive on Ω .

Applying Lemma 2.1 to imprimitive symmetric graphs, we get the following result.

Lemma 2.2 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} , and let $B \in \mathcal{B}$. Then each normal subgroup N of G_B induces a *G*-invariant partition \mathcal{B}_N^* of $V(\Gamma)$. Moreover, \mathcal{B}_N^* is a refinement of \mathcal{B} and the following (a)–(c) hold.

(a) \mathcal{B}_N^* is the trivial partition $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ if and only if $N \leq G_{(B)}$.

(b) \mathcal{B}_N^* coincides with \mathcal{B} if and only if N is transitive on B.

(c) If $N \leq G$, then \mathcal{B}_N^* coincides with the *G*-normal partition \mathcal{B}_N of $V(\Gamma)$ induced by *N*.

Proof: Since $N \leq G_B$ and G_B is transitive on *B*, Lemma 2.1 implies that $B^* := \alpha^N$ is a block of imprimitivity for G_B in *B*, where $\alpha \in B$. Since \mathcal{B} is a *G*-invariant partition of $V(\Gamma)$, this implies that B^* is a block of imprimitivity for *G* in $V(\Gamma)$. Hence B^* induces a *G*-invariant partition of $V(\Gamma)$, namely,

$$\mathcal{B}_{N}^{*} := \{ (B^{*})^{g} : g \in G \}.$$
⁽²⁾

The validity of (a)–(c) follows from the definition of \mathcal{B}_N^* immediately.

Remark 2.3

- (a) For distinct blocks $B, C \in \mathcal{B}$, there exists $g \in G$ such that $B^g = C$. So $(G_B)^g := g^{-1}G_Bg = G_C$, and hence $N \trianglelefteq G_B$ if and only if $N^g := g^{-1}Ng \trianglelefteq G_C$. It is easy to see that $\mathcal{B}_{N^g}^* = \mathcal{B}_N^*$. So, in studying the *G*-invariant partition \mathcal{B}_N^* , we can start with any chosen block $B \in \mathcal{B}$.
- (b) The results in Lemma 2.2 are valid for any transitive permutation group G on a finite set Ω, any nontrivial G-invariant partition B of Ω and any normal subgroup N of G_B, where B ∈ B. For the purpose of this paper, in Lemma 2.2 we stated these results in the case where Ω = V(Γ) and G is a vertex- and arc-transitive group of automorphisms of Γ.

For adjacent blocks B, C of \mathcal{B} , let $G_{B,C} := (G_B)_C = \{g \in G : B^g = B, C^g = C\}$. Then $G_{B,C}$ is transitive on the set of edges of $\Gamma[B, C]$ ([8, Lemma 1.4(b)]). From this it follows that

$$\Gamma(C) \cap B$$
 and $\Gamma(B) \cap C$ are two $(G_{B,C})$ -orbits on $V(\Gamma)$. (3)

This will be used in the proof of Theorem 2.5 below. Also, we will need the following observations, which can be easily verified.

Lemma 2.4 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Let $B \in \mathcal{B}$ and $\alpha \in B$, and let *d* be the diameter of $\Gamma_{\mathcal{B}}$. Then the following (a)–(e) hold.

(a) $G_{(B)} \lhd G_B$.

- (b) $G_{(B)} \trianglelefteq G_{\alpha}$.
- (c) $G_{[\alpha]} \trianglelefteq G_{\alpha}$.
- (d) $G_{[i,B]} \leq G_B$ for each *i* with $0 \leq i \leq d$; in particular, $G_{[B]} \leq G_B$.
- (e) $G_{[i,B]} \trianglelefteq G_{[i-1,B]}$ for each *i* with $1 \le i \le d$.

Let *d* be the diameter of $\Gamma_{\mathcal{B}}$. From Lemma 2.2 and Lemma 2.4(d) it follows that, for each *i* with $0 \le i \le d$, $G_{[i,B]}$ induces a *G*-invariant partition

$$\mathcal{B}_i := \left\{ B_i^g : g \in G \right\} \tag{4}$$

of $V(\Gamma)$ which is a refinement of \mathcal{B} , where $B_i := \alpha^{G_{[i,B]}}$ (for some $\alpha \in B$) is a typical block of \mathcal{B}_i . Let v_i, r_i, b_i, k_i, s_i denote the parameters with respect to \mathcal{B}_i , as defined in (1). Since \mathcal{B}_0 is precisely the original partition \mathcal{B} , we have $(v_0, r_0, b_0, k_0, s_0) = (v, r, b, k, s)$. The following theorem gives some "level structure" properties concerning these partitions. Recall that a tower is a sequence of *G*-invariant partitions of $V(\Gamma)$ such that each partition in the sequence is a refinement of the previous partition.

Theorem 2.5 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Let $B \in \mathcal{B}$ and let *d* be the diameter of $\Gamma_{\mathcal{B}}$. Then for each *i* with $0 \le i \le d$, $G_{[i,B]}$ induces a *G*-invariant partition \mathcal{B}_i , defined in (4), such that $\mathcal{B} = \mathcal{B}_0, \mathcal{B}_1, \ldots, \mathcal{B}_d$ is a tower. Moreover, the following (a)–(d) hold.

- (a) v_i is a common divisor of v_{i-1} and k_{i-1} , s_i is a divisor of s_{i-1} , and r_{i-1} is a divisor of r_i (with $s_{i-1}/s_i = r_i/r_{i-1}$).
- (b) Each block of the 1-design D(B_{i-1}) (for B_{i-1} ∈ B_{i-1}) is a disjoint union of some blocks of B_i. More precisely, for adjacent blocks B_{i-1}, C_{i-1} of Γ_{B_{i-1}}, G_[i,B] leaves Γ(C_{i-1}) ∩ B_{i-1} invariant and the (G_[i,B])-orbits on Γ(C_{i-1}) ∩ B_{i-1} form a (G_{B_{i-1},C_{i-1})invariant partition of Γ(C_{i-1}) ∩ B_{i-1}.}
- (c) $\Gamma_{\mathcal{B}_{i-1}}(\alpha) = \Gamma_{\mathcal{B}_{i-1}}(\beta)$ for any vertices α, β in the same block of \mathcal{B}_i .
- (d) For each integer j with $0 \le j < i$, the set \mathcal{B}_i admits a G-invariant partition \mathbf{B}_{ij} such that $\Gamma_{\mathcal{B}_j} \cong (\Gamma_{\mathcal{B}_i})_{\mathbf{B}_{ij}}$ and that the parameters $v_{ij}, \mathbf{r}_{ij}, \mathbf{b}_{ij}, \mathbf{k}_{ij}, \mathbf{s}_{ij}$ with respect to \mathbf{B}_{ij} satisfy $v_{ij} = v_j/v_i, \mathbf{k}_{ij} = k_j/v_i, \mathbf{b}_{ij} = b_j, \mathbf{r}_{ij} = r_j, \mathbf{s}_{ij} = b_i/r_j$.

Proof: For each *i*, let $\alpha \in B$ and $B_i := \alpha^{G_{[i,B]}}$, and let \mathcal{B}_i be as defined in (4). Then, since $G_{[i,B]} \trianglelefteq G_B$ by Lemma 2.4(d), Lemma 2.2 implies that \mathcal{B}_i is a *G*-invariant partition of $V(\Gamma)$ and is a refinement of \mathcal{B} . For $1 \le i \le d$, since $G_{[i,B]} \trianglelefteq G_{[i-1,B]}$ (Lemma 2.4(e)), it follows that \mathcal{B}_i is a refinement of \mathcal{B}_{i-1} . Consequently, v_i is a divisor of v_{i-1} .

Now suppose C_{i-1} is a block of \mathcal{B}_{i-1} adjacent to B_{i-1} in $\Gamma_{\mathcal{B}_{i-1}}$, and let *C* be the block of \mathcal{B} containing C_{i-1} . Then there exist $\beta \in \Gamma(C_{i-1}) \cap B_{i-1}$ and $\gamma \in \Gamma(B_{i-1}) \cap C_{i-1}$ such that β , γ are adjacent in Γ . By the definition of \mathcal{B}_{i-1} , we have $B_{i-1} = \beta^{G_{[i-1,B]}}$ and $C_{i-1} = \gamma^{G_{[i-1,C]}}$, and by (3) we have $\Gamma(C_{i-1}) \cap B_{i-1} = \beta^{G_{B_{i-1},C_{i-1}}}$ and $\Gamma(B_{i-1}) \cap C_{i-1} = \gamma^{G_{B_{i-1},C_{i-1}}}$. Note that *B*, *C* are adjacent blocks of \mathcal{B} . So we have $\Gamma_{\mathcal{B}}(i-1, C) \subseteq \Gamma_{\mathcal{B}}(i, B)$ and hence $G_{[i,B]} \leq G_{[i-1,C]}$. This implies that $G_{[i,B]}$ fixes C_{i-1} setwise. Since $G_{[i,B]} \leq G_{[i-1,B]}$, $G_{[i,B]}$ also fixes B_{i-1} setwise. Thus, we have $G_{[i,B]} \leq G_{B_{i-1},C_{i-1}}$. This implies $G_{[i,B]} \leq G_{B_{i-1},C_{i-1}}$ since $G_{B_{i-1},C_{i-1}} \leq G_B$ and $G_{[i,B]} \leq G_B$ (Lemma 2.4(d)). So $G_{[i,B]}$ leaves $\Gamma(C_{i-1}) \cap B_{i-1}$ invariant and, by Lemma 2.1, the $(G_{[i,B]})$ -orbits on $\Gamma(C_{i-1}) \cap B_{i-1}$ constitute a $(G_{B_{i-1},C_{i-1}})$ invariant partition of $\Gamma(C_{i-1}) \cap B_{i-1}$. Thus, each block $\Gamma(C_{i-1}) \cap B_{i-1}$ of the 1-design $\mathcal{D}(B_{i-1})$ is a disjoint union of some blocks of \mathcal{B}_i . This implies in particular that v_i is a divisor of k_{i-1} , and so v_i is a common divisor of v_{i-1} and k_{i-1} . One can see that each block C_{i-1} of $\Gamma_{\mathcal{B}_{i-1}}(\beta)$ contains the same number of blocks of $\Gamma_{\mathcal{B}_i}(\beta)$. Hence r_{i-1} is a divisor of r_i . Since $r_{i-1}s_{i-1} = r_is_i$ (the valency of Γ), this implies that s_i is a divisor of s_{i-1} .

If δ, ε are in the same block of \mathcal{B}_i , without loss of generality we may suppose that $\delta, \varepsilon \in B_i$. Then since B_i is a $(G_{[i,B]})$ -orbit there exists $x \in G_{[i,B]}$ such that $\delta^x = \varepsilon$, and hence $(\Gamma_{\mathcal{B}_{i-1}}(\delta))^x = \Gamma_{\mathcal{B}_{i-1}}(\varepsilon)$. On the other hand, the elements of $G_{[i,B]}$ fix setwise each block C_{i-1} in $\Gamma_{\mathcal{B}_{i-1}}(B_{i-1})$ since $G_{[i,B]} \trianglelefteq G_{B_{i-1},C_{i-1}}$, as shown above. In particular, x fixes setwise each block in $\Gamma_{\mathcal{B}_{i-1}}(\delta)$ since $\Gamma_{\mathcal{B}_{i-1}}(\delta) \subseteq \Gamma_{\mathcal{B}_{i-1}}(B_{i-1})$. Thus, we have $\Gamma_{\mathcal{B}_{i-1}}(\delta) = (\Gamma_{\mathcal{B}_{i-1}}(\delta))^x = \Gamma_{\mathcal{B}_{i-1}}(\varepsilon)$.

Let *j* be an integer with $0 \le j < i$. Since for each ℓ with $j + 1 \le \ell \le i$ the partition \mathcal{B}_{ℓ} is a refinement of the partition $\mathcal{B}_{\ell-1}$, as shown above, we know that \mathcal{B}_i is a refinement of \mathcal{B}_j and hence each block C_j of \mathcal{B}_j is a union of some blocks of \mathcal{B}_i . Denote by $\mathbf{C}_{ij} = \{B_i^z : B_i^z \subseteq C_j, z \in G\}$, the set of blocks of \mathcal{B}_i contained in C_j . Then $\mathbf{B}_{ij} := \{\mathbf{C}_{ij} : C_j \in \mathcal{B}_j\}$ is a partition of \mathcal{B}_i . We claim further that \mathbf{B}_{ij} is a G-invariant partition of \mathcal{B}_i under the induced action of G on \mathcal{B}_i . In fact, if $\mathbf{C}_{ij}^g \cap \mathbf{C}_{ij} \neq \emptyset$ for some $g \in G$, say $(B_i^x)^g = B_i^y$ for some B_i^x , $B_i^y \in \mathbf{C}_{ij}$, then B_i^x , $B_i^y \subseteq C_j$ and hence $(B_i^x)^g = B_i^y \subseteq C_j$. Since C_j is a block of imprimitivity for G in $V(\Gamma)$, this implies that g fixes C_j setwise. Therefore, we have $\mathbf{C}_{ij}^g = \{(B_i^z)^g : B_i^z \subseteq C_j, z \in G\} = \mathbf{C}_{ij}$ and hence \mathbf{B}_{ij} . By the definition of a quotient graph, one can see that ψ is an isomorphism from $\Gamma_{\mathcal{B}_j}$ to $(\Gamma_{\mathcal{B}_i})_{\mathbf{B}_{ij}}$, and hence $\Gamma_{\mathcal{B}_j} \cong (\Gamma_{\mathcal{B}_i})_{\mathbf{B}_{ij}}$. Clearly, we have $v_{ij} = v_j/v_i$, $k_{ij} = k_j/v_i$, $b_{ij} = b_j$ and $r_{ij}s_{ij} = val(\Gamma_{\mathcal{B}_i}) = b_i$. From $v_{ij}r_{ij} = b_{ij}k_{ij}$, we get $(v_j/v_i)r_{ij} = b_j(k_j/v_i)$, which in turn implies $r_{ij} = r_j$ since $v_jr_j = b_jk_j$. Finally, we have $s_{ij} = b_i/r_{ij} = b_i/r_j$ and the proof is complete.

Remark 2.6 If $G_{[i,B]} \trianglelefteq G$ for $B \in \mathcal{B}$, then from Lemma 2.2(c), \mathcal{B}_i is the *G*-normal partition of $V(\Gamma)$ induced by $G_{[i,B]}$. In this case Γ is a multicover of $\Gamma_{\mathcal{B}_i}$ (see [8, Section 1] or [11, Theorem 4.1]). In particular, if $\Gamma_{\mathcal{B}}$ is a complete graph, then d = 1 and $G_{[B]} \trianglelefteq G$ (since $G_{[B]}$ is the kernel of the action of *G* on \mathcal{B} in this case), and hence Γ is a multicover of $\Gamma_{\mathcal{B}_i}$.

Theorem 2.7 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} , where $G \leq \operatorname{Aut}(\Gamma)$. Let $B \in \mathcal{B}$ and let *d* be the diameter of $\Gamma_{\mathcal{B}}$. Then one of the following (a)–(b) occurs for each *i* with $1 \leq i \leq d$.

- (a) $G_{[i,B]} \leq G_{(B)}$; in this case G is faithful on \mathcal{B} .
- (b) $G_{[i,B]} \not\leq G_{(B)}$; in this case either
 - (i) G_[i,B] induces a G-invariant partition B_i of V(Γ), defined in (4), which is a genuine refinement of B and is such that v_i is a common divisor of v and k, s_i is a divisor of s, and r is a divisor of r_i; or
 - (ii) Γ is a multicover of $\Gamma_{\mathcal{B}}$ and $G_{[i,B]}$ is transitive on B.

Proof: Suppose that $G_{[i,B]} \leq G_{(B)}$. Then, since *G* is transitive on \mathcal{B} and since $G_{[i,B^g]} = (G_{[i,B]})^g$ and $G_{(B^g)} = (G_{(B)})^g$ for any $g \in G$, we have $G_{[i,C]} \leq G_{(C)}$ for all blocks $C \in \mathcal{B}$.

Thus, if g is in the kernel of the action of G on \mathcal{B} , then $g \in G_{[i,C]}$ in particular and hence $g \in G_{(C)}$. In other words, g fixes each vertex in C. Since this holds for all $C \in \mathcal{B}$, it follows that g fixes each vertex of Γ . Thus, since $G \leq \operatorname{Aut}(\Gamma)$ is faithful on $V(\Gamma)$, we have g = 1 and hence G is faithful on \mathcal{B} as well.

Now suppose $G_{[i,B]} \not\leq G_{(B)}$. Then, by Lemma 2.2(a), the partition \mathcal{B}_i of $V(\Gamma)$ induced by $G_{[i,B]}$ is a nontrivial *G*-invariant partition of $V(\Gamma)$. So we know from Lemma 2.2(b) and Theorem 2.5 that, either \mathcal{B}_i is a genuine refinement of \mathcal{B} , or $G_{[i,B]}$ is transitive on *B*. In the former case, it follows from Theorem 2.5(a) that v_i is a common divisor of v and k, s_i is a divisor of s and r is a divisor of r_i , and hence (i) in (b) occurs. Since $G_{[i,B]}$ fixes setwise the block *B* and each block $C \in \Gamma_{\mathcal{B}}(B)$, it also fixes setwise $\Gamma(C) \cap B$. So in the latter case where $G_{[i,B]}$ is transitive on *B*, we must have $\Gamma(C) \cap B = B$, that is, Γ is a multicover of $\Gamma_{\mathcal{B}}$ and hence (ii) in (b) occurs.

Note that, if case (b)(i) in Theorem 2.7(b) occurs, then at least one of the \mathbf{B}_{ij} given in Theorem 2.5(d), say \mathbf{B}_{i0} , is a nontrivial partition of \mathcal{B}_i . If case (b)(ii) in Theorem 2.7(b) occurs, then from Lemma 2.2(b), the partition \mathcal{B}_i induced by $G_{[i,B]}$ coincides with \mathcal{B} . Applying Theorem 2.7 to $G_{[B]}$, we get the following consequence.

Corollary 2.8 Suppose (Γ, G, \mathcal{B}) is as in Theorem 2. Then one of the following (a)–(b) occurs.

- (a) $G_{[B]} \leq G_{(B)}$; in this case G is faithful on \mathcal{B} .
- (b) $G_{[B]} \not\leq G_{(B)}$; in this case either
 - (i) G_[B] induces a G-invariant partition of V(Γ), namely B₁ defined in (4) for i = 1, which is a genuine refinement of B such that v₁ is a common divisor of v and k, s₁ is a divisor of s, and r is a divisor of r₁; or
 - (ii) Γ is a multicover of $\Gamma_{\mathcal{B}}$ and $G_{[B]}$ is transitive on B.

If the vertices in *B* are "distinguishable" in the sense that $\Gamma_{\mathcal{B}}(\alpha) \neq \Gamma_{\mathcal{B}}(\beta)$ for distinct $\alpha, \beta \in B$, then case (a) in Corollary 2.8 occurs. In particular, this happens for *G*-symmetric graphs with $k = v - 1 \ge 1$, see [7, Theorems 4 and 5(d)]. A nontrivial *G*-invariant partition \mathcal{B} of $V(\Gamma)$ is said to be *minimal* if there is no *G*-invariant partition of $V(\Gamma)$ which is a genuine refinement of \mathcal{B} . For such a partition \mathcal{B} , case (b)(i) in Corollary 2.8 does not appear. The following example shows that case (b)(ii) in Corollary 2.8 occurs if *G* is not quasiprimitive on $V(\Gamma)$ and if \mathcal{B} is a nontrivial *G*-normal partition of $V(\Gamma)$.

Example 2.9 Suppose Γ is a *G*-symmetric graph such that *G* is not quasiprimitive on $V(\Gamma)$, where $G \leq \operatorname{Aut}(\Gamma)$. Then there exists a nontrivial normal subgroup *N* of *G* which is intransitive on $V(\Gamma)$, so the *G*-normal partition \mathcal{B}_N of $V(\Gamma)$ induced by *N* (Lemma 2.1) is nontrivial. Let Γ_N be the quotient graph of Γ with respect to \mathcal{B}_N . Since *N* is contained in the kernel of the action of *G* on \mathcal{B}_N , *G* is not faithful on \mathcal{B}_N . So from Corollary 2.8 we must have $G_{[B]} \not\leq G_{(B)}$ for $B \in \mathcal{B}_N$. Since $N \leq G_{[B]}$, we have $B = \alpha^N \subseteq \alpha^{G_{[B]}} \subseteq B$ for $\alpha \in B$, which implies $\alpha^{G_{[B]}} = B$. Hence $G_{[B]}$ is transitive on *B*, and consequently we come to the result (see e.g. [11 Theorem 4.1]) that Γ is a multicover of Γ_N . Thus, case (b)(ii) in Corollary 2.8 occurs.

3. Analysing an extreme case

In Corollary 2.8 we have shown that, if $G_{[B]} \not\leq G_{(B)}$, then either Γ is a multicover of $\Gamma_{\mathcal{B}}$, or we get a genuine refinement of \mathcal{B} . Note that G_B is transitive on $\Gamma_{\mathcal{B}}(B)$ and $G_{(B)} \lhd G_B$ by Lemma 2.4(a). So in the opposite case where $G_{(B)} \not\leq G_{[B]}$, Lemma 2.1 implies that the $G_{(B)}$ -orbits on $\Gamma_{\mathcal{B}}(B)$ form a nontrivial G_B -invariant partition of $\Gamma_{\mathcal{B}}(B)$. Since $G_{(B)}$ fixes B pointwise, any two blocks in the same $G_{(B)}$ -orbit on $\Gamma_{\mathcal{B}}(B)$ induce repeated blocks of $\mathcal{D}(B)$. In some cases, blocks in distinct $G_{(B)}$ -orbits on $\Gamma_{\mathcal{B}}(B)$ may induce disjoint blocks of $\mathcal{D}(B)$. For example, in Remark 3.2 below we will see that this happens in particular when Γ is G-locally quasiprimitive and $G_{(B)} \not\leq G_{[B]}$. This motivated us to study the case where, for any $C, D \in \Gamma_{\mathcal{B}}(B)$, either $\Gamma(C) \cap B = \Gamma(D) \cap B$, or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$. In this case, the multiplicity m of $\mathcal{D}(B)$ is equal to r. This seemingly trivial case is by no means trivial because it contains the following two very difficult but important subcases:

- (i) k = 1;
- (ii) k = v.

We have studied the first subcase in [14, Section 4], where we gave a construction of such graphs from certain kinds of *G*-point- and *G*-block-transitive 1-designs. In the second subcase, Γ is a multicover of $\Gamma_{\mathcal{B}}$. Our study in this section shows that (see Remark 3(a) below), in some sense, the study of *G*-symmetric graphs with blocks $\Gamma(C) \cap B$ of $\mathcal{D}(B)$ (for $C \in \Gamma_{\mathcal{B}}(B)$) satisfying the condition above can be reduced to the study of these two subcases. The results obtained here will be used in the next section. Define $(G_B)_{\Gamma_{\mathcal{B}}(\alpha)} := \{g \in G_B : (\Gamma_{\mathcal{B}}(\alpha))^g = \Gamma_{\mathcal{B}}(\alpha)\}.$

Lemma 3.1 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Let $B \in \mathcal{B}$, $\alpha \in B$, and let (a), (b), (c) be the following statements. Then (a) implies (b), and (b) in turn implies (c).

- (a) $G_{(B)} \not\leq G_{[B]}$, and either G_{α} or $(G_B)_{\Gamma_{\mathcal{B}}(\alpha)}$ is quasiprimitive on $\Gamma_{\mathcal{B}}(\alpha)$;
- (b) $G_{(B)}$ is transitive on $\Gamma_{\mathcal{B}}(\alpha)$;
- (c) either $\Gamma(C) \cap B = \Gamma(D) \cap B$ or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$, for $C, D \in \Gamma_{\mathcal{B}}(B)$.

Proof: (a) \Rightarrow (b) Suppose $G_{(B)} \not\leq G_{[B]}$. Then there exist $x \in G_{(B)}$ and $C, D \in \Gamma_{\mathcal{B}}(B)$ with $C \neq D$ such that $C^x = D$. Let $\alpha \in \Gamma(C) \cap B$, so that $C \in \Gamma_{\mathcal{B}}(\alpha)$. Since x fixes each vertex in B and hence fixes α in particular, we have $(\Gamma(\alpha) \cap C)^x = \Gamma(\alpha) \cap D$. Since $\Gamma(\alpha) \cap C \neq \emptyset$, we have $\Gamma(\alpha) \cap D \neq \emptyset$ and hence $D \in \Gamma_{\mathcal{B}}(\alpha)$. Thus the action of $G_{(B)}$ on $\Gamma_{\mathcal{B}}(\alpha)$ is nontrivial. On the other hand, since $G_{(B)} \triangleleft G_B$ (Lemma 2.4(a)) and $G_{(B)} \leq (G_B)_{\Gamma_{\mathcal{B}}(\alpha)} \leq G_B$, we have $G_{(B)} \trianglelefteq (G_B)_{\Gamma_{\mathcal{B}}(\alpha)}$. So if $(G_B)_{\Gamma_{\mathcal{B}}(\alpha)}$ is quasiprimitive on $\Gamma_{\mathcal{B}}(\alpha)$, then $G_{(B)}$ must be transitive on $\Gamma_{\mathcal{B}}(\alpha)$. Similarly, since $G_{(B)} \trianglelefteq G_{\alpha}$ (Lemma 2.4(b)) and $G_{(B)}$ acts on $\Gamma_{\mathcal{B}}(\alpha)$ in a nontrivial way, the quasiprimitivity of G_{α} on $\Gamma_{\mathcal{B}}(\alpha)$ implies the transitivity of $G_{(B)}$ on $\Gamma_{\mathcal{B}}(\alpha)$.

(b) \Rightarrow (c) The assumption in (b) implies that, for any $\beta \in B$, $G_{(B)}$ is transitive on $\Gamma_{\mathcal{B}}(\beta)$. In fact, since G_B is transitive on B, there exists $g \in G_B$ such that $\beta^g = \alpha$. For any $C, D \in \Gamma_{\mathcal{B}}(\beta)$, we have $C^g, D^g \in \Gamma_{\mathcal{B}}(\alpha)$ and hence by (b) there exists $x \in G_{(B)}$

such that $(C^g)^x = D^g$, that is, $C^{gxg^{-1}} = D$. Since $G_{(B)} \triangleleft G_B$ by Lemma 2.4(a), we have $gxg^{-1} \in G_{(B)}$ and hence $G_{(B)}$ is transitive on $\Gamma_{\mathcal{B}}(\beta)$ indeed. Also, since $C^{gxg^{-1}} = D$, we have $(\Gamma(C) \cap B)^{gxg^{-1}} = \Gamma(D) \cap B$. However, $gxg^{-1} \in G_{(B)}$ fixes each vertex in B, so we have $(\Gamma(C) \cap B)^{gxg^{-1}} = \Gamma(C) \cap B$ and consequently $\Gamma(C) \cap B = \Gamma(D) \cap B$. In other words, if two blocks $\Gamma(C) \cap B$, $\Gamma(D) \cap B$ of $\mathcal{D}(B)$ have a common vertex β , then $\Gamma(C) \cap B = \Gamma(D) \cap B$. Hence (c) is true.

Remark 3.2 Clearly, the quasiprimitivity of G_{α} on $\Gamma(\alpha)$ implies the quasiprimitivity of G_{α} on $\Gamma_{\mathcal{B}}(\alpha)$. So, if Γ is a *G*-locally quasiprimitive graph admitting a nontrivial *G*-invariant partition \mathcal{B} such that $G_{(B)} \not\leq G_{[B]}$, then by Lemma 3.1, either $\Gamma(C) \cap B = \Gamma(D) \cap B$ or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$, for any $C, D \in \Gamma_{\mathcal{B}}(B)$.

The main result in this section is the following theorem.

Theorem 3.3 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Suppose further that, for any $C, D \in \Gamma_{\mathcal{B}}(B)$, either $\Gamma(C) \cap B = \Gamma(D) \cap B$ or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$. Then $V(\Gamma)$ admits a second *G*-invariant partition $\mathcal{B}^* := \{(B^*)^g : g \in G\}$, where B^* is a block of $\mathcal{D}(B)$. Moreover, the following (a)–(c) hold.

- (a) \mathcal{B}^* is a refinement of \mathcal{B} , and it is a genuine refinement of \mathcal{B} if and only if $2 \le k \le v 1$.
- (b) Γ is a multicover of Γ_{B*}, k is a divisor of v, and the parameters v^{*}, r^{*}, b^{*}, k^{*}, s^{*} with respect to B^{*} satisfy v^{*} = k^{*} = k, b^{*} = r^{*} = r, s^{*} = s.
- (c) There exists a *G*-invariant partition **B** of \mathcal{B}^* such that $(\Gamma_{\mathcal{B}^*})_{\mathbf{B}} \cong \Gamma_{\mathcal{B}}$ and the parameters v, r, b, k, s with respect to **B** satisfy $v = v/v^*$, k = s = 1, b = b and r = r.

Proof: Our assumption on $\mathcal{D}(B)$ implies that the set of subsets of B of the form $\Gamma(C) \cap B$, for $C \in \Gamma_{\mathcal{B}}(B)$, is a partition of B, which we denote by $\mathcal{P}(B)$. Thus the blocks of $\mathcal{P}(B)$ have size k and k divides v. Let $B^* := \Gamma(C) \cap B$ be a typical block of $\mathcal{P}(B)$, where $C \in \Gamma_{\mathcal{B}}(B)$. Since G_B is transitive on $\Gamma_{\mathcal{B}}(B)$ and since $(B^*)^g = \Gamma(C^g) \cap B$ for $g \in G_B$, we have $\mathcal{P}(B) = \{(B^*)^g : g \in G_B\}$ and hence $\mathcal{P}(B)$ is a G_B -invariant partition of B. We claim further that $\mathcal{B}^* := \{(B^*)^g : g \in G\}$ defines a *G*-invariant partition of $V(\Gamma)$. In fact, if $(B^*)^g \cap B^* \neq \emptyset$ for some $g \in G$, then $B^g \cap B \neq \emptyset$ since $B^* \subseteq B$ and $(B^*)^g \subseteq B^g$. But B is a block of imprimitivity for G in $V(\Gamma)$, so we have $B^g = B$ and hence $g \in G_B$. Thus $(B^*)^g \subseteq B$ and $(B^*)^g$ is a block of $\mathcal{P}(B)$ having nonempty intersection with B^* . Since $\mathcal{P}(B)$ is a G_B -invariant partition of B, as shown above, this implies $(B^*)^g = B^*$. Therefore, B^* is a block of imprimitivity for G in $V(\Gamma)$ and so \mathcal{B}^* is a G-invariant partition of $V(\Gamma)$. It is easily checked that $\mathcal{B}^* = \bigcup_{B \in \mathcal{B}} \mathcal{P}(B)$. Clearly, \mathcal{B}^* is a refinement of \mathcal{B} , and it is a genuine refinement of \mathcal{B} if and only if $2 \le k \le v - 1$. Since $\Gamma_{\mathcal{B}}$ is *G*-symmetric, there exists $h \in G$ which interchanges B and C. So $\Gamma(B) \cap C = (\Gamma(C) \cap B)^h = (B^*)^h \in \mathcal{B}^*$, and hence each vertex in B^* is adjacent to at least one vertex in $(B^*)^h$. Therefore, Γ is a multicover of $\Gamma_{\mathcal{B}^*}$, and hence $v^* = k^* = k, b^* = r^* = r, s^* = s$. Finally, it is straightforward to show that $\mathbf{B} := \{\mathcal{P}(B) : B \in \mathcal{B}\}$ is a *G*-invariant partition of \mathcal{B}^* and that $(\Gamma_{\mathcal{B}^*})_{\mathbf{B}} \cong \Gamma_{\mathcal{B}}$. Also, it is clear that the parameters v, r, b, k, s with respect to **B** are as specified in (c).

Remark 3.4

- (a) The partition \mathcal{B}^* in Theorem 3.3 is equal to the trivial partition $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ if and only if k = 1, and is equal to \mathcal{B} if and only if k = v. In the general case where $2 \le k \le v - 1$, \mathcal{B}^* is a genuine refinement of \mathcal{B} , and as $k^* = v^*$, the partition $(\mathcal{B}^*)^*$ resulting from applying Theorem 3.3 to \mathcal{B}^* , is equal to \mathcal{B}^* . Moreover, the quotient graph $\Gamma_{\mathcal{B}^*}$ admits a *G*-invariant partition, namely **B**, for which k = 1 and thus the construction given in [14, Section 4] applies to $\Gamma_{\mathcal{B}^*}$.
- (b) Setting i = 1 in Theorem 2.5(b), we know that the partition \mathcal{B}_1 (defined in (4) for i = 1) is a refinement of \mathcal{B}^* . Moreover, \mathcal{B}_1 admits a *G*-invariant partition $\mathbf{B}_1 := \{\mathcal{P}(B^*) : B^* \in \mathcal{B}^*\}$, where $\mathcal{P}(B^*) := \{\alpha^{G_{[B]}} \subseteq B^* : \alpha \in B^*\}$, such that $(\Gamma_{\mathcal{B}_1})_{\mathbf{B}_1} \cong \Gamma_{\mathcal{B}^*}$ and $\Gamma_{\mathcal{B}_1}$ is a multicover of $\Gamma_{\mathcal{B}^*}$, and that the parameters $v_1, r_1, v_1, v_1, v_1, v_1$ with respect to \mathbf{B}_1 satisfy $v_1 = k_1 = k/v_1, r_1 = b_1 = r, s_1 = b_1/r$.

4. Locally quasiprimitive graphs

We now apply the results obtained in the last two sections to *G*-locally quasiprimitive graphs. Such graphs were studied initially in [8,9], and more recent results were obtained in [6]. The following theorem is a generalization of [3, Lemma 3.4], where Γ is required to be *G*-locally primitive (that is, G_{α} is primitive on $\Gamma(\alpha)$).

Theorem 4.1 Suppose Γ is a *G*-locally quasiprimitive graph admitting a nontrivial *G*-invariant partition *B*. Then one of the following (a)–(c) holds.

- (a) $G_{[B]} = G_{(B)}$.
- (b) $G_{(B)} \not\leq G_{[B]}$; in this case $G_{(B)}$ is transitive on $\Gamma(\alpha)$ for each $\alpha \in B$, and moreover either
 - (i) k = 1 and $G_{[B]} < G_{(B)}$; or
 - (ii) $k \ge 2$, k divides v, and $V(\Gamma)$ admits a second nontrivial G-invariant partition \mathcal{B}^* such that \mathcal{B}^* is a refinement of \mathcal{B} , Γ is a multicover of $\Gamma_{\mathcal{B}^*}$ and the parameters v^*, r^*, b^*, k^*, s^* with respect to \mathcal{B}^* satisfy $v^* = k^* = k, b^* = r^* = r, s^* = s$.
- (c) $G_{[B]} \not\leq G_{(B)}$; in this case $G_{[B]}$ induces a nontrivial G-invariant partition \mathcal{B}_1 of $V(\Gamma)$ (defined in (4) for i = 1) such that \mathcal{B}_1 is a refinement of \mathcal{B} , v_1 is a common divisor of vand k, s_1 is a divisor of s, and r is a divisor of r_1 .

Proof: Suppose $G_{(B)} \not\leq G_{[B]}$. Then there exist $x \in G_{(B)}$ and distinct blocks C, D of $\Gamma_{\mathcal{B}}(B)$ such that $C^x = D$. Let $\beta \in \Gamma(C) \cap B$, so that $\Gamma(\beta) \cap C \neq \emptyset$. Since x fixes each vertex in B, it fixes β in particular and hence maps a vertex in $\Gamma(\beta) \cap C$ to a vertex in $\Gamma(\beta) \cap D$. Since $G_{(B)} \leq G_{\beta}$ (Lemma 2.4(b)), this implies that $G_{(B)}^{\Gamma(\beta)}$ is a nontrivial normal subgroup of $G_{\beta}^{\Gamma(\beta)}$. Therefore, by the G-local quasiprimitivity of Γ , we conclude that $G_{(B)}$ is transitive on $\Gamma(\beta)$. Now for any $\alpha \in B$ there exists $g \in G_B$ such that $\alpha^g = \beta$. For any $\gamma, \delta \in \Gamma(\alpha)$, we have $\gamma^g, \delta^g \in \Gamma(\beta)$ and hence $(\gamma^g)^x = \delta^g$ holds for some $x \in G_{(B)}$ by the transitivity of $G_{(B)}$ on $\Gamma(\beta)$. Since $G_{(B)} \lhd G_B$ (Lemma 2.4(a)), we have $gxg^{-1} \in G_{(B)}$, and hence $\gamma^{gxg^{-1}} = \delta$ implies that $G_{(B)}$ is transitive on $\Gamma(\alpha)$.

ZHOU

If k = 1, then $\Gamma_{\mathcal{B}}(\alpha) \cap \Gamma_{\mathcal{B}}(\beta) = \emptyset$ for distinct $\alpha, \beta \in B$. Hence, if $g \in G_B$ fixes each block $C \in \Gamma_{\mathcal{B}}(B)$ setwise, then it also fixes each vertex in B. So we have $G_{[B]} < G_{(B)}$ in this case.

If $k \ge 2$, then by Remark 3.2, for any $C, D \in \Gamma_{\mathcal{B}}(B)$, either $\Gamma(C) \cap B = \Gamma(D) \cap B$ or $\Gamma(C) \cap \Gamma(D) \cap B = \emptyset$. Hence Theorem 3.3 applies, and the partition \mathcal{B}^* defined therein is a nontrivial *G*-invariant partition of $V(\Gamma)$ and is a refinement of \mathcal{B} . The truth of the remaining statements in (b)(ii) follows from Theorem 3.3(b).

Now we suppose $G_{[B]} \not\leq G_{(B)}$. Then $B_1 := \alpha^{G_{[B]}}$ has cardinality at least two, where $\alpha \in B$. Hence it follows from Theorem 2.5 that the partition \mathcal{B}_1 (defined in (4) for i = 1) is a nontrivial *G*-invariant partition of $V(\Gamma)$ and is a refinement of \mathcal{B} , and that the parameters v_1, s_1, r_1 with respect to \mathcal{B}_1 have the required properties.

For minimal nontrivial G-invariant partitions, we have the following result.

Theorem 4.2 Suppose Γ is a *G*-locally quasiprimitive graph, where $G \leq \operatorname{Aut}(\Gamma)$. Suppose further that \mathcal{B} is a minimal nontrivial *G*-invariant partition of $V(\Gamma)$. Then one of the following (a)–(c) holds.

(a) $G_{[B]} = G_{(B)}$ and G is faithful on \mathcal{B} ;

(b) $G_{[B]} < G_{(B)}$ and k = 1;

(c) Γ is a multicover of $\Gamma_{\mathcal{B}}$.

Moreover, if Γ_B is a complete graph, then the occurrence of (a) implies $G_{[B]} = G_{(B)} = 1$; if $G_{[B]} \not\leq G_{(B)}$, then the occurrence of (c) implies that $G_{[B]}$ is transitive on B.

Proof: In the case where $G_{(B)} = G_{[B]}$, *G* is faithful on \mathcal{B} by Corollary 2.8(a). Suppose $G_{(B)} \neq G_{[B]}$. Then either $G_{(B)} \not\leq G_{[B]}$ or $G_{[B]} \not\leq G_{(B)}$. In the former case, Theorem 4.1(b) applies. If (i) in Theorem 4.1(b) occurs, then we have k = 1 and $G_{[B]} < G_{(B)}$, and hence (b) above occurs. If (ii) in Theorem 4.1(b) occurs, then by the minimality of \mathcal{B} , the partition \mathcal{B}^* therein must coincide with \mathcal{B} ; hence Γ is a multicover of $\Gamma_{\mathcal{B}}$ and (c) holds. In the latter case where $G_{[B]} \not\leq G_{(B)}$, by Corollary 2.8 and the minimality of \mathcal{B} , we know that Γ is a multicover of $\Gamma_{\mathcal{B}}$ (hence (c) above occurs), and moreover $G_{[B]}$ is transitive on \mathcal{B} .

Now suppose that $\Gamma_{\mathcal{B}}$ is a complete graph, and that case (a) occurs. Then $G_{[B]}$ is the kernel of the action of G on \mathcal{B} and hence $G_{[B]} = G_{(B)} \triangleleft G$. This implies that $G_{(B)} = g^{-1}G_{(B)}g = G_{(B^g)}$ for any $g \in G$. Since B^g runs over all blocks of \mathcal{B} when g runs over G, this means that $G_{(B)}$ fixes each vertex of Γ , and hence by the faithfulness of G on $V(\Gamma)$ we get $G_{[B]} = G_{(B)} = 1$.

Recall that $G_{[\alpha]}$ is the subgroup of G_{α} fixing setwise each block $B \in \Gamma_{\mathcal{B}}(\alpha)$. So $G_{[\alpha]}$ induces an action on $\Gamma(\alpha) \cap B$. It may happen (see Lemma 4.4 below) that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$, that is, $\Gamma(\alpha) \cap B$ is a $(G_{[\alpha]})$ -orbit on $\Gamma(\alpha)$. In this case we have the following theorem, which is a counterpart of [3, Lemma 3.1(b)].

Theorem 4.3 Suppose Γ is a *G*-locally quasiprimitive graph admitting a nontrivial *G*-invariant partition \mathcal{B} . Suppose further that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$, for some $\alpha \in V(\Gamma)$ and $B \in \Gamma_{\mathcal{B}}(\alpha)$. Then either

- (a) $\Gamma[B, C] \cong k \cdot K_2$ is a matching of k edges, for adjacent blocks B, C of \mathcal{B} ; or
- (b) Γ is a bipartite graph with each part of the bipartition of a connected component contained in some block of \mathcal{B} , and r = 1.

Proof: We first show that our assumption on $G_{[\alpha]}$ implies that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap C$ for each $C \in \Gamma_{\mathcal{B}}(\alpha)$. In fact, since $B, C \in \Gamma_{\mathcal{B}}(\alpha)$, α is adjacent to a vertex β in B and a vertex γ in C. So there exists $g \in G_{\alpha}$ such that $\gamma^g = \beta$, and hence $C^g = B$. Now for any $\delta, \varepsilon \in \Gamma(\alpha) \cap C$, we have $\delta^g, \varepsilon^g \in \Gamma(\alpha) \cap B$ and hence, by our assumption that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$, $(\delta^g)^x = \varepsilon^g$ holds for some $x \in G_{[\alpha]}$. Since $G_{[\alpha]} \leq G_{\alpha}$ (Lemma 2.4(c)), we have $gxg^{-1} \in G_{[\alpha]}$ and so $\delta^{gxg^{-1}} = \varepsilon$ implies that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap C$. Thus, if $G_{[\alpha]}^{\Gamma(\alpha)} = 1$, then we have $|\Gamma(\alpha) \cap C| = 1$. That is, $\Gamma[B, C]$ is a matching for adjacent blocks B, C of \mathcal{B} , and hence the statement in (a) holds.

In the following we suppose that $G_{[\alpha]}^{\Gamma(\alpha)} \neq 1$. Then, since $G_{[\alpha]}^{\Gamma(\alpha)} \leq G_{\alpha}^{\Gamma(\alpha)}$ by Lemma 2.4(c) and since Γ is *G*-locally quasiprimitive by our assumption, $G_{[\alpha]}$ must be transitive on $\Gamma(\alpha)$. However, $G_{[\alpha]}$ fixes $\Gamma(\alpha) \cap C$ setwise for each $C \in \Gamma_{\mathcal{B}}(\alpha)$. So we must have $r = |\Gamma_{\mathcal{B}}(\alpha)| = 1$ and hence $\Gamma(\alpha) \subseteq C$ for some *C*. Let *B* be the block of *B* containing α . Then, since *G* is transitive on arcs of Γ , for any $\beta \in \Gamma(\alpha)$ there exists an element of *G* which interchanges α and β and hence interchanges *B* and *C*. Hence $\Gamma(\alpha) \subseteq C$ implies $\Gamma(\beta) \subseteq B$. Similarly, $\Gamma(\beta) \subseteq B$ implies $\Gamma(\gamma) \subseteq C$ for any $\gamma \in \Gamma(\beta)$. Continuing this process, one can see that $\Gamma[B, C]$ consists of connected components of Γ , and hence each such component is a bipartite graph with the two parts of the bipartition contained in *B*, *C*, respectively. Therefore, Γ is a bipartite graph. \Box

The following lemma shows that $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$ for each $B \in \Gamma_{\mathcal{B}}(\alpha)$ provided that G_{α} is regular on $\Gamma_{\mathcal{B}}(\alpha)$. This will be used in the proof of Theorem 4.5 below.

Lemma 4.4 Suppose Γ is a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . If G_{α} is regular on $\Gamma_{\mathcal{B}}(\alpha)$, for some $\alpha \in V(\Gamma)$, then $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$ for each $B \in \Gamma_{\mathcal{B}}(\alpha)$.

Proof: For any $B \in \Gamma_{\mathcal{B}}(\alpha)$ and $\beta, \gamma \in \Gamma(\alpha) \cap B$, by the *G*-symmetry of Γ there exists $x \in G_{\alpha}$ such that $\beta^{x} = \gamma$, and hence *x* fixes *B* setwise. Since by our assumption G_{α} acts regularly on $\Gamma_{\mathcal{B}}(\alpha)$, this implies that $C^{x} = C$ for all $C \in \Gamma_{\mathcal{B}}(\alpha)$, and hence $x \in G_{[\alpha]}$. Thus, any vertex β in $\Gamma(\alpha) \cap B$ can be mapped to any other vertex γ in $\Gamma(\alpha) \cap B$ by an element of $G_{[\alpha]}$. In other words, $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$.

We conclude this paper by proving the following result. A *G*-symmetric graph Γ is said to be (G, 1)-arc regular if, in its induced action, *G* is regular on Arc (Γ) .

Theorem 4.5 Suppose Γ is a connected, non-bipartite, *G*-locally quasiprimitive graph admitting a nontrivial *G*-invariant partition \mathcal{B} , where $G \leq \operatorname{Aut}(\Gamma)$. Suppose further that G_{α} is regular on $\Gamma_{\mathcal{B}}(\alpha)$ for $\alpha \in V(\Gamma)$. Then Γ is (G, 1)-arc regular and $\Gamma[B, C] \cong k \cdot K_2$ for adjacent blocks B, C of \mathcal{B} .

Proof: Since G_{α} is regular on $\Gamma_{\mathcal{B}}(\alpha)$, by Lemma 4.4, $G_{[\alpha]}$ is transitive on $\Gamma(\alpha) \cap B$ for $B \in \Gamma_{\mathcal{B}}(\alpha)$. Thus, since Γ is non-bipartite, we have $\Gamma[B, C] \cong k \cdot K_2$ by Theorem 4.3. Consequently, the actions of G_{α} on $\Gamma_{\mathcal{B}}(\alpha)$ and $\Gamma(\alpha)$ are permutationally equivalent. So G_{α} is regular on $\Gamma(\alpha)$ as well. This together with the connectedness of Γ implies that Γ is (G, 1)-arc regular, as we show in the following.

Let $\Gamma(i, \alpha)$ denote the set of vertices of Γ with distance no more than *i* from α . For any $\beta \in \Gamma(\alpha)$, since G_{α} is regular on $\Gamma(\alpha)$, $G_{\alpha\beta}$ fixes each vertex in $\Gamma(\alpha) \cup \{\alpha, \beta\}$. Similarly, $G_{\beta\alpha} = G_{\alpha\beta}$ fixes each vertex in $\Gamma(\beta) \cup \{\alpha, \beta\}$. So $G_{\alpha\beta}$ fixes each vertex in $\Gamma(\alpha) \cup \Gamma(\beta) \cup \{\alpha, \beta\}$. Thus, for any vertex $\gamma \in \Gamma(\beta) \setminus \{\alpha\}$, we have $G_{\alpha\beta} = G_{\alpha\beta\gamma}$. Similarly, $G_{\gamma\beta} = G_{\alpha\beta\gamma}$ and so $G_{\alpha\beta} = G_{\gamma\beta}$. Repeating the argument above for the adjacent vertices γ, β , we know that $G_{\alpha\beta} (= G_{\gamma\beta})$ fixes each vertex in $\Gamma(\gamma)$. Similarly, $G_{\alpha\beta}$ fixes each vertex in $\Gamma(\delta)$ for any $\delta \in \Gamma(\alpha) \setminus \{\beta\}$. Therefore, $G_{\alpha\beta}$ fixes each vertex in $\Gamma(2, \alpha) \cup \Gamma(2, \beta)$. Inductively, one can show that $G_{\alpha\beta}$ fixes each vertex in $\Gamma(i, \alpha) \cup \Gamma(i, \beta)$ for any $i \ge 1$. Since Γ is connected, this implies that $G_{\alpha\beta}$ fixes each vertex of Γ . But $G \le \operatorname{Aut}(\Gamma)$ is faithful on $V(\Gamma)$, so we have $G_{\alpha\beta} = 1$ and G is regular on the arcs of Γ .

References

- 1. N.L. Biggs, Algebraic Graph Theory, 2nd edn., Cambridge University Press, Cambridge, 1993.
- 2. J.D. Dixon and B. Morttimer, *Permutation Groups*, Springer, New York, 1996.
- 3. A. Gardiner and C.E. Praeger, "A geometrical approach to imprimitive graphs," *Proc. London Math. Soc.(3)* **71** (1995), 524–546.
- 4. A. Gardiner and C.E. Praeger, Symmetric graphs with complete quotients, preprint, University of Western Australia.
- M.A. Iranmanesh, C.E. Praeger, and S. Zhou, "Finite symmetric graphs with two-arc transitive quotients," J. Combin. Theory (Series B) 94 (2005), 79–99.
- C.H. Li, C.E. Praeger, A. Venkatesh, and S. Zhou, "Finite locally quasiprimitive graphs," *Discrete Math.* 246 (2002), 197–218.
- C.H. Li, C.E. Praeger, and S. Zhou, "A class of finite symmetric graphs with 2-arc transitive quotients," *Math. Proc. Camb. Phil. Soc.* 129 (2000), 19–34.
- 8. C.E. Praeger, "Imprimitive symmetric graphs," Ars Combin. 19A (1985), 149-163.
- C.E. Praeger, "On automorphism groups of imprimitive symmetric graphs," Ars Combin. 23A (1987), 207– 224.
- C.E. Praeger, "Finite transitive permutation groups and finite vertex transitive graphs," in *Graph Symmetry* G. Hahn and G. Sabidussi (Eds.), (Montreal, 1996, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 497), Kluwer Academic Publishing, Dordrecht, 1997, pp. 277–318.
- C.E. Praeger, "Finite quasiprimitive graphs, surveys in combinatorics," London Math. Soc. Lecture Note Series 24 (1997), 65–85.
- 12. S. Zhou, "Imprimitive symmetric graphs, 3-arc graphs and 1-designs," Discrete Math. 244 (2002), 521-537.
- 13. S. Zhou, "Constructing a class of symmetric graphs," European J. Combin. 23 (2002), 741-760.
- 14. S. Zhou, "Symmetric graphs and flag graphs," Monatshefte für Mathematik 139 (2003), 69-81.
- 15. S. Zhou, "Almost covers of 2-arc transitive graphs," Combin. 24 (2004), 731-745.